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Abstract: In this paper, we present a groundbreaking methodology in the realm of aspect-level

sentiment analysis, which capitalizes on the advanced capabilities of graph-based neural networks.

Our approach, distinguished as the Aspect Correlation Graph Network (ACGN), represents a

significant departure from conventional models. These traditional models often analyze aspects

in isolation, failing to capture the intricate web of sentiment relationships that may exist within a

single sentence. ACGN, however, is designed to address this gap by employing a sophisticated

bidirectional attention mechanism, integrated with positional encoding. This unique combination

not only enhances the model’s ability to focus on relevant parts of the sentence but also aids in

constructing detailed, aspect-focused representations. These representations are particularly crucial

for understanding the nuanced interplay of sentiments associated with different aspects. Central to

our model’s architecture is the incorporation of a graph convolutional network. This network serves

as a pivotal component in mapping and analyzing the complex network of sentiment correlations

that can exist among various aspects within sentences. Through this integration, ACGN is able to

unearth and interpret the subtle and often overlooked sentiment dynamics that traditional models

might miss. Our comprehensive evaluations of the Aspect Correlation Graph Network, conducted

using the SemEval 2014 datasets, have yielded promising results. These findings demonstrate a

clear and significant advancement over the capabilities of existing models. Particularly, the results

underscore the critical importance and utility of recognizing and understanding the connections

between sentiments of different aspects in text analysis. This insight opens new avenues in the field

of sentiment analysis, suggesting a broader application potential of ACGN in various contexts where

understanding nuanced sentiment relationships is key. Overall, our study not only introduces a novel

approach in aspect-level sentiment analysis but also sets a new standard for future research in this

area. By highlighting the integral role of inter-aspect sentiment connections, ACGN paves the way

for more sophisticated and accurate sentiment analysis tools, capable of handling the complexities of

natural language with greater finesse and precision.

Keywords: aspect-level sentiment analysis; sentiment interplay; graph-based neural networks;

bidirectional attention

1. Introduction

The field of aspect-level sentiment classification, as cited in seminal works by Bo Pang (2008) and

Bing Liu (2012) [1], has increasingly gained prominence in the sphere of natural language processing

[2–4]. This intricate task goes beyond general sentiment analysis by zeroing in on the sentiment

polarities associated with specific aspects within a given context. Consider, for instance given in

Figure 1, a sentence like “The price is reasonable although the service is poor". Here, the sentiments

expressed towards distinct aspects, namely “price" and “service", diverge, reflecting positive and

negative polarities, respectively. In this context, an aspect could be an entity or a particular attribute of

an entity.
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Figure 1. This figure demonstrates how understanding sentiment relationships among various aspects

within a sentence can be beneficial. Such dependencies often become apparent through certain linguistic

cues, like conjunctions. A case in point is our ability to deduce the actual sentiment towards the aspect

“food", even when critical words like “horrible" are obscured, highlighting the predictive power of

these sentiment connections.

Delving deeper into aspect-level sentiment classification reveals its complexity [24], especially

when contrasted with broader, sentence-level sentiment analysis. The primary challenge lies

in pinpointing and interpreting the segments of a sentence that pertain to each aspect. Earlier

methodologies, as explored in studies by Svetlana Kiritchenko (2014) and others, predominantly

relied on statistical techniques, crafting a suite of handcrafted features to train classifiers like Support

Vector Machines. Such approaches, while effective to an extent, were labor-intensive and lacked

flexibility.

Recent years have witnessed a paradigm shift with the advent of neural network models,

as detailed in works by Poria et al. (2016) and Duyu Tang (2016) [25–28]. These models have

garnered interest for their proficiency in autonomously generating insightful, low-dimensional

representations from both aspects and their contextual environments. This development has markedly

improved accuracy in aspect-level sentiment classification, eliminating the need for meticulous feature

engineering [24,29–31]. A cornerstone of this evolution has been the implementation of attention

mechanisms in neural networks, as evidenced in groundbreaking research by Volodymyr (2014) and

Dzmitry (2015) [4,9,32–34]. These mechanisms, widely incorporated in aspect-level sentiment analysis

models, adeptly identify the sentence components most pertinent to a given aspect. Models by Chen et

al. (2017), Ma et al. (2017), and Song et al. (2019) exemplify the successful application of attention-based

frameworks in creating aspect-specific representations.

