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Featured Application: A deep learning application to improve speech clarity in digital audio affected by
environmental noises, showing potential for enhancing real-time streaming communication in noisy
settings.

Abstract: This paper presents an approach to enhancing the clarity and intelligibility of speech in digital
communications compromised by various background noises. Utilizing deep learning techniques, specifically
a Variational Autoencoder (VAE) with 2D convolutional filters, we aim to suppress background noise in
audio signals. Our method focuses on four simulated environmental noise scenarios: storms, wind, traffic,
and aircraft. Training dataset has been obtained from public sources (TED-LIUM 3 dataset, which includes
audio recordings from the popular TED-TALK series) combining with these background noises. The audio
signals were transformed into 2D power spectrograms, upon which our VAE model was trained to filter out
the noise and reconstruct clean audio. Our results demonstrate that the model outperforms existing state-of-
the-art solutions in noise sup-pression. Although differences in noise types were observed, it was challenging
to definitively conclude which background noise most adversely affects speech quality. Results have been
assessed with objective methods (mathematical metrics) and subjective (listening to a set of audios by
humans). Notably, wind noise showed the smallest deviation between the noisy and cleaned audio,
perceived subjectively as the most improved scenario. Future work involves refining the phase calculation of
the cleaned audio and creating a more balanced dataset to minimize differences in audio quality across
scenarios. Additionally, practical ap-plications of the model in real-time streaming audio are envisaged. This
research contributes significantly to the field of audio signal processing by offering a deep learning solution
tailored to various noise conditions, enhancing digital communication quality.

Keywords: speech enhancement; noise suppression; deep learning; variational autoencoders

1. Introduction

Signal processing is the storage, edition or transmission of a signal, either in analog or digital
form [1]. Sound, after the acquisition and transformation of acoustic waves into electrical ones,
becomes a signal that can be processed. [2] shows the first approached the particular method of
treating audio as an electrical signal. Digital processing was introduced later by converting a sound
signal into a piece of information of binary numbers using an Analogue-to-Digital Converter
(ADC). On the other hand, the Digital-to Analogue Converter (DAC) is used to transform a digital
signal into an analog one.

The quality of the digital signal depends on two features: sampling rate and bit depth. The first
one indicates the number of samples per second obtained from the original audio [3]. If we want

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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excellent audio quality, we need a high sample rate to capture a more accurate signal so that the
digital version could be more similar to the original one. The second feature indicates the number of
bits of storage for each audio sample [4]. These factors are directly related to the different storage
formats. For example, one minute of a high-quality recording in WAV format requires 10
Megabytes of storage.

Although the quality used to store audio allows them to be very faithful to the originals, some
information may be lost during transmission. In particular, we call noise to that signal or set of
signals that distort the wave that transmits the original sound. Within this concept there can be
artificial noises (those generated by the means of communication, such as interferences) or natural
noises (those generated by the environment where the communication takes place). When the
transmission is in noisy scenarios, ambient sounds may affect the intelligibility of the received
message.

The motivation for this research arises from the critical need to enhance the clarity and
intelligibility of speech in various communication settings, where background noise often
compromises the quality of transmitted audio. While existing noise reduction techniques have
made strides in mitigating this issue, our work aims to develop a deep learning model specifically
tailored to suppress background noise across a range of simulated scenarios. However, our
objectives extend beyond mere noise elimination. We also seek to quantitatively assess the relative
difficulty of filtering out different types of background noises present in the same audio fragment.
By doing so, we aim to identify which types of noise have a more detrimental impact on speech
quality, thereby a guide for future research and technological development in the field of audio
signal processing.

The real problem comes when the noise is equal to or stronger than the signal and causes its
complete distortion. This fact opens up the possibility of using techniques that can eliminate
background noise for safer and more reliable transmissions, which is desirable in cases such as
phone communications, especially in emergency situations.

Artificial intelligence has demonstrated its ability to remove noisy information from various
formats, such as images or signals [5,6]. Deep learning models have obtained the best results in
recent years among all the artificial intelligence techniques. Deep learning was defined by Lecun [7]
as models composed of multiple processing layers that learn representations of data with various
levels of abstraction. These models have shown exemplary performance in speech enhancement [8].

