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Featured Application: A deep learning application to improve speech clarity in digital audio affected by 

environmental noises, showing potential for enhancing real-time streaming communication in noisy 

settings. 

Abstract: This paper presents an approach to enhancing the clarity and intelligibility of speech in digital 

communications compromised by various background noises. Utilizing deep learning techniques, specifically 

a Variational Autoencoder (VAE) with 2D convolutional filters, we aim to suppress background noise in 

audio signals. Our method focuses on four simulated environmental noise scenarios: storms, wind, traffic, 

and aircraft. Training dataset has been obtained from public sources (TED-LIUM 3 dataset, which includes 

audio recordings from the popular TED-TALK series) combining with these background noises. The audio 

signals were transformed into 2D power spectrograms, upon which our VAE model was trained to filter out 

the noise and reconstruct clean audio. Our results demonstrate that the model outperforms existing state-of-

the-art solutions in noise sup-pression. Although differences in noise types were observed, it was challenging 

to definitively conclude which background noise most adversely affects speech quality. Results have been 

assessed with objective methods (mathematical metrics) and subjective (listening to a set of audios by 

humans). Notably, wind noise showed the smallest deviation between the noisy and cleaned audio, 

perceived subjectively as the most improved scenario. Future work involves refining the phase calculation of 

the cleaned audio and creating a more balanced dataset to minimize differences in audio quality across 

scenarios. Additionally, practical ap-plications of the model in real-time streaming audio are envisaged. This 

research contributes significantly to the field of audio signal processing by offering a deep learning solution 

tailored to various noise conditions, enhancing digital communication quality. 

Keywords: speech enhancement; noise suppression; deep learning; variational autoencoders 

 

1. Introduction 

Signal processing is the storage, edition or transmission of a signal, either in analog or digital 

form [1]. Sound, after the acquisition and transformation of acoustic waves into electrical ones, 

becomes a signal that can be processed. [2] shows the first approached the particular method of 

treating audio as an electrical signal. Digital processing was introduced later by converting a sound 

signal into a piece of information of binary numbers using an Analogue-to-Digital Converter 

(ADC). On the other hand, the Digital-to Analogue Converter (DAC) is used to transform a digital 

signal into an analog one. 

The quality of the digital signal depends on two features: sampling rate and bit depth. The first 

one indicates the number of samples per second obtained from the original audio [3]. If we want 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 November 2023                   doi:10.20944/preprints202311.1851.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202311.1851.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

excellent audio quality, we need a high sample rate to capture a more accurate signal so that the 

digital version could be more similar to the original one. The second feature indicates the number of 

bits of storage for each audio sample [4]. These factors are directly related to the different storage 

formats. For example, one minute of a high-quality recording in WAV format requires 10 

Megabytes of storage. 

Although the quality used to store audio allows them to be very faithful to the originals, some 

information may be lost during transmission. In particular, we call noise to that signal or set of 

signals that distort the wave that transmits the original sound. Within this concept there can be 

artificial noises (those generated by the means of communication, such as interferences) or natural 

noises (those generated by the environment where the communication takes place). When the 

transmission is in noisy scenarios, ambient sounds may affect the intelligibility of the received 

message.  

The motivation for this research arises from the critical need to enhance the clarity and 

intelligibility of speech in various communication settings, where background noise often 

compromises the quality of transmitted audio. While existing noise reduction techniques have 

made strides in mitigating this issue, our work aims to develop a deep learning model specifically 

tailored to suppress background noise across a range of simulated scenarios. However, our 

objectives extend beyond mere noise elimination. We also seek to quantitatively assess the relative 

difficulty of filtering out different types of background noises present in the same audio fragment. 

By doing so, we aim to identify which types of noise have a more detrimental impact on speech 

quality, thereby a guide for future research and technological development in the field of audio 

signal processing. 

The real problem comes when the noise is equal to or stronger than the signal and causes its 

complete distortion. This fact opens up the possibility of using techniques that can eliminate 

background noise for safer and more reliable transmissions, which is desirable in cases such as 

phone communications, especially in emergency situations.  

Artificial intelligence has demonstrated its ability to remove noisy information from various 

formats, such as images or signals [5,6]. Deep learning models have obtained the best results in 

recent years among all the artificial intelligence techniques. Deep learning was defined by Lecun [7] 

as models composed of multiple processing layers that learn representations of data with various 

levels of abstraction. These models have shown exemplary performance in speech enhancement [8]. 

Audio signals can be analyzed either in the time domain or the frequency domain, with the 

latter often represented visually as images. Our approach capitalizes on the image-processing 

capabilities of convolutional layers in deep learning neural networks, specifically for tasks like 

cleaning and restoration. We have trained a deep learning model that can remove four types of 

background noise with pairs of original audio and audio mixed with background noise. Original 

audio signals have been transformed into a 2D representation by converting it into a power 

spectrogram. Following this transformation, we employ a two-dimensional Variational 

Autoencoder (VAE) to remove noise from the signal and reconstruct the clean audio. As no 

particular dataset solves the presented use cases, we have created our own. To carry out the model 

development and training we have used a dataset with recordings of TED talks (TED-LIUM 3 

dataset) as expected output and the same dataset mixed with four different background noises 

(aircrafts, rain and thunderstorms, wind and traffic) obtained from different specialized websites as 

input to the network. 