Notwithstanding these advancements, existing models are not without limitations. A recurring

issue is their tendency to treat each aspect in isolation, thus overlooking the potential wealth

of information embedded in the sentiment dependencies among multiple aspects. For instance,

understanding the positive sentiment towards the "setting" aspect, combined with the conjunction

"but", intuitively suggests a negative sentiment towards the "food" aspect. Such inter-aspect sentiment

dependencies are instrumental in accurately gauging the overall sentiment conveyed in a sentence.

Addressing this gap, we introduce a groundbreaking method, termed Sentiment Dependency

Graph Convolutional Networks (SDGCN), to model these intricate sentiment interconnections in

aspect-level sentiment classification. Leveraging the strengths of graph convolutional networks (GCN),

as discussed in Kipf’s (2016) research, SDGCN adeptly captures the nuanced interdependencies within

relational data. Each aspect is conceptualized as a node within a graph, with edges delineating

the sentiment relationships between nodes. Prior to applying GCN, our model also incorporates a

bidirectional attention mechanism paired with position encoding, further refining the aspect-specific

representations.

Our evaluation, conducted on the SemEval 2014 datasets [35], demonstrates that SDGCN

significantly outperforms existing state-of-the-art methods. The primary contributions of our work are

multifold:

• We are pioneers in considering inter-aspect sentiment dependencies within a single sentence for

aspect-level sentiment classification.
• Our innovative bidirectional attention mechanism, enhanced with position encoding, effectively

captures nuanced aspect-specific representations.
• SDGCN introduces a novel framework for multi-aspect sentiment classification, employing GCN

to adeptly map sentiment dependencies across different aspects within sentences.
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• Comprehensive evaluations on SemEval 2014 datasets affirm the superiority of our model

compared to current leading methodologies.

In summary, our research not only presents a novel approach in the landscape of sentiment

analysis but also sets a precedent for future explorations in this domain, underlining the critical role of

understanding the interconnected nature of sentiments across various aspects.

2. Related Work

This section delves into the prevailing research on aspect-level sentiment classification and the

utilization of graph convolutional networks, providing a succinct overview of these domains.

2.1. Aspect-Level Sentiment Classification

The realm of sentiment analysis, also commonly referred to as opinion mining, stands as a

cornerstone in the field of Natural Language Processing (NLP), as highlighted in studies by Kim (2014)

and Abid et al. (2019). Within this domain, aspect-level sentiment classification emerges as a nuanced,

fine-grained task [13,36–38].

Historically, initial research in aspect-level sentiment classification centered on the extraction

of various features, such as bag-of-words and sentiment lexicons, to train classifiers (Rao and

Ravichandran, 2009). These methodologies spanned from rule-based systems (Ding et al., 2008)

to statistical approaches (Jiang et al., 2011), all heavily reliant on the painstaking process of feature

engineering. However, the landscape began to shift with the advent of deep learning. More recent

advances have seen a surge in the application of deep neural networks, renowned for their ability

to autonomously generate dense sentence vectors, eschewing the need for manual feature crafting

(Dong et al., 2014; Hai and Cong, 2015). These vectors, characterized by their low dimensionality,

retain a rich tapestry of semantic details. Attention mechanisms, in particular, have revolutionized

sentence representation by homing in on the most salient aspects of a sentence in relation to a given

aspect (Li et al., 2017; Li and Jiang, 2018; Ma et al., 2019). Wang and colleagues (2016) introduced

ATAE-LSTM, a model that fuses LSTM with an attention mechanism, enabling aspect embeddings to

directly influence the computation of attention weights. Similarly, Chen et al. (2017) proposed RAM,

employing a multi-attention mechanism within a bi-directional LSTM structure. Ma et al. (2017) and

Song et al. (2019) furthered this exploration, designing models with bidirectional and multi-head

attention mechanisms, respectively, for a more intricate relationship modeling between context and

aspect. Nonetheless, a common limitation in these attention-centric studies is their isolated handling

of each aspect within sentences, potentially overlooking crucial sentiment dependency information in

scenarios involving multiple aspects.

