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Tel.: +7-495334-89-10

Abstract: New possibilities of Gramian computation by using canonical transformations into
diagonal, controllable and observable canonical forms are shown. With the help of such a technique
the Gramian matrices can be represented in the form of products of Hadamard matrices of
multipliers and matrices of the transformed right-hand side of Lyapunov equations. It is shown that
the multiplier matrices are invariant under various canonical transformations of linear continuous
systems. The modal Lyapunov equations for continuous SISO LTI systems in diagonal form are
obtained and their new solutions based on Hadamard decomposition are proposed. New
algorithms for element-by-element computation of Gramian matrices for stable continuous MIMO
LTI systems are developed. For continuous SISO LTI systems given by equations of state in
controllable and observable canonical forms, new algorithms for the computation of controllability
Gramians and their traces in the form of Hadamard products in the form of Xiao matrices are
developed. The application of transformations to the canonical forms of controllability and
observability allowed to simplify the formulas of spectral decompositions in the form of Xiao
matrices. In the paper new spectral decompositions in the form of Hadamard’s products for
solutions of Sylvester algebraic and differential equations of MIMO LTI systems, including spectral
decompositions of finite and infinite cross-Gramians of continuous MIMO LTI systems.
Recommendations on the use of the obtained results are given.
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1. Introduction

The first spectral expansions of Gramians for linear continuous and discrete systems with simple
spectra were obtained in [1] by the spectral expansion of the integral representation of the solution of
the Lyapunov or Sylvester equations. It is well known that the Gramians are solutions of the Sylvester
and Lyapunov equations, to which a huge number of scientific papers have been devoted, among
which we note [2-13]. These equations also play a fundamental role in a control theory. Researches
in the field of linear control systems are closely related to the problem of reduction the order of the
model by constructing an approximating model of lower dimension. Even in the case of linear
systems of high dimensionality, the use of projection methods allows us to reduce the significantly
dimensionality of the approximating model [6,10]. Among these methods, we note balanced
truncation , singular decomposition, Krylov subspace method; methods for drsign a simplified
model, based Gramian H2 -norm optimal methods, and hybrid methods. Iterative algorithms for their
implementation have been developed for most of the methods. The Sylvester and Lyapunov matrix
equations in applied problems of control theory were studied in [12,13] In recent years, there has been
an interest in developing of the methods for computing various energy metrics to analyse the stability
and degree of controllability, reachability and observability of these systems. Such metrics for linear
stable systems and unstable linear systems have been proposed in a number of papers[14-
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21].Simplified models for large networks based on output controllability Gramians, allowing the
computation of energy indices, were proposed in [16]. The important problem of optimal placement
of sensors and actuators based on various energy functionals, including invariant ellipsoids, was
considered in [15,17,18,20]. Paper [17] formulates a general approach to solving the problem of
optimal placement of sensors and actuators for multivariable control systems, which is based on the
decomposition of the system into stable and unstable subsystems. It is shown that the degree of
controllability of the system is determined on the basis of energy metrics based on the use of finite
and infinite controllability Gramians.A general method for computing the inverse controllability
Gramian for equations of state given in canonical forms of controllability is proposed. In [18], a
method for optimal placement of virtual inertia on the graph of an energy system is proposed. This
method is based on the use of energy metrics of coherennce of generators and the square of the H2
and the square of the H2 -norm of the system transfer function, which is given by a standard dynamic
model in the state space. The problem is formalised as a nonconvex optimization problem with
constraints in the form of observability Gramian values. It is well known that energy-efficient control
problems are also solved using Gramians. In recent years, these approaches have been developed for
complex energy, social, transport and biological networks in [17-19]. In [16,17], it is shown that the
closer the eigenvalues of the dynamics matrix are to the imaginary axis, the less energy is required to
make the network fully controllable. In [19-21] These ideas have been developed for digital
ecosystems, vibroacoustics control systems and thermal plants control systems. Thus, the degree of
controllability (reachability) of the network is related to the minimum energy, which allows us to
introduce new metrics in the form of the minimum eigenvalue of the controllability Gramian and the
maximum eigenvalue of its inverse Gramian, as well as the traces of these Gramians. Note that in
most of the above mentioned works the spectrum of the dynamics matrix of the system is used, which
makes it completely natural to use spectral analysis methods to solve the problems listed above.

