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Article 

Spectral Decomposition of Gramians of Continuous 
Linear Systems in the Form of Hadamard Products 

Igor Yadykin 

V.A. Trapeznikov Institute of Control Sciences, 65 Profsoyuznaya, 117997 Moscow, Russia; jad@ipu.ru;  

Tel.: +7-495334-89-10 

Abstract: New possibilities of Gramian computation by using canonical transformations into 

diagonal, controllable and observable canonical forms are shown. With the help of such a technique 

the Gramian matrices can be represented in the form of products of Hadamard matrices of 

multipliers and matrices of the transformed right-hand side of Lyapunov equations. It is shown that 

the multiplier matrices are invariant under various canonical transformations of linear continuous 

systems. The modal Lyapunov equations for continuous SISO LTI systems in diagonal form are 

obtained and their new solutions based on Hadamard decomposition are proposed. New 

algorithms for element-by-element computation of Gramian matrices for stable continuous MIMO 

LTI systems are developed. For continuous SISO LTI systems given by equations of state in 

controllable and observable canonical forms, new algorithms for the computation of controllability 

Gramians and their traces in the form of Hadamard products in the form of Xiao matrices are 

developed. The application of transformations to the canonical forms of controllability and 

observability allowed to simplify the formulas of spectral decompositions in the form of Xiao 

matrices. In the paper new spectral decompositions in the form of Hadamard’s products for 
solutions of Sylvester algebraic and differential equations of MIMO LTI systems, including spectral 

decompositions of finite and infinite cross-Gramians of continuous MIMO LTI systems. 

Recommendations on the use of the obtained results are given. 

Keywords: spectral decompositions; linear continuous systems; Gramians; Sylvester and Lyapunov 

equations; Xiao matrices; Hadamard product 
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1. Introduction 

The first spectral expansions of Gramians for linear continuous and discrete systems with simple 

spectra were obtained in [1] by the spectral expansion of the integral representation of the solution of 

the Lyapunov or Sylvester equations. It is well known that the Gramians are solutions of the Sylvester 

and Lyapunov equations, to which a huge number of scientific papers have been devoted, among 

which we note [2–13]. These equations also play a fundamental role in a control theory. Researches 

in the field of linear control systems are closely related to the problem of reduction the order of the 

model by constructing an approximating model of lower dimension. Even in the case of linear 

systems of high dimensionality, the use of projection methods allows us to reduce the significantly 

dimensionality of the approximating model [6,10]. Among these methods, we note balanced 

truncation , singular decomposition, Krylov subspace method; methods for drsign a simplified 

model, based Gramian H2 -norm optimal methods, and hybrid methods. Iterative algorithms for their 

implementation have been developed for most of the methods. The Sylvester and Lyapunov matrix 

equations in applied problems of control theory were studied in [12,13] In recent years, there has been 

an interest in developing of the methods for computing various energy metrics to analyse the stability 

and degree of controllability, reachability and observability of these systems. Such metrics for linear 

stable systems and unstable linear systems have been proposed in a number of papers[14–

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 November 2023                   doi:10.20944/preprints202311.1868.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202311.1868.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

21].Simplified models for large networks based on output controllability Gramians, allowing the 

computation of energy indices, were proposed in [16]. The important problem of optimal placement 

of sensors and actuators based on various energy functionals, including invariant ellipsoids, was 

considered in [15,17,18,20]. Paper [17] formulates a general approach to solving the problem of 

optimal placement of sensors and actuators for multivariable control systems, which is based on the 

decomposition of the system into stable and unstable subsystems. It is shown that the degree of 

controllability of the system is determined on the basis of energy metrics based on the use of finite 

and infinite controllability Gramians.A general method for computing the inverse controllability 

Gramian for equations of state given in canonical forms of controllability is proposed. In [18], a 

method for optimal placement of virtual inertia on the graph of an energy system is proposed. This 

method is based on the use of energy metrics of coherennce of generators and the square of the H2 

and the square of the H2 -norm of the system transfer function, which is given by a standard dynamic 

model in the state space. The problem is formalised as a nonconvex optimization problem with 

constraints in the form of observability Gramian values. It is well known that energy-efficient control 

problems are also solved using Gramians. In recent years, these approaches have been developed for 

complex energy, social, transport and biological networks in [17–19]. In [16,17], it is shown that the 

closer the eigenvalues of the dynamics matrix are to the imaginary axis, the less energy is required to 

make the network fully controllable. In [19–21] These ideas have been developed for digital 

ecosystems, vibroacoustics control systems and thermal plants control systems. Thus, the degree of 

controllability (reachability) of the network is related to the minimum energy, which allows us to 

introduce new metrics in the form of the minimum eigenvalue of the controllability Gramian and the 

maximum eigenvalue of its inverse Gramian, as well as the traces of these Gramians. Note that in 

most of the above mentioned works the spectrum of the dynamics matrix of the system is used, which 

makes it completely natural to use spectral analysis methods to solve the problems listed above. 

Main contribution 

In Section 2, the formulations of the problems of computing controllability and observability 

Gramians are considered in the framework of a unified concept. An important feature of the concept 

of the paper is the consideration of Hadamard products for the spectral decomposition of Gramians, 

which allows us to reduce the computation of sub-Gramian and Gramian matrices to the computation 

of numerical sequences of their elements. The use of canonical forms of controllability has previously 

set the stage for a new approach to the computation of Gramians based on the use of Routh-Gurwitz 

tables and Xiao matrices [22–26]. In this paper, we propose to improve this approach by using spectral 

decompositions of Gramians by extending its scope of application to multivariable linear control 

systems given by a standard (A,B,C) state-space representation. In Section 3, we introduce modal 

Lyapunov equations of the second type for the state equations of MIMO LTI systems in a diagonal 

canonical form. These equations allow the computation of various sub-Gramians in a closed form. 

Their spectral decompositions in the form of Hadamard products are obtained and formulas for the 

multiplier matrices are derived. For the SISO LTI system in the canonical forms of controllability and 

observability, spectral decompositions in the form of Hadamard products are obtained, whose 

multiplier matrices are Xiao matrices to play an important role in the following exposition. These 

equations allow us to compute various sub-Gramians in closed form. Their spectral decompositions 

in the form of Hadamar products are obtained and formulas for the multiplier matrices are derived. 

It is proved that for stable systems the Xiao matrices are positively defined and are invariants under 

similarity transformations. In the rest of the section, the general case of linear continuous MIMO LTI 

systems represented by (A,B,C) equations of state is considered. New spectral decompositions of the 

controllability and observability Gramians in the form of Hadamard products are obtained. It is 

shown that the multiplier matrices are the same in both MIMO LTI and SISO LTI cases provided that 

the system is stable, fully controllable and observable for both the simple and pairwise spectra of the 

dynamics matrix. The new analysis of the properties of multiplier matrices is given. An important 

property of multiplier matrices is their positive definiteness, which manifests itself in the positivity 

of the energy metrics associated with this property [15,16]. In Section 4, the obtained results are 
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developed for the construction of spectral expansions of solutions of a wide class of Sylvester matrix 

differential equations. In particular, we obtain closed formulas for the Hadamard products of the 

matrices of spectral expansions of cross-Gramian MIMO LTI systems, as well as their traces and 

diagonal elements. 

2. Discussion of the results and problem statement 

We consider the Lyapunov equations for continuous stationary MIMO LTI in diagonal canonical 

form 𝐴𝑃 + 𝑃𝐴𝑇 = −𝐵𝐵𝑇 , 𝐴𝑇𝑃 + 𝑃𝐴 = −𝐶𝑇𝐶. 𝑥𝑑 = 𝑇𝑥, 𝑥̇𝑑 = 𝐴𝑑𝑥𝑑 + 𝐵𝑑𝑢, 𝑦𝑑 = 𝐶𝑑𝑥𝑑 ,𝐴𝑑 = 𝑇𝐴𝑇−1, 𝐵𝑑 = 𝑇𝐵, 𝐶𝑑 = 𝐶𝑇−1,  (1) 

или  

A= [𝑢1 𝑢2 … 𝑢𝑛] [𝑠1 0 0 00 𝑠2 0 0… … … …0 0 … 𝑠𝑛] [𝜈1∗𝜈2∗⋮𝜈𝑛∗
], 

where the matrix T is composed of the right eigenvectors𝑢𝑖, and the matrix𝑇−1 is composed of the 

left eigenvectors 𝜈i∗corresponding to the eigenvalue 𝑠𝑖 . Let us introduce the notations 𝛽𝑖𝑗 = 𝑒𝑖𝑇𝐵𝐵𝑇𝑇∗𝑒𝑗𝑇 , 𝛾𝑖𝑗 = 𝑒𝑖(𝐶𝑇−1)∗𝐶𝑇−1𝑒𝑗𝑇 . 
Let us further consider the SISO LTI systems in the canonical form of controllability [9] 𝑥𝑐(𝑡) = 𝑅𝑐𝐹𝑥(𝑡), 𝑥̇𝑐(𝑡) = 𝐴𝑐𝐹𝑥с(𝑡) + 𝑏𝐹 𝑢(𝑡), 𝑥𝑐(0) = 0,  (2) 𝑦𝑐(𝑡) = 𝑐𝑐𝐹𝑥𝑐(𝑡), 

𝐴𝑐𝐹 = [  
  0 1 0 … 00 0 1 … 00 0 0 … 00 0 0 … 1−𝑎0 −𝑎1 −𝑎2 … −𝑎𝑛−1]  

  , 𝑏𝐹 = [0 0 . . 0 1]T, 
𝑐𝐹 = [𝜉0 𝜉1 . . 𝜉𝑛−2 𝜉𝑛−1]. 