2.2. Graph Convolutional Network

Graph convolutional networks (GCN), first conceptualized by Bruna et al. (2014), have proven

to be highly effective in processing graph-structured data, rich in relational information. Extensive

research has been conducted to adapt GCNs for image-related tasks, with notable contributions from

Henaff et al. (2015), Defferrard et al. (2016), Qi et al. (2017), and Li et al. (2018). Chen et al. (2019)

advanced this further by applying GCN for multi-label image recognition, facilitating the propagation

of information among multiple labels and fostering the development of interconnected classifiers

for each image label. In parallel, the NLP sector has also witnessed a burgeoning interest in GCNs,

with applications spanning semantic role labeling (Marcheggiani and Titov, 2017), machine translation

(Bastings et al., 2017), and relation classification (Li et al., 2019). Other explorations in this field have

utilized graph neural networks for text classification, treating documents, sentences, or words as

nodes within a graph and constructing the network based on node relationships (Hao et al., 2018;

Yue et al., 2018). These studies collectively underscore GCNs’ adeptness in capturing the intricate
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relations between nodes [39? ]. Drawing inspiration from this body of work, we incorporate GCN in

our research to effectively discern sentiment dependencies among multiple aspects within textual data.

3. Methodology

The task of aspect-level sentiment classification is defined as follows: Consider a context

containing N words Wc = {wc
1, wc

2, . . . , wc
N} and K aspect terms Wa = {Wa1 , Wa2 , . . . , WaK}. Each

aspect term Wai , comprising Mi ∈ [1, N) words, is a subset of the context Wc. The objective is to

develop a classifier that accurately predicts the sentiment polarity for each of these aspect terms.

Our proposed SDGCN architecture encompasses several components: input embedding, Bi-LSTM,

position encoding, bidirectional attention, GCN, and the output layer. We describe these components

in sequence from input to output.

3.1. Input Embedding Layer

In this layer, individual words are transformed into vectors in a high-dimensional space. We

use the pretrained GloVe model [40] and the BERT model [41] to obtain static word embeddings.

Consequently, each word is represented by a vector et ∈ R
demb×1, where demb denotes the embedding

dimension. Post embedding, the context is represented as Ec ∈ R
demb×N , and the i-th aspect as

Eai ∈ R
demb×Mi .

3.2. Bidirectional LSTM (Bi-LSTM)

On top of the embedding layer, a Bi-LSTM captures contextual nuances for each word. The

forward and backward hidden states,
−→
ht ∈ R

dhid×1 and
←−
ht ∈ R

dhid×1 respectively, where dhid represents

the number of hidden units, are concatenated to form the final state:

ht = [
−→
ht ,
←−
ht ] ∈ R

2dhid×1 (1)

Separate Bi-LSTMs are used for obtaining the contextual outputs for the sentence, Hc =

[hc
1, hc

2, . . . , hc
N ] ∈ R

2dhid×N , and each aspect, Ha
i = [hai

1 , h
ai
2 , . . . , h

ai
Mi
] ∈ R

2dhid×Mi , with shared

parameters across different aspects.

3.3. Position Encoding

Recognizing that the sentiment of an aspect is more likely influenced by nearby context words,

we incorporate position encoding. For an aspect Wai among K aspects, where i ∈ [1, K] is the aspect

index, the relative distance d
ai
t between the t-th context word and the i-th aspect is defined as:

d
ai
t =















1, if dis = 0

1− dis
N , if 1 ≤ dis ≤ s

0, if dis > s

(2)

where dis is the distance from a context word to the aspect, s is a predetermined constant, and N is the

context length. The position-aware representation with embedded position information is:

p
ai
t = d

ai
t hc

t

Pai = Pi = [pai
1 , p

ai
2 , . . . , p

ai
N ] (3)

3.4. Bidirectional Attention Mechanism

To encapsulate the interactive relationship between context and aspect, our model utilizes a

bidirectional attention mechanism, comprising two modules: context to aspect attention and aspect to
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context attention. The first module redefines aspect representations based on the context, while the

second focuses on deriving aspect-specific context representations for subsequent GCN processing.

3.4.1. Context to Aspect Attention

This component assigns weights to aspect words according to a query vector hc ∈ R
2dhid×1,

derived from averaging the context hidden outputs Hc. The attention weight β
ai
t for each aspect word

vector h
ai
t ∈ R

2dhid×1 is computed as:

fca(hc, h
ai
t ) = hcT

·Wca · h
ai
t (4)

β
ai
t =

exp( fca(hc, h
ai
t ))

∑
Mi
t=1 exp( fca(hc, h

ai
t ))

(5)

where Wca ∈ R
2dhid×2dhid is the attention weight matrix. The new aspect representation is then a

weighted combination of the aspect hidden states:

mai =
Mi

∑
t=1

β
ai
t · h

ai
t (6)