Audio signals can be analyzed either in the time domain or the frequency domain, with the
latter often represented visually as images. Our approach capitalizes on the image-processing
capabilities of convolutional layers in deep learning neural networks, specifically for tasks like
cleaning and restoration. We have trained a deep learning model that can remove four types of
background noise with pairs of original audio and audio mixed with background noise. Original
audio signals have been transformed into a 2D representation by converting it into a power
spectrogram. Following this transformation, we employ a two-dimensional Variational
Autoencoder (VAE) to remove noise from the signal and reconstruct the clean audio. As no
particular dataset solves the presented use cases, we have created our own. To carry out the model
development and training we have used a dataset with recordings of TED talks (TED-LIUM 3
dataset) as expected output and the same dataset mixed with four different background noises
(aircrafts, rain and thunderstorms, wind and traffic) obtained from different specialized websites as
input to the network.

Results show that our model performs better than other solutions in the state of the art.
Regarding the proposed scenarios, although there are differences between them, we cannot assure
that one of the background noises influence more than others. The only, thing confirmed by the
results is that the audios with wind are perceived with better improvement, but this perception is a
bit tricky as the differences between the clean audios and the audios with this background noise are
smaller.

The paper is structured as follows. Section 2 compiles some works framed in speech
enhancements, audio denoising, etc. Section 3 formally describes the dataset used to train the model
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and the deep learning models used in the research. Section 4 compiles the different results that have
been obtained and their interpretation. Finally, section 5 gives some conclusions and future works.

2. State of the art

Building on the foundational need to improve speech communication in noisy environments,
as outlined in our introduction, a variety of models have been developed to address challenges in
speech enhancement and background noise reduction. This section aims to review these related
works, highlighting their contributions and limitations, to contextualize our own approach, which
extends beyond mere noise removal to a nuanced understanding of how different types of noise
uniquely impact speech quality.

Some of these works apply techniques not encompassed in the deep learning field. [9] reduces
the presence of background music over conversational audios. It uses trigonometric transformation
and wavelet denoising techniques. In [10], the audio denoising is made with speech audios and
noises like buzzing equipment or background noise from the street. Spectrograms form the training
dataset and use a block thresholding estimation procedure. The same authors present in [11] a
similar approach to suppressing the harmonic noise of music by using its spectrograms. The
method applies block attenuation techniques. Finally, [12] implement a process to denoise speech
audios containing slight background noises (which do not work with loud ones). It works with raw
audio and applies Wiener filters, a well-known method of the previous age of audio denoising.

The present work focuses on speech enhancement but uses deep learning techniques. The
following studies make use of these methods in similar use cases. In [13], an autoencoder with a
bottleneck that uses Recurrent Neural Networks (RNNs) addresses speech enhancement in
recordings made with mobile phones. In [14], the audios are isolated from videos. The work uses
two models combining convolutional networks and Fourier transformations. One model detects
that a person is speaking, and another isolate the speech. The use of Generative Adversarial
Networks (GANSs) for speech enhancement can be found in [15]. In this case, they used raw audios
of 10 use cases (8 of them are genuine cases and 2 of them artificially created). Another interesting
work is [16], which separates the different waves of raw audios with voices of women and men
mixed with songs. In this case, deep autoencoders are used to achieve the issue. To end,

Another distinguishing feature is the use of power log spectrograms to train the deep learning
model, as in [17] that eliminates background noise from factories in conversational audios of
Japanese people. The approach uses a deep autoencoder and spectrograms. In [18], RNNs detect if a
person is speaking and predict the voice without background noise. The dataset consists of
spectrograms with white noise, traffic jams, and street environments. In [19], a Long Short-Term
memory neural network (LSTM) is trained with frequency spectrograms to improve the speech
quality in audios with background noises, reverberations, and a poor communication environment.
Another work that uses power spectrograms is [20], which represents cases of passing cars and café
babble noise. It uses a convolutional neural network in the approach. Similar, there is [21] that use
voice sound with background noises characteristics of conversations represented as spectrograms.
Then, a deep neural network of 4 layers is used to eliminate the noise in the spectrograms. Finally,
[22] use a type of Autoencoder called U-Net with spectrograms that account for the wave's phase in
the audio.

This research stands out in the field due to several key innovations. Primarily, it targets
evaluating the impact of four distinct real-world background noises on speech audios. To achieve
this, we have developed a unique deep learning model designed to effectively eliminate these
noises from a series of speech recordings. Our choice of a variational autoencoder for this purpose
distinguishes our approach. Moreover, our study is the first of its kind to incorporate a subjective
evaluation method. This involves a panel assessing the clarity of speech audios post noise-removal.
While other studies rely solely on mathematical metrics, our approach adds a crucial human
dimension to the assessment. This step is often overlooked in other research due to the technical
challenges and potential information loss when converting spectrograms back into raw audio,
possibly leading to subpar results that others might choose not to report. Our willingness to
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undertake this complex transformation and evaluation process further underlines the novelty and
depth of our work.