The following relations are valid [15] 𝑅𝑐𝐹𝐴(𝑅𝑐𝐹)−1 = 𝐴𝑐𝐹 , 𝑅𝑐𝐹𝑏 = 𝑏𝛾𝐹, 𝑐(𝑅𝑐𝐹)−1 = 𝑐𝐹 , 𝑃𝑐 = (𝑅𝑐𝐹)−1𝑃𝑐𝐹((𝑅𝑐𝐹)−1)𝑇 , 
where the matrix 𝑃𝑐 is a solution of the corresponding Lyapunov equation. With respect to systems 

(1) and (2), we will assume that various structural conditions for stability, controllability, 

observability and spectrum properties of the dynamic matrix are fulfilled. In [26] the following 

spectral decomposition of the controllability Gramian was obtained 𝑃𝑐𝐹 = ∑𝑛𝑘=1 ∑𝑛−1𝜂=0 ∑𝑛−1𝑗=0 𝑠𝑘𝑗(−𝑠𝑘)𝜂𝑁̇(𝑠𝑘)𝑁(−𝑠𝑘) 1𝑗+1𝜂+1.  

Let us consider further SISO LTI (linear time invariant system with one input and one outputs) 

of a linear system in the canonical form of observability [9]. In this case the following formulas are 

valid 𝑥𝑜(𝑡) = 𝑅𝑜𝐹𝑥(𝑡) 𝑥̇𝑜(𝑡) = 𝐴𝑜𝐹𝑥𝑜(𝑡) + 𝑏𝑜𝐹𝑢(𝑡), 𝑥𝑜(0) = 0,  𝑦𝑜𝐹(𝑡) = 𝑐𝑜𝐹𝑥𝑜(𝑡), 
According to the principle of duality we obtain the expressions [26] 
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𝑃𝑜𝐹 = ∑𝑛𝑘=1 ∑𝑛−1𝜂=0 ∑𝑛−1𝑗=0 𝑠𝑘𝑗(−𝑠𝑘)𝜂𝑁̇(𝑠𝑘)𝑁(−𝑠𝑘) 1𝑗+1𝜂+1,  

In addition, 𝑃𝑜 = (𝑅𝑜𝐹)𝑇𝑃𝑜𝐹𝑅𝑜𝐹 .  
Let us call Xiao matrix (Zero plaid structure) a matrix of the form [23] 

𝑌 =
[  
   
𝑦1 0 −𝑦2 0 𝑦30 𝑦2 0 −𝑦3 0−𝑦2 0 𝑦3 0 …0 −𝑦3 0 … 0𝑦3 0 … 0 𝑦𝑛]  

   . (3) 

The corresponding matrix elements are calculated by the formulas 𝑦𝑗𝜂 = {0, если 𝑗 + 𝜂 = 2𝑘 + 1, 𝑘 = 1,2… 𝑛;(−1)𝑗−𝜂2 , если 𝑗 + 𝜂 = 2𝑘, 𝑘 = 1,2…𝑛. (4) 

The aim of the paper is to develop a general approach and study the properties of spectral 

decompositions of solutions of differential and algebraic Sylvester and Lyapunov equations in the 

form of Hadamard products, including modal equations. 

3. Main results 

Spectral Gramian decompositions allow us to represent the Gramian matrix as a sum of 

summands containing multiples of summations over different indices. In this case the role of the 

indices can be different. Some indices play the role of leading indices, while others are slave indices. 

The distribution of indexes' roles is determined by specificity of the applied tasks of condition 

monitoring and management. In addition, computations in the real or complex domain require a 

different approach to the choice of method and algorithm for computing or analysing Gramian 

properties. The main idea of the derivation of modal Lyapunov equations is to decompose the matrix 

of the right-hand side of the Lyapunov equation into the sum of matrices corresponding to the 

individual eigenvalues of the dynamics matrix or their combinations and the corresponding 

transformation of the matrices of the left-hand side.The main types of spectral decompositions are 

decompositions by simple, multiple or Raman (pairwise) spectra. The Gramian matrix is in general 

an Hermite complex matrix, which can be represented as the sum of the symmetric and the 

cosymmetric matrix. Many applications of the Lyapunov equations are based on the use of matrix of 

dynamics, input-output and Faddeev matrices, and in this case the Gramian matrices are valid [30] 𝐴𝑇𝑃𝑖 + 𝑃𝑖𝐴 = − 12 (𝑅𝑖∗𝑄+Q𝑅𝑖), (5) 𝐴𝑃𝑖 + 𝑃𝑖𝐴𝑇 = − 12 (𝑅𝑖∗𝑄+Q𝑅𝑖), (6) 

or 𝐴𝑇𝑃𝑖𝑗 + 𝑃𝑖𝑗𝐴 = − 12 (𝑅𝑖∗𝑄𝑅𝑗+𝑅𝑗∗Q𝑅𝑖), (7) 𝐴𝑃𝑖𝑗 + 𝑃𝑖𝑗𝐴𝑇 = − 12 (𝑅𝑖∗𝑄𝑅𝑗+𝑅𝑗∗Q𝑅𝑖), (8) 

where Q is the matrix of the right-hand side of the Lyapunov equations, R_i,R_j are deductions of the 

resolvent of the dynamics matrix in its corresponding eigenvalue. 

Let us call equations (5) - (8) modal Lyapunov equations of the first type. On the other hand, 

there are applications in which it is possible to use complex matrices of solutions of Lyapunov 

equations 𝐴𝑇𝑃𝑖 + 𝑃𝑖𝐴 = −𝑅𝑖∗𝑄, (9 ) 𝐴𝑃𝑖 + 𝑃𝑖𝐴𝑇 = −𝑅𝑖∗𝑄, (10 ) 

or 𝐴𝑇𝑃𝑖𝑗 + 𝑃𝑖𝑗𝐴 = −𝑅𝑖∗𝑄𝑅𝑗, (11) 𝐴𝑃𝑖𝑗 + 𝑃𝑖𝑗𝐴𝑇 = −𝑅𝑖∗𝑄𝑅𝑗, (12) 

Let us call equations (9) – (12) modal Lyapunov equations of the second type. 
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Theorem 1. [27]. Consider the modal Lyapunov equations of the second type for a continuous stationary 

MIMO LTI system in a diagonal canonical form  𝐴𝑑𝑃𝑐𝑖𝑗 + 𝑃𝑐𝑖𝑗𝐴𝑑∗ = −𝛽𝑖𝑗𝑒𝑖𝑒𝑗𝑇 , 𝐴𝑑𝑃𝑐𝑖 + 𝑃𝑐𝑖𝐴𝑑∗ = −∑ 𝛽𝑖𝑗𝑒𝑖𝑒𝑗𝑇𝑛𝑗=1  (13) 𝐴𝑑𝑃𝑐𝑖 + 𝑃𝑐𝑖𝐴𝑑∗ = −∑ 𝛽𝑖𝑗𝑒𝑖𝑒𝑗𝑇𝑛𝑗=1 , 𝐴𝑑𝑃𝑜𝑖 + 𝑃𝑜𝑖𝐴𝑑∗ = −∑ 𝛾𝑖𝑗𝑒𝑖𝑒𝑗𝑇𝑛𝑗=1  (14) 

Above, the corresponding unit vectors are denoted by 𝑒𝑖 , 𝑒𝑗𝑇 . Suppose that the system is stable 

and has a simple spectrum. Then the controllability and observability Gramians exist, are singular 

and can be represented in the form of Hadamard products 𝑃𝑐 = Ωс ∘ Ψс, 𝑃𝑜 = Ω𝑜 ∘ Ψ𝑜 , (15) Ψс = [𝛽𝑖𝑗]𝑛×𝑛, Ωс = [− 1𝜆𝑖 + 𝜆𝑗]𝑛×𝑛 , Ψ𝑜 = [𝛾𝑖𝑗]𝑛×𝑛, Ω𝑜 = [− 1𝜆𝑖 + 𝜆𝑗]𝑛×𝑛 , 𝑷𝒄𝒊𝒋 = Ωс ∘ Ψс𝑖𝑗 , Ψс𝑖𝑗 = 𝒆𝒊[𝛽𝑖𝑗]𝑛×𝑛𝒆𝒋𝑻,  𝑷𝒄𝒊 = ∑ Ωс ∘ Ψс𝑖𝑗 ,𝒏𝒋=𝟏  (16) 

If, in addition, the pair (A,B) is controllable and the pair (A,C) is observable, then the matrices of 

multipliers Ω_c and Ω_o are definitely positive, their diagonal elements and traces are positive 
numbers.The Hermite components of the Gramians have the form [2] 𝑃𝑐𝐻=

12 (𝑃𝒄 + 𝑃𝑐∗), 𝑃𝑜𝐻=
12 (𝑃𝒐 + 𝑃𝑜∗). 

