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Abstract: We present a summary of the main results within the Scale Invariant Vacuum (SIV)

paradigm based on the Weyl Integrable Geometry (WIG) as an extension to the standard Einstein

General Relativity (EGR). After a brief review of the mathematical framework, where we also

highlight the connection between the weak-field SIV equations and the notion of un-proper time

parametrization within the reparametrization paradigm [1], we continue with the main results related

to early Universe; that is, applications to inflation [2], Big Bang Nucleosynthesis [3], and the growth

of the density fluctuations [4] within the SIV. In the late time Universe the applications of the SIV

paradigm are related to scale-invariant dynamics of galaxies, MOND, dark matter, and the dwarf

spheroidals [5] where one can find MOND to be a peculiar case of the SIV theory [6]. Finally, within

the recent time epoch, we highlight that some of the change in the length-of-the-day (LOD), about

0.92 cm/yr, can be accounted for by SIV effects in the Earth-Moon system [7].

Keywords: cosmology: theory, dark matter, dark energy, inflation; galaxies: formation, rotation; weyl

integrable geometry; dirac co-calculus

1. Motivation

The paper is a summary of the main results, as of midyear 2023, within the Scale Invariant Vacuum

(SIV) paradigm as related to the Weyl Integrable Geometry (WIG) as an extension to the standard

Einstein General Relativity (EGR). Our main goal is to present a condensed overview of the key results

of the theory so far, along with the latest progress in applying the SIV paradigm to variety of physics

phenomenon, and in doing so to help the intellectually curious reader gain some understanding as

to where the paradigm has been tested and what is the success level of the inquiry. As such, the

paper follows closely our previous 2022 paper Gueorguiev and Maeder [8] that was based on the talk

presented at the conference Alternative Gravities and Fundamental Cosmology, at the University of

Szczecin, Poland in September 2021. Our initial presentation and its conference contribution were

covering, back then, only four main results: comparing the scale factor a(t) within ΛCDM and SIV [9],

the growth of the density fluctuations within the SIV [4], the application to scale-invariant dynamics of

galaxies [5], and inflation of the early-universe within the SIV theory [2]. Back then, our article layout

was aiming for focusing on each of these four main results via highlighting its most relevant figure or

equation. As a result each topic was covered via one to two pages text preceded by short and concise

description of the mathematical framework.

Here, we add a few new sections, one on the possible differentiators of SIV from ΛCDM based on

our earlier paper [10], with a specific emphasis on the distance moduli as function of the redshift, along

with three new topic sections related to the recent developments in the application of SIV paradigm

since our previous summary paper in 2022 [8]. The sections are on MOND as a peculiar case of the

SIV theory [5], local dynamical effects within SIV as pertained to the lunar recession [7], and our latest

study of the Big-Bang Nucleosynthesis (BBNS) within the SIV Paradigm [3].

After a general introduction on the problem of scale invariance and physical reality, along

with the similarities and differences of Einstein General Relativity and Weyl Integrable Geometry,
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we briefly review, once again for completeness and consistency, the mathematical framework as

pertained to Weyl Integrable Geometry, Dirac Co-Calculus, and reparametrization invariance. As

before, instead of re-deriving the weak-field SIV results for the equations of motion, we use the idea

of reparametrization invariance [1] to illustrate the corresponding equations of motion. The relevant

discussion on reparametrization invariance is in Section 2.2 on the Consequences of Going beyond

Einstein’s General Relativity. This section precedes the brief review of the necessary results about

the Scale Invariant Cosmology idea needed in the Section on Comparisons and Applications, where

we highlight the main results related to the early and late Universe in the order seen in the table of

contents and also discussed at the beginning of this section. We end the paper, in a standard way, with

a section containing the Conclusions and Outlook for future research directions.

1.1. Scale Invariance and Physical Reality

The presence of a scale is related to the existence of physical connection and causality. The

corresponding relationships are formulated as physical laws dressed in mathematical expressions.

Numerical factors, in the formulas of the physics laws, change upon change of scale but maintain

their mathematical form and thus exhibiting form-invariance. As a result, using consistent units is

paramount in physics and leads to powerful dimensional estimates of the order of magnitude of

physical quantities based on a simple dimensional analysis. The underlined scale is closely related to

the presence of a material content, which reflects the energy scale involved.

However, in the absence of matter, a scale is not easy to define. Therefore, an empty universe

would be expected to be scale invariant! Absence of scale is confirmed by the scale invariance of the

Maxwell equations in vacuum when there is no charges and no currents, which are the sources of the

electromagnetic fields. The field equations of general relativity are scale invariant for empty space with

zero cosmological constant. What amount of matter is sufficient to kill scale invariance is still an open

question. Such a question is particularly relevant to cosmology and the evolution of the Universe.

1.2. Einstein General Relativity and Weyl Integrable Geometry

Einstein’s General Relativity (EGR) is based on the premise of a torsion-free covariant connection

that is metric-compatible and guarantees the preservation of the length of vectors along geodesics

(δ
∥∥−→v

∥∥ = 0). The theory has been successfully tested at various scales, starting from local Earth

laboratories, the Solar system, on galactic scales via light-bending effects, and even on an extragalactic

level via the observation of gravitational waves. The EGR is also the foundation for modern cosmology

and astrophysics. However, at galactic and cosmic scales, some new and mysterious phenomena have

appeared. The explanations for these phenomena are often attributed to unknown matter particles or

fields that are yet to be detected in our laboratories given the suggestive names – dark matter and dark

energy.

Since no new particles or fields have been detected in the Earth labs for more than twenty years,

it seems reasonable to revisit some old ideas that have been proposed as modifications of EGR. In 1918,

Weyl proposed and extension by adding local gauge (scale) invariance [11]. Other approaches were

more radical by adding extra dimensions, such as Kaluza–Klein unification theory. One comes back to

the usual 4D spacetime as projective relativity theory via Jordan conformal equivalence, but with at

least one additional scalar field. Such theories are also known as Jordan–Brans–Dicke scalar-tensor

gravitation theories [12–14]. In most such theories, there is a major drawback – a varying Newton

constant G. Some theories go even further to consider spatially varying–G gravity [15]. No such

variations have been observed yet; so, we prefer to view Newton’s gravitational constant G as constant

despite the experimental issues on its measurements [16].

In the light of the above discussion one may naturally ask: could the mysterious “dark”

phenomena be artifacts of non-zero δ
∥∥−→v

∥∥, but often negligible and with almost zero value (δ
∥∥−→v

∥∥ ≈
0), which could accumulate over cosmic distances and fool us that the observed phenomena may

be due to dark matter and/or dark energy? An extension of EGR, with the desired properties, was
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proposed by Weyl as soon as the General Relativity (GR) was proposed by Einstein. Weyl proposed an

extension to GR by adding local gauge (scale) invariance that does have the consequence that lengths

may not be preserved upon parallel transport. However, it was quickly argued that such a model will

result in a path dependent phenomenon and, thus, contradicting observations. A remedy was later

found to this objection [11] by introducing Weyl Integrable Geometry (WIG), where the lengths of

vectors are conserved only along closed paths (
u

δ
∥∥−→v

∥∥ = 0). This idea leads to the scale invariant

cosmology by Dirac [17], Canuto et al. [18]. Such formulation of the Weyl’s original idea defeats the

Einstein objection! Furthermore, given that all we observe about the distant Universe are waves that

reach us, the condition for Weyl Integrable Geometry is basically saying that the information that

arrives to us via different paths is interfering constructively to build a consistent picture of the source

object.