3. Materials and Methods

In this paper we have trained a deep learning model, specifically a Variational Autoencoder,
with pairs of power logs spectrograms of voice audios mixed with four different background
noises: aircrafts, rain and thunderstorms, wind and traffic jams. The research followed a four-step
process that are described following. First, the creation of the dataset by mixing speech audios with
background noise. Second, the transformation of the audios into a visual representation, a
spectrogram, that is more efficient to manage by the model. Third, the training of the model with
the dataset. Finally, the objective and subjective evaluations. The workflow followed from working
with the raw data until obtaining the trained model is represented in Figure 1.
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Figure 1. Workflow for training a model for background noise suppression.
3.1. Datasets of speech audios and background noises

3.1.1. Audio features decision.

The first step consists of selecting the audio files format and the signal processing
characteristics: sampling rate, bit-depth, and the number of channels. As file format, we use WAV
or WAVE (apocope of Waveform), launched in 1991 by Microsoft based on RIFFF (Resource
Interchange File Format) specification. It has the advantage of being an uncompressed format, in
which the user hears what is stored. It also supports different quality characteristics such as
sampling frequency and bit depth [23], which are the most important features for audio
management [24]. We have decided to use 22.5 kHz, a bit-depth of 16 bits and only one audio
channel corresponding to monaural sound re-production. These characteristics are sufficient and
adequate for the problem we want to solve.

During the second step, we need to create the pairs of audios. As no particular dataset solves
the presented use cases, we have created our own. For that, we need speech audios and background
noises that represent the four use cases.

For the former, we are using the TED-LIUM 3 dataset, which includes audio recordings of the
well-known TED-TALK series. The dataset contains 2,351 audio files in NIST Sphere format (SPH),
which is very common in audio speech files as it includes the audio alongside a transcription of the
speech. It uses a sampling rate of 16 kHz and a bit-depth of 16 bits. The total length of the dataset
reaches more than 452 hours. In the audios, we can find a diverse range of people with different
types of tones and quality recordings under other circumstances, which augments the problem's
difficulty. The dataset is freely available to download from Open Speech and Language resources.

For the latter, we have obtained the different background noises from two websites. They used
WAV format, a sampling rate of 16 kHz, and a bit-depth of 16. The number of audios per use case
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differs, as the availability was not the same. This problem will be, lately, solved during the
preprocessing stage. Also, the length of the audio varies depending on the use case. Table 1
summarizes this information for the four use cases.

Table 1. Background noise use cases dataset.

Use case Number of audios Length per audio
Aircrafts 80 Around 5 seconds
Storm lights and rain 18 Around 5 minutes
Wind 522 From 3 seconds to 5 minutes
Traffic jams 512 Around 3 seconds

3.1.2. Audio preprocessing.

The first problem arose with the TED LIUM dataset as it has an SPH format. We transformed it
into WAV format using a Python script using the SoX tool [25] to convert the audio.

Next, we describe all the modifications done to obtain the final dataset of pairs of audios. First,
we have eliminated the first and last 15 seconds of the speech audios to avoid moments without
speech and irrelevant sounds like applause or music. Then, we generated 60,000 chunks with a
length of 3 seconds with a balance of 25% in-stances for each use case. At this stage, we have also
set the value of the sampling rate, bit-depth, and the number of channels, which have been set at
22.5 kHz, 16 bits, and audio-mono channel, respectively. In the case of finding audio with different
value ranges, the corresponding transformation applies min-max normalization. This method
allows all audio values to be in the same range between 0.0 and 1.0. as shown in Equation 1.

x — minval

M

z= -
maxval — minval

Given the complexity of the problem, the neural model requires many audios for proper
training. In our case, the availability of audios is scarce, so it has been necessary to apply data
augmentation techniques and create synthetic data. Once we have the audios chunked in pieces of 3
seconds with standardized features, we have mixed the speech audios with the different
background noises randomly but ensure the number of audios for the four use cases. In the cases
where the background noise does not have a length of 3 seconds, different audio of the same case is
chosen until the speech audio length is reached.

3.1.3. Visual representation of audios.

Audio signals can be processed as a time-domain or a frequency domain representation. The
former uses the signal as raw audio. The latter uses images of visual representations of the audio.
Due to the high complexity of the problem where the original speech audios and its version with
background noise do not match any of the values (increasing the difficulty of a reconstruction
problem), we have decided to use the second option as images perform well in auto-encoders. We
use autoencoders with convolutional filters of 2 dimensions which have demonstrated better
performances in these models than those of 1 dimension [26].