Results show that our model performs better than other solutions in the state of the art. 

Regarding the proposed scenarios, although there are differences between them, we cannot assure 

that one of the background noises influence more than others. The only, thing confirmed by the 

results is that the audios with wind are perceived with better improvement, but this perception is a 

bit tricky as the differences between the clean audios and the audios with this background noise are 

smaller. 

The paper is structured as follows. Section 2 compiles some works framed in speech 

enhancements, audio denoising, etc. Section 3 formally describes the dataset used to train the model 
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and the deep learning models used in the research. Section 4 compiles the different results that have 

been obtained and their interpretation. Finally, section 5 gives some conclusions and future works. 

2. State of the art 

Building on the foundational need to improve speech communication in noisy environments, 

as outlined in our introduction, a variety of models have been developed to address challenges in 

speech enhancement and background noise reduction. This section aims to review these related 

works, highlighting their contributions and limitations, to contextualize our own approach, which 

extends beyond mere noise removal to a nuanced understanding of how different types of noise 

uniquely impact speech quality. 

Some of these works apply techniques not encompassed in the deep learning field. [9] reduces 

the presence of background music over conversational audios. It uses trigonometric transformation 

and wavelet denoising techniques. In [10], the audio denoising is made with speech audios and 

noises like buzzing equipment or background noise from the street. Spectrograms form the training 

dataset and use a block thresholding estimation procedure. The same authors present in [11] a 

similar approach to suppressing the harmonic noise of music by using its spectrograms. The 

method applies block attenuation techniques. Finally, [12] implement a process to denoise speech 

audios containing slight background noises (which do not work with loud ones). It works with raw 

audio and applies Wiener filters, a well-known method of the previous age of audio denoising. 

The present work focuses on speech enhancement but uses deep learning techniques. The 

following studies make use of these methods in similar use cases. In [13], an autoencoder with a 

bottleneck that uses Recurrent Neural Networks (RNNs) addresses speech enhancement in 

recordings made with mobile phones. In [14], the audios are isolated from videos. The work uses 

two models combining convolutional networks and Fourier transformations. One model detects 

that a person is speaking, and another isolate the speech. The use of Generative Adversarial 

Networks (GANs) for speech enhancement can be found in [15]. In this case, they used raw audios 

of 10 use cases (8 of them are genuine cases and 2 of them artificially created). Another interesting 

work is [16], which separates the different waves of raw audios with voices of women and men 

mixed with songs. In this case, deep autoencoders are used to achieve the issue. To end,  

Another distinguishing feature is the use of power log spectrograms to train the deep learning 

model, as in [17] that eliminates background noise from factories in conversational audios of 

Japanese people. The approach uses a deep autoencoder and spectrograms. In [18], RNNs detect if a 

person is speaking and predict the voice without background noise. The dataset consists of 

spectrograms with white noise, traffic jams, and street environments. In [19], a Long Short-Term 

memory neural network (LSTM) is trained with frequency spectrograms to improve the speech 

quality in audios with background noises, reverberations, and a poor communication environment. 

Another work that uses power spectrograms is [20], which represents cases of passing cars and café 

babble noise. It uses a convolutional neural network in the approach. Similar, there is [21] that use 

voice sound with background noises characteristics of conversations represented as spectrograms. 

Then, a deep neural network of 4 layers is used to eliminate the noise in the spectrograms. Finally, 

[22] use a type of Autoencoder called U-Net with spectrograms that account for the wave's phase in 

the audio. 

This research stands out in the field due to several key innovations. Primarily, it targets 

evaluating the impact of four distinct real-world background noises on speech audios. To achieve 

this, we have developed a unique deep learning model designed to effectively eliminate these 

noises from a series of speech recordings. Our choice of a variational autoencoder for this purpose 

distinguishes our approach. Moreover, our study is the first of its kind to incorporate a subjective 

evaluation method. This involves a panel assessing the clarity of speech audios post noise-removal. 

While other studies rely solely on mathematical metrics, our approach adds a crucial human 

dimension to the assessment. This step is often overlooked in other research due to the technical 

challenges and potential information loss when converting spectrograms back into raw audio, 

possibly leading to subpar results that others might choose not to report. Our willingness to 
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undertake this complex transformation and evaluation process further underlines the novelty and 

depth of our work. 