One way to build a WIG model is to consider conformal transformation of the metric field

g′µν = λ2gµν and to apply it to various observational phenomena. As we will see in the discussion

below, the demand for homogeneous and isotropic space restricts the field λ to depend only on the

cosmic time and not on the space coordinates. The weak field limit of such a WIG model results in an

extra acceleration in the equation of motion that is proportional to the velocity of the particle.

This behavior is somewhat similar to the Jordan–Brans–Dicke scalar-tensor gravitation; however,

the conformal factor λ does not seem to be a typical scalar field as in the Jordan–Brans–Dicke theory

[12,13].

The Scale Invariant Vacuum (SIV) idea provides a way of finding out the specific functional form

of λ(t) as applicable to FLRW cosmology and its WIG extension.

We also find it important to point out that extra acceleration in the equations of motion, which

is proportional to the velocity of a particle, could also be justified by requiring re-parametrization

symmetry. Re-parametrization invariance is often overlooked as being part of the general covariance

that guarantees the physics to be independent of the observer’s coordinate system. However,

re-parametrization symmetry is much more, it is about the physics being independent of the choice

of parametrization of a process under study. Not implementing re-parametrization invariance in a

model could lead to un-proper time parametrization [1] that seems to induce “fictitious forces” in

the equations of motion similar to the forces derived in the weak field SIV regime. It is a puzzling

observation that may help us understand nature better given its relation to some of the key properties

of physical systems [19].

2. Mathematical Framework

The framework for the Scale Invariant Vacuum paradigm is based on the Weyl Integrable

Geometry and the Dirac co-calculus as mathematical tools for description of nature [11,17]. For

a more modern treatment of the scale invariant gravity idea see [20], that is based on the Cartan’s

formalism and along the more traditional scalar field approach, which due to its abstractness seems to

have stayed disconnected from observational tests, apart of a few papers on the model parameters

for conformal cosmology [21,22] where dark matter and energy seem to be replaced by the concept of

rigid matter, which is still observationally questionable as its dark counterparts. Here, our approach

is more traditional, physically motivated and with as little general abstraction as possible. For more

mathematical details we refer the reader to the companion paper on the “Action Principle for Scale

Invariance and Applications (Part I)” [23].

2.1. Weyl Integrable Geometry and Dirac Co-Calculus

The original Weyl geometry uses a metric tensor field gµν, along with a “connexion” vector field κµ,

and a scalar field λ. Here we use the french spelling of the word connection to avoid misinterpretation

and confusion with the usual meaning and use of a connection vector field. In the Weyl Integrable

Geometry, the “connexion” vector field κµ is not an independent field, but it is derivable from the

scalar field λ.
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κµ = −∂µ ln(λ) (1)

This form of the “connexion” vector field κµ guarantees its irrelevance, in the covariant derivatives,

upon integration over closed paths. That is,
u

κµdxµ = 0. In other words, κµdxµ represents a closed

1-form; furthermore, it is an exact form, as (1) implies κµdxµ = −d ln λ. Thus, the scalar function λ

plays a key role in the Weyl Integrable Geometry. Its physical meaning is related to the freedom of

choice of a local scale gauge. Thus, λ relates to the changes in the equations of a physical system upon

change in scale via local re-scaling l′ → λ(x)l. Such change could be induced via a local conformal

transformation of the coordinates, in which case it is part of the general diffeomorphism symmetry, or

it could be only a metric conformal transformation without any associated coordinate transformation.

2.1.1. Gauge Change and (co-) covariant Derivatives

The covariant derivatives utilize the rules of the Dirac co-calculus [17] where tensors also have

co-tensor powers based on the way they transform upon change of scale. For the metric tensor gµν

this power is Π(gµν) = 2. This follows from the way the length of a line segment ds is defined via the

usual expression ds2 = gµνdxµdxν.

l′ → λ(x)l ⇔ ds′ = λds ⇒ g′µν = λ2gµν.

Thus, gµν is having co-tensor power of Π(gµν) = −2 in order to make the Kronecker δ a scale

invariant object (gµνgνρ = δ
ρ
µ). That is, a co-tensor is of power n when, upon local scale change, it

satisfies:

l′ → λ(x)l : Y′
µν → λnYµν (2)

2.1.2. Dirac Co-Calculus

In the Dirac co-calculus, this results in the appearance of the “connexion” vector field κµ in the

covariant derivatives of scalars, vectors, and tensors (see Table 1):

Table 1. Derivatives for co-tensors of power n.

Co-Tensor Type Mathematical Expression

co-scalar S∗µ = ∂µS − nκµS,
co-vector Aν∗µ = ∂µ Aν − ∗

Γ
α
νµ Aα − nκν Aµ,

co-covector Aν
∗µ = ∂µ Aν + ∗

Γ
ν
µα Aα − nkν Aµ.

where the usual Christoffel symbol Γ
ν
µα is replaced by

∗
Γ

ν
µα = Γ

ν
µα + gµαkν − gν

µκα − gν
ακµ. (3)

The corresponding equation of the geodesics within the WIG was first introduced in 1973 by Dirac

[17] and in the weak-field limit was re-derived in 1979 by Maeder and Bouvier [24] (uµ = dxµ/ds is

the four-velocity):

u
µ
∗ν = 0 ⇒ duµ

ds
+ ∗

Γ
µ
νρuνuρ + κνuνuµ = 0 . (4)
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This geodesic equation has also been derived from reparametrization-invariant action in 1978 by

Bouvier and Maeder [25]:

δA =

P1∫

P0

δ (ds̃) =
∫

δ (βds) =
∫

δ

(
β

ds

dτ

)
dτ = 0.

2.2. Consequences of going beyond the EGR

Before we go into the specific examples, such as FLRW cosmology and weak-field limit, there are

some remarks to be made. By using (3) in (4), one can see that the usual EGR equations of motion

receive extra terms proportional to the four-velocity and its normalization:

duµ

ds
+ Γ

µ
νρuνuρ = (κ · u)uµ − (u · u)κµ (5)

In the weak-field approximation within the SIV, one assumes an isotropic and homogeneous space

for the explicit derivation of the new terms beyond the usual Newtonian equations [25]. As seen from

(5), the result is a velocity dependent extra term κ0~v with κ0 = −λ̇/λ, while the special components

are set to zero (κi = 0, i = 1, 2, 3) due to the assumption of isotropic and homogeneous space. At this

point, it is important to stress that the usual normalization for the four-velocity, u · u = ±1 with sign

related to the signature of the metric tensor gµν, is a special choice of parametrization—the proper-time

parametrization τ. We denote a general parametrization in (5) with s, while τ is reserved for the proper

time, and t is the coordinate time parametrization.

Similar extra term (κ0~v) was recently obtained [1] as a consequence of reparametrization invariant

mathematical modeling but without the need for a weak-field approximation. That is, insisting on

reparametrization symmetry for the equations of motion demands such term to be present in order

to account for the change of parametrization within a chosen coordinate system. Within the proper

time-parametrization one usually has κ0 = 0. However, if one assumes that the equations used for the

process under study are parametrized via the proper time-parametrization but relies on the observer

coordinate time, without including the appropriate κ-term then one has incorrect modeling with

un-proper time parametrization instead because coordinate time is often quite different from the

proper time of a process. Therefore, not accounting for reparametrization symmetry leads to missing terms in

the mathematical formulas utilized in the modeling of a system. Thus, the need for a κ-term is an effect due

to reparametrization symmetry and is manifested as velocity dependent fictitious acceleration when

accounted for properly [1]. In this respect, the term κ0~v is necessary for the restoration of the broken

symmetry - the re-parametrization invariance of a process under study. To demonstrate this, one can

apply an arbitrary time re-parametrization λ = dt/ds; then, the first term on the LHS of (5) becomes:

λ
d

dt

(
λ

d~r

dt

)
= λ2 d2~r

dt2
+ λλ̇

d~r

dt
. (6)

By moving the term linear in the velocity to the RHS (5), dividing by λ2, and by using κ(t) = −λ̇/λ,

one obtains a κ0~v-like term on the RHS. If one was to do such manipulation in the absence of κ0~v on

the LHS of (5), then the term will be generated, while if κ̃ was present in the equations, then it will be

transformed κ̃ → κ + κ̃.