For Gramians and sub-Gramians of controllability and observability in the form of Hadamard's 

products the formulas are valid 𝑃𝑐𝑗𝜂𝐻 = Ω𝒄𝒋𝜼𝐻 ∘ Ψ𝒄𝒋𝜼𝐻 , 𝑃𝑜𝑗𝜂𝐻 = Ω𝒐𝒋𝜼𝐻 ∘ Ψ𝒐𝒋𝜼𝐻 , (17) Ω𝒄𝒋𝜼𝐻 = Ω𝒐𝒋𝜼𝐻 = ∑ ∑ 𝑅𝑒 [− 1𝜆𝑖 + 𝜆𝜂]𝑛−1𝜂=0𝑛−1𝑗=0 𝑒𝑗+1𝑒𝜂+1𝑇 ,  
Ψ𝒄𝒋𝜼𝐻 = 12 (𝛽𝑗𝜂 + 𝛽𝑗𝜂∗), Ψ𝒐𝒋𝜼𝐻 = 12 (𝛾𝑗𝜂 + 𝛾𝑗𝜂∗), ( 18 ) 𝑃𝑐𝐻 = ∑ ∑ 𝑃𝑐𝑗𝜂𝐻 ,𝑛𝜂=1𝑛𝑗=1 𝑃𝑜𝐻 = ∑ ∑ 𝑃𝑜𝑗𝜂𝐻 .𝑛𝜂=1𝑛𝑗=1  (19) 

Proof. The proof of the general formulas is based on the results of [27] and taking into account the 

separability properties of spectral expansions of Gramians. The validity of the formulas of the modal 

Lyapunov equations (16) - (19) is established by substituting the formulas into the original Lyapunov 

equations and taking into account the equalities 𝑃𝑐 = ∑ ∑ 𝑃𝑐𝑖𝑗𝑛𝑗=1𝑛𝑖=1 , 𝑃𝑜 = ∑ ∑ 𝑃𝑜𝑖𝑗𝑛𝑗=1𝑛𝑖=1 , 𝑃𝑐 = ∑ 𝑃𝑐𝑖 , 𝑃𝑜 = ∑ 𝑃𝑜𝑖𝑛𝑖=1𝑛𝑖=1  

In [26], the general formulas for computing spectral expansion of Gramians are derived, which 

are also applicable to the modal equations of MIMO LTI systems 𝑃𝑐 = ∑𝑛−1𝑗=0 ∑𝑛−1𝜂=0 ∑𝑛𝑘=1 ∑𝑛𝜌=1 −1𝜆𝜌+𝜆𝑘 𝜆𝑘𝑗 𝜆𝜌𝜂𝑁̇(𝑠𝑘)𝑁̇(𝑠𝜌) 𝐴𝑗𝐵𝐵𝑇(𝐴𝜂)𝑇 . (20) 

𝑃𝑐 = ∑𝑛−1𝑗=0 ∑𝑛−1𝜌=0 ∑n𝑘=1 𝜆𝑘𝑗 (−𝜆𝑘)𝜌𝑁̇(𝜆𝑘)𝑁(−𝜆𝑘) 𝐴𝑗𝐵𝐵𝑇𝐴𝜌𝑇 , (21) 

𝑃𝑜 = ∑𝑛−1𝑗=0 ∑𝑛−1𝜂=0 ∑𝑛𝑘=1 ∑𝑛𝜌=1 −1𝜆𝜌+𝜆𝑘 𝜆𝑘𝑗 𝜆𝜌𝜂𝑁̇(𝑠𝑘)𝑁̇(𝑠𝜌) 𝐴𝑗𝐶𝑇𝐶(𝐴𝜂)𝑇 . (22) 

𝑃𝑜 = ∑𝑛−1𝑗=0 ∑𝑛−1𝜌=0 ∑n𝑘=1 𝜆𝑘𝑗 (−𝜆𝑘)𝜌𝑁̇(𝜆𝑘)𝑁(−𝜆𝑘) 𝐴𝑗𝐶𝑇𝐶𝐴𝜌𝑇 , (23) 

Above, Aj denotes the Faddeev matrices, which are expressed through linear combinations of 

the products of the coefficients of the characteristic equations and the degree of the dynamics matrix 

of the system [28,29]. When performing the transformations, it should be taken into account that the 

deductions of the resolvent of the dynamics matrix in its eigenvalues for the diagonal canonical form 

are strongly simplified 

Res [(𝐼𝑠 − 𝐴𝑑)−1, 𝜆𝑘 ] = 𝑒𝑘𝑒𝑘𝑇 . 
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Therefore formulas ( 20) - ( 23) pass to formulas 𝑃𝑐 = ∑𝑛−1𝑗=0 ∑𝑛−1𝜂=0 ∑𝑛𝑘=1 ∑𝑛𝜌=1 −1𝜆𝜌+𝜆𝑘 𝜆𝑘𝑗 𝜆𝜌𝜂𝑁̇(𝑠𝑘)𝑁̇(𝑠𝜌) 𝑒𝑗𝐵𝐵𝑇𝑒𝜂𝑇 .  

𝑃𝑐 = ∑𝑛−1𝑗=0 ∑𝑛−1𝜌=0 ∑n𝑘=1 𝜆𝑘𝑗 (−𝜆𝑘)𝜌𝑁̇(𝜆𝑘)𝑁(−𝜆𝑘) 𝑒𝑗𝐵𝐵𝑇𝑒𝜂𝑇 ,  

𝑃𝑜 = ∑𝑛−1𝑗=0 ∑𝑛−1𝜂=0 ∑𝑛𝑘=1 ∑𝑛𝜌=1 −1𝜆𝜌+𝜆𝑘 𝜆𝑘𝑗 𝜆𝜌𝜂𝑁̇(𝑠𝑘)𝑁̇(𝑠𝜌) 𝑒𝑗𝐶𝑇𝐶𝑒𝜂𝑇 .  

𝑃𝑜 = ∑𝑛−1𝑗=0 ∑𝑛−1𝜌=0 ∑n𝑘=1 𝜆𝑘𝑗 (−𝜆𝑘)𝜌𝑁̇(𝜆𝑘)𝑁(−𝜆𝑘) 𝑒𝑗𝐶𝑇𝐶𝑒𝜂𝑇 .  

Theorem 2. Consider the modal Lyapunov equations for a continuous stationary SISO LTI system in the 

canonical forms of controllability and observability of the form 𝐴𝐹𝑃𝑐𝑖𝑗 + 𝑃𝑐𝑖𝑗(𝐴𝐹)𝑇 = −𝑒𝑖𝑒𝑗𝑇 , (𝐴𝐹)𝑇𝑃𝑜𝑖𝑗 + 𝑃𝑜𝑖𝑗𝐴𝐹 = −𝑒𝑖𝑒𝑗𝑇 , (24) 𝐴𝐹𝑃𝑐𝑖 + 𝑃𝑐𝑖(𝐴𝐹)𝑇 = −∑ 𝑒𝑖𝑒𝑗𝑇𝑛𝑗=1 , (𝐴𝐹)𝑇𝑃𝑜𝑖 + 𝑃𝑜𝑖𝐴𝐹 = −∑ 𝑒𝑖𝑒𝑗𝑇 ,𝑛𝑗=1  (25) 

Suppose that the system is stable, has a simple spectrum, pair (A,B) is controllable, pair (A,C) is 

observable.  

Then the modal Gramians of controllability and observability exist and are singular. The modal 

Gramians of controllability for equations of state in the canonical form of controllability coincide with 

the Gramians of observability for equations of state in the canonical form of observability. The 

following decompositions of the Gramian matrices in the form of Hadamard products are valid 𝑃𝑐 = Ω̃𝑜 ∘ Ψ̃с, 𝑃𝑜 = Ω̃𝑜 ∘ Ψ̃𝑜, (26) 

Hadamard decomposition on the pair spectrum have the form 𝛹̃с= ∑ ∑ 𝒆𝒊𝒆𝒋𝑻𝑛𝑗=1𝑛𝑖=1 , Ω̃с = [∑ ∑ −1𝜆𝜌+𝜆𝑘 𝜆𝑘𝑗 𝜆𝜌𝜂𝑁̇(𝜆𝑘)𝑁̇(𝑠𝜌)𝑛𝜌=1𝑛𝑘=1 ]𝑛×𝑛 = [∑ 𝜆𝑘𝑗 (−𝜆𝑘)𝜂𝑁̇(𝜆𝑘)𝑁(−𝜆𝑘)𝑛𝑘=1 ]𝑛×𝑛,(27)  Ψ̃𝑜 = ∑ ∑ 𝑒𝑖𝑒𝑗𝑇𝑛𝑗=1𝑛𝑖=1 , Ω̃𝑜 = Ω̃с, (28) 

Hadamard decomposition of the controllability and observability sub-Gramians over a simple 

spectrum has the form 𝑃𝑐𝑖 = ∑ Ω̃с ∘ Ψ̃с𝑖𝑗 ,𝑛𝑗=1  𝑃𝑜𝑖 = ∑ Ω̃𝑜 ∘ Ψ̃𝑜𝑖𝑗 .𝑛𝑗=1  (29) 

Hadamard products are invariant under the similarity transformations.  