Many audio representations in the frequency domain are log power spectrograms (LPS), Mel
spectrograms, or Mel-frequency cepstral coefficients spectrograms (MFCCS). In this case, we are
using LPS because it includes an audio feature called power representing wave decibels at a
particular moment. LPS consists of an image representing the audio information. In this case, it
captures more information than other standard spectrums, [27].

Spectrograms are created using a Python script and a library called librosa, [28], which
specializes in music and audio management. The script implements a Short-Term Fourier
Transformation (STFT) that converts the audio from the time domain to the frequency domain.
Each spectrogram was created using a sliding window of 23 widths and 11.6 steps in milliseconds.
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The output spectrograms had a size of 256x256x1 for each instance. Finally, the dataset contains
60,000 spectrograms belonging to 15,000 for each use case.

3.2. Using a variational autoencoder for noise suppression

As noted in the state-of-the-art section, autoencoders perform well to do speech enhancement,
audio denoising, etc. We have selected a variational autoencoder as the DL model to perform this
task because of its ability to represent the input data more accurately using a latent space. With this
representation, the output images have higher definition, and therefore the quality when
transforming them backwards into raw audio will be better. In the following, we formalize some
deep learning concepts to better understand this type of architecture.

3.2.1. Convolutional operator.

This operator lets to find image features like edges, which is why their main application is
image classification [29]. In particular, it led to the creation of the 2-Dimensional Convolutional
Neural Networks (2D CNNs) used in Deep Learning since 1999 [30]. Convolutional operators al-
low finding a feature in one part of an image that can later be found in another. As we work with
images of power log spectrograms, the convolutional operators of the Variational Autoencoder will
find feature representations from one spectrogram to another.

3.2.2. Autoencoders.

These two-part models first use a multilayer encoder network to represent high-dimensional
structures in a low-dimensional space. Then, there is a decoder network to convert the data from
this space into high-dimensional structures with some relations to the first one [31]. This
architecture works as follows. The input data go through the different convolutional layers of the
encoder, obtaining a small piece of data with the main features. These data are dis-tributed in the
bottleneck, creating a representation called latent space. Finally, the feature representation goes
through the decoder to obtain an output like the input data.

3.2.3. Variational autoencoders.

This Autoencoder solves the problem that classical ones have with the latent space. Instead of
placing a single point in the latent space, this case provides a distribution. This latent space can also
be better organized by adding a regularization to the loss function, [32]. In our case, it creates a
distribution using the input data’'s mean and variance. The following Equation represents the
distribution of this space.

o ~3G-DTE )

f(xlv '-'!xk) = (2)
V23|
Where [i represents the mean vector of the different distributions in the latent space, and ||
the covariance matrix of the distributions. The last two parameters are calculated using Equations 3,

and 4 applied to a space of 2 dimensions.

s
A= (i) ©
2
( Oy p0x0y> @
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To sample a point into the latent space, we have used the formula of sampling points, depicted
in Equation 5. In this case, we have modified it to get negative values, so we have a more expansive
dimensional space to represent the information where ¢ is a sampled point from a standard normal
distribution.
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3.3. Training phase

To train the model, we have split the dataset into a percentage of 80 for training/validation and
20 for the test. The final dataset has an amount of 60,000 LPS that represent audios of 3 seconds
without overlapping. The model was trained with pairs of audios with mixed background noise
and the original version of these audios.

The hyperparameters during training were found using a grid search strategy. This method
guides the training in finding the best hyperparameter setting for the model by using different
combinations of the values [33]. The different hyperparameters and values used in the grid search
have been compiled in the Table 2.

Table 2. Hyperparameters and values used in the grid search.

Hyperparameter Values

Latent space 128, 200, 400, 800, 1,024 and 2,048 neurons
Dense layer 100, 200, 256, 1,024, 2,48 and 4,096 neurons
Convolutional blocks 3,4 5and 6

Skip connections 3,4 and 5

Learning rate 0.01, 0.001 and 0.0001

Optimizer and loss function hyperparameters have not been changed during the process.
Optimizer is an adaptive learning rate optimization algorithm. In particular, we have used Adam as
it was explicitly designed for training deep neural networks, [34]. All the efforts to create a
variational bottleneck do not make sense unless the network knows how to learn about the input
data representations in the latent space. Therefore, the loss function needs a change to distribute the
information in the latent space precisely and accurately. The loss function uses the Root Mean
Squared Error (RMSE) and the Kullback-Leibler divergence DKL(P| Q) (KL). This last metric will
allow the network to check if the distributions are placed correctly in the latent space. RMSE and
KL have been formalized in Equations 6 and 7.