Furthermore, unlike in SIV, where one can justify λ(t) = t0/t, for re-parametrization symmetry

the time dependence of λ(t) could be arbitrary. Finally, as discussed in [1], the extra term κ0~v is not

expected to be present when the time parametrization of the process is the proper time of the system.

Thus, a term of the form κ~v can be viewed as necessary for restoration of the re-parametrization symmetry and

an indication of un-proper time parametrization of a process under consideration when omitted.

In the case of the FLRW cosmology, with the assumption of homogeneity and isotropy of space,

one considers −c2dτ2 = −c2dt2 + a(t)2dΣ
2, where c is the speed of light (to be set to 1), Σ is a
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three-dimensional space of uniform curvature, and a(t) is the scale factor for the three-dimensional

space. Here, τ is the proper time parametrization, presumably of the cosmological evolution, while

t is the coordinate time of an observer who is studying the cosmic evolution. Upon transitioning to

WIG, one would have λ(x) multiplicative conformal factor and, in the case of λ(t) (time dependence

only), one may argue that this factor could be absorbed into a(t) along with a suitable redefinition of

the coordinate time t into dt̃ = λ(t)dt. However, this does not guarantee proper-time parametrization

in general. It is therefore likely to have un-proper time parametrization for the FLRW cosmology

equations with missing velocity dependent terms, unless one makes sure that the re-parametrization

symmetry is restored.

2.3. Scale Invariant Cosmology

The scale invariant cosmology equations were first introduced in 1973 by Dirac [17] and then

re-derived in 1977 by Canuto et al. [18]. The equations are based on the corresponding expressions of

the Ricci tensor and the relevant extension of the Einstein equations.

2.3.1. The Einstein Equation for Weyl’s Geometry

The conformal transformation (g′µν = λ2gµν) of the metric tensor gµν within the more general

Weyl’s framework into Einstein’s framework, where the metric tensor is g′µν, induces a simple relation

between the Ricci tensor and scalar within Weyl’s Integrable Geometry and the Einstein GR framework.

Our convention is using the symbol prime (′) on mathematical objects to denote Einstein GR framework

objects:

Rµν = R′
µν − κµ;ν − κν;µ − 2κµκν + 2gµνκακα − gµνκα

;α ,

R = R′ + 6κακα − 6κα
;α .

By using these expressions, we can extent the standard EGR equation into:

Rµν −
1

2
gµνR = −8πGTµν − Λ gµν , (7)

R′
µν −

1

2
gµνR′ − κµ;ν − κν;µ − 2κµκν + 2gµνκα

;α − gµνκακα =

−8πGTµν − Λ gµν . (8)

Here Λ is in WIG and is expected that Λ = λ2
ΛE, with ΛE beeing the Einstein cosmological

constant in EGR. This relationship guarantees the explicit scale invariance of the equations. This makes

explicit the appearance of ΛE as invariant scalar (in-scalar), since then: Λ gµν = λ2
ΛE gµν = ΛE g′µν.

That is, the co-scaler power of Λ in WIG is Π(Λ) = −2.

The above equations are a generalization of the original Einstein equation. Thus, they have an

even larger class of local gauge symmetries that need to be fixed by a gauge choice. In Dirac’s work,

the gauge choice was based on the large numbers hypothesis. Here, we discuss a different gauge

choice.

The corresponding scale-invariant FLRW cosmology equations were first introduced in 1977 by

Canuto et al. [18]:

8 πG̺

3
=

k

a2
+

ȧ2

a2
+ 2

λ̇ ȧ

λ a
+

λ̇2

λ2
− ΛEλ2

3
, (9)

−8 πGp =
k

a2
+ 2

ä

a
+ 2

λ̈

λ
+

ȧ2

a2
+ 4

ȧ λ̇

a λ
− λ̇2

λ2
− ΛE λ2 . (10)

These equations reproduce the standard FLRW equations in the limit λ = const = 1. The scaling

of Λ was recently exploited to revisit the cosmological constant problem within quantum cosmology

[26]; resulting in the conclusion that our Universe is unusually large, given that the expected mean
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size of all universes, where EGR holds, is expected to be of a Planck scale. In that study, λ = const

was a key assumption as the various universes were expected to obey the EGR equations. What would

be the expected mean size of a universe, if the condition λ = const is relaxed, remains an open question for an

ensemble of WIG-universes.

2.3.2. The Scale Invariant Vacuum Gauge at T = 0 and R′ = 0

The idea of the Scale Invariant Vacuum was introduced first in 2017 by Maeder [9]. For an empty

universe model, the de Sitter metric is conformal to the Minkowski metric, thus, R′
µν is vanishing

Maeder [9]. Therefore, for conformally flat metric, that is, Ricci flat (R′
µν = 0) Einstein vacuum

(Tµν = 0), the following vacuum equation can be obtained using (8):

κµ;ν + κν;µ + 2κµκν − 2gµνκα
;α + gµνκακα = Λ gµν (11)

For homogeneous and isotropic space (∂iλ = 0), only κ0 = −λ̇/λ and its time derivative κ̇0 = −κ2
0 can

be non-zero. As a corollary of (11), one can derive the following set of equations [9]:

3
λ̇2

λ2
= Λ , and 2

λ̈

λ
− λ̇2

λ2
= Λ , (12)

or
λ̈

λ
= 2

λ̇2

λ2
, and

λ̈

λ
− λ̇2

λ2
=

Λ

3
. (13)

These equations can be derived by using the time and space components of the equations, or by

looking at the relevant trace invariant along with the relationship κ̇0 = −κ2
0. Any one pair among these

equations is sufficient to prove the validity of the other pair of equations.

Theorem 1. Using the SIV Equations (12) or (13) with Λ = λ2
ΛE one has:

ΛE = 3
λ̇2

λ4
, with

dΛE

dt
= 0. (14)

Corollary 1. The solution of the SIV gauge equations is then:

λ = t0/t, (15)

with t0 =
√

3/(c2ΛE) where c is the speed of light usually set to 1.

The choice of such gauge for λ can be used to replace the Dirac’s large numbers hypothesis

invoked by Canuto et al. [18]. This is what we refer to as a Scale Invariant Vacuum (SIV) gauge for λ.

Even more, now we can have an alternative viewpoint on (8) and (11). Since (8) is scale invariant

then one does not have to consider zero case for Tµν and Rµν in general, but if the scale factor λ

satisfies (11), then all the κ terms and the Λ term in (8) will cancel out leaving us with the standard

Einstein GR equation with zero cosmological constant. Thus, a proper choice of λ gauge satisfying (11)

results in the standard Einstein equation with no cosmological constant! This is easily seen in the case of

homogeneous and isotropic universe or when requiring only reparametrization invariance, then both

cases are resulting in (12) and (13) along with (14). If one takes the reparametrization symmetry viewpoint

then the presence of a non-zero cosmological constant is indication of un-proper time parametrization that can be

cured upon suitable new time gauge deduced by the appropriate choice of λ.
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Upon the use of the SIV gauge, first in 2017 by Maeder [9], one observes that the cosmological

constant disappears from Equations (9) and (10):

8 πG̺

3
=

k

a2
+

ȧ2

a2
+ 2

ȧλ̇

aλ
, (16)

−8 πGp =
k

a2
+ 2

ä

a
+

ȧ2

a2
+ 4

ȧλ̇

aλ
. (17)

The solutions of these equations have been discussed in details in Maeder [9], together with

various cosmological properties concerning the Hubble-Lemaître and deceleration parameters, the

cosmological distances and different cosmological tests. The redshift drifts appear as one of the most

promising cosmological tests [10]. Here, we limit the discussion to a few points pertinent to the subject

of the paper. Analytical solutions for the flat SIV models with k = 0 have been found for the matter

[27] and radiation [28] dominated models. In the former case, we have a simple expression:

a(t) =

[
t3 − Ωm

1 − Ωm

]2/3

. (18)

It is expressed in the SIV-timescale t where at present t0 = 1 and a(t0) = 1. Such solutions are

illustrated in Figure 1. They are lying relatively close to the ΛCDM ones, the differences being larger

for lower Ωm.