3.4.2. Aspect to Context Attention

This module captures the aspect-specific context representation, mirroring the context to aspect

attention. It calculates attention scores using the new aspect representation mai and the position-aware

representation p
ai
t :

fac(m
ai , p

ai
t ) = mai T ·Wac · p

ai
t (7)

γ
ai
t =

exp( fac(mai , p
ai
t ))

∑
N
t=1 exp( fac(mai , p

ai
t ))

(8)

xai = xi =
N

∑
t=1

γ
ai
t · h

c
t (9)

where Wac ∈ R
2dhid×2dhid is another attention weight matrix. This step yields aspect-specific

representations X = [x1, x2, . . . , xK] for each aspect in context.

3.5. Graph Convolutional Network (GCN)

GCN excels in processing data with intricate relationships and dependencies. We leverage GCN

to model the sentiment dependencies between aspects, treating each aspect as a graph node. The final

output of each node functions as the classifier for the respective aspect. As our task lacks explicit edges,

we define these connections from scratch.
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3.5.1. SDGCN: Sentiment graph based GCN

In SDGCN, each graph node encapsulates aspect-specific data, transforming neighborhood

information into a novel vector representation. This method, inspired by Kipf et al. [? ], incorporates

self-loops in every node. The transformation is mathematically described as:

x1
v = relu



 ∑
u∈N(v)

Ŵcrossxu + b̂cross



+ relu(Ŵsel f xv + b̂sel f ) (10)

Here, Ŵcross, Ŵsel f ∈ R
dm×dn , b̂cross, b̂sel f ∈ R

dm×1, with xu signifying the u-th aspect-centric

representation (refer Eq.(9)), and relu representing the rectifier linear unit function. We set dm =

dn = 2hhid in our SDGCN model.

By integrating multiple layers of SDGCN, we enhance the depth of neighborhood information

accessible to each node. Each layer processes the output from its predecessor to generate updated

node representations:

xl+1
v = relu



 ∑
u∈N(v)

Ŵ l
crossxl

u + b̂l
cross



+ relu(Ŵ l
sel f xl

v + b̂l
sel f ) (11)

where l represents the layer index, with 1 ≤ l ≤ L− 1.

3.6. Aspect Classification via SDGCN

The SDGCN framework concludes with an aspect classification mechanism. The final layer’s

node output, xL
i , is harnessed as an aspect-specific classifier. A fully-connected layer then maps xL

i to a

C class aspect space:

zi = ŴzxL
i + b̂z (12)

where Ŵz ∈ R
C×2dhid and b̂z ∈ R

2dhid×C. The probability of the i-th aspect being in the sentiment class

j ∈ [1, C] is calculated as:

y′ij =
exp(zij)

∑
C
k=1 exp(zik)

(13)

3.7. Optimization in SDGCN Training

The SDGCN model optimizes performance by minimizing a loss function that integrates

cross-entropy with an L2-regularization component. The loss for a specific sentence is formulated as:

loss =
K

∑
i=1

C

∑
j=1

yij log(y′ij) + λ‖θ‖2 (14)

where yij denotes the one-hot labels for the i-th aspect in the j-th class, λ is the L2-regularization

coefficient, and θ encompasses the parameters subject to regularization. Additionally, to mitigate

overfitting, a dropout strategy is employed during the training phase.

4. Experimental Analysis

4.1. Datasets and Experimental Configurations

We assessed the efficacy of SDGCN using two SemEval 2014 Task4 datasets (refer Table 1),

comprising laptop and restaurant reviews. Each dataset is divided into training and testing sets, with
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reviews containing multiple aspects and their sentiment polarities (positive, neutral, negative). The

distribution of aspects within sentences is illustrated in Figure ??, showing a common presence of

multi-aspects in single sentences.

Table 1. Overview of the datasets.

Dataset Split Positive Negative Neutral

Restaurant
Training 2164 807 637
Testing 728 196 196

Laptop
Training 994 870 464
Testing 341 128 169

For model initialization, we utilized GloVe and BERT word representations, with respective

dimensionalities of 300 and 768. The LSTM hidden units were set at 300, while GCN layer output

was fixed at 600. Weight matrices, barring the final fully connected layer, were initialized using a

uniform distribution. The final layer employed a normal distribution and L2 regularization. Training

parameters included a 0.5 dropout rate, batch size of 32, and Adam Optimizer with a learning rate of

0.001. Model performance was evaluated using Accuracy and Macro-F1 metrics.

4.2. Comparative Frameworks

SDGCN’s effectiveness is benchmarked against various models: TD-LSTM, ATAE-LSTM,

MemNet, IAN, RAM, PBAN, TSN, AEN, AEN-BERT - Various approaches employing aspect-specific

representations and attention mechanisms with LSTM or GRU networks for sentiment polarity

prediction.