3. Materials and Methods 

In this paper we have trained a deep learning model, specifically a Variational Autoencoder, 

with pairs of power logs spectrograms of voice audios mixed with four different background 

noises: aircrafts, rain and thunderstorms, wind and traffic jams. The research followed a four-step 

process that are described following. First, the creation of the dataset by mixing speech audios with 

background noise. Second, the transformation of the audios into a visual representation, a 

spectrogram, that is more efficient to manage by the model. Third, the training of the model with 

the dataset. Finally, the objective and subjective evaluations. The workflow followed from working 

with the raw data until obtaining the trained model is represented in Figure 1. 

 

Figure 1. Workflow for training a model for background noise suppression. 

3.1. Datasets of speech audios and background noises 

3.1.1. Audio features decision.  

The first step consists of selecting the audio files format and the signal processing 

characteristics: sampling rate, bit-depth, and the number of channels. As file format, we use WAV 

or WAVE (apocope of Waveform), launched in 1991 by Microsoft based on RIFFF (Resource 

Interchange File Format) specification. It has the advantage of being an uncompressed format, in 

which the user hears what is stored. It also supports different quality characteristics such as 

sampling frequency and bit depth [23], which are the most important features for audio 

management [24]. We have decided to use 22.5 kHz, a bit-depth of 16 bits and only one audio 

channel corresponding to monaural sound re-production. These characteristics are sufficient and 

adequate for the problem we want to solve. 

During the second step, we need to create the pairs of audios. As no particular dataset solves 

the presented use cases, we have created our own. For that, we need speech audios and background 

noises that represent the four use cases.  

For the former, we are using the TED-LIUM 3 dataset, which includes audio recordings of the 

well-known TED-TALK series. The dataset contains 2,351 audio files in NIST Sphere format (SPH), 

which is very common in audio speech files as it includes the audio alongside a transcription of the 

speech. It uses a sampling rate of 16 kHz and a bit-depth of 16 bits. The total length of the dataset 

reaches more than 452 hours. In the audios, we can find a diverse range of people with different 

types of tones and quality recordings under other circumstances, which augments the problem's 

difficulty. The dataset is freely available to download from Open Speech and Language resources. 

For the latter, we have obtained the different background noises from two websites. They used 

WAV format, a sampling rate of 16 kHz, and a bit-depth of 16. The number of audios per use case 
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differs, as the availability was not the same. This problem will be, lately, solved during the 

preprocessing stage. Also, the length of the audio varies depending on the use case. Table 1 

summarizes this information for the four use cases. 

Table 1. Background noise use cases dataset. 

Use case Number of audios Length per audio 

Aircrafts 80 Around 5 seconds 

Storm lights and rain 18 Around 5 minutes 

Wind 522 From 3 seconds to 5 minutes 

Traffic jams 512 Around 3 seconds 

3.1.2. Audio preprocessing.  

The first problem arose with the TED LIUM dataset as it has an SPH format. We transformed it 

into WAV format using a Python script using the SoX tool [25] to convert the audio. 

Next, we describe all the modifications done to obtain the final dataset of pairs of audios. First, 

we have eliminated the first and last 15 seconds of the speech audios to avoid moments without 

speech and irrelevant sounds like applause or music. Then, we generated 60,000 chunks with a 

length of 3 seconds with a balance of 25% in-stances for each use case. At this stage, we have also 

set the value of the sampling rate, bit-depth, and the number of channels, which have been set at 

22.5 kHz, 16 bits, and audio-mono channel, respectively. In the case of finding audio with different 

value ranges, the corresponding transformation applies min-max normalization. This method 

allows all audio values to be in the same range between 0.0 and 1.0. as shown in Equation 1. 

𝑧 =
𝑥 − 𝑚𝑖𝑛𝑣𝑎𝑙

𝑚𝑎𝑥𝑣𝑎𝑙 − 𝑚𝑖𝑛𝑣𝑎𝑙
 (1) 

Given the complexity of the problem, the neural model requires many audios for proper 

training. In our case, the availability of audios is scarce, so it has been necessary to apply data 

augmentation techniques and create synthetic data. Once we have the audios chunked in pieces of 3 

seconds with standardized features, we have mixed the speech audios with the different 

background noises randomly but ensure the number of audios for the four use cases. In the cases 

where the background noise does not have a length of 3 seconds, different audio of the same case is 

chosen until the speech audio length is reached. 

3.1.3. Visual representation of audios.  

Audio signals can be processed as a time-domain or a frequency domain representation. The 

former uses the signal as raw audio. The latter uses images of visual representations of the audio. 

Due to the high complexity of the problem where the original speech audios and its version with 

background noise do not match any of the values (increasing the difficulty of a reconstruction 

problem), we have decided to use the second option as images perform well in auto-encoders. We 

use autoencoders with convolutional filters of 2 dimensions which have demonstrated better 

performances in these models than those of 1 dimension [26]. 

Many audio representations in the frequency domain are log power spectrograms (LPS), Mel 

spectrograms, or Mel-frequency cepstral coefficients spectrograms (MFCCS). In this case, we are 

using LPS because it includes an audio feature called power representing wave decibels at a 

particular moment. LPS consists of an image representing the audio information. In this case, it 

captures more information than other standard spectrums, [27].  