0                      0.2                     0.4                      0.6                     0.8                    1.0

0

0.2

0.4

0.6

0.8

1.0

Expansion rate:  LCDM & scale invariant

a(t)

t

LCDM

SIV

Figure 1. Expansion rates a(t) as a function of time t in the flat (k = 0) ΛCDM and SIV models

in the matter dominated era. The curves are labeled by the values of Ωm; here Ωm = ̺/̺c with

̺c = 3H2
0 /(8πG). Drawing originally published in [9].

This is a general property: the effects of scale invariance are always larger for the lower matter densities,

being the largest ones for the empty space. As usual, here Ωm = ̺/̺c with ̺c = 3H2
0 /(8πG). Remarkably,

Eqs. (16) and (17) allow flatness for different values of Ωm. It follows from (18) that the initial time at

a(tin) = 0 is related to the value of Ωm:

tin = Ω
1/3
m . (19)

The Hubble parameter and κ0(t) = −λ̇/λ are then, in the timescale t (which goes from tin at the

Big-Bang to t0 = 1 at present):

H(t) =
ȧ

a
=

2 t2

t3 − Ωm
, and κ0(t) = − λ̇

λ
=

1

t
. (20)
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From Eqs. (18) and (20), we see that there is no meaningful scale invariant solution for an expanding

Universe (H > 0) with Ωm equal or larger than 1. Thus, the model solutions are quite consistent with

the causality relations discussed by Maeder and Gueorguiev [2].

The usual timescale τ in years or seconds is τ0 = 13.8 Gyr at present [29] and τin = 0 at the

Big-Bang. One can change from the SIV-time t to the usual time scale τ by using the relationship ansatz

[7]:
τ − τin

τ0 − τin
=

t − tin

t0 − tin
, (21)

which is expressing that the age fraction with respect to the present age is the same in both timescales.

This ansatz gives:

τ = τ0
t − Ω

1/3
m

1 − Ω
1/3
m

and t = Ω
1/3
m +

τ

τ0
(1 − Ω

1/3
m ) , (22)

The relevant derivatives are constants depending on tin = Ω
1/3
m and τ0 only:

dτ

dt
=

τ0

1 − Ω
1/3
m

, and
dt

dτ
=

1 − Ω
1/3
m

τ0
. (23)

For larger Ωm, timescale t is squeezed over a smaller fraction of the interval 0 to 1, (which reduces

the range of λ over the ages). Using the above expressions one can write the Hubble parameter in the

usual time scale τ via its expression in the t-scale:

H(τ) =
ȧ

a
= H(t)

dt

dτ
= H(t)

1 − Ω
1/3
m

τ0
. (24)

This finally gives for the Hubble constant:

H0 =
2

1 − Ωm

1 − Ω
1/3
m

τ0
. (25)

The last factor could be recognized as κ0(τ0). To see this one can utilize the equations (22) and (23) to

switch from the SIV-time t to the conventional time τ scale [7] in order to obtain:

κ0(τ) = − λ̇

λ
= κ0(t)

dt

dτ
=

1 − tin

t τ0
=

1 − tin

τ0

1

tin + (1 − tin)(τ/τ0)
=

ψ(τ)

τ0
, (26)

⇒ κ0(τ0) =
1 − Ω

1/3
m

τ0
and ψ(τ) =

1 − tin

tin + (1 − tin)(τ/τ0)
. (27)

3. Comparisons and Applications

The predictions and outcomes of the SIV paradigm were confronted with observations in a series

of papers by the current authors. Highlighting the main results and outcomes is the subject of the

current section.

3.1. Comparing the Scale Factor a(t) within ΛCDM and SIV [9]

The SIV implications for cosmology were first discussed by Maeder [9] and later reviewed by

Maeder and Gueorguiev [10]. For this study one is using the SIV equations (16) and (17), along with

the gauge fixing (14), which implies λ = t0/t (15) with t0 indicating the current age of the Universe

since the Big-Bang (a = 0 at tin). The most important point in comparing ΛCDM and SIV cosmology

models is the existence of SIV cosmology with slightly different parameters but almost the same curve

for the standard scale parameter a(t) when the time scale is set so that t0 = 1 at the present epoch

[9,10].
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As seen in Figure 1, the differences between the ΛCDM and SIV models decline for increasing

matter densities [9]. Furthermore, the SIV solutions are lying relatively close to the ΛCDM ones, the

differences being larger for lower Ωm. This is a general property: the effects of scale invariance are always

larger for the lower matter densities, being the largest when approaching the empty space.

3.2. Possible differentiators of SIV from ΛCDM [10]

The major property of SIV cosmology is that it naturally predicts an acceleration of the expansion.

This is the consequence of the additional term in Eqs. (16) and (17) which predicts an acceleration of

the motion in the direction of the velocity. If the Universe were to contract, it would also receive an

additional acceleration favoring a contraction.

Several observational tests of the SIV cosmology are performed and discussed in details in [10].

For example, based on Figure 3 in [10] one can see that the relation between the Hubble constant H0

and the age of the Universe in the SIV Cosmology is suggesting a range of values for Ωm between

0.15 and 0.25 depending on the choice for H0 using either the distance ladder or Planck collaboration

measurements.

Most cosmological tests such as the magnitude-redshift, the angular diameter vs. redshift,

the number count vs. redshifts, etc, depend on the expressions of the distances based on the

angular diameters dA. The plot of dA vs. z in Figure 2 shows that the different curves are not

well separated at lower z. At z = 1, for Ωm = 0, 0.1, 0.3, 0.99, one respectively has log dA =

−0.383,−0.367,−0.349,−0.342. Up to a redshift z = 2, the relations between dA and z for scale

invariant models are very close to each other whatever Ωm, with a deviation from the mean smaller

than ±0.05 dex. For ΛCDM models, higher density models always have lower dA with an increasing

separation between the curves with increasing z. For the SIV models, this is the same, however

with a very small differentiation, up to only z ≈ 2. Above 2, the SIV models behave differently:

higher density models have larger dA values. The above properties are evidently also shared by the

magnitude-redshift, the angular diameter vs. redshift, as well as by number counts plots. A clear

discrimination between the SIV and ΛCDM models with an access to Ωm requires high precision

measurements at redshifts higher than 2.
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Scale invariant vs.  LCDM, k=0
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Figure 2. The angular diameter distance dA vs. redshift z for flat scale invariant models (continuous red lines)

compared to flat ΛCDM models (broken blue lines). The curves are given for Ωm = 0, 0.1, 0.3, 0.99, from the upper

to the lower curve in both cases (at z > 3). Original figure from Maeder [9].
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Figure 3 shows the (m-M) vs. z plot based on SNIa, quasar, and GRB data by Lusso et al. [30]

compared to different theoretical curves. The two red lines show the SIV models for Ωm = 0.10 and

0.30. This last model lies very close to the ΛCDM model with Ωm = 0.30, illustrating the above

mentioned difficulty to discriminate between the ΛCDM and SIV models. We note that the SIV models

with Ωm = 0.10 better fits the high z points, which could perhaps support a lower value. However,

internal effects in the evolution galaxies may also intervene in the comparison of distant and local

galaxies, in addition to the cosmological effects and this imposes great care in the conclusions.