N
1
RMSE = NZ(yi — 92 (6)
1
Dy, (N(u;, 07)|IN(0,1)) = 52(1 + ln(criz) - Hiz - Uiz) 7)

i

where N(u,0) is a normal distribution having as mean the mean pt and as standard deviation
the standard deviation o of the output data obtained in training and N(0,1) is the standard normal
distribution.

Finally, Equation 8 shows the modified loss function we have used.

loss = RMSE + a - DKL(N(,uL., g;)|IN(0,1)) 8)

In this case, a is a hyperparameter that weights the KL metric. After fine tuning, the selected
value for this hyperparameter was 100,000, indicating that the RMSE be-tween the input and output
signals was not a primary concern in our optimization process. This decision was based on the
understanding that RMSE is relatively poor metric for evaluating the noise level in an audio signal,
especially when the audio is represented as an image in the form of a power spectrogram. In such a
representation, even a minor deviation in a single pixel can significantly impact the RMSE, but this
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does not necessarily translate to a perceptible error when the image is converted back to an audio
signal. Therefore, our model's loss function is designed to prioritize other aspects over RMSE for a
more accurate and meaningful evaluation of audio quality.

The model comprises 306,762,465 hyperparameters, and we used an AMD Threadripper 2950X
with 128 Gigabytes of DDR4 RAM and a GeForce RTX 2080 TI GPU. The training lasted more than
22 hours. The final metric at the end of the training phase was 0.0153.

3.4. Proposed method

The proposed solution is a two-dimensional VAE that is trained with pairs of spectrograms of
speech audios with real background noise and the original speech audios. After some convolutional
operation, the encoder reduces the size to a minimal piece of information that represents its main
features. These pieces of information are then placed in a latent space, which is a distribution of the
encoded data obtained at the convolutional stage. The mean and variance of each input is used to fit
the distribution in the latent space, this feature being the main difference from a standard encoder.
For a VAE, each input represents a distribution in latent space rather than a single point.
Information is recovered and upsampled from the latent space until the output has the expected
dimensions. Finally, this output is compared to the spectral representation of the original audio
without background. This comparison evaluates how well the background noise has been
suppressed and lets the model adjust its hyperparameters and learn the information. After training
with the whole dataset that comprises audios from the four use cases, the model can remove real
background noise.

The input layer of the model has a size of 256x256x1, representing the audio of one channel,
which is connected to the following layer. The input layer aims to feed the audio to the
convolutional blocks. These blocks are responsible for reducing the dimensionality of the
information. The convolutional stage consists of 6 convolutional blocks, where each of them obtains
a feature map of the previous data. Each block has two convolutional layers with two 2-
dimensional filters of size 3x3, stride one, and max-pooling of 2x2 (except in the last block).
Convolutional layers in the same block have the same number of neurons using Rectified Liner Unit
(ReLU) as an activation function. The number of neurons from one block to another is the
following: 32, 64, 128, 256, 512, and 1,024. At the end of this convolutional stage, the input data has
been reduced to 8x8x1,024. This small piece of information represents the input data with all the
main features. Finally, a flattened layer is applied to process information as a one-dimensional
vector of size 65,536.

At this point, the information goes through the bottleneck, which in the case of VAEs builds a
latent space of its representation. The bottleneck entrance has a dense layer of 2,048 neurons that
introduces the information from the last convolutional block. Then, we have two other dense layers
that manage the distribution's mean and variance, having 2,048 neurons. A lambda layer is applied
to choose the point representing the input data in the latent space. After getting this point, we can
position it in a multivariate space and recreate the last convolution dimensions before the
bottleneck, allowing the decoder to do the inverse process. To start this process, we use a dense
layer that converts the point into information that can be processed in the de-convolutional stage.

The stage of dimensionality upsampling, or deconvolution, now begins. This stage starts with
a reshape layer so the information can be introduced in the two dimensions' deconvolutional blocks
of 2 dimensions. This process has five deconvolution blocks. Each block comprises two convolution
layers, with an upsampling layer in the first position. Again, the number of neurons within the
layers of the same block is the same, and all use the ReLU activation function. The number of
neurons per layer of each block is 512, 256, 128, 64, and 32. These blocks increase the dimensionality
of the feature map. In this deconvolution process, starting from the tiny feature map in the
bottleneck stage, new audio spectrograms are created using only the essence of the original audio.
In each convolution block, concatenate layers have been used with the even blocks of the encoder to
speed up the training and not lose the substantial relationship between the data. Lastly, a final
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convolution layer with one neuron is used to achieve the same final audio size as the input. The last
layer uses the hyperbolic tangent (tanh) activation. A representation of the model is in Figure 2.