Proof. The singularity of solutions of modal equations follows from the stability of these equations. 

The coincidence of the solution matrices of the modal equations follows from the coincidence of the 

solution matrices of the original equations 𝑃𝑐 and 𝑃𝑜[26].In this paper, analytical expressions of the 

solution matrices in the form of spectral expansions for a simple spectrum were derived 

𝑃𝑐 = 𝑃𝑜 = ∑𝑛
𝑘=1 ∑𝑛−1

𝜂=0 ∑𝑛−1
𝑗=0

𝜆𝑘𝑘𝑗 (−𝜆𝑘)𝜂𝑁̇(𝜆𝑘)𝑁(−𝜆𝑘) 𝟏𝑗+1𝜂+1,  
and for the pair spectrum in the form 

𝑃𝑐 = 𝑃𝑜 = ∑ ∑𝑛
𝜌=1 ∑𝑛−1

𝜂=0 ∑𝑛−1
𝑗=0

−1𝜆𝜌 + 𝜆𝑘 𝜆𝑘𝑗 𝜆𝜌𝜂𝑁̇(𝜆𝑘)𝑁̇(𝜆𝜌)𝑛𝑘=1 𝟏𝑗+1𝜂+1, 
Let represent the matrix factors of the Hadamard decomposition in the form 𝛹̃с= ∑ ∑ 𝒆𝒊𝒆𝒋𝑻𝑛𝑗=1𝑛𝑖=1   Ψ̃𝑜 = ∑ ∑ 𝒆𝒊𝒆𝒋𝑻𝑛𝑗=1𝑛𝑖=1 . 
We have scalar matrices of multipliers in the form 

Ω̃𝑜 = [∑ ∑ −1𝜆𝜌 + 𝜆𝑘 𝜆𝑘𝑗 𝜆𝜌𝜂𝑁̇(𝜆𝑘)𝑁̇(𝑠𝜌)𝑛𝜌=1𝑛𝑘=1 ]𝑛×𝑛 = [∑ 𝜆𝑘𝑗 (−𝜆𝑘)𝜂𝑁̇(𝜆𝑘)𝑁(−𝜆𝑘)𝑛𝑘=1 ]𝑛×𝑛. 
Let represent the matrix factors of the Hadamard decomposition in the form 
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𝛹̃с= ∑ ∑ 𝒆𝒊𝒆𝒋𝑻𝑛𝑗=1𝑛𝑖=1   Ψ̃𝑜 = ∑ ∑ 𝒆𝒊𝒆𝒋𝑻𝑛𝑗=1𝑛𝑖=1 . 
We have scalar matrices of multipliers in the form Ω̃𝑜 = [∑ ∑ −1𝜆𝜌+𝜆𝑘 𝜆𝑘𝑗 𝜆𝜌𝜂𝑁̇(𝜆𝑘)𝑁̇(𝑠𝜌)𝑛𝜌=1𝑛𝑘=1 ]𝑛×𝑛 = [∑ 𝜆𝑘𝑗 (−𝜆𝑘)𝜂𝑁̇(𝜆𝑘)𝑁(−𝜆𝑘)𝑛𝑘=1 ]𝑛×𝑛. 

Hence formulas (24) to (29) follow. Since multiplier matrices are the known functions of 

eigenvalues that serve as invariants under similarity transformations, multiplier matrices and 

Hadamard products are invariants under these transformations.  

Corollary 1. The controllability and observability Gramians for the equations of state in the canonical forms 

of controllability and observability are Xiao matrices that are invariants under similarity transformations. The 

Xiao matrix is positively defined. 

Proof. The following formulas are valid 𝑃𝑐 = Ω̃с ∘ Ψ̃с, 𝑃𝑜 = Ω̃𝑜 ∘ Ψ̃𝑜 , (30) 

𝑃𝑐 = Ω̃с ∘ [   
 1 1 1 1 . .11 1 1 1 . .1111 111 111 111 . .1. .1. .1]   

 , 𝑃𝑜 = Ω̃𝑜 ∘ [   
 1 1 1 1 . .11 1 1 1 . .1111 111 111 111 . .1. .1. .1]   

 ,  
Let us prove the fulfilment of the first property of Xiao matrices (3). Its fulfilment for zero 

elements of matrices is proved in [26]. The alternation of signs of the side diagonal elements passing 

through the diagonal element 𝑝𝑗𝑗 follows from the sequence of these elements in the form ⋯∑ 𝑠𝑘𝑗+2(−𝑠𝑘)𝑗−2𝑁̇(𝑠𝑘)𝑁1(−𝑠𝑘)𝑛𝑘=1 ,∑ 𝑠𝑘𝑗+1(−𝑠𝑘)𝑗−1𝑁̇(𝑠𝑘)𝑁1(−𝑠𝑘)𝑛𝑘=1 ,∑ 𝒔𝒌𝒋 (−𝒔𝒌)𝒋𝑵̇(𝒔𝒌)𝑵𝟏(−𝒔𝒌)𝒏𝒌=𝟏 ,∑ 𝑠𝑘𝑗−1(−𝑠𝑘)𝑗+1𝑁̇(𝑠𝑘)𝑁1(−𝑠𝑘)𝑛𝑘=1 ⋯ 

The fulfilment of property (4) is similarly checked. Since the multiplier matrices are known 

functions of the eigenvalues, the Xiao matrices are invariant under the similarity transformation. We 

will show the validity of this statement for its controllability Gramians. The transformation 

matrix 𝑅𝑐𝐹  can be represented as the product of the Kalman controllability matrix by the Hankel 

matrix [24]  𝑅𝑐𝐹 = [𝑒𝑛 𝐴𝑐𝐹𝑒𝑛 (𝐴𝑐𝐹)𝑛−1𝑒𝑛]𝐻𝑐 ,  
𝐻𝑐 = [  

  𝑎𝑛−1 𝑎1 𝑎𝑜 . .1𝑎1 𝑎𝑜 1 . .0𝑎1𝑎𝑜1 𝑎𝑜10 100 000 . .0. .0. .0 ]  
  ,  

A substitution when calculating the controllability matrix leads to the equality [𝑒𝑛 𝐴𝑐𝐹𝑒𝑛 (𝐴𝑐𝐹)𝑛−1𝑒𝑛] = 𝐻𝑐−1.  
It follows that the controllability matrix is nondegenerate when transforming the state equations 

into the canonical form of controllability or observability. So the multiplier matrix, which is the Xiao 

matrix, is positively defined. 

Theorem 3. Let us consider the spectral decompositions of the solutions of the equations of linear continuoues 

stationary MIMO LTI systems. Suppose that the system is stable, the matrices A, B , C are real, the matrix A 

has a simple spectrum, the pair (A,B) is controllable, and the pair (A,C) is observable. Then the following 

statements are true. 

1.Spectral decompositions of its controllability and observability Gramians and controllability 

or observability sub-Gramians in the form of Hadamard products for the case of pair spectrum of the 

dynamics matrix have the following form 𝑃𝒄𝒋𝜼 = Ω̃с𝑗𝜂 ∘ Ψс𝑗𝜂 , Ψс𝑗𝜂 = 𝐴𝑗𝐵𝐵𝑇(𝐴𝜂)𝑇 , 𝑃𝒄 = Ω̃с ∘ Ψс, (31) Ω̃с = ∑ ∑ Ω̃с𝑗𝜂 = ∑ ∑ 𝜔(𝑛,𝑛−1𝜂=0𝑛−1𝑗=0𝑛−1𝜂=0𝑛−1𝑗=0 𝜆𝑘 , 𝜆𝜌, 𝑗, 𝜂)𝑒𝑗+1𝑒𝜂+1𝑇 , (32) 
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𝜔(𝑛,𝜆𝑘 , 𝜆𝜌, 𝑗, 𝜂) =  −1𝜆𝜌+𝜆𝑘 𝜆𝑘𝑗 𝜆𝜌𝜂𝑁̇(𝜆𝑘)𝑁̇(𝜆𝜌) , Ψс𝑗𝜂 = ∑ ∑ 𝛽𝜈𝜇(𝑗𝜂)𝑛𝜇=1𝑛𝜈=1 𝑒𝜈𝑒𝜇𝑇, (33) 

𝑒𝜈𝐴𝑗𝐵𝐵𝑇(𝐴𝜂)𝑇𝑒𝜇𝑇 = [𝛽𝜈𝜇(𝑗𝜂)]𝑛×𝑛, 𝑒𝜈𝐴𝑗𝑇𝐶𝑇𝐶𝐴𝜂𝑒𝜇𝑇 = [𝛾𝜈𝜇(𝑗𝜂)]𝑛×𝑛, (34) Ψс = ∑ ∑ ∑ ∑ 𝛽𝜈𝜇(𝑗𝜂)𝑛𝜇=1𝑛𝜈=1 𝑒𝜈𝑒𝜇𝑇𝑛−1𝜂=0𝑛−1𝑗=0  (35) 