Scale invariant   

W
m

= 0.10

0.30                  

From Lusso et al. 2019

Figure 3. The Hubble diagram for SNIa, quasars (binned), and GRBs from the samples collected

by Lusso et al. [30]. The various models considered by Lusso et al. are indicated. The two red lines

show the flat scale invariant models with k = 0 and Ωm = 0.10 and 0.30. Note that the ΛCDM and SIV

models with Ωm = 0.30 are easily confused. The other lower curves are attempts of adjustments by

series developments. Drawing originally published in [10].

Figure 4 below, shows the curves of the redshift drifts as a function of z predicted in the SIV

cosmology for different values of Ωm. (A z-drift is the change z for a given galaxy over time, a time

interval longer than 20 yr appears necessary). The SIV-drifts are compared to a few standard models

of different ΩΛ-values by Liske et al. [31]. We notice the relative proximity of the standard and scale

invariant curves in the case of Ωm = 0.30, which could make the separation of models difficult for such

a density parameter. However, the expected value of Ωm in the SIV cosmology is likely significantly

smaller than in the ΛCDM models; this makes the differences of the z-drifts between the two kinds of

cosmological models possibly observable by very accurate observations in the future. The physical

reason of these differences between the two models at high z is due to the flatter initial expansion

curve in the SIV models. In this respect, we recall that the empty SIV model expand with t2, while the

empty ΛCDM model is in fact de Sitter model which expands exponentially.
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Figure 4. The drifts of redshifts dz/dt as a function of redshift in the scale invariant theory (red curves).

The values of Ωm (usual definition) are indicated. The black broken lines give the results for some

standard models of different couples (ΩΛ, Ωm) by Liske et al. [31]. Drawing originally published in

[10].

The above comparisons, see also [10], show a general agreement between SIV predictions and

observations, alike for the ΛCDM models. The redshift drifts appear to have a particularly great

differentiation power between SIV and ΛCDM models.

3.3. Application to Scale-Invariant Dynamics of Galaxies [5]

The next important application of the scale-invariance at cosmic scales is the derivation of a

universal expression for the Radial Acceleration Relation (RAR) of gobs and gbar. That is, the relation

between the observed gravitational acceleration gobs = v2/r and the acceleration from the baryonic

matter due to the standard Newtonian gravity gN [5] (g = gobs, gN = gbar):

g = gN +
k2

2
+

1

2

√
4gNk2 + k4 , (28)

For gN ≫ k2 : g → gN but for gN → 0 ⇒ g → k2 is a constant.

As seen in Figure 5, MOND deviates significantly for the data on the Dwarf Spheroidals. This

is well-known problem in MOND due to the need of two different interpolating functions, one in

galaxies and one at cosmic scales. The SIV universal expression (28) resolves this issue naturally, with

one universal parameter k2 related to the gravity at large distances [5].
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Figure 5. Radial Acceleration Relation (RAR) for the galaxies studied by Lelli et al. (2017). Dwarf

Spheroidals as binned data (big green hexagons), along with MOND (red curve), and SIV (blue curve)

model predictions. The orange curve shows the 1:1-line for gobs and gbar. Due to the smallness of gobs

and gbar the application of the log function results in negative numbers; thus, the corresponding axes’

values are all negative. Drawing originally published in [5].

The expression (28) follows from the Weak Field Approximation of the SIV upon utilization of the

Dirac co-calculus in the derivation of the geodesic equation within the relevant WIG (4) (see Maeder

and Gueorguiev [5] for more details, as well as the original derivation in Maeder and Bouvier [24]):

gii = −1, g00 = 1 + 2Φ/c2 ⇒ Γ
i
00 =

1

2

∂g00

∂xi
=

1

c2

∂Φ

∂xi
,

d2−→r
dt2

= −Gt M

r2

−→r
r

+ κ0(t)
d−→r
dt

. (29)

where i ∈ 1, 2, 3, while the potential Φ = Gt M/r is scale invariant and Gt is the Newton’s constant

of gravity in SIV t-time units system (t0 = 1) . When written in the usual units with present time τ0,

based on (27) the modified Newton’s equation (29) is then [6,7]:

d2−→r
dτ2

= −G M(τ0)

r2

−→r
r

+
ψ0

τ0

d−→r
dτ

. (30)

By considering the scale-invariant ratio of the correction term κ0 υ to the usual Newtonian term

in (29), one has:

x =
κ0υr2

GM
=

H0

ξ

υ r2

GM
=

H0

ξ

(r gobs)
1/2

gbar
∼ gobs − gbar

gbar
, (31)

Upon utilizing an explicit scale invariance, by considering ratios, for canceling the proportionality

factor, we obtain:

(
gobs − gbar

gbar

)

2

÷
(

gobs − gbar

gbar

)

1

=

(
gobs,2

gobs,1

)1/2 (
gbar,1

gbar,2

)
, (32)
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by setting g = gobs,2, gN = gbar,2, and with k = k(1) containing all the system-1 terms, one finally

obtains (28):
g

gN
− 1 = k(1)

g1/2

gN
⇒ g = gN +

k2

2
± 1

2

√
4gNk2 + k4.

As it was noticed already, gN ≫ k2 : g → gN but for gN → 0 ⇒ g → k2 for the ‘+’ branch, while the

‘−’ branch gives g → 0.

3.4. MOND as a peculiar case of the SIV theory [6]

The weak field limit of SIV tends to MOND, when the scale factor is taken as constant, an

approximation valid (< 1%) over the last 400 Myr. A better understanding of the MOND a0-parameter

in gobs =
√

a0 gN could be obtained within the SIV where it corresponds to the equilibrium point of the

Newtonian and SIV dynamical acceleration [6]; as such, the parameter a0 is not a universal constant, it

depends on the density and age of the Universe.

In order to see the correspondence one looks at xξ = H0
υ r2

GM (31) in terms of densities: first

consider the mass M spherically distributed in a radius r with a mean density ̺ = 3M/(4π r3),

then use ̺c =
3 H2

0
8 π G ⇒ H0 =

√
8π Gρc/3, along with the instantaneous radial accelerator relation

υ2

r = GM
r2 ⇒ υ =

√
GM/r, to arrive at the expression xξ =

√
2ρc/ρ. Since Newtonian gravity for a

density ρ is gN = (4/3)πG ̺ r this translates into xξ =
√

2gc/gN . Then one can write (30) as

g = gN + x gN → x gN =

√
2

ξ

(
gc

gN

)1/2

gN =
1

ξ

√
2gcgN. (33)

Therefore, one has the correspondence a0 ⇐⇒ 2gc/ξ2, where ξ = H0/κ0. Thus, by using the SIV-time

scale t, where κ0(t) = 1/t due to (15), along with (20), one has ξ = 2/(1 − Ωm) which finally gives:

a0 ⇐⇒ (1 − Ωm)2

2
gc . (34)

One may express the limiting value gc in term of the critical density over the radius rH0
of the

Hubble sphere. Thus, rH0
is defined via n c = rH0

H0 where n depends on the cosmological model. For

the EdS model n = 2, while for SIV or ΛCDM models with Ωm = 0.2 − 0.3, the initial braking and

recent acceleration almost compensate each other, so that n ≃ 1. By using the expression for H0 (25)

one finally obtains:

a0 =
(1 − Ωm)2

2

4π

3
G̺crH0

=
(1 − Ωm)2

4
n c H0 =

n c (1 − Ωm)(1 − Ω
1/3
m )

2 τ0
. (35)

Thus, the deep-MOND limit is found [6] to be an approximation of the SIV theory for low enough

densities and for systems with timescales smaller than a few Myr where λ can be viewed as if it is a

constant.