Main contribution

In Section 2, the formulations of the problems of computing controllability and observability
Gramians are considered in the framework of a unified concept. An important feature of the concept
of the paper is the consideration of Hadamard products for the spectral decomposition of Gramians,
which allows us to reduce the computation of sub-Gramian and Gramian matrices to the computation
of numerical sequences of their elements. The use of canonical forms of controllability has previously
set the stage for a new approach to the computation of Gramians based on the use of Routh-Gurwitz
tables and Xiao matrices [22-26]. In this paper, we propose to improve this approach by using spectral
decompositions of Gramians by extending its scope of application to multivariable linear control
systems given by a standard (A,B,C) state-space representation. In Section 3, we introduce modal
Lyapunov equations of the second type for the state equations of MIMO LTI systems in a diagonal
canonical form. These equations allow the computation of various sub-Gramians in a closed form.
Their spectral decompositions in the form of Hadamard products are obtained and formulas for the
multiplier matrices are derived. For the SISO LTI system in the canonical forms of controllability and
observability, spectral decompositions in the form of Hadamard products are obtained, whose
multiplier matrices are Xiao matrices to play an important role in the following exposition. These
equations allow us to compute various sub-Gramians in closed form. Their spectral decompositions
in the form of Hadamar products are obtained and formulas for the multiplier matrices are derived.
It is proved that for stable systems the Xiao matrices are positively defined and are invariants under
similarity transformations. In the rest of the section, the general case of linear continuous MIMO LTI
systems represented by (A,B,C) equations of state is considered. New spectral decompositions of the
controllability and observability Gramians in the form of Hadamard products are obtained. It is
shown that the multiplier matrices are the same in both MIMO LTI and SISO LTI cases provided that
the system is stable, fully controllable and observable for both the simple and pairwise spectra of the
dynamics matrix. The new analysis of the properties of multiplier matrices is given. An important
property of multiplier matrices is their positive definiteness, which manifests itself in the positivity
of the energy metrics associated with this property [15,16]. In Section 4, the obtained results are
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developed for the construction of spectral expansions of solutions of a wide class of Sylvester matrix
differential equations. In particular, we obtain closed formulas for the Hadamard products of the
matrices of spectral expansions of cross-Gramian MIMO LTI systems, as well as their traces and
diagonal elements.

2. Discussion of the results and problem statement

We consider the Lyapunov equations for continuous stationary MIMO LTI in diagonal canonical

form
AP + PAT = —BBT,
ATP + PA = —C'C.
Xq =Tx,%q = Agxq + Bqu,yq = CqXq,
Ay =TAT Y B, =TB,C,=CT™%, (1)
uau
ss 0 0 01w
A=[u, up - U 0 s, 00 ‘:’2 )
0 0 .. sullv,

where the matrix T is composed of the right eigenvectorsu;, and the matrixT " is composed of the
left eigenvectors v; corresponding to the eigenvalue s;. Let us introduce the notations

Bij = eTBB"T*e[,y;; = e;(CT™)"CT'e].
Let us further consider the SISO LTI systems in the canonical form of controllability [9]

x%c(t) = Afx(£) + b u(t), x.(0) = 0, (2)
Ye(t) = ccxc (D),
0o 1 0 0
0o 0 1 0
AE=l0 0 0 0 bF=[0 0 .. 0 117,
0 0 0 1
_ao _a1 _a2 e _an_l

cF=[&% & - Sz &noal
The following relations are valid [15]
REARD)™ = AL REb = bf,c(RE)™ = cF,
P. = (RO (RO,
where the matrix F, is a solution of the corresponding Lyapunov equation. With respect to systems
(1) and (2), we will assume that various structural conditions for stability, controllability,

observability and spectrum properties of the dynamic matrix are fulfilled. In [26] the following
spectral decomposition of the controllability Gramian was obtained

Jj
pPF=yn n-1 yn-1 SpCsi"
c k=1 £m=0 4j=0 F(5 N(-s) JT1N+1"

Let us consider further SISO LTI (linear time invariant system with one input and one outputs)
of a linear system in the canonical form of observability [9]. In this case the following formulas are
valid

X, (t) = REx(t)
xo(t) = Agxo(t) + bgu(t):xo(o) =0,

Yo (£) = co%o(8),
According to the principle of duality we obtain the expressions [26]
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Jj
pPF=yn_ yn-1yn-1 Si(=si)" 1.
o k=1 &n=0 &j=0 N(sgp)N(=sk) j+1in+1»

In addition,
p= (RE)TPOFRg-

Let us call Xiao matrix (Zero plaid structure) a matrix of the form [23]

Y1 0 -y, 0 Y3

0 V2 0 -y; 0

_ _yz 0 y3 0 e
V= 0 -y; 0 0 - (3)

Vs 0 0 YVn

The corresponding matrix elements are calculated by the formulas
O,ectuj+n=2k+1,k=12..n;
Yin = {

(1) ecmuj+n=2kk=12..n.
The aim of the paper is to develop a general approach and study the properties of spectral

decompositions of solutions of differential and algebraic Sylvester and Lyapunov equations in the
form of Hadamard products, including modal equations.