Spectrograms are created using a Python script and a library called librosa, [28], which 

specializes in music and audio management. The script implements a Short-Term Fourier 

Transformation (STFT) that converts the audio from the time domain to the frequency domain. 

Each spectrogram was created using a sliding window of 23 widths and 11.6 steps in milliseconds. 
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The output spectrograms had a size of 256x256x1 for each instance. Finally, the dataset contains 

60,000 spectrograms belonging to 15,000 for each use case. 

3.2. Using a variational autoencoder for noise suppression 

As noted in the state-of-the-art section, autoencoders perform well to do speech enhancement, 

audio denoising, etc. We have selected a variational autoencoder as the DL model to perform this 

task because of its ability to represent the input data more accurately using a latent space. With this 

representation, the output images have higher definition, and therefore the quality when 

transforming them backwards into raw audio will be better. In the following, we formalize some 

deep learning concepts to better understand this type of architecture. 

3.2.1. Convolutional operator. 

This operator lets to find image features like edges, which is why their main application is 

image classification [29]. In particular, it led to the creation of the 2-Dimensional Convolutional 

Neural Networks (2D CNNs) used in Deep Learning since 1999 [30]. Convolutional operators al-

low finding a feature in one part of an image that can later be found in another. As we work with 

images of power log spectrograms, the convolutional operators of the Variational Autoencoder will 

find feature representations from one spectrogram to another. 

3.2.2. Autoencoders. 

These two-part models first use a multilayer encoder network to represent high-dimensional 

structures in a low-dimensional space. Then, there is a decoder network to convert the data from 

this space into high-dimensional structures with some relations to the first one [31]. This 

architecture works as follows. The input data go through the different convolutional layers of the 

encoder, obtaining a small piece of data with the main features. These data are dis-tributed in the 

bottleneck, creating a representation called latent space. Finally, the feature representation goes 

through the decoder to obtain an output like the input data. 

3.2.3. Variational autoencoders. 

This Autoencoder solves the problem that classical ones have with the latent space. Instead of 

placing a single point in the latent space, this case provides a distribution. This latent space can also 

be better organized by adding a regularization to the loss function, [32]. In our case, it creates a 

distribution using the input data's mean and variance. The following Equation represents the 

distribution of this space. 

𝑓(𝑥1, … , 𝑥𝑘) =  
𝑒−

1
2

(𝑥−𝜇⃗⃗⃗)𝑇∑−1(𝑥−𝜇⃗⃗⃗)

√2𝜋𝑘|∑|
 (2) 

Where 𝜇 represents the mean vector of the different distributions in the latent space, and |∑| 

the covariance matrix of the distributions. The last two parameters are calculated using Equations 3, 

and 4 applied to a space of 2 dimensions. 

𝜇 = (
𝜇𝑥

𝜇𝑦
) (3) 

(
𝜎𝑥

2 𝜌𝜎𝑥𝜎𝑦

𝜌𝜎𝑥𝜎𝑦 𝜎𝑦
2 ) (4) 

To sample a point into the latent space, we have used the formula of sampling points, depicted 

in Equation 5. In this case, we have modified it to get negative values, so we have a more expansive 

dimensional space to represent the information where ε is a sampled point from a standard normal 

distribution. 
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𝑧 =  𝜇 ⃗⃗⃗ ⃗ +
𝑒log(𝜎2)

2
 𝜀 (5) 

3.3. Training phase 

To train the model, we have split the dataset into a percentage of 80 for training/validation and 

20 for the test. The final dataset has an amount of 60,000 LPS that represent audios of 3 seconds 

without overlapping. The model was trained with pairs of audios with mixed background noise 

and the original version of these audios. 

The hyperparameters during training were found using a grid search strategy. This method 

guides the training in finding the best hyperparameter setting for the model by using different 

combinations of the values [33]. The different hyperparameters and values used in the grid search 

have been compiled in the Table 2. 

Table 2. Hyperparameters and values used in the grid search. 

Hyperparameter Values 

Latent space 128, 200, 400, 800, 1,024 and 2,048 neurons 

Dense layer 100, 200, 256, 1,024, 2,48 and 4,096 neurons 

Convolutional blocks 3, 4, 5 and 6 

Skip connections 3, 4 and 5 

Learning rate 0.01, 0.001 and 0.0001 

Optimizer and loss function hyperparameters have not been changed during the process. 