BottleNeck

jm jm? (= ] =4 s 1} (= 4 (=
InputLayer Conv2D Flatten Dense Lambda Reshape Conv2DTransp Add

Figure 2. Architecture of the model.

Finally, the output data is compared to the spectral representation of the original audio
without background noise. This comparison evaluates how well the back-ground noise has been
suppressed and lets the model adjust its hyperparameters and learn the information. After feeding
the whole dataset that comprises audios from the four use cases, the model is trained so it can
remove real background noise.

4. Results and evaluation

This section compiles the results obtained by evaluating the model for the four different use
cases with objective and subjective tests. The first ones compare our model with others in the state
of the art using mathematical metrics. The second type of tests are based on the subjective
perception of a group of people who will evaluate how good the model is at eliminating noise.

4.1. Objective evaluations

4.1.1. Evaluation of noise reduction performance

We will assess the performance of our approach in eliminating background noise by
comparing it with two baseline methods. This evaluation involves comparing the noisy audio input
to the model with the model's output, which is a denoised signal. The two baseline models are a
classical method using Wiener filters and a more recent technique known as Deep Audio Priors
Design (DAP). Wiener filters were used by [35] to reduce the noise in audios utilizing the frequency
domain. DAP Design is an update of U-Net that uses dilated convolutions and dense connections
[36].

The evaluation has been made with a set of audios that comprises 400 instances, 100 for each
use case. Each audio has a length of 3 seconds, with a sample rate of 22 kHz and a bid-depth of 16.

To make an accurate comparison, we use two metrics: MSE and Signal to Noise Ratio (NSR).
The first one measures the Euclidean distance between two images that are the spectrograms of an
audio with background noise and the same audio after being processed by the denoising model,
[37]. The larger the value of MSE, the greater the difference between the noise signal and the
cleaned signal, from which it can be inferred that the model eliminates background noise better.
The metric is depicted in the Equation 9 where y; is the value of a particular position in the noisy
audio, and J; a value of the denoising audio in the same place.

N
1
MSE =2 0 = 9 ©)
i=1
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The second metric measures the difference in decibels (dB) between the same two signals once
they have been converted back to the audio domain. SNR values range between -35 and 35 dB,
which is the theoretical magnitude of noise. The closer the value is to zero (either positive or
negative), the better the performance of the model [38]. Equation 10 mathematically formalized this
metric.

Psignal - Pnoise) (10)

Pnoise

SNRdB = lologw (
In Table 3, we compile both metrics and compare our model with the two pro-posed baselines.

Table 3. Comparison against baselines.

Use case MSE SNR

Aircrafts Wiener 0.0006 + 0.0035 16.378 +7.4762
DAP Design 0.0761 + 0.1621 -

Our model 0.0182 £ 0.0234 1.3702 + 0.8983

Storms and rain Wiener 0.0007 + 0.0064 16.908 + 6.8374
DAP Design 0.0877 +0.0879 -

Our model 0.0202 = 0.0758 -1.2728 * 3.7621

Traffic jams Wiener 0.0006 + 0.0036 17.328 +13.1234
DAP Design 0.0693 + 0.3245 -

Our model 0.0154 + 0.2522 0.4991 + 1.3253

Wind Wiener 0.0004 + 0.0003 17.505 +9.6523
DAP Design 0.0687 + 0.0319 -

Our model 0.0182 = 0.9325 -0.1870 * 3.2167

It is important to note that MSE is not an accurate metric for assessing audio quality. When
starting with an image that is essentially a Fourier transform of an audio signal, converting it back
to an audio signal using the inverse transform doesn't necessarily reflect how well the audio will
turn out. Even a minor change in a single pixel can drastically alter the sound obtained upon
reversing the transformation. This fact is due to the use of a parameter of the original audio called
the phase of the wave. This parameter is lost when transforming the audio into spectrogram and a
change in its value can made the audio obtained after transforming back the spectrogram into
something inaudible. In our case, we have used the Inverse STF, and we have used the phase of the
audio with noise that is used as an input in the model. Although the results are not perfect, the
evaluation demonstrate that are good enough but should be improved in the future.

Therefore, MSE values do not precisely represent differences in the quality of the resulting
sound. However, we can assert that if the MSE is very low, the two images are highly similar at the
pixel level. This implies that the spectrogram obtained after the noise-cleaning process is highly like
the original (noisy) one that was fed into the model meaning that the cleaning process worked
poorly. Therefore, while MSE may not be a perfect indicator of audio quality, it does serve as a
useful metric for evaluating how closely the processed image resembles the original one in terms of
pixel-level similarity. SNR works with the converted signal and reflects whether the amount of
noise in the signal is high or low. Combination of both metrics provides a more comprehensive
evaluation of the model's performance in both the image and audio domains.