(4)

3. Main results

Spectral Gramian decompositions allow us to represent the Gramian matrix as a sum of
summands containing multiples of summations over different indices. In this case the role of the
indices can be different. Some indices play the role of leading indices, while others are slave indices.
The distribution of indexes' roles is determined by specificity of the applied tasks of condition
monitoring and management. In addition, computations in the real or complex domain require a
different approach to the choice of method and algorithm for computing or analysing Gramian
properties. The main idea of the derivation of modal Lyapunov equations is to decompose the matrix
of the right-hand side of the Lyapunov equation into the sum of matrices corresponding to the
individual eigenvalues of the dynamics matrix or their combinations and the corresponding
transformation of the matrices of the left-hand side.The main types of spectral decompositions are
decompositions by simple, multiple or Raman (pairwise) spectra. The Gramian matrix is in general
an Hermite complex matrix, which can be represented as the sum of the symmetric and the
cosymmetric matrix. Many applications of the Lyapunov equations are based on the use of matrix of
dynamics, input-output and Faddeev matrices, and in this case the Gramian matrices are valid [30]

ATP, + PA = —=(R{Q+QR)), (5)
AP, + PAT = = (R{Q+QR)), (6)
or
ATP; +PjA = —%(R{QRﬁR]QRi), 7)
AP+ PjAT = —%(R;"QR]-+RJT‘QRL-), (8)
where Q is the matrix of the right-hand side of the Lyapunov equations, R_i,R_j are deductions of the
resolvent of the dynamics matrix in its corresponding eigenvalue.

Let us call equations (5) - (8) modal Lyapunov equations of the first type. On the other hand,
there are applications in which it is possible to use complex matrices of solutions of Lyapunov
equations

ATP, + P,A=—R:Q,(9)
AP; + PAT = —R}Q,(10)
or
ATP; + PjA = —R;QR;, (11)
AP, + P;AT = —R;QR;, (12)
Let us call equations (9) — (12) modal Lyapunov equations of the second type.


https://doi.org/10.20944/preprints202311.1868.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 November 2023 doi:10.20944/preprints202311.1868.v1

Theorem 1. [27]. Consider the modal Lyapunov equations of the second type for a continuous stationary
MIMO LTI system in a diagonal canonical form

Achij + PcijA*d ﬁl]el j 'AdPCl + PClA* Z?:l ﬁijeiej:r (13)
Achi + PciA*d = - Zj:l ﬁi} i ] 'Ade + POlA* Z?:l yijeiej:r (14)
Above, the corresponding unit vectors are denoted by e;,e/. Suppose that the system is stable

and has a simple spectrum. Then the controllability and observability Gramians exist, are singular
and can be represented in the form of Hadamard products

P.=Q. ¥, P =0Q,°¥,(15)
1 1
[ﬁ”]nxn c = [ /1 +/1]] W, = [y”]nxn o = [ /1 +Aj:| ,
nxn nxn
Pcij = Q'c ° l'pcij'l'pcij [ﬁl}]an j ci = 2;1:1 Q'c Cl]l (16)
If, in addition, the pair (A,B) is controllable and the pair (A,C) is observable, then the matrices of

multipliers O_c and Q_o are definitely positive, their diagonal elements and traces are positive
numbers.The Hermite components of the Gramians have the form [2]

1 * 1 *
f="(Pe+ PO), By'= (P + F5).

For Gramians and sub-Gramians of controllability and observability in the form of Hadamard's
products the formulas are valid

H
PC} n

Qéjn = Qopy = Z Z [ 2, +A]ej+1e,f+1,

cm (:Bm + By ) om = (an + an*)' (18)

— OH H H _ OH
'Q‘C]ﬂ qJC]ﬂ‘Pom '0'0171 0]71' (17)

=Z;'l=12;]l 1PgntPH Z] 1Zn 1 o;n 19)
Proof. The proof of the general formulas is based on the results of [27] and taking into account the
separability properties of spectral expansions of Gramians. The validity of the formulas of the modal
Lyapunov equations (16) - (19) is established by substituting the formulas into the original Lyapunov
equations and taking into account the equalities

n n n n n n
Pc=z' Z Peij, Py _Z_ Z Poij»Pc‘:Z. Pci:Po=Z_ Poi
=1 Jj=1 i=1 Jj=1 i=1 i=1

In [26], the general formulas for computing spectral expansion of Gramians are derived, which
are also applicable to the modal equations of MIMO LTI systems

¢ — yn-1 yn-1 _-1 Ajln T T
Pt = j=0 4n=0 Zp 1 A oA N(Sk)N(s )A BB (An) (20)

pe =yt i wn | AWy pprar o)

j=0 k=1 KN

o —_ yn-1yn-1 -1 /1{()1 T T

P° =" n=0 p L T TR NGONGY) A;CTC(Ay)". (22)
J
o=y 1 A LIPS
P Z xR, DN A )A]C CA,, (23)