Optimizer is an adaptive learning rate optimization algorithm. In particular, we have used Adam as 

it was explicitly designed for training deep neural networks, [34]. All the efforts to create a 

variational bottleneck do not make sense unless the network knows how to learn about the input 

data representations in the latent space. Therefore, the loss function needs a change to distribute the 

information in the latent space precisely and accurately. The loss function uses the Root Mean 

Squared Error (RMSE) and the Kullback-Leibler divergence DKL(P||Q) (KL). This last metric will 

allow the network to check if the distributions are placed correctly in the latent space. RMSE and 

KL have been formalized in Equations 6 and 7. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑁

𝑖=1

 (6) 

𝐷𝐾𝐿(𝑁(𝜇𝑖 , 𝜎𝑖)||𝑁(0,1)) =
1

2
∑(1 + ln(𝜎𝑖

2) − 𝜇𝑖
2 − 𝜎𝑖

2)

𝑖

 (7) 

where N(μ,σ) is a normal distribution having as mean the mean µ and as standard deviation 

the standard deviation σ of the output data obtained in training and N(0,1) is the standard normal 

distribution. 

Finally, Equation 8 shows the modified loss function we have used. 

𝑙𝑜𝑠𝑠 = 𝑅𝑀𝑆𝐸 +  𝛼 · 𝐷𝐾𝐿(𝑁(𝜇𝑖, 𝜎𝑖)||𝑁(0,1)) (8) 

In this case, α is a hyperparameter that weights the KL metric. After fine tuning, the selected 

value for this hyperparameter was 100,000, indicating that the RMSE be-tween the input and output 

signals was not a primary concern in our optimization process. This decision was based on the 

understanding that RMSE is relatively poor metric for evaluating the noise level in an audio signal, 

especially when the audio is represented as an image in the form of a power spectrogram. In such a 

representation, even a minor deviation in a single pixel can significantly impact the RMSE, but this 
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does not necessarily translate to a perceptible error when the image is converted back to an audio 

signal. Therefore, our model's loss function is designed to prioritize other aspects over RMSE for a 

more accurate and meaningful evaluation of audio quality. 

The model comprises 306,762,465 hyperparameters, and we used an AMD Threadripper 2950X 

with 128 Gigabytes of DDR4 RAM and a GeForce RTX 2080 TI GPU. The training lasted more than 

22 hours. The final metric at the end of the training phase was 0.0153. 

3.4. Proposed method 

The proposed solution is a two-dimensional VAE that is trained with pairs of spectrograms of 

speech audios with real background noise and the original speech audios. After some convolutional 

operation, the encoder reduces the size to a minimal piece of information that represents its main 

features. These pieces of information are then placed in a latent space, which is a distribution of the 

encoded data obtained at the convolutional stage. The mean and variance of each input is used to fit 

the distribution in the latent space, this feature being the main difference from a standard encoder. 

For a VAE, each input represents a distribution in latent space rather than a single point. 

Information is recovered and upsampled from the latent space until the output has the expected 

dimensions. Finally, this output is compared to the spectral representation of the original audio 

without background. This comparison evaluates how well the background noise has been 

suppressed and lets the model adjust its hyperparameters and learn the information. After training 

with the whole dataset that comprises audios from the four use cases, the model can remove real 

background noise. 

The input layer of the model has a size of 256x256x1, representing the audio of one channel, 

which is connected to the following layer. The input layer aims to feed the audio to the 

convolutional blocks. These blocks are responsible for reducing the dimensionality of the 

information. The convolutional stage consists of 6 convolutional blocks, where each of them obtains 

a feature map of the previous data. Each block has two convolutional layers with two 2-

dimensional filters of size 3x3, stride one, and max-pooling of 2x2 (except in the last block). 

Convolutional layers in the same block have the same number of neurons using Rectified Liner Unit 

(ReLU) as an activation function. The number of neurons from one block to another is the 

following: 32, 64, 128, 256, 512, and 1,024. At the end of this convolutional stage, the input data has 

been reduced to 8x8x1,024. This small piece of information represents the input data with all the 

main features. Finally, a flattened layer is applied to process information as a one-dimensional 

vector of size 65,536. 

At this point, the information goes through the bottleneck, which in the case of VAEs builds a 

latent space of its representation. The bottleneck entrance has a dense layer of 2,048 neurons that 

introduces the information from the last convolutional block. Then, we have two other dense layers 

that manage the distribution's mean and variance, having 2,048 neurons. A lambda layer is applied 

to choose the point representing the input data in the latent space. After getting this point, we can 

position it in a multivariate space and recreate the last convolution dimensions before the 

bottleneck, allowing the decoder to do the inverse process. To start this process, we use a dense 

layer that converts the point into information that can be processed in the de-convolutional stage. 

The stage of dimensionality upsampling, or deconvolution, now begins. This stage starts with 

a reshape layer so the information can be introduced in the two dimensions' deconvolutional blocks 

of 2 dimensions. This process has five deconvolution blocks. Each block comprises two convolution 

layers, with an upsampling layer in the first position. Again, the number of neurons within the 

layers of the same block is the same, and all use the ReLU activation function. The number of 

neurons per layer of each block is 512, 256, 128, 64, and 32. These blocks increase the dimensionality 

of the feature map. In this deconvolution process, starting from the tiny feature map in the 

bottleneck stage, new audio spectrograms are created using only the essence of the original audio. 