2. For the case of decomposition of the controllability Gramian by a simple spectrum of the 

dynamics matrix in the form of Hadamard products, we obtain the same formulas (1) - (4),except for 

the formulas of the multiplier matrixΩ̃с, which takes the form Ω̃с = ∑ ∑ Ω̃с𝑗𝜂 = ∑ ∑ 𝜔(𝑛−1𝜂=0𝑛−1𝑗=0𝑛−1𝜂=0𝑛−1𝑗=0 𝜆𝑘, −𝜆𝑘, 𝑗, 𝜂)𝑒𝑗+1𝑒𝜂+1𝑇  (36) 𝜔( 𝜆𝑘 , −𝜆𝑘 , 𝑗, 𝜂) =  𝜆𝑘𝑗 (−𝜆𝑘)𝜂𝑁̇(𝜆𝑘)𝑁(−𝜆𝑘) (37) 

3. Exactly the same formulas as (45) - ( 49) will be valid for the observability Gramians in the 

form of Hadamard products. Only the formulas for the matrices Ψ_o are changing 𝑃𝒐 = Ω̃с ∘ Ψ𝑜, Ψ𝑜 = ∑ ∑ ∑ ∑ 𝛾𝜈𝜇(𝑗𝜂)𝑛𝜇=1𝑛𝜈=1 𝑒𝜈𝑒𝜇𝑇 .𝑛−1𝜂=0𝑛−1𝑗=0  (38) 

4. The Hermite component of the controllability and observability Gramians has the form [2] 𝑃𝑐𝐻=
12 (𝑃𝒄 + 𝑃𝑐∗), 𝑃𝑜𝐻=

12 (𝑃𝒐 + 𝑃𝑜∗), (39) 

𝑃𝑐𝑗𝜂𝐻 = 12 (𝑃𝒄𝒋𝜼 + 𝑃𝑐𝑗𝜂∗ ),  𝑃𝑜𝑗𝜂𝐻 = 12 (𝑃𝒐𝒋𝜼 + 𝑃𝑜𝑗𝜂∗ ), (40) 

The spectral decompositions of the Hermite components of the controllability  

and observability Gramians have the form of Hadamard matrices  𝑃𝑐𝑗𝜂𝐻 = Ω𝒄𝒋𝜼𝐻 ∘ Ψ𝒄𝒋𝜼𝐻 , 𝑃𝑜𝑗𝜂𝐻 = Ω𝒐𝒋𝜼𝐻 ∘ Ψ𝒐𝒋𝜼𝐻 , (41) Ω𝒄𝒋𝜼𝐻 = ∑ ∑ 𝑅𝑒[𝜔(𝑛, 𝜆𝑘 , 𝜆𝜌, 𝑗, 𝜂)𝑛−1𝜂=0𝑛−1𝑗=0 ]𝑒𝑗+1𝑒𝜂+1𝑇 = ∑ ∑ 𝑅𝑒[𝜔(𝑛, 𝜆𝑘 , −𝜆𝑘, 𝑗, 𝜂)𝑛−1𝜂=0𝑛−1𝑗=0 ]𝑒𝑗+1𝑒𝜂+1𝑇 , (42) 

Ψ𝒄𝒋𝜼𝐻 = 12 (𝐴𝑗𝐵𝐵𝑇𝐴𝜂𝑇 + 𝐴𝜂𝐵𝐵𝑇𝐴𝑗𝑇), Ψ𝒐𝒋𝜼𝐻 = 12 (𝐴𝑗𝑇𝐶𝑇𝐶𝐴𝜂 + 𝐴𝜂𝐶𝑇𝐶𝐴𝑗𝑇), (43) 

Ψ𝒐𝒋𝜼𝐻 = 12 (𝐴𝑗𝑇𝐶𝑇𝐶𝐴𝜂 + 𝐴𝜂𝐶𝑇𝐶𝐴𝑗𝑇), Ω𝒐𝒋𝜼𝐻 = ∑ ∑ 𝑅𝑒[𝜔(𝑛, 𝜆𝑘, 𝜆𝜌, 𝑗, 𝜂)𝑛−1𝜂=0𝑛−1𝑗=0 ]𝑒𝑗+1𝑒𝜂+1𝑇 , (44) 

Ψ𝒐𝒋𝜼𝐻 = 12 (𝐴𝑗𝑇𝐶𝑇𝐶𝐴𝜂 + 𝐴𝜂𝐶𝑇𝐶𝐴𝑗𝑇), 𝑃𝑐𝐻 = ∑ ∑ 𝑃𝑐𝑗𝜂𝐻 ,𝑛𝜂=1𝑛𝑗=1 𝑃𝑜𝐻 = ∑ ∑ 𝑃𝑜𝑗𝜂𝐻 ,𝑛𝜂=1𝑛𝑗=1  (45) 𝑃𝑐𝐻 = ∑ ∑ 𝑃𝑐𝑗𝜂𝐻 ,𝑛𝜂=1𝑛𝑗=1 𝑃𝑜𝐻 = ∑ ∑ 𝑃𝑜𝑗𝜂𝐻 ,𝑛𝜂=1𝑛𝑗=1  (46) 

The multiplier matrices in all Gramian decompositions are Xiao matrices. 

Proof. Let us return to the general formulas for spectral expansions of Gramians (20)-(23). Consider 

first the pairwise spectrum decompositions of Gramians. We divide the summation indices into two 

groups: the first group covers the summation over the indices "j,η" of the decompositions of the 
resolvent into Faddeev series, the second group covers the summation over the pair spectrum. Let us 

distinguish the controllability subgramian 𝑃𝒄𝒋𝜼and represent its spectral decomposition as 𝑃𝒄𝒋𝜼 = Ω̃с𝑗𝜂 ∘ Ψс𝑗𝜂 , Ψс𝑗𝜂 = 𝐴𝑗𝐵𝐵𝑇(𝐴𝜂)𝑇 (47) Ω̃с = ∑ ∑ Ω̃с𝑗𝜂 = ∑ ∑ 𝜔(𝑛,𝑛−1𝜂=0𝑛−1𝑗=0𝑛−1𝜂=0𝑛−1𝑗=0 𝜆𝑘 , 𝜆𝜌, 𝑗, 𝜂)𝑒𝑗+1𝑒𝜂+1𝑇  (48) 𝜔(𝑛, 𝜆𝑘 , 𝜆𝜌, 𝑗, 𝜂) =  ∑ ∑ −1𝜆𝜌+𝜆𝑘 𝜆𝑘𝑗 𝜆𝜌𝜂𝑁̇(𝜆𝑘)𝑁̇(𝜆𝜌)𝑛𝜌=1𝑛𝑘=1  . (49) 

Taking into account the designation  𝑒𝜈𝐴𝑗𝐵𝐵𝑇(𝐴𝜂)𝑇𝑒𝜇𝑇 = [𝛽𝜈𝜇(𝑗𝜂)]𝑛×𝑛, 𝑒𝜈𝐴𝑗𝑇𝐶𝑇𝐶𝐴𝜂𝑒𝜇𝑇 = [𝛾𝜈𝜇(𝑗𝜂)]𝑛×𝑛, 
we have 
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Ψс𝑗𝜂 = ∑ ∑ 𝛽𝜈𝜇(𝑗𝜂)𝑛𝜇=1𝑛𝜈=1 𝑒𝜈𝑒𝜇𝑇 (50) 

Taking into account the previous calculations, we obtain the spectral decomposition of the 

controllability Gramian of the system in the form 𝑃𝒄 = Ω̃с ∘ Ψс, Ψс = ∑ ∑ ∑ ∑ 𝛽𝜈𝜇(𝑗𝜂)𝑛𝜇=1𝑛𝜈=1 𝑒𝜈𝑒𝜇𝑇𝑛−1𝜂=0𝑛−1𝑗=0  (51) 

Repeating similar reasoning for the case of the decomposition of the controllability Gramian 

over the simple spectrum of the dynamics matrix, we obtain the same formulas (47) - (51) as in the 

previous case, except for the formulas for the matrix Ω̃с Ω̃с = ∑ ∑ Ω̃с𝑗𝜂 = ∑ ∑ 𝜔(𝑛−1𝜂=0𝑛−1𝑗=0𝑛−1𝜂=0𝑛−1𝑗=0 𝜆𝑘, −𝜆𝑘, 𝑗, 𝜂)𝑒𝑗+1𝑒𝜂+1𝑇  (52) 𝜔(𝑛, 𝜆𝑘 , −𝜆𝑘 , 𝑗, 𝜂) =  ∑ 𝜆𝑘𝑗 (−𝜆𝑘)𝜂𝑁̇(𝜆𝑘)𝑁(−𝜆𝑘)𝑛𝑘=1  . 