Above, Aj denotes the Faddeev matrices, which are expressed through linear combinations of
the products of the coefficients of the characteristic equations and the degree of the dynamics matrix
of the system [28,29]. When performing the transformations, it should be taken into account that the
deductions of the resolvent of the dynamics matrix in its eigenvalues for the diagonal canonical form
are strongly simplified

Res [(Is — Ag)™L Ak ] = eyef.
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Therefore formulas ( 20) - ( 23) pass to formulas

pe ) i -1 %e BB"ej.
p=1 Ap+ A N(sidN(sp) 7
pe - n_l 1y #l(k)ak) ]BBTen,
PO =yl ynoi p=1 llp_+1/1k$ﬁsp) G Cer.
po _ 701 ~yn_ 1% ]CTCe

Theorem 2. Consider the modal Lyapunov equations for a continuous stationary SISO LTI system in the
canonical forms of controllability and observability of the form

AFPcij + Pcij(AF)T - _ele] , (AF)TPOLJ + POI.]AF € ] ’ (24)
AFPci + Pci(AF)T == 7 €;€; '(AF)TPOI + PolAF 7 1€i ] , (25)
Suppose that the system is stable, has a simple spectrum, pair (A,B) is controllable, pair (A,C) is

observable.

Then the modal Gramians of controllability and observability exist and are singular. The modal
Gramians of controllability for equations of state in the canonical form of controllability coincide with
the Gramians of observability for equations of state in the canonical form of observability. The
following decompositions of the Gramian matrices in the form of Hadamard products are valid

P.=0,0%,P, =0, 0P, (26)
Hadamard decomposition on the pair spectrum have the form

1 AaAD :[ n A"

T 6 — —_—
’“PC Z 12 e- ,Qc - 1Zp 11 +Ak N(lk)N(Sp) k=1 N(Ak)N(_Ak):lnxn,(27)

T, = XL, 2 e, 0, -5 9

Hadamard decomposition of the controllability and observability sub-Gramians over a simple

spectrum has the form
= Z;l 1Q lyczj' Py Z?:l ﬁo ° ~oij- (29)

Hadamard products are invariant under the similarity transformations.
Proof. The singularity of solutions of modal equations follows from the stability of these equations.
The coincidence of the solution matrices of the modal equations follows from the coincidence of the
solution matrices of the original equations P, and F,[26].In this paper, analytical expressions of the
solution matrices in the form of spectral expansions for a simple spectrum were derived

k=1 1n=0 j

= nj k( Ak)n 1.
= NN (=2 T

and for the pair spectrum in the form

n n-1n-1

DI I
c— 1to— k=1 ' ). +/‘lkN(/‘lk)N(/‘l) ]+177+11

p=1 =0 j=0 *

Let represent the matrix factors of the Hadamard decomposition in the form
Pe=Yin, Z}l=1 eie]? Y, = Xitq Z;l=1 eiejT-
We have scalar matrices of multipliers in the form
[Z 4 (=2)"
k=1 N(AR)N( Ax)

Let represent the matrix factors of the Hadamard decomposition in the form

-1 vy
p=14p + Ak N(Ak)N(sp)

k=1

nxn
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Pe= =1 2= ee,T ¥, =% L M=
We have scalar matrices of multipliers in the form
-1 /1{(/17’ [ A{c( A"
= | Zi=1 Zp- Yapra NN (o) | L1 om0 axn
Hence formulas (24) to (29) follow. Since multlpher matrices are the known functions of
eigenvalues that serve as invariants under similarity transformations, multiplier matrices and

Hadamard products are invariants under these transformations.

Corollary 1. The controllability and observability Gramians for the equations of state in the canonical forms
of controllability and observability are Xiao matrices that are invariants under similarity transformations. The
Xiao matrix is positively defined.

Proof. The following formulas are valid

1111 .1 1111 .1
ot 111 ot 1111
=01 1 1 1 .1|,B,=0,0[1 1 1 1 .1}
1111 .1 1111 .1
1111 .1 1111 .1

Let us prove the fulfilment of the first property of Xiao matrices (3). Its fulfilment for zero
elements of matrices is proved in [26]. The alternation of signs of the side diagonal elements passing
through the diagonal element p;; follows from the sequence of these elements in the form

5 S g s s N siesd N st s
k=1 N (s )Ny (=51) " Lat=1 N(51)N; (=5) " Lain=1 N(5,)N1(=54) " Laire=1 N (5, )N; (=51)

The fulfilment of property (4) is similarly checked. Since the multiplier matrices are known
functions of the eigenvalues, the Xiao matrices are invariant under the similarity transformation. We
will show the validity of this statement for its controllability Gramians. The transformation
matrix R can be represented as the product of the Kalman controllability matrix by the Hankel
matrix [24]

Rg = e, Alc:en (Ag)n_len]Hc:

Ap_1 1

a, a, 1 ..0
Ho={a a 1 0 .0}
a, 1 0 0 .0

1 0 0 0 .0

A substitution when calculating the controllability matrix leads to the equality
le. Afen (A" e,] = HZ.
It follows that the controllability matrix is nondegenerate when transforming the state equations

into the canonical form of controllability or observability. So the multiplier matrix, which is the Xiao
matrix, is positively defined.