4.3. Overall Outcomes

The experimental outcomes, as delineated in Table 2, unveil the comparative efficiency of the

models under scrutiny. To facilitate an unbiased evaluation that transcends the limitations posed by

varying word representations, we meticulously segmented our analysis into two distinct categories:

models predicated on GloVe embeddings and those based on BERT. A remarkable observation from

this bifurcated analysis is the unparalleled performance of our brainchild, the SDGCN model, which

not only leads the pack in both categories but also sets unprecedented benchmarks in the domain,

especially with its BERT-based incarnation, SDGCN-BERT.

Delving into the intricacies of the GloVe-based methodologies, it becomes evident that the

TD-LSTM approach lags in its effectiveness. This shortfall stems from its rudimentary integration

of aspect information, which lacks the finesse and depth required for nuanced sentiment analysis.

In contrast, models like ATAE-LSTM, MenNet, and IAN, which harness the power of attention

mechanisms, exhibit a marked improvement over TD-LSTM. These models adeptly factor in the

significance of aspects, thereby enhancing their predictive accuracy.

Notably, RAM, with its fusion of multiple attention mechanisms and a recurrent neural network,

excels in capturing detailed, aspect-specific representations, elevating its performance above its basic

attention-based counterparts. PBAN, utilizing position embedding, parallels the efficacy of RAM,

showing superior results on the Restaurant dataset but not quite matching up on the Laptop dataset.

The relative underperformance of TSN, in both datasets, can be attributed to its oversimplified

framework, which inadequately models the context and aspects. AEN, albeit slightly better than TSN,

also falls short of RAM and PBAN, implying that eschewing recurrent neural networks might reduce

model complexity but at the cost of performance.
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Table 2. Performance comparison with baseline models on Restaurant and Laptop datasets. Baseline

results are sourced from literature. Best GloVe and BERT model outcomes are highlighted separately.

Suffix ’-A’ denotes adjacent-relation graph based models, ’-G’ for global-relation graph based models.

Embedding Type Approaches
Restaurant Laptop

Accuracy Macro-F1 Accuracy Macro-F1

GloVe

TD-LSTM 75.63 - 68.13 -
ATAE-LSTM 77.20 - 68.70 -
MemNet 78.16 65.83 70.33 64.09
IAN 78.60 - 72.10 -
RAN 80.23 70.80 74.49 71.35
PBAN 81.16 - 74.12 -
TSN 80.1 - 73.1 -
AEN 80.98 72.14 73.51 69.04

SDGCN-A w/o p 81.61 72.22 73.20 68.54
SDGCN-G w/o p 81.61 72.93 73.67 68.70
SDGCN-A 82.14 73.47 75.39 70.04
SDGCN-G 82.95 75.79 75.55 71.35

BERT
AEN-BERT 83.12 73.76 79.93 76.31
SDGCN-BERT 83.57 76.47 81.35 78.34

A pivotal insight emerges when comparing the results of SDGCN variants - the SDGCN-A

and SDGCN-G. The global-relation graph-based SDGCN-G demonstrates a subtle yet significant

edge over its adjacent-relation counterpart in terms of accuracy and Macro-F1 scores. This suggests

that solely relying on adjacent relationships might be insufficient to holistically capture the intricate

web of interactions among multiple aspects, especially when long-distance relationships are at play.

Furthermore, incorporating position information into SDGCN-A and SDGCN-G yields substantial

performance enhancements, underscoring the critical role of position encoding in achieving optimal

results.

The BERT-based models, armed with the prowess of pre-trained BERT embeddings, showcase a

clear superiority over their GloVe-based counterparts. This is particularly evident when examining the

performance leaps made by SDGCN-BERT. On the Restaurant dataset, it notches up gains of 1.09% in

accuracy and 1.86% in Macro-F1 scores, while on the Laptop dataset, it registers even more impressive

gains of 1.42% and 2.03% in the same metrics, respectively. These significant improvements attest to

the formidable efficacy of our proposed SDGCN model, cementing its status as a trailblazer in the

realm of aspect-based sentiment analysis.