In [26] it is proved that the multiplier matrices Ω̃сare Xiao matrices. They coincide with formulas 

(27) - (28) of Theorem 2. It is easy to find that exactly the same formulas will be true for the 

observability Gramian’s multipliers if the conditions of the theorem are preserved. Only the formulas 

for the matrices Ψ𝑜 are changing 𝑃𝒐 = Ω̃с ∘ Ψ𝑜 , Ψ𝑜 = ∑ ∑ ∑ ∑ 𝛾𝜈𝜇(𝑗𝜂)𝑛𝜇=1𝑛𝜈=1 𝑒𝜈𝑒𝜇𝑇 .𝑛−1𝜂=0𝑛−1𝑗=0  

Note that the developed method and algorithms for computing Gramians in the form of 

Hadamard products provide a convenient way to compute and subsequently analyse the elements 

of Gramian matrices, which is an advantage when computing diagonal elements and traces of 

Gramians and sub-Gramians, as well as spectral decompositions of energy functionals [31].  

In all the cases discussed above we are talking about the complex Gramians and sub-Gramians 

of controllability and observability. Under the conditions of the theorem, the controllability and 

observability Gramians are always real matrices, but the sub-Gramians can be complex. As can be 

seen from the last expressions, when calculating the Hermite components of the Hadamard products 

of sub-Gramians, we obtain the formulae 𝑃𝑐𝑗𝜂𝐻 = 12 (𝑃𝒄𝒋𝜼 + 𝑃𝑐𝑗𝜂∗ ),  𝑃𝑜𝑗𝜂𝐻 = 12 (𝑃𝒐𝒋𝜼 + 𝑃𝑜𝑗𝜂∗ ),  
Therefore, the matrix part of the subgramians in the form of the Hadamard product becomes a 

symmetric matrix, and its multiplier matrix becomes a real matrix. As a result of these 

transformations we obtain formulas (41) - (46). 

4. Spectral expansions of solutions of Sylvester differential equations on a finite interval 

Let us consider two linear stationary continuous MIMO LTI dynamic systems of the form 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 𝑥(0) = 0, (53) 𝑦(𝑡) = 𝐶𝑥(𝑡), 
where x(𝑡) ∈ 𝑅𝑛1 , 𝑢(𝑡) ∈ 𝑅𝑑 , y(𝑡) ∈ 𝑅𝑑. We will consider real matrices of corresponding sizes A,B,C. 

Let us assume that system (53) is stable, unless otherwise stated, completely controllable and 

observable, all eigenvalues of matrix A are different. 𝑥𝑚(𝑡) = 𝐴𝑚𝑥𝑚(𝑡) + 𝐵𝑚𝑢(𝑡), 𝑥𝑚(0) = 0, (54) 𝑦𝑚(𝑡) = 𝐶𝑚𝑥𝑚(𝑡), 
where 𝑥𝑚(𝑡) ∈ 𝑅𝑛1 , 𝑢(𝑡) ∈ 𝑅𝑑 , 𝑦𝑚(𝑡) ∈ 𝑅𝑑 . We will consider real matrices of corresponding sizes A, 

B, C, 𝐴𝑚 , 𝐵𝑚 ,  𝐶𝑚 . Let us assume that system (54) is stable, unless otherwise stated, completely 

controllable and observable, all eigenvalues of the matrix 𝐴𝑚are different and do not coincide with 

the eigenvalues of matrix A. Following [27], consider the following continuous differential equations 

associated with these systems of the form 𝑑𝑃(𝑡)𝑑𝑡 = 𝐴𝑃(𝑡) + 𝑃(𝑡)𝐴𝑇 + 𝑅, 𝑃(0) = 0𝑛𝑥𝑛, (55) 

где R – вещественная матрица размера (nxn). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 November 2023                   doi:10.20944/preprints202311.1868.v1

https://doi.org/10.20944/preprints202311.1868.v1


 10 

 

𝑑𝑃(𝑡)𝑑𝑡 = 𝐴𝑚𝑃(𝑡) + 𝑃(𝑡)𝐵𝑚 + 𝑅1, 𝑃(0) = 0𝑛𝑥𝑛, (56) 

where 𝑅1is a real matrix of size(nx𝑛1). This section will focus on the Sylvester differential equation 

(70). The main method for constructing a solution and its spectral expansions is operational calculus 

and expansion of the resolvents of the dynamics matrices 𝐴𝑚and 𝐵𝑚  into the Faddeev-Leverrier 

series. The latter have the form [28,29] (𝐼𝑠 − 𝐴𝑚)−1=∑ 𝐴𝑚𝑗𝑠𝑗𝑛𝑗=0 [𝑁𝑚(𝑠)]−1, 𝐴𝑚𝑗 = ∑ 𝑎𝑚𝑖𝐴𝑚𝑖−𝑗+1,𝑛𝑖=𝑗+1  (𝐼𝑠 − 𝐵𝑚)−1=∑ 𝐵𝑚𝑗𝑠𝑗𝑛1𝑗=0 [𝑁𝑚1(𝑠)]−1, 𝐵𝑚𝑗 = ∑ 𝑏𝑚𝑖𝐵𝑚𝑖−𝑗+1,𝑛𝑖=𝑗+1   

where 𝐴𝑚𝑗, 𝐵𝑚𝑗  are Faddeev matrices constructed for resolvent matrices𝐴𝑚, 𝐵𝑚 using the Faddeev-

Leverrier algorithm; 𝑁𝑚(𝑠), 𝑁𝑚1(𝑠)- characteristic polynomials of matrices 𝐴𝑚, 𝐵𝑚;  𝑎𝑚𝑖 , 𝑏𝑚𝑖  are the 

coefficients of these polynomials. The first method of spectral expansions of solutions to Sylvester 

differential equations is based on the lemma 

Lemma [27]. Let us consider solving equations on a finite interval [0,t)∈[0,T]. Let us assume that systems 

(67), (68). are stable, matrices 𝐴𝑚, 𝐵𝑚  ,R, 𝑅1 are real, matrices 𝐴𝑚, 𝐵𝑚  have a simple spectrum, their 

eigenvalues 𝑠𝑘 , 𝑠𝜚  are different, do not belong to the imaginary axis of the eigenvalue plane, as well as conditions 

are valid 𝑠𝑘 + 𝑠𝜚 ≠ 0, 𝑘 = 1, 𝑛̅̅ ̅̅̅;  𝜚 = 1, 𝑛̅̅ ̅̅̅;  𝑠𝑘 ∈ 𝑠𝑝𝑒𝑐 𝐴𝑚, 𝑠𝜚 ∈ 𝑠𝑝𝑒𝑐 𝐵𝑚 . 
Let's transform the dynamics matrices to diagonal form 𝐴𝑚𝑑 = 𝑑𝑖𝑎𝑔{… 𝑠𝑘 … } = 𝑄1𝐴𝑚𝑄1−1, 𝐵𝑚𝑑 = 𝑑𝑖𝑎𝑔{… 𝑠𝜚 … } = 𝑄2𝐵𝑚𝑄2−1,  

where 𝑄1, 𝑄2 –matrices of dimentions [n×n] и [𝑛1 × 𝑛1].  
Then the Sylvester differensial equation solution on finite interval [0,t)∈ [0, 𝑇] have the form 𝑃𝑑(𝑡) = [𝑝𝑑𝑗𝜂(𝑡)], 𝑝𝑑𝑗𝜂(𝑡) = 𝑟𝑑𝑗𝜂𝑒(𝑠𝑗+𝑠𝜂)𝑡𝑠𝑗+𝑠𝜂  +𝑝𝑑𝑗𝜂 , 𝑝𝑑𝑗𝜂 = − 𝑟𝑑𝑗𝜂𝑠𝑗+𝑠𝜂, 𝑃(𝑡) = 𝑄1−1𝑃𝑑(𝑡)(𝑄2𝑇)−1. 
The second method of spectral decompositions of solutions of the Sylvester differential 

equations is based on using the Laplace transform to compute the Lyapunov integral and 

decomposing the resolvents of the dynamics matrices 𝐴𝑚and 𝐵𝑚.into a Faddeev-Leverier series. 

Theorem 4. Let us consider spectral expansions of solutions to Sylvester differential equations for MIMO LTI 

systems (67), (68). Let us assume that these systems are stable, the matrices A, B and R are real, the matrices 

A, B have a simple spectrum, their eigenvalues 𝑠𝑘 , 𝑠𝜚are different, do not belong to the imaginary axis of the 

eigenvalue plane, and the conditions are met 𝑠𝑘 + 𝑠𝜚 ≠ 0, 𝑘 = 1, 𝑛̅̅ ̅̅̅;  𝜚 = 1, 𝑛̅̅ ̅̅̅;  𝑠𝑘 ∈ 𝑠𝑝𝑒𝑐 𝐴𝑚, 𝑠𝜚 ∈ 𝑠𝑝𝑒𝑐 𝐵𝑚 . 
Then the following statements are true. 