The product c H0 is equal to 6.80 ·10−8 cm s−2. For Ωm=0, 0.10, 0.20, 0.30 and 0.50, one has a0 ≈
(1.70, 1.36, 1.09, 0.83, 0.43) · 10−8 cm s−2 respectively. These values obtained from the SIV theory are

remarkably close to the value a0 about 1.2 · 10−8 cm s−2 derived from observations by Milgrom [32].

Thus, as it comes out for the more general SIV theory, there are several remarks to be made on the

a0-parameter and its meaning:

1. The equation of the deep-MOND limit is reproduced by the SIV theory both analytically and

numerically if λ and M can be considered as constant. This may apply to systems with a typical

dynamical timescale up to a few hundred million years.
2. Parameter a0 is not a universal constant. It depends on the Hubble-Lemaître H0 parameter (or

the age of the Universe) and on Ωm in the model Universe, cf. Eq. (35). The value of a0 applies to

the present epoch.
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3. Parameter a0 is defined by the condition that x > 1, i.e. when the dynamical gravity κ0υ =

(ψ0υ)/τ0 in the equation of motion (30) becomes larger than the Newtonian gravity. This situation

occurs in regions at the edge of gravitational systems.

3.5. Local dynamical effects within SIV: the lunar recession [7]

We have already pointed out that scale invariance is expected in empty Universe models, while

the presence of matter tends to suppress it. Scale invariance is certainly absent in cosmological models

with densities equal to or above the critical value ̺c = 3H2
0 /(8πG) [2]. Clearly, the presence of matter

tends to kill scale invariance as shown by [33]. For models with densities below ̺c, the possibility of

limited effects remains open. If present, scale invariance would be a global cosmological property.

Some traces could be observable locally. For the Earth-Moon two-body system, the predicted additional

lunar recession would be increased by 0.92 cm/yr, while the tidal interaction would also be slightly

increased [7].

The Earth-Moon distance is the most systematically measured distance in the Solar System, thanks

to the Lunar Laser Ranging (LLR) experiment active since 1970. The observed lunar recession from

LLR amounts to 3.83 (±0.009) cm/yr; implying a tidal change of the length-of-the-day (LOD) by 2.395

ms/cy [34,35]. The value of the lunar recession has not much changed since the first determination

more than three decades ago [36], which illustrates the quality of the measurements. However, the

observed change of the LOD since the Babylonian Antiquity is only 1.78 ms/cy [37], a result supported

by paleontological data Deines and Williams [38], and implying a lunar recession of 2.85 cm/yr. The

best and longest studies on the change of the LOD in History have been performed by Stephenson et

al. [37], who analyzed the lunar and solar eclipses from 720 BC up to 1600 AD and found an average

shift of the LOD by 1.78 (± 0.03) ms/cy. The reality of the difference between the above observed

mean value of the LOD (1.78 ms/cy) and the value due to the tidal interaction (2.395 ms/cy) has been

further emphasized by Stephenson et al. [39].

The significant difference of (3.83-2.85) cm/yr = 0.98 cm/yr, already pointed out by several

authors over the last two decades [40,41], corresponds well to the predictions of the scale-invariant

theory, which is also supported by several other astrophysical tests [7].

By using the correct treatment of the Earth-Moon tidal interaction within the SIV theory one

derives an additional terms in the equation describing the lunar recession in current time units [7]:

dR

dτ
= kE

dTE

dτ
− kE ψ0

TE

τ0
+ ψ0

R

τ0
. (36)

In a cosmological model with Ωm = 0.30, the ratio ψ0 = (t0−tin)
t0

= 0.331 (27). We use the following

numerical values of the relevant astronomical quantities:

ME = 5.973 · 1027g, RE = 6.371 · 108cm, (37)

MM = 7.342 · 1025g, R = 3.844 · 1010cm,

IE = 0.331 · MER2
E = 8.0184 · 1044g · cm2.

The value 0.331 is obtained from precession data [42]. The coefficient kE is estimated to be 1.60 · 105 cm

· s−1 [7,43].

Let us evaluate numerically the various contributions. With the LOD of 1.78 ms/cy from the

antique data by [37], the first term contributes to a lunar recession of 2.85 cm/yr. The second term in

(36) gives for the case of Ωm = 0.3,

0.33 · kE
TE

τ0
= 0.33 · 1.60 · 105cm · s−1 86400 s

13.8 · 109 yr
= 0.33

[
cm

yr

]
. (38)
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The direct SIV expansion effect κ0R = ψ0R/τ0 is

0.33 · R

τ0
= 0.33 · 3.844 · 1010 cm

13.8 · 109 yr
= 0.92

[
cm

yr

]
. (39)

This term corresponds to a third of the general Hubble-Lemaitre expansion. Summing the various

contributions, we get the historical data value [37]:

dR

dτ
= (2.85 − 0.33 + 0.92) cm/yr = 3.44 cm/yr. (40)

Thus, we see that the scale invariant analysis is giving a relatively good agreement with the lunar

recession of 3.83 cm/yr obtained from LLR observations. The difference amounts only to 10 % of the

observed lunar recession.

The difference in the lunar recession is well accounted for within the dynamics of the SIV theory

(40). A minima, the above results shows that the problem of scale invariance is worth of some attention

within the solar system as well.

3.6. Growth of the Density Fluctuations within the SIV [4]

Another interesting result was the possibility of a fast growth of the density fluctuations within

the SIV [4]. This study modifies appropriately the relevant equations such as the continuity equation,

Poisson equation, and Euler equation within the SIV framework. Here, we outline the main equations

and the relevant results. By using the notation κ = κ0 = −λ̇/λ = 1/t, the corresponding Continuity,

Poisson, and Euler equations are:

∂ρ

∂t
+ ~∇ · (ρ~v) = κ

[
ρ +~r · ~∇ρ

]
, ~∇2

Φ = △Φ = 4πG̺,

d~v

dt
=

∂~v

∂t
+

(
~v · ~∇

)
~v = −~∇Φ − 1

ρ
~∇p + κ~v .

For a density perturbation ̺(~x, t) = ̺b(t)(1 + δ(~x, t)) the above equations result in:

δ̇ + ~∇ · ~̇x = κ~x · ~∇δ = nκ(t)δ , ~∇2
Ψ = 4πGa2̺bδ, (41)

~̈x + 2H~̇x + (~̇x · ~∇)~̇x = −
~∇Ψ

a2
+ κ(t)~̇x. (42)

⇒ δ̈ + (2H − (1 + n)κ)δ̇ = 4πG̺bδ + 2nκ(H − κ)δ. (43)

The final result (43) recovers the standard equation in the limit of κ → 0. The simplifying

assumption ~x · ~∇δ(x) = nδ(x) in (41) introduces the parameter n that measures the perturbation type

(shape). For example, a spherically symmetric perturbation would have n = 2. As seen in Figure 6,

perturbations for various values of n are resulting in faster growth of the density fluctuations within

the SIV than in the Einstein–de Sitter model, even at relatively law matter densities. Furthermore, the

overall slope is independent of the choice of recombination epoch zrec. The behavior for different Ωm

is also interesting (see Figure 7), for example, the smaller Ωm is - the steeper the growth of the density

fluctuations is. It is always much steeper then the Einstein-de Sitter model. For further details see the

discussion by Maeder and Gueorguiev [4].