Based on the results shown in Table 3, our model outperforms in all scenarios, reducing both
the image noise and the actual noise in the subsequently converted signal. In terms of MSE, Wiener
filters perform poorly across all four use cases, as the audios being compared are nearly identical.
DAP Design shows better results, but it's important to note that this method removes all
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information, including the speech, resulting in silent audio. Obviously, in this case, the MSE value
should be high, as noisy audio differs significantly from silent audio. MSE can still be calculated
when comparing images, even if the audio signal itself is inaudible. Regarding the Signal-to-Noise
Ratio (SNR), our model significantly outperforms Wiener filters. On the other hand, DAP Design's
approach leads to silent audio, rendering the SNR value empty.

When we look at the results for different situations, it seems that storm and rain noises are
easier to eliminate when evaluated using both MSE and SNR metrics. When considering the
standard deviation, instances involving wind noise tend to yield poorer results in some examples.
This variability in performance across different types of environmental noise underscores the
complexity of the problem and the need for a more nuanced approach to noise reduction in audio
signals.

4.1.2. Evaluation of Background Noise Suppression Based on Noise Type.

This evaluation quantifies the differences between the spectrogram of the original audio,
sourced from the TED-LIUM 3 dataset before adding background noise, and two other
spectrograms: one corresponding to the audio with background noise and the other to the denoised
audio. The relationship between these values serves as a measure of the level of noise suppression
relative to the original clean signal. In other words, it helps us identify which type of background
noise has been most effectively suppressed. By referencing both values to the same baseline —the
original TED talk audio that is free of noise—we obtain a common metric for all scenarios. The
difference between these metrics indicates the effectiveness of noise reduction in each case.
Specifically, the better the second measurement (difference between the restored audio spectrogram
and the original audio spectrogram) is compared to the first (difference between the noisy audio
spectrogram and the original audio spectrogram), the more effectively the background noise has
been eliminated in that particular use case.

We will use two metrics applied to the spectrograms: again, the MSE and the Structural
Similarity Index Measure (SSIM). SSIM was introduced by Wang et al. (2004) and measures the
perceptual similarity between images regardless of which is of better quality. It considers three
image features: luminance (I), contrast (c), and structure (s) that are weighted through three
constants: a, 3, and y. SSIM is calculated using Equation 11:

SSIM(x,y) = [1(x, )% [e(x, 1P - [s(x, )] (11)

This evaluation has used the 100 samples for each scenario from the previous evaluation. So,
400 instances have been evaluated in total.

For both metrics, the same analysis can be applied. The suppression of wind noise yields the
poorest performance. Both in absolute terms and as a percentage, the difference in MSE and SSIM
values is the smallest. In the case of MSE, which measures pixel-to-pixel similarity between
spectrograms, the restored audio does resemble the original more than the noisy audio does, but by
a smaller percentage (37.2%) com-pared to other scenarios. It's worth noting that these are the cases
that most closely resemble the original audio, meaning that the distortion introduced by the noise is
the lowest among all use cases. Therefore, the margin for improvement is smaller as will be
reflected in the subjective assessment where noise cleanliness depends on auditory perception. In
the other scenarios, although the MSE of the restored audio is still high, the reduction compared to
the audio with background noise is much greater. Specifically, in the case of thunderstorms and
rainfall, the quality of the work is significantly higher. This is also noteworthy considering that
these types of background noise most severely affect the intelligibility of the original spoken
segments. A similar analysis and conclusions apply when considering the SSIM metric instead of
MSE. In this case, storms are the best, wind is the worst and traffic interchange its position with
aircrafts. The results of Table 4 confirm what the comparison with the baselines describes in Table 3.


https://doi.org/10.20944/preprints202311.1851.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 November 2023

Table 4. Comparison between spectrograms.