In each convolution block, concatenate layers have been used with the even blocks of the encoder to 

speed up the training and not lose the substantial relationship between the data. Lastly, a final 
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convolution layer with one neuron is used to achieve the same final audio size as the input. The last 

layer uses the hyperbolic tangent (tanh) activation. A representation of the model is in Figure 2. 

 

Figure 2. Architecture of the model. 

Finally, the output data is compared to the spectral representation of the original audio 

without background noise. This comparison evaluates how well the back-ground noise has been 

suppressed and lets the model adjust its hyperparameters and learn the information. After feeding 

the whole dataset that comprises audios from the four use cases, the model is trained so it can 

remove real background noise. 

4. Results and evaluation 

This section compiles the results obtained by evaluating the model for the four different use 

cases with objective and subjective tests. The first ones compare our model with others in the state 

of the art using mathematical metrics. The second type of tests are based on the subjective 

perception of a group of people who will evaluate how good the model is at eliminating noise. 

4.1. Objective evaluations 

4.1.1. Evaluation of noise reduction performance  

We will assess the performance of our approach in eliminating background noise by 

comparing it with two baseline methods. This evaluation involves comparing the noisy audio input 

to the model with the model's output, which is a denoised signal. The two baseline models are a 

classical method using Wiener filters and a more recent technique known as Deep Audio Priors 

Design (DAP). Wiener filters were used by [35] to reduce the noise in audios utilizing the frequency 

domain. DAP Design is an update of U-Net that uses dilated convolutions and dense connections 

[36]. 

The evaluation has been made with a set of audios that comprises 400 instances, 100 for each 

use case. Each audio has a length of 3 seconds, with a sample rate of 22 kHz and a bid-depth of 16. 

To make an accurate comparison, we use two metrics: MSE and Signal to Noise Ratio (NSR). 

The first one measures the Euclidean distance between two images that are the spectrograms of an 

audio with background noise and the same audio after being processed by the denoising model, 

[37]. The larger the value of MSE, the greater the difference between the noise signal and the 

cleaned signal, from which it can be inferred that the model eliminates background noise better. 

The metric is depicted in the Equation 9 where 𝑦𝑖  is the value of a particular position in the noisy 

audio, and 𝑦̂𝑖 a value of the denoising audio in the same place. 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑁

𝑖=1

 (9) 

InputLayer Conv2D DenseFlatten Lambda Reshape Conv2DTransp Add

BottleNeck
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The second metric measures the difference in decibels (dB) between the same two signals once 

they have been converted back to the audio domain. SNR values range between -35 and 35 dB, 

which is the theoretical magnitude of noise. The closer the value is to zero (either positive or 

negative), the better the performance of the model [38]. Equation 10 mathematically formalized this 

metric. 

𝑆𝑁𝑅𝑑𝐵 =  10𝑙𝑜𝑔10
(

𝑃𝑠𝑖𝑔𝑛𝑎𝑙 − 𝑃𝑛𝑜𝑖𝑠𝑒

𝑃𝑛𝑜𝑖𝑠𝑒

) (10) 

In Table 3, we compile both metrics and compare our model with the two pro-posed baselines.  

Table 3. Comparison against baselines. 

Use case MSE SNR 

Aircrafts Wiener 0.0006 ± 0.0035 16.378 ± 7.4762 

 DAP Design 0.0761 ± 0.1621 - 

Our model 0.0182 ± 0.0234 1.3702 ± 0.8983 

Storms and rain Wiener 0.0007 ± 0.0064 16.908 ± 6.8374 

DAP Design 0.0877 ± 0.0879 - 

Our model 0.0202 ± 0.0758 -1.2728 ± 3.7621 

Traffic jams Wiener 0.0006 ± 0.0036 17.328 ± 13.1234 

DAP Design 0.0693 ± 0.3245 - 

Our model 0.0154 ± 0.2522 0.4991 ± 1.3253 

Wind Wiener 0.0004 ± 0.0003 17.505 ± 9.6523 

 DAP Design 0.0687 ± 0.0319 - 

 Our model 0.0182 ± 0.9325 -0.1870 ± 3.2167 

It is important to note that MSE is not an accurate metric for assessing audio quality. When 

starting with an image that is essentially a Fourier transform of an audio signal, converting it back 

to an audio signal using the inverse transform doesn't necessarily reflect how well the audio will 

turn out. Even a minor change in a single pixel can drastically alter the sound obtained upon 

reversing the transformation. This fact is due to the use of a parameter of the original audio called 

the phase of the wave. This parameter is lost when transforming the audio into spectrogram and a 

change in its value can made the audio obtained after transforming back the spectrogram into 

something inaudible. In our case, we have used the Inverse STF, and we have used the phase of the 

audio with noise that is used as an input in the model. Although the results are not perfect, the 

evaluation demonstrate that are good enough but should be improved in the future. 