1. Spectral expansions of solutions to Sylvester differential equations (53), (54) in the form of 

Hadamard products for the case of the combination spectrum of dynamics matrices have the form 𝑃𝑗𝜂(𝑡) = Ω𝑗𝜂(𝑡) ∘ Ψ𝑗𝜂 , Ψ𝑗𝜂 = 𝐴𝑚𝑗𝑅𝐵𝑚𝜂 , (57) 𝑃𝑗𝜂(𝑡) = ∑ ∑ 𝑠𝑘𝑗𝑠𝑚𝜌𝜂𝑁̇(𝑠𝑘)𝑁̇(𝑠𝑚𝜚) [ 𝑒(𝑠𝑘,+𝑠𝑚𝜚)𝑡 − 1𝑠𝑘 , +𝑠𝑚𝜚 ] 𝐴𝑚𝑗𝑅𝐵𝑚𝑗𝑛𝜌=1𝑛𝑘=1 , (58) 

Ω𝑗𝜂(𝑡) = ∑ ∑ 𝑠𝑘𝑗𝑠𝑚𝜌𝜂𝑁̇(𝑠𝑘)𝑁̇(𝑠𝑚𝜚) [ 𝑒(𝑠𝑘,+𝑠𝑚𝜚)𝑡 − 1𝑠𝑘 , +𝑠𝑚𝜚 ] ,𝑛𝜌=1𝑛𝑘=1  𝑃(𝑡) = Ω(𝑡) ∘ Ψ, 
Ψ = ∑ ∑ 𝐴𝑚𝑗𝑅𝐵𝑚𝜂𝑛−1𝜂=0𝑛−1𝑗=0 , Ω(t) = ∑ ∑ ∑ ∑ 𝑠𝑘𝑗𝑠𝑚𝜌𝜂𝑁̇(𝑠𝑘)𝑁̇(𝑠𝑚𝜚)  [𝑒(𝑠𝑘,+𝑠𝑚𝜚)𝑡−1𝑠𝑘,+𝑠𝑚𝜚 ] 𝑛−1𝜂=1𝑛−1𝑗=1𝑛𝜌=1𝑛𝑘=1 . 

2. For the case of expansion of solutions of Sylvester’s differential equations over the simple 
spectrum of the dynamics matrix, the same formulas (57) – (58) are valid, but with new multiplier 

matrices 
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𝑃𝑗𝜂(𝑡) = ∑ 𝑠𝑘𝑗(−𝑠𝑘)𝜂𝑁̇(𝑠𝑘)𝑁1(−𝑠𝑘) (𝑒𝑠𝑘𝑡 − 1)𝐴𝑚𝑗𝑅𝐵𝑚𝜂𝑛𝑘=1 =Ω𝑗𝜂(𝑡) ∘ Ψ𝑗𝜂 , (59) 

Ω𝑗𝜂(𝑡) = ∑ 𝑠𝑘𝑗(−𝑠𝑘)𝜂𝑁̇(𝑠𝑘)𝑁1(−𝑠𝑘) (𝑒𝑠𝑘𝑡 − 1),𝑛𝑘=1 Ψ𝑗𝜂 = 𝐴𝑚𝑗𝑅𝐵𝑚𝜂 , (60) 𝑃(𝑡) = Ω(𝑡) ∘ Ψ,Ψ = ∑ ∑ 𝐴𝑚𝑗𝑅𝐵𝑚𝜂𝑛−1𝜂=0𝑛−1𝑗=0 , (61) Ω(t) = ∑ ∑ ∑ 𝑠𝑘𝑗(−𝑠𝑘)𝜂𝑁̇(𝑠𝑘)𝑁1(−𝑠𝑘) (𝑒𝑠𝑘𝑡 − 1).𝑛−1𝜂=0𝑛−1𝑗=0𝑛𝑘=1  (62) 

The Hermitian component of spectral expansions of solutions to the Sylvester equations has the 

form 𝑃𝐻(𝑡)=
12 (𝑃(𝑡) + 𝑃∗(𝑡)), 𝑃𝑗𝜂𝐻(𝑡) = 

12 (𝑃𝒋𝜼(𝑡) + 𝑃𝒋𝜼∗(𝑡)), 
where the spectral decompositions of the matrices 𝑃, 𝑃∗, 𝑃𝒋𝜼, 𝑃𝒋𝜼∗ are determined by formulas (59) – 

(62). 

Proof. The solution to the differential equation (56) is an integral of the form [1,3] 

P(t)=∫ 𝑒𝐴𝑚𝜏𝑡𝑜 𝑅𝑒𝐵𝑚𝜏𝑑𝜏. 
Let us apply the Laplace transform to both sides of the equation, considering the initial 

conditions to be zero and using the theorem on the Laplace transform of the product of real functions 

of time, the image of which is a fractional-rational algebraic fraction [27]. In our case, this fraction 

contains one zero pole, and all other poles are simple. In this case, the direct transformation has the 

form 𝑓(𝑠)𝑠𝐹(𝑠) = 𝑓(0)𝑠𝐹(0) + ∑ 𝑓(𝑠𝑖)𝑠𝑖𝐹(𝑠𝑖)𝑞𝑖=1 , ( 63) 

где функции 𝑓(0)𝑠𝐹(0) и 𝐹(𝑠) принимают вид 

𝑓(0)𝑠𝐹(0) = 1𝑠 [∑ ∑ ∑ ∑ −1𝑠𝑘,+𝑠𝑚𝜚 𝑠𝑘𝑗𝑠𝑚𝜌𝜂𝑁̇(𝑠𝑘)𝑁̇(𝑠𝑚𝜚)  𝐴𝑚𝑗𝑅𝐵𝑚𝑗𝑛−1𝜂=1𝑛−1𝑗=1𝑛𝜌=1𝑛𝑘=1 ], 
𝐹(𝑠) = ∑ ∑ ∑ ∑ −1𝑠𝑘 , +𝑠𝑚𝜚 𝑠𝑘𝑗𝑠𝑚𝜌𝜂𝑁̇(𝑠𝑘)𝑁̇(𝑠𝑚𝜚) 1𝑠 − 𝑠𝑘 − 𝑠𝑚𝜚𝑛−1𝜂=1𝑛−1𝑗=1𝑛𝜌=1𝑛𝑘=1  

Substituting these expressions into (77), we obtain an image of the expansion of the solution to 

Sylvester’s differential equations (70) in terms of the combination spectrum of the dynamics matrices 
in the form 

P(s)=
1𝑠 ∑ ∑ ∑ ∑ −1𝑠𝑘,+𝑠𝑚𝜚 𝑠𝑘𝑗𝑠𝑚𝜌𝜂𝑁̇(𝑠𝑘)𝑁̇(𝑠𝑚𝜚)  𝐴𝑚𝑗𝑅𝐵𝑚𝑗 +  𝑛−1𝜂=1𝑛−1𝑗=1𝑛𝜌=1𝑛𝑘=1  

∑ ∑ ∑ ∑ −1𝑠𝑘 , +𝑠𝑚𝜚 𝑠𝑘𝑗𝑠𝑚𝜌𝜂𝑁̇(𝑠𝑘)𝑁̇(𝑠𝑚𝜚) 𝐴𝑚𝑗𝑅𝐵𝑚𝑗 1𝑠 − 𝑠𝑘 − 𝑠𝑚𝜚 𝑛−1𝜂=1𝑛−1𝑗=1𝑛𝜌=1𝑛𝑘=1  

Having performed the inverse transformation, we obtain the spectral expansion of the solution 

to the Sylvester differential equations (56) in the combination spectrum of the dynamics matrices in 

the time domain 𝑃𝑗𝜂(𝑡) = ∑ ∑ 𝑠𝑘𝑗𝑠𝑚𝜌𝜂𝑁̇(𝑠𝑘)𝑁̇(𝑠𝑚𝜚) [ 𝑒(𝑠𝑘,+𝑠𝑚𝜚)𝑡−1𝑠𝑘,+𝑠𝑚𝜚 ] 𝐴𝑚𝑗𝑅𝐵𝑚𝑗𝑛𝜌=1𝑛𝑘=1 =Ω𝑗𝜂(𝑡) ∘ Ψ𝑗𝜂 , 
Ω𝑗𝜂(𝑡) = ∑ ∑ 𝑠𝑘𝑗𝑠𝑚𝜌𝜂𝑁̇(𝑠𝑘)𝑁̇(𝑠𝑚𝜚) [ 𝑒(𝑠𝑘,+𝑠𝑚𝜚)𝑡−1𝑠𝑘,+𝑠𝑚𝜚 ] ,𝑛𝜌=1𝑛𝑘=1 Ψ𝑗𝜂 = 𝐴𝑚𝑗𝑅𝐵𝑚𝜂 , 

𝑃(𝑡) = Ω(𝑡) ∘ Ψ,Ψ = ∑ ∑ 𝐴𝑚𝑗𝑅𝐵𝑚𝜂𝑛−1𝜂=0𝑛−1𝑗=0 , Ω(t) = ∑ ∑ ∑ ∑ 𝑠𝑘𝑗𝑠𝑚𝜌𝜂𝑁̇(𝑠𝑘)𝑁̇(𝑠𝑚𝜚)  [𝑒(𝑠𝑘,+𝑠𝑚𝜚)𝑡−1𝑠𝑘,+𝑠𝑚𝜚 ] 𝑛−1𝜂=1𝑛−1𝑗=1𝑛𝜌=1𝑛𝑘=1  (64) 
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Equality (648) expresses the spectral expansion of solutions to Sylvester differential equations in 

the combination spectrum of matrices A_m and B_m. This proves the first statement of the theorem. 