Theorem 3. Let us consider the spectral decompositions of the solutions of the equations of linear continuoues
stationary MIMO LTI systems. Suppose that the system is stable, the matrices A, B, C are real, the matrix A
has a simple spectrum, the pair (A,B) is controllable, and the pair (A,C) is observable. Then the following
statements are true.

1.Spectral decompositions of its controllability and observability Gramians and controllability
or observability sub-Gramians in the form of Hadamard products for the case of pair spectrum of the
dynamics matrix have the following form

Pejn = Qcjy © Wejn, Wejy = A;BBT(4,)T, P = Q. o ¥, (31)

Qe = X720 2026 Qejy = X120 Znzo (0 Ak A, e saq 41, (32)
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N
A Ao ] 1D = T gy + Yo = Do Do B vl (39

e,A;BBT(A)Tel = [BUP] . e, ATCTCAyel = [viP]  , (34)

7
nxn

W = 15 Th20 Zier e B evel (35)
2. For the case of decomposition of the controllablhty Gramian by a simple spectrum of the
dynamics matrix in the form of Hadamard products, we obtain the same formulas (1) - (4),except for
the formulas of the multiplier matrix{l., which takes the form

Q —Z Zn 1~Qcm Zn > n O(U(/lk' Ak;] 77)3]+13n+1 (36)

N Aok
(e =i Jsm) = 5058 B7)

3. Exactly the same formulas as (45) - ( 49) will be valid for the observability Gramians in the
form of Hadamard products. Only the formulas for the matrices W_o are changing
Py=0co W, W, = X1 ST Xuey Xie 1]/,5}‘") eyel. (38)

4. The Hermite component of the controllablhty and observability Gramians has the form [2]

PH= 1(P + P, PH=2 ~(P, + B, (39)

CJ7I (Pf-']ﬂ + PCJU) 0177 (P0]71 +P ]"I) (40)

The spectral decompositions of the Hermite components of the controllability

and observability Gramians have the form of Hadamard matrices
H _ OH H H _ OH
Pl = Qg © Yej Pojiy = Qojy © Yopy (41)

n-1
cm Z Z elw(n, Ay, Ay, J, 77)]91+1en+1 = Z Re[w(n, Ak'_)‘k'j'n)]eﬁle}lwﬂ' (42)

n=0

Wi, =~ (A;BBTAL + A,BBTAT), Wi, =~ (ATCTCA, + A,CTCAT), (43)

ol ——(ATCTCA + A, CTCAT), Qb = X120 Tnzi Re[w(n, A, Ap, jum)]ej1€q 41, (44)
Y = -(A,-TCTCA,7 +A,CTCAT), P =¥ ¥n_ PH P =30 S, Pl (45)

PCH= ?:12;;1 1PgntPH Z] 1211 1 o;n' (46)
The multiplier matrices in all Gramian decompositions are Xiao matrices.

Proof. Let us return to the general formulas for spectral expansions of Gramians (20)-(23). Consider
first the pairwise spectrum decompositions of Gramians. We divide the summation indices into two
groups: the first group covers the summation over the indices "j,1" of the decompositions of the
resolvent into Faddeev series, the second group covers the summation over the pair spectrum. Let us
distinguish the controllability subgramian Pj,and represent its spectral decomposition as

Pejy = Qcm o Wejm) Wejn = A'BBT(An)T (47)
fiC =Z Zn 1QC]7] Zn o n Ow(n Ak' p'] 77)31+1en+1 (48)

. -1 ﬂ,]l n
oM, A, A, jom) = Y=t Zzzlmm - (49)

Taking into account the designation

eyA;BBT(A)Tel = [BU"] e, ATCTCAel = [ri"

] )
nxn

we have
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llchn = 12 (JTI) eveu (50)
Taking into account the previous Calculatlons, we obtain the spectral decomposition of the
controllability Gramian of the system in the form

Po=0co W, W, = B15 Sho3 She Siea B evefl (51)
Repeating similar reasoning for the case of the decomposition of the controllability Gramian

over the simple spectrum of the dynamics matrix, we obtain the same formulas (47) - (51) as in the
previous case, except for the formulas for the matrix