Therefore, MSE values do not precisely represent differences in the quality of the resulting 

sound. However, we can assert that if the MSE is very low, the two images are highly similar at the 

pixel level. This implies that the spectrogram obtained after the noise-cleaning process is highly like 

the original (noisy) one that was fed into the model meaning that the cleaning process worked 

poorly. Therefore, while MSE may not be a perfect indicator of audio quality, it does serve as a 

useful metric for evaluating how closely the processed image resembles the original one in terms of 

pixel-level similarity. SNR works with the converted signal and reflects whether the amount of 

noise in the signal is high or low. Combination of both metrics provides a more comprehensive 

evaluation of the model's performance in both the image and audio domains. 

Based on the results shown in Table 3, our model outperforms in all scenarios, reducing both 

the image noise and the actual noise in the subsequently converted signal. In terms of MSE, Wiener 

filters perform poorly across all four use cases, as the audios being compared are nearly identical. 

DAP Design shows better results, but it's important to note that this method removes all 
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information, including the speech, resulting in silent audio. Obviously, in this case, the MSE value 

should be high, as noisy audio differs significantly from silent audio. MSE can still be calculated 

when comparing images, even if the audio signal itself is inaudible. Regarding the Signal-to-Noise 

Ratio (SNR), our model significantly outperforms Wiener filters. On the other hand, DAP Design's 

approach leads to silent audio, rendering the SNR value empty. 

When we look at the results for different situations, it seems that storm and rain noises are 

easier to eliminate when evaluated using both MSE and SNR metrics. When considering the 

standard deviation, instances involving wind noise tend to yield poorer results in some examples. 

This variability in performance across different types of environmental noise underscores the 

complexity of the problem and the need for a more nuanced approach to noise reduction in audio 

signals. 

4.1.2. Evaluation of Background Noise Suppression Based on Noise Type.  

This evaluation quantifies the differences between the spectrogram of the original audio, 

sourced from the TED-LIUM 3 dataset before adding background noise, and two other 

spectrograms: one corresponding to the audio with background noise and the other to the denoised 

audio. The relationship between these values serves as a measure of the level of noise suppression 

relative to the original clean signal. In other words, it helps us identify which type of background 

noise has been most effectively suppressed. By referencing both values to the same baseline—the 

original TED talk audio that is free of noise—we obtain a common metric for all scenarios. The 

difference between these metrics indicates the effectiveness of noise reduction in each case. 

Specifically, the better the second measurement (difference between the restored audio spectrogram 

and the original audio spectrogram) is compared to the first (difference between the noisy audio 

spectrogram and the original audio spectrogram), the more effectively the background noise has 

been eliminated in that particular use case. 

We will use two metrics applied to the spectrograms: again, the MSE and the Structural 

Similarity Index Measure (SSIM). SSIM was introduced by Wang et al. (2004) and measures the 

perceptual similarity between images regardless of which is of better quality. It considers three 

image features: luminance (l), contrast (c), and structure (s) that are weighted through three 

constants: α, β, and γ. SSIM is calculated using Equation 11: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]𝛼 ∙  [𝑐(𝑥, 𝑦)]𝛽 ∙  [𝑠(𝑥, 𝑦)]𝛾 (11) 

This evaluation has used the 100 samples for each scenario from the previous evaluation. So, 

400 instances have been evaluated in total. 

For both metrics, the same analysis can be applied. The suppression of wind noise yields the 

poorest performance. Both in absolute terms and as a percentage, the difference in MSE and SSIM 

values is the smallest. In the case of MSE, which measures pixel-to-pixel similarity between 

spectrograms, the restored audio does resemble the original more than the noisy audio does, but by 

a smaller percentage (37.2%) com-pared to other scenarios. It's worth noting that these are the cases 

that most closely resemble the original audio, meaning that the distortion introduced by the noise is 

the lowest among all use cases. Therefore, the margin for improvement is smaller as will be 

reflected in the subjective assessment where noise cleanliness depends on auditory perception. In 

the other scenarios, although the MSE of the restored audio is still high, the reduction compared to 

the audio with background noise is much greater. Specifically, in the case of thunderstorms and 

rainfall, the quality of the work is significantly higher. This is also noteworthy considering that 

these types of background noise most severely affect the intelligibility of the original spoken 

segments. A similar analysis and conclusions apply when considering the SSIM metric instead of 

MSE. In this case, storms are the best, wind is the worst and traffic interchange its position with 

aircrafts. The results of Table 4 confirm what the comparison with the baselines describes in Table 3. 
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Table 4. Comparison between spectrograms. 