Over the recent years highly redshifted galaxies have been found, in particular with the

observational data from JWST, which is suggesting very early times of galaxy formation [44]. We point

out, as shown by Figure 6 , that very early galaxy formation is a process currently expected in the

context of the SIV theory.
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Figure 6. The growth of density fluctuations for different values of parameter n (the gradient of the

density distribution in the nascent cluster), for an initial value δ = 10−5 at z = 1376 and Ωm = 0.10.

The initial slopes are those of the EdS models. The two light broken curves show models with initial

(z + 1) = 3000 and 500, with same Ωm = 0.10 and n = 2. These dashed lines are to be compared

to the black continuous line of the n = 2 model. All the three lines for n = 2 are very similar and

nearly parallel. Due to to the smallness of δ the application of the log function results in negative

numbers; thus, the corresponding vertical axes values are all negative. Drawing originally published

in [4].

0 
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Wm= 

0.02, 0.1, 

0.3, 0.5

Growth of the density

fluctuations for n=2,

(initial slope of EdS model)

Figure 7. The black curve is the classical growth of the density fluctuations in the Einstein-de Sitter

model. The other four curves illustrate the growth of δ for the density profile with n = 2 in the

scale-invariant theory. There are four different values of the density parameter Ωm. An initial value

δ = 10−5 at z = 1376 has been taken for all models, the initial derivative δ̇ is taken equal to that of the

EdS model. After a short evolution with a slope close to the initial one, all solutions indicate a much

faster growth of the density fluctuations, reaching the non-linear regime between about z + 1 = 2.7

and z = 18. Drawing originally published in [4].

3.7. Big-Bang Nucleosynthesis within the SIV Paradigm [3]

The SIV paradigm has been recently applied to the Big-Bang Nucleosynthesis using the known

analytic expressions for the expansion factor a(t) and the plasma temperature T as functions of the

SIV time τ since the Big-Bang when a(τ = 0) = 0 [3]. The results have been compared to the standard
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BBNS as calculated via the PRIMAT code [45]. Potential SIV-guided deviations from the local statistical

equilibrium were also explored in [3]. Overall, it was found that smaller than usual baryon and

non-zero dark matter content, by a factor of three to five times reduction, result in compatible to the

standard light elements abundances (Table 2).

Table 2. The observational uncertainties are 1.6% for YP, 1.2% for D/H, 18% for T/H, and 19% for

Li/H. FRF is the forwards rescale factor for all reactions, while mŤ and Q/Ť are the corresponding

rescale factors in the revers reaction formula based on the local thermodynamical equilibrium. The

SIV λ-dependences are used when these factors are different from 1; that is, in the sixth and ninth

columns where FRF=λ, mŤ= λ−1/2, and Q/Ť= λ+1/2. The columns denoted by fit contain the results

for perfect fit on Ωb and Ωm to 4He and D/H, while fit* is the best possible fit on Ωb and Ωm to the
4He and D/H observations for the model considered as indicated in the columns four and seven. The

last three columns are usual PRIMAT runs with modified a(T) such that ā/λ = aSIV/S1/3, where ā

is the PRIMAT’s a(T) for the decoupled neutrinos case. Column seven is actually aSIV/S1/3, but it

is denoted by ā/λ to remind us about the relationship a′ = aλ; the run is based on Ωb and Ωm from

column five. The smaller values of η10 are due to smaller h2
Ωb, as seen by noticing that η10/Ωb is

always ≈ 1.25. Table originally presented in [3].

Element Obs. PRMT aSIV fit fit* ā/λ fit* fit

H 0.755 0.753 0.805 0.755 0.849 0.75 0.753 0.755
YP = 4YHe 0.245 0.247 0.195 0.245 0.151 0.25 0.247 0.245
D/H × 105 2.53 2.43 0.743 2.52 2.52 1.49 2.52 2.53

3He/H × 105 1.1 1.04 0.745 1.05 0.825 0.884 1.05 1.04
7Li/H × 1010 1.58 5.56 11.9 5.24 6.97 9.65 5.31 5.42

Neff 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01
η10 6.09 6.14 6.14 1.99 0.77 1.99 5.57 5.56
FRF 1 1 1 1 1.63 1 1 1.02

mŤ 1 1 1 1 0.78 1 1 0.99

Q/Ť 1 1 1 1 1.28 1 1 1.01
Ωb [%] 4.9 4.9 4.9 1.6 0.6 1.6 4.4 4.4
Ωm [%] 31 31 31 5.9 23 5.9 86 95√

χ2
ǫ N/A 6.84 34.9 6.11 14.8 21.9 6.2 6.4

The SIV analytic expressions for a(T) and τ(T) were utilized to study the BBNS within the SIV

paradigm [3,28]. The functional behavior is very similar to the standard model within PRIMAT except

during the very early Universe where electron-positron annihilation and neutrino processes affect

the a(T) function (see Table I and Figure 2 in [3]). The distortion due to these effects encoded in the

function S(T) could be incorporated by considering the SIV paradigm as a background state of the

Universe where these processes could take place. It has been demonstrated that incorporation of

the S(T) within the SIV paradigm results in a compatible outcome with the standard BBNS see the

last two columns of Table 2; furthermore, if one is to fit the observational data the result is λ ≈ 1 for

the SIV parameter λ (see last column of Table 2 with λ = FRF ≈ 1). However, a pure SIV treatment

(the middle three columns) results in Ωb ≈ 1% and less total matter, either around Ωm ≈ 23% when

all the λ-scaling connections are utilized (see Table 2 column 6), or around Ωm ≈ 6% without any

λ-scaling factors (see column 5). The need to have λ close to 1 is not an indicator of dark matter

content but indicates the goodness of the standard PRIMAT results that allows only for λ close to 1

as an augmentation, as such this leads to a light but important improvement in D/H as seen when

comparing columns three with eight and nine.

The SIV paradigm suggests specific modifications to the reaction rates, as well as the functional

temperature dependences of these rates, that need to be implemented to have consistence between

the Einstein GR frame and the WIG (SIV) frame. In particular, the non-in-scalar factor Tβ in the

reverse reactions rates may be affected the most due to the SIV effects. As shown in [3], the specific
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dependences studied, within the assumptions made within the SIV model, resulted in three times less

baryon matter, usually around Ωb ≈ 1.6% and less total matter - around Ωm ≈ 6%. The lower baryon

matter content leads to also a lower photon to baryon ratio η10 ≈ 2 within the SIV, which is three tines

less that the standard value of η10 = 6.09. As shown in [3], the overall results indicated insensitivity to

the specific λ-scaling dependence of the mŤ-factor in the reverse reaction expressions within Tβ terms.

Thus, one may have to explore further the SIV-guided λ-scaling relations as done for the last column

in Table 2, however, this would require the utilization of the numerical methods used by PRIMAT and

as such will take us away from the SIV-analytic expressions explored that provided a simple model for

understanding the BBNS within the SIV paradigm. Furthermore, it will take us further away from

the accepted local statistical equilibrium and may require the application of the reparametrization

paradigm that seems to result in SIV like equations but does not impose a specific form for λ [1]. Thus,

at this point the SIV theory is still a viable alternative model for cosmology.

3.8. SIV and the Inflation of the Early Universe [2]

Another important result within the SIV paradigm is the presence of inflationary stage at the very

early Universe t ≈ tin ≪ t0 = 1 with a natural exit from inflation in a later time texit with value related

to the parameters of the inflationary potential [2]. The main steps towards these results are outlined

below.