Using the identity ∑ ∑ −1𝑠𝑘,+𝑠𝑚𝜚 𝑠𝑘𝑗𝑠𝑚𝜌𝜂𝑁̇(𝑠𝑘)𝑁̇(𝑠𝑚𝜚) 𝑛𝜌=1𝑛𝑘=1 ≡ ∑ 𝑠𝑘𝑗(−𝑠𝑘)𝜂𝑁̇(𝑠𝑘)𝑁(−𝑠𝑘)𝑛𝑘=1  (65) 

Let us obtain similar expansions for the simple spectrum of the matrix 𝐴𝑚 𝑃𝑗𝜂(𝑡) = ∑ 𝑠𝑘𝑗(−𝑠𝑘)𝜂𝑁̇(𝑠𝑘)𝑁1(−𝑠𝑘) (𝑒𝑠𝑘𝑡 − 1)𝐴𝑚𝑗𝑅𝐵𝑚𝜂𝑛𝑘=1 =Ω𝑗𝜂(𝑡) ∘ Ψ𝑗𝜂 , 
Ω𝑗𝜂(𝑡) = ∑ 𝑠𝑘𝑗(−𝑠𝑘)𝜂𝑁̇(𝑠𝑘)𝑁1(−𝑠𝑘) (𝑒𝑠𝑘𝑡 − 1),𝑛𝑘=1 Ψ𝑗𝜂 = 𝐴𝑚𝑗𝑅𝐵𝑚𝜂 , 𝑃(𝑡) = Ω(𝑡) ∘ Ψ,Ψ = ∑ ∑ 𝐴𝑚𝑗𝑅𝐵𝑚𝜂𝑛−1𝜂=0𝑛−1𝑗=0 , (66) Ω(t) = ∑ ∑ ∑ 𝑠𝑘𝑗(−𝑠𝑘)𝜂𝑁̇(𝑠𝑘)𝑁1(−𝑠𝑘) (𝑒𝑠𝑘𝑡 − 1).𝑛−1𝜂=0𝑛−1𝑗=0𝑛𝑘=1  (67) 

The resulting expansions prove the second statement of the theorem. The third statement follows 

from statements 1 and 2.Equality (66) expresses the spectral expansion of solutions to the Sylvester 

equations in the simple spectrum of the matrix𝐴𝑚.∎ 

Let us apply the results of the theorem to the calculation of spectral decompositions finite cross-

Gramian of a continuous stable MIMO LTI system, 𝑥̇(𝑡) = Ax(𝑡) + 𝐵𝑢(𝑡), 𝑥(0) = 0, ( 68) 

y(𝑡) = Cx(𝑡), 
which is a solution to the simple Sylvester differential equation 𝑑𝑃(𝑡)𝑑𝑡 = 𝐴𝑃(𝑡) + 𝑃(𝑡)𝐴 + 𝐵𝐶, P(0)=0. (69) 

Corollorary 2. Let us consider the spectral expansions of solutions of Sylvester differential equations for the 

MIMO LTI system (83). Let us assume that the system is stable, matrix A, B and C, are real, their dimensions 

have been harmonised , matrix A has a simple spectrum, and the conditions are met 𝑠𝑘 + 𝑠𝑚𝜚 ≠ 0, 𝑘 = 1, 𝑛̅̅ ̅̅̅;  𝑠𝑘 ∈ 𝑠𝑝𝑒𝑐 𝐴.  
Then the following statements are true. 

1.The spectral decomposition of the cross-Gramian image has the form 

P(s)=∑ ∑ ∑ ∑ −1𝑠𝑘,+𝑠𝜚 𝑠𝑘𝑗𝑠𝜌𝜂𝑁̇(𝑠𝑘)𝑁̇(𝑠𝜌)  𝐴𝑗𝐵𝐶𝐴𝜂 1𝑠−𝑠𝑘−𝑠𝜚 𝑛−1𝜂=0𝑛−1𝑗=0𝑛𝜌=1𝑛𝑘=1 . 

2.The spectral decomposition of the cross-Gramian over the pair spectrum of matrix A in the 

time domain  

has the form 

P(t)=∑ ∑ ∑ ∑ −1𝑠𝑘,+𝑠𝜚 𝑠𝑘𝑗𝑠𝜌𝜂𝑁̇(𝑠𝑘)𝑁̇(𝑠𝜌)  𝐴𝑗𝐵𝐶𝐴𝜂 𝑛−1𝜂=0𝑛−1𝑗=0𝑛𝜌=1𝑛𝑘=1 [𝑒(𝑠𝑘,+𝑠𝜚)𝑡−1𝑠𝑘,+𝑠𝜚 ] 
The Hadamard decomposition for a finite cross-Gramian has the form 

P(t)= Ω𝑐𝑟(𝑡) ∘ Ψ𝑐𝑟 , Ω𝑐𝑟(𝑡) = ∑ ∑ ∑ ∑ 𝑠𝑘𝑗𝑠𝜌𝜂𝑁̇(𝑠𝑘)𝑁̇(𝑠𝜌)  𝑛−1𝜂=0𝑛−1𝑗=0𝑛𝜌=1𝑛𝑘=1 [𝑒(𝑠𝑘,+𝑠𝜚)𝑡−1𝑠𝑘,+𝑠𝜚 ] , Ψ𝑐𝑟 = ∑ ∑ 𝐴𝑗𝐵𝐶𝐴𝜂 .𝑛−1𝜂=0𝑛−1𝑗=0  

3.The diagonal terms and trace of the cross-Gramian have the form 𝑝𝑗𝑗 (t)= ∑ ∑ 𝑠𝑘𝑗−1𝑠𝜌𝑗−1𝑁̇(𝑠𝑘)𝑁̇(𝑠𝜌)𝑛𝜌=1𝑛𝑘=1 [𝑒(𝑠𝑘,+𝑠𝜚)𝑡−1𝑠𝑘,+𝑠𝜚 ] 𝐴𝑗−1𝐵𝐶𝐴𝑗−1, 𝑗 = 1, 𝑛̅̅ ̅̅̅. 
trP(t)= ∑ ∑ ∑ 𝑠𝑘𝑗𝑠𝜌𝑗𝑁̇(𝑠𝑘)𝑁̇(𝑠𝜌)𝑛−1𝑗=0𝑛𝜌=1𝑛𝑘=1 [𝑒(𝑠𝑘,+𝑠𝜚)𝑡−1𝑠𝑘,+𝑠𝜚 ] 𝐴𝑗𝐵𝐶𝐴𝑗 . 
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5. Conclusion  

The paper shows that the Gramians Hadamard decomposition and its multiplier matrices play 

an important role in the problems of analysing structural properties for a wide class of continuous 

linear dynamical systems given by their different equations of state. 

The following main results are obtained in the paper: 

• a new method is proposed and new algorithms are developed for the element-by-element 

computation of finite and infinite controllability, observability Gramians and cross-Gramian 

within a unified Hadamar decomposition, 

• a method and algorithms for computing Gramians and sub-Gramians on the basis of Hadamar 

decomposition of the solutions of modal Lyapunov equations of the second type are 

developed, 

• properties of multiplier matrices, including Xiao matrices, for continuous linear systems given 

by the standard (A,B,C) representation in the state space, are investigated. 

New possibilities of Gramian computation by using canonical transformations into diagonal, 

controllable and observable canonical forms are shown. In this case, the Gramian matrices can be 

represented as Hadamard product matrices of the multiplier matrices and matrices of the 

transformed right-hand side of the Lyapunov equations. It is shown that the multiplier matrices are 

invariant under various canonical transformations of linear continuous systems. Modal Lyapunov 

equations for continuous SISO LTI systems in diagonal form are obtained, new algorithms for the 

elementwise computation of Gramian matrices for stable continuous MIMO LTI systems are 

obtained. For continuous SISO LTI systems in controllable and observable canonical forms new 

algorithms for the computation of controllability Gramians and their traces in the form of Hadamar 

products in the form of Xiao matrices are developed. The use of transformations into canonical forms 

of controllability and observability made it possible to simplify the formulas of spectral 

decompositions in the form of Xiao matrices and simplify the calculations of Gramians. The article 

obtains new spectral expansions in Hadamard form for solutions of algebraic and differential 

Sylvester equations and spectral expansions of finite and infinite cross-Gramians of continuous 

MIMO LTI systems. The results obtained can be used for the optimal selection of locations for sensors 

and actuators in multivariable control systems and dynamic networks, for calculations and analysis 

of empirical Gramians, for assessing the risk of loss of stability in electric power systems, in problems 

of analysis and synthesis of modal control systems.  
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