Q.= = 2120 220 Qejn = X720 Xn=o @ (A, =i, jim)ej 141 (52)

YU
O, Ay =i ] 1) = Bt s
In [26] it is proved that the multiplier matrices {l.are Xiao matrices. They coincide with formulas
(27) - (28) of Theorem 2. It is easy to find that exactly the same formulas will be true for the
observability Gramian’s multipliers if the conditions of the theorem are preserved. Only the formulas
for the matrices W, are changing

- n—1 n-1 n n Gm
oo to=) D D, D, Tl ek
Jj=0 n=0 v=1 u=1

Note that the developed method and algorithms for computing Gramians in the form of
Hadamard products provide a convenient way to compute and subsequently analyse the elements
of Gramian matrices, which is an advantage when computing diagonal elements and traces of
Gramians and sub-Gramians, as well as spectral decompositions of energy functionals [31].

In all the cases discussed above we are talking about the complex Gramians and sub-Gramians
of controllability and observability. Under the conditions of the theorem, the controllability and
observability Gramians are always real matrices, but the sub-Gramians can be complex. As can be
seen from the last expressions, when calculating the Hermite components of the Hadamard products
of sub-Gramians, we obtain the formulae

C}”I (PC]U +P 177) 0]"1 (POIU +P ]"I)

Therefore, the matrix part of the subgramians in the form of the Hadamard product becomes a
symmetric matrix, and its multiplier matrix becomes a real matrix. As a result of these
transformations we obtain formulas (41) - (46).

4. Spectral expansions of solutions of Sylvester differential equations on a finite interval

Let us consider two linear stationary continuous MIMO LTI dynamic systems of the form
x(t) = Ax(t) + Bu(t),x(0) = 0, (53)

y(8) = Cx (),
where x(t) € R™,u(t) € R, y(t) € R%. We will consider real matrices of corresponding sizes A,B,C.
Let us assume that system (53) is stable, unless otherwise stated, completely controllable and
observable, all eigenvalues of matrix A are different.

X (t) = ApnXn (£) + Bpu(t), X (0) = 0, (54)

Ym(£) = CnXp (8),
where x,,(t) € R™,u(t) € R%, y,,(¢t) € R%. We will consider real matrices of corresponding sizes A,
B, C, A,,, By, Cp. Let us assume that system (54) is stable, unless otherwise stated, completely
controllable and observable, all eigenvalues of the matrix 4,,are different and do not coincide with
the eigenvalues of matrix A. Following [27], consider the following continuous differential equations
associated with these systems of the form

dP(t)

= AP(t) + P()AT + R, P(0) = 0,,,,, (55)

rae R — BerjectseHHasl MaTpulia pasMepa (nxn).
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dP(t)
dt

= A, P(t) + P(t)By, + R, P(0) = 0y, (56)

where R;is a real matrix of size(nxn,). This section will focus on the Sylvester differential equation
(70). The main method for constructing a solution and its spectral expansions is operational calculus
and expansion of the resolvents of the dynamics matrices A4,,and B, into the Faddeev-Leverrier
series. The latter have the form [28,29]
(s = Ap) =270 Ay N ()] 7L Ay = B 1y QA T
(Is = By)~ 1‘2"1 Binjs'  [Npy ()78 By = B g bni B ™,

where A,,j, By, are Faddeev matrices constructed for resolvent matricesA,, B, using the Faddeev-
Leverrier algorithm; N, (s), Ny (s)- characteristic polynomials of matrices Ay, By; Qi) b are the
coefficients of these polynomials. The first method of spectral expansions of solutions to Sylvester
differential equations is based on the lemma

Lemma [27]. Let us consider solving equations on a finite interval [0,t) €[0,T]. Let us assume that systems
(67), (68). are stable, matrices Ay, By, ,R, Ryare real, matrices Ap, By, have a simple spectrum, their
eigenvalues sy, s, are different, do not belong to the imaginary axis of the eigenvalue plane, as well as conditions
are valid

Sk +5, 0,k =1,n; 0 =1,n; s, € spec Ay, S, € spec By,.
Let's transform the dynamics matrices to diagonal form
Apa = diag{...si ..} = Q1An Q7" Bpg = diag{...s, ...} = Q28,057
where Q,, Q, —matrices of dimentions [nXn] u [n; X n,].
Then the Sylvester differensial equation solution on finite interval [0,t)€ [0, T] have the form

Py(t) = [den(t)]»
dene(s ]-+s-,])t
S]'+Sn
P(t) = QT'Pa (D)@~

The second method of spectral decompositions of solutions of the Sylvester differential
equations is based on using the Laplace transform to compute the Lyapunov integral and

Tdjn
)
Sj+ST]

Pajn () = *Pajn Pajy = —

decomposing the resolvents of the dynamics matrices A,,and B,.into a Faddeev-Leverier series.