If we go back to the general scale-invariant cosmology Equation (9), we can identify a vacuum

energy density expression that relates the Einstein cosmological constant with the energy density as

expressed in terms of κ = −λ̇/λ by using the SIV result (14). The corresponding vacuum energy

density ρ, with C = 3/(4πG), is then:

ρ =
Λ

8πG
= λ2ρ′ = λ2 ΛE

8πG
=

3

8πG

λ̇2

λ2
=

C

2
ψ̇2 . (44)

This provides a natural connection to inflation within the SIV via ψ̇ = −λ̇/λ or ψ ∝ ln(t). The

equations for the energy density, pressure, and Weinberg’s condition for inflation within the standard

model for inflation by Guth [46], Linde [47,48], Weinberg [49] are:

ρ

p

}
=

1

2
ϕ̇2 ± V(ϕ), | Ḣinfl |≪ H2

infl . (45)

If we make the identification between the standard model for inflation above with the fields present

within the SIV (using C = 3/(4πG)):

ψ̇ = −λ̇/λ, ϕ ↔
√

C ψ, V ↔ CU(ψ), U(ψ) = g eµ ψ . (46)

Here, U(ψ) is the inflation potential with strength g and field “coupling” µ. One can evaluate the

Weinberg’s condition for inflation (45) within the SIV framework [2], and the result is:

| Ḣinfl |
H2

infl

=
3 (µ + 1)

g (µ + 2)
t−µ−2 ≪ 1 f or µ < −2, and t ≪ t0 = 1. (47)

When the Weinberg’s condition for inflation (45) is not satisfied anymore, one can see that there is

a graceful exit from inflation at the later time:

texit ≈ n

√
n g

3(n + 1)
with n = −µ − 2 > 0. (48)
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The derivation of the equation (47) starts with the use of the scale invariant energy conservation

equation within SIV [2,9]:

d(̺a3)

da
+ 3 pa2 + (̺ + 3 p)

a3

λ

dλ

da
= 0 , (49)

which has the following equivalent form:

˙̺ + 3
ȧ

a
(̺ + p) +

λ̇

λ
(̺ + 3p) = 0 . (50)

By substituting the expressions for ρ and p from (45) along with the SIV identification (46) within

the SIV expression (50), one obtains modified form of the Klein–Gordon equation, which could be

non-linear when using non-linear potential U(ψ) as in (46):

ψ̈ + U′ + 3Hinfl ψ̇ − 2 (ψ̇2 − U) = 0 . (51)

The above Equation (51) can be used to evaluate the time derivative of the Hubble parameter. The

process is utilizing (14); that is, λ = t0/t, ψ̇ = −λ̇/λ = 1/t ⇒ ψ̈ = −ψ̇2 along with ψ = ln(t) + const

and U(ψ) = g eµ ψ = gtµ when the normalization of the field ψ is chosen so that ψ(t0) = ln(t0) = 0

for t0 = 1 at the current epoch. The final result is:

Hinfl = ψ̇ − 2 U

3 ψ̇
− U′

3 ψ̇
=

1

t
− (2 + µ) g

3
tµ+1 , (52)

Ḣinfl = −ψ̇2 − 2U

3
− U′ − U′′

3
= − 1

t2
− (µ + 2)(µ + 1) g

3
tµ . (53)

For µ < −2 the tµ terms above are dominant; thus, the critical ratio (45) for the occurrence of inflation

near t ≈ tin is then:
| Ḣinfl |

H2
infl

=
3 (µ + 1)

g (µ + 2)
t−µ−2 .

Based on (44), both ̺ and Λ (in the scale invariant space) behave like 1/t2 according to expression

(15) based on the field equation of the vacuum. This implies that the energy density of the vacuum,

and the cosmological constant Λ, in the scale invariant space become very large near the origin. For

example, at the Planck time tPl = 5.39 · 10−44 s, dominated by quantum effects, the cosmological

constant would be a factor
(

4.355·1017

5.39·10−44

)2
= 6.4 · 10121 larger than the value at the present cosmic age

τ0 = 13.7 Gyr = 4.323 · 1017 s. Thus, as such this may solve the so-called cosmological problem by

viewing the Planck-seed universes and the derivable universes as different stages of the same Universe

rather than a disconnected universe [26]. In other words, the smallness of the Einstein cosmological

constant ΛE is naturally related to the current age of the Universe, assuming that now λ = 1 by choice

of units, because the solution (15) for (14) implies ΛE = 3/τ2
0 ≈ 1.6 × 10−35s−2.

4. Conclusions and Outlook

The SIV hypothesis is a relatively new theory, and it is still under development. However, the

results of the tests that have been conducted so far are promising. If the SIV hypothesis is correct, it

could provide a new and important understanding of the universe.

From the results summarized in the previous section on various comparisons and potential further

applications, we see that the SIV cosmology is a viable alternative to ΛCDM. In particular, within the

SIV gauge (16) the cosmological constant disappears. There are diminishing differences in the values of

the scale factor a(t) within ΛCDM and SIV at higher densities as emphasized in the discussion of

(Figure 1) [9,10]. The SIV also shows consistency for H0 and the age of the Universe, and the m-z

diagram is well satisfied—see Maeder and Gueorguiev [10] for details.
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Furthermore, the SIV provides the correct RAR for dwarf spheroidals (Figure 5) while MOND is failing,

and dark matter cannot account for the phenomenon [5]. Therefore, it seems that within the SIV, dark

matter is not needed to seed the growth of structure in the Universe, as there is a fast enough growth of the

density fluctuations as seen in (Figure 6) and discussed in more detail by Maeder and Gueorguiev [4].

In our previous studies on the inflation within the SIV cosmology [2], we have identified a

connection of the scale factor λ, and its rate of change, with the inflation field ψ → ϕ , ψ̇ = −λ̇/λ

(46). As seen from (47), inflation of the very-very early Universe, τ ≈ 0 (t ≈ tin << 1), is natural, and SIV

predicts a graceful exit from inflation (see (48))!

Our latest study on the primordial nucleosynthesis within the SIV [3] has shown that smaller than

usual baryon and non-zero dark matter content, by a factor of three to five times reduction, result in

compatible to the standard light elements abundances (Table 2).

Some of the obvious future research directions are related to the primordial nucleosynthesis, where

preliminary results show a satisfactory comparison between SIV and observations [3,28]. Further

investigations of potential SIV-guided deviations from the local statistical equilibrium should be

studied since this may lead to mechanisms for understanding the matter-anti-matter asymmetry. The

recent success of the R-MOND in the description of the CMB [50], after the initial hope and concerns

[51], is very stimulating; it suggests that a generally covariant theory that has the correct Newtonian

limit is likely to describe the CMB; Since SIV is generally covariant and has the correct limits, it

demands testing the SIV cosmology as well against the MOND and ΛCDM successes in the description

of the CMB, the Baryonic Acoustic Oscillations, etc.

Another important direction is the need to understand the physical meaning and interpretation of

the conformal factor λ. As we pointed out in Section 1.2, a general conformal factor λ(x) seems to be

linked to Jordan–Brans–Dicke scalar-tensor theory that leads to a varying Newton’s constant G, which

has not been detected to date. Furthermore, a spacial dependence of λ(x) opens the door to local field

excitations that should manifest as some type of fundamental scalar particles. The Higgs boson is such

a particle, but a connection to Jordan–Brans–Dicke scalar-tensor theory seems a far fetched idea. On

the other hand, the assumption of isotropy and homogeneity of space forces λ(t) to depend only on

time, which is not in any sense similar to the usual fundamental fields we are familiar with.

In this respect, other less obvious research directions are related to the exploration of SIV within

the solar system due to the high-accuracy data available, or exploring further and in more detail the

possible connection of SIV with the re-parametrization invariance. For example, it is already known by

Gueorguiev and Maeder [1] that un-proper time parametrization can lead to a SIV-like equation of

motion (5) and the relevant weak-field version (29).
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