Use case  MSE SSIM 

Aircrafts Noisy audio 1,628 ± 1,246 0.6173 ± 0.1257 

 
Restored audio 680 ± 323 0.6257 ± 0.1012 

 
Absolute difference 

% reduction  

948 

58,2% 

-0.0084 

-1,4% 

Storms  

and rain 

Noisy audio 1,867 ± 1,100 0.5780 ± 0.0848 

Restored audio 698 ± 267 0.6075 ± 0.0754 

 
Absolute difference 

% reduction 

1,169 

62,6% 

-0.0375 

-5,1% 

Traffic jams Noisy Audio 1,329 ± 1,139 0.6282 ± 0.1127 

Restored audio 609 ± 349 0.6437 ± 0.0891 

 
Absolute difference 

% reduction 

720 

54,2% 

-0.0155 

-2,5% 

Wind Noisy audio 683 ± 541 0.7287 ± 0.1107 

 Restored audio 429 ± 174 0.7311 ±0.0769 

 Absolute difference 

% reduction 

209 

37,2% 

-0.0024 

-0,3% 

4.2. Subjective tests 

We present an evaluation based on listening to audios. In this case, we have created a set of 

audios that comprises the four use cases that have been listened to by a group of people to evaluate 

the amount of background noise that has been suppressed. The dataset consists of 22 different 

audios; for each audio, the volunteers must listen to the audio with background noise and the same 

audio after being processed by our model. For each of the four use cases, there were four different 

audios, totaling 20 audios. The two remaining audios correspond to control audios where no 

background noise was eliminated and have been used to check that the surveyed people were 

performing the test well. 

During the process, volunteers could listen to each pair of audios as often as possible. Then, 

they must choose between four different options: "No or practically no noise eliminated", "Some 

noise eliminated", "Much noise eliminated" and "All or almost all noise eliminated". The evaluation 

was delivered through a Google Form, and 61 people answered it. All the information has been 

compiled in Figure 3. The top pie chart represents the average results of the evaluation of the 20 

valid audios. The other pie charts depict the evaluation results for each of the use cases. 
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Figure 3. Human evaluation of noise suppression by listening to a set of audios. 

Looking at the figure above, we can conclude that most of the people think that the model 

could suppressed much noise or almost all (90%). Only in a few cases (10%), the evaluation result 

on no noise eliminated. If we look at the use cases separated, there are no big differences obtaining 

evaluations where good evaluations (from much noise to all noise) are around percentages of 90%. 

It should be highlighted that wind scenario is the one with more cases of removing all the noise 

which corroborates the objective evaluations obtained with the mathematical metrics (the margin 

for improvement is less than in the other cases). If we looked at the scenarios considering that at 

much noise is eliminated storms/wind is the one that performs the best, but differences are not 

remarkable. Another interesting point is that wind/storms, rain and traffic are the scenarios that 

have reported cases where no noise was eliminated. 

5. Conclusions and future work 

Audio signals can be processed either in the time domain, treating the raw signal, or in the 

frequency domain. In the latter case, visual representations of the audio (images) are used. This 

research proposes a model for cleaning background noise in audio signals (human speech) using a 

VAE composed of 2D convolutional filters applied to a two-dimensional representation of the audio 

signal, namely power log spectrograms. In the research, we propose four different scenarios that 

simulate environmental noise produced by storms, wind, traffic jams and aircrafts. The whole 

workflow of the research comprises different stages. First, we created an ad-hoc dataset by mixing 

speech audios with background noises representing the four use cases. Then, we have used this 

dataset to train a VAE with pairs of audios with background noise and only the speech audio using 

spectrograms. To measure if we have trained the model accurately, we have used objective and 

subjective measures. Objective measures allow to measure mathematically which is the scenario 

where the background noise is more difficult to suppress and if the proposed model overcomes 

other models proposed before. The subjective evaluation allows to confirm the previous results 

based on the auditive perception of some people. Subjective evaluations are normally not per-

formed in the works compiled in the state of the art as there is a need to transform the spectrograms 

into audios so they can be listened by the surveyed people. This transformation is not easy to apply 

as it depends on the phase that corresponds to the original speech clean audio. In our case, we have 

Aircrafts
Rain/Storms

Traffic
Wind

TOTAL

All or almost all 

noise eliminated

Much noise 

eliminated

Some noise 

eliminated

No or practically no 

noise eliminated
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applied the IFTF that although it does not achieve perfect results, it does obtain perfectly evaluable 

audios by using the phase of the audios that are input for the model. 

Mathematical metrics produced by our model confirm that it performs better than the selected 

baselines in all cases. If we look at the results between use cases, we can see that storms and rains 

are easier to eliminate. Looking at the standard deviation, we can see that wind cases have worse 

results in a few examples. In this case, it should be highlighted that the scenario of background 

wind is the one with the smallest differences between the noisy audio and the cleaned one. This is 

confirmed in the objective evaluation where surveyed people evaluate this scenario as the one with 

best performance. 

As future works, the main need is to obtain a method that could calculate in a more precise 

way the phase of the cleaned audio. Also, there is a need to obtain a more balanced dataset where 

the differences between the audio with background noise and the audio after using the model are 

smaller between scenarios. From practical perspective, the model could be integrated into 

applications, so the model works with streaming audio. 
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