Theorem 4. Let us consider spectral expansions of solutions to Sylvester differential equations for MIMO LTI
systems (67), (68). Let us assume that these systems are stable, the matrices A, B and R are real, the matrices
A, B have a simple spectrum, their eigenvalues sy, s,are different, do not belong to the imaginary axis of the
eigenvalue plane, and the conditions are met

s+, #0,k =1,n; 0 =1,1; s, € spec A, s, € spec By,
Then the following statements are true.

1. Spectral expansions of solutions to Sylvester differential equations (53), (54) in the form of
Hadamard products for the case of the combination spectrum of dynamics matrices have the form

(t) = 117 () m' = Aijer]: (57)

(Skt+smelt — 1
sksmp e
Py () = Zk 129 1N(sk)N(st)

(Sk:+5m )t —
Sksmp e e
(t) Zk 12[) 1N(Sk)N(Smg)

stmp" e(Sietsme)t_q
W = 300 XnZ6 AmjRBpy, Q) = Yoy Xpo1 X121 XnZ 1N(S:)N(Sme) [ ]

AmiRBn;, (58)

Sk» +Smo

PO =0() ¥,

Skr» TSme

Sk,tSme

2. For the case of expansion of solutions of Sylvester’s differential equations over the simple
spectrum of the dynamics matrix, the same formulas (57) — (58) are valid, but with new multiplier
matrices
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Se(=s)"
Pin(®) = Zk=1 5 omcen €™~ DAmjRBny=0jy (6) © ¥y, (59)

sh(=s)"
Qi (6) = Xk= 1m( ekt —1), W), = ApjRBpy, (60)

P)=Q(t) ¥, ¥ = Z Zn 1A Ran, (61)
Jj
n n—-1 n 1 sp(=si)” St _
Qi) =X¢ 12 =0 RGN, (=50 (e 1). (62)

The Hermitian component of spectral expansions of solutions to the Sylvester equations has the
form

PH (6= (P(©) + P*(0), Py (©) = 5 (P () + Py (1)),
where the spectral decompositions of the matrices P, P*, Py, Pj,,” are determined by formulas (59) —
(62).

Proof. The solution to the differential equation (56) is an integral of the form [1,3]

P(t)=fot eAm® ReBmdr,

Let us apply the Laplace transform to both sides of the equation, considering the initial
conditions to be zero and using the theorem on the Laplace transform of the product of real functions
of time, the image of which is a fractional-rational algebraic fraction [27]. In our case, this fraction
contains one zero pole, and all other poles are simple. In this case, the direct transformation has the

form
f(S) — f(O) q f(si) ( 6 )
SF(s)  sF(0) =1 5;F(sp)
rae GyHKIUN ];((0)) U F(s) npuHUMaIOT BUJ,
O _1|yn n— 1 n -1 Sljésmﬂn
SF(0) s [Zk:l Z Z sk, +Smo N(si)N(sme) AmJRBmJ

n n sls m 1
F(s) = Z Z z z e
k=14=dp=1 n=1 Sk +st N(Sk)N(SmQ) $ = Sk T Sme

Substituting these expressions into (77), we obtain an image of the expansion of the solution to
Sylvester’s differential equations (70) in terms of the combination spectrum of the dynamics matrices
in the form

Jg 1
_lyn n- -1 SkSmp . .
P(S)_;Zk=1 Z =1 Z] 7] 1 Sk +Smg N(si)N (5me) Am]RBm] *

n n Slismpn 1
PND NI e r
k=1 p=1 n=1 Sk +Smg N(Sk)N(Smg) S — Sk — Smg

Having performed the inverse transformation, we obtain the spectral expansion of the solution
to the Sylvester differential equations (56) in the combination spectrum of the dynamics matrices in

the time domain

_ Sksmpn e(sk,+smg)t_1
P]n (t) - =1 Zp 1 N(Sk)N(Smg) Sk +Sme Am]RBm] ‘in (t) ]17:
. Sksmpn e(sk,+smg)t_1
ijl (t) Zk 1 Zp 1 N(Sk)N(SmQ) Skr+5mg = A Ran,

e (Sptsmelt _q

sjsm n
P(6) = 0(8) o W, ¥ = T)23 TAZ3 AR By, OO = Titoa s 5 Th2d v 5i 0 | oo ](64)
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Equality (648) expresses the spectral expansion of solutions to Sylvester differential equations in
the combination spectrum of matrices A_m and B_m. This proves the first statement of the theorem.
Using the identity

DA T M (65)
=léap=tg, +5mg N(Sk)N(Smg) k=1 N (k)N (=s)