12

Use case MSE SSIM
Aircrafts Noisy audio 1,628 +1,246 0.6173 £0.1257
Restored audio 680 + 323 0.6257 £0.1012

Absolute difference 948 -0.0084

% reduction 58,2% -1,4%
Storms Noisy audio 1,867 + 1,100 0.5780 + 0.0848
and rain Restored audio 698 + 267 0.6075 + 0.0754

Absolute difference 1,169 -0.0375

% reduction 62,6% -5,1%
Traffic jams Noisy Audio 1,329 +1,139 0.6282 +0.1127
Restored audio 609 + 349 0.6437 +0.0891

Absolute difference 720 -0.0155

% reduction 54,2% -2,5%
Wind Noisy audio 683 + 541 0.7287 +0.1107
Restored audio 429 + 174 0.7311 +0.0769

Absolute difference 209 -0.0024

% reduction 37,2% -0,3%

4.2. Subjective tests

We present an evaluation based on listening to audios. In this case, we have created a set of
audios that comprises the four use cases that have been listened to by a group of people to evaluate
the amount of background noise that has been suppressed. The dataset consists of 22 different
audios; for each audio, the volunteers must listen to the audio with background noise and the same
audio after being processed by our model. For each of the four use cases, there were four different
audios, totaling 20 audios. The two remaining audios correspond to control audios where no
background noise was eliminated and have been used to check that the surveyed people were
performing the test well.

During the process, volunteers could listen to each pair of audios as often as possible. Then,
they must choose between four different options: "No or practically no noise eliminated"”, "Some
noise eliminated"”, "Much noise eliminated" and "All or almost all noise eliminated". The evaluation
was delivered through a Google Form, and 61 people answered it. All the information has been
compiled in Figure 3. The top pie chart represents the average results of the evaluation of the 20
valid audios. The other pie charts depict the evaluation results for each of the use cases.


https://doi.org/10.20944/preprints202311.1851.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 November 2023

13

TOTAL Rain/Storms
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Some noise . No or practically no
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Figure 3. Human evaluation of noise suppression by listening to a set of audios.

Looking at the figure above, we can conclude that most of the people think that the model
could suppressed much noise or almost all (90%). Only in a few cases (10%), the evaluation result
on no noise eliminated. If we look at the use cases separated, there are no big differences obtaining
evaluations where good evaluations (from much noise to all noise) are around percentages of 90%.
It should be highlighted that wind scenario is the one with more cases of removing all the noise
which corroborates the objective evaluations obtained with the mathematical metrics (the margin
for improvement is less than in the other cases). If we looked at the scenarios considering that at
much noise is eliminated storms/wind is the one that performs the best, but differences are not
remarkable. Another interesting point is that wind/storms, rain and traffic are the scenarios that
have reported cases where no noise was eliminated.

5. Conclusions and future work

Audio signals can be processed either in the time domain, treating the raw signal, or in the
frequency domain. In the latter case, visual representations of the audio (images) are used. This
research proposes a model for cleaning background noise in audio signals (human speech) using a
VAE composed of 2D convolutional filters applied to a two-dimensional representation of the audio
signal, namely power log spectrograms. In the research, we propose four different scenarios that
simulate environmental noise produced by storms, wind, traffic jams and aircrafts. The whole
workflow of the research comprises different stages. First, we created an ad-hoc dataset by mixing
speech audios with background noises representing the four use cases. Then, we have used this
dataset to train a VAE with pairs of audios with background noise and only the speech audio using
spectrograms. To measure if we have trained the model accurately, we have used objective and
subjective measures. Objective measures allow to measure mathematically which is the scenario
where the background noise is more difficult to suppress and if the proposed model overcomes
other models proposed before. The subjective evaluation allows to confirm the previous results
based on the auditive perception of some people. Subjective evaluations are normally not per-
formed in the works compiled in the state of the art as there is a need to transform the spectrograms
into audios so they can be listened by the surveyed people. This transformation is not easy to apply
as it depends on the phase that corresponds to the original speech clean audio. In our case, we have
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applied the IFTF that although it does not achieve perfect results, it does obtain perfectly evaluable
audios by using the phase of the audios that are input for the model.

Mathematical metrics produced by our model confirm that it performs better than the selected
baselines in all cases. If we look at the results between use cases, we can see that storms and rains
are easier to eliminate. Looking at the standard deviation, we can see that wind cases have worse
results in a few examples. In this case, it should be highlighted that the scenario of background
wind is the one with the smallest differences between the noisy audio and the cleaned one. This is
confirmed in the objective evaluation where surveyed people evaluate this scenario as the one with
best performance.

As future works, the main need is to obtain a method that could calculate in a more precise
way the phase of the cleaned audio. Also, there is a need to obtain a more balanced dataset where
the differences between the audio with background noise and the audio after using the model are
smaller between scenarios. From practical perspective, the model could be integrated into
applications, so the model works with streaming audio.

6. Patents

The Spanish Patent and Trademark Office (OEPM) has processed the patent application related
to the work presented in this article, assigning it the number P202330047 and the filing date of
January 24, 2023.
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