Let us obtain similar expansions for the simple spectrum of the matrix 4,,

Jj
_ (=" ¢
P]n (t) - Zz=1 N(Sk)Nl(_Sk) (eSk - 1)Am]Ran J’I (t) ]7]’

Sk( sp)"! eSkt — )
Q]n (t) Zk 1 N(Sk)Nl( Sk) ( k 1)’ l.IJ] - A Ran/

P(t) = Qt) o ¥, ¥ = Y123 X123 Ay iR By, (66)

Jj
- n-dym 1SS s
Q) 10 T g (€ = - (67)

The resulting expansions prove the second statement of the theorem. The third statement follows
from statements 1 and 2.Equality (66) expresses the spectral expansion of solutions to the Sylvester
equations in the simple spectrum of the matrix4,,.1

Let us apply the results of the theorem to the calculation of spectral decompositions finite cross-
Gramian of a continuous stable MIMO LTI system,

2(t) = Ax(t) + Bu(t), x(0) = 0, ( 68)
y(©) = Cx(t),

which is a solution to the simple Sylvester differential equation

dP(t)

"D = AP(t) + P(t)A + BC, P(0)=0. (69)

Corollorary 2. Let us consider the spectral expansions of solutions of Sylvester differential equations for the
MIMO LTI system (83). Let us assume that the system is stable, matrix A, B and C, are real, their dimensions
have been harmonised , matrix A has a simple spectrum, and the conditions are met

Sk + Sme # 0,k = 1,n; s, € spec A.
Then the following statements are true.
1.The spectral decomposition of the cross-Gramian image has the form

-1 SkSp

— -1 1 kP - -
P(s)=Xk=1 Z =1 Zn Z 0 sy, +sg N(sp)N(sp) AjBCAy S—SK—So’

2.The spectral decomposition of the cross-Gramian over the pair spectrum of matrix A in the
time domain
has the form
J
—_yn n 1 n-1__1 L
P(t)=Xk=1 Z N=0 sp,+s0 N(sp)N(sp)

(sk,+sQ)t_1]

A;BCA [

Sk:+sg

The Hadamard decomposition for a finite cross-Gramian has the form

e(sk""SQ)t_l:l

Sk,+SQ

sls,m
D)= 0y (1) © Wer, 0y () = Ty s T8 i it | o = DAL ABCA,,

3.The diagonal terms and trace of the cross-Gramian have the form

]A] 1BCA] 1,] = 1,n

j-1 (sk+sQ)t_1
p}] (t) Zk 1Zp =1 Sk Sp [

N(siON(sp) | sk+se

Jg i e(Si+so)t_
B 1 SpSp 1
trP(t)= 2= Zp 1 J 0 N(siN(sp) Ski+Se

]AjBCAj.
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5. Conclusion

The paper shows that the Gramians Hadamard decomposition and its multiplier matrices play
an important role in the problems of analysing structural properties for a wide class of continuous
linear dynamical systems given by their different equations of state.

The following main results are obtained in the paper:

¢ anew method is proposed and new algorithms are developed for the element-by-element
computation of finite and infinite controllability, observability Gramians and cross-Gramian
within a unified Hadamar decomposition,

¢ amethod and algorithms for computing Gramians and sub-Gramians on the basis of Hadamar
decomposition of the solutions of modal Lyapunov equations of the second type are
developed,

e  properties of multiplier matrices, including Xiao matrices, for continuous linear systems given
by the standard (A,B,C) representation in the state space, are investigated.

New possibilities of Gramian computation by using canonical transformations into diagonal,
controllable and observable canonical forms are shown. In this case, the Gramian matrices can be
represented as Hadamard product matrices of the multiplier matrices and matrices of the
transformed right-hand side of the Lyapunov equations. It is shown that the multiplier matrices are
invariant under various canonical transformations of linear continuous systems. Modal Lyapunov
equations for continuous SISO LTI systems in diagonal form are obtained, new algorithms for the
elementwise computation of Gramian matrices for stable continuous MIMO LTI systems are
obtained. For continuous SISO LTI systems in controllable and observable canonical forms new
algorithms for the computation of controllability Gramians and their traces in the form of Hadamar
products in the form of Xiao matrices are developed. The use of transformations into canonical forms
of controllability and observability made it possible to simplify the formulas of spectral
decompositions in the form of Xiao matrices and simplify the calculations of Gramians. The article
obtains new spectral expansions in Hadamard form for solutions of algebraic and differential
Sylvester equations and spectral expansions of finite and infinite cross-Gramians of continuous
MIMO LTI systems. The results obtained can be used for the optimal selection of locations for sensors
and actuators in multivariable control systems and dynamic networks, for calculations and analysis
of empirical Gramians, for assessing the risk of loss of stability in electric power systems, in problems
of analysis and synthesis of modal control systems.
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