4.4. In-Depth Examination of GCN’s Influence on Model Efficacy

This segment delves into a meticulously structured series of model experiments designed to

rigorously assess the transformative impact of the Graph Convolutional Network (GCN) module on

aspect-based sentiment analysis. The models employed in this investigation are:

• BiAtt+GCN (Synonymously SDGCN): This model, our flagship SDGCN, harnesses the

synergistic power of bilateral attention mechanisms combined with GCN, offering a holistic view

of inter-aspect sentiment relations.
• BiAtt: Stripping away the GCN layer from BiAtt+GCN, this model offers insights into sentiment

predictions by treating each aspect in isolation, thus lacking the relational context provided by

GCN.
• Att+GCN: A pared-down version of BiAtt+GCN, this model retains the GCN component but

omits the nuanced ’context to aspect attention’, potentially impacting its sentiment prediction

accuracy.
• Att: This variant, devoid of the GCN module, serves as a baseline, focusing solely on attention

mechanisms without the benefit of GCN’s relational insights.
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The performance metrics of these models, as illustrated in Table 3, paint a revealing picture.

A comparative analysis clearly demonstrates that models incorporating the GCN module (e.g.,

Att+GCN and BiAtt+GCN) consistently outperform their non-GCN counterparts. This disparity

in performance not only underscores the efficacy of GCN in enhancing the model’s capability to

predict sentiment polarities but also highlights its critical role in understanding the intricate web of

sentiment dependencies between various aspects within a text. The juxtaposition of these models,

varying in their incorporation of GCN and attention mechanisms, offers a nuanced understanding of

how each component contributes to the overall sentiment analysis, thereby validating the indispensable

role of GCN in elevating the sophistication and accuracy of aspect-based sentiment analysis.

Table 3. Comprehensive Evaluation of GCN’s Impact.

Models
Restaurant Laptop

Acc Macro-F1 Acc Macro-F1

Att 81.43 72.40 72.12 68.67
Att+GCN 82.77 74.33 74.61 70.33

BiAtt 81.61 73.49 73.51 69.73
BiAtt+GCN (SDGCN) 82.95 75.79 75.55 71.35

4.5. Detailed Analysis Through Case Studies

This segment delves into a comparative case study, utilizing examples from the laptop dataset,

to elucidate the nuanced differences between models equipped with the Graph Convolutional

Network (GCN) and those without. These examples, rich in multiple aspects, serve to provide a

concrete, intuitive understanding of our proposed GCN-enhanced model’s capabilities in contrast to

its counterpart.

Consider the first scenario: "I love the keyboard and the screen." In this sentence, the key aspects

are "keyboard" and "screen." The model lacking GCN focuses predominantly on the word "love" to

ascertain the sentiment polarities tied to these aspects. However, the GCN-equipped model exhibits a

more sophisticated approach. It not only considers "love" but also gives due weight to the connective

"and." This subtle yet significant difference indicates that our GCN model adeptly identifies the

sentiment link between "keyboard" and "screen" through the connective, allowing for a more integrated

and simultaneous sentiment prediction for both aspects.

Moving to the second example: "Air has higher resolution but the fonts are small." This sentence

presents the aspects "resolution" and "fonts," connected by the contrasting conjunction "but," implying

opposing sentiments. The model without GCN isolates the sentiments, associating "higher" with

a positive sentiment for "resolution" and "small" with a potentially negative sentiment for "fonts,"

neglecting the interplay between these aspects. In stark contrast, the GCN model brings the conjunction

"but" into the limelight. This focus enables the model to comprehend the inverse sentiment relationship

between "resolution" and "fonts," enhancing the accuracy of sentiment polarity predictions for each

aspect.

These illustrative examples highlight the superior capability of our GCN model. It doesn’t just

concentrate on individual words pertinent to aspect sentiments; it also intelligently interprets textual

elements that signify relationships between different aspects. Utilizing the attention mechanism to

spotlight words that express inter-aspect dependencies, followed by the GCN module’s analysis,

our model effectively encapsulates the sentiment dynamics within a sentence. This comprehensive

approach allows for a more accurate prediction of aspect-level sentiment categories, demonstrating

the effectiveness and sophistication of the GCN-enhanced model in aspect-based sentiment analysis.
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5. Conclusion and Future Directions

This study presents the development of a cutting-edge model, SDGCN, specifically tailored for

the nuanced task of aspect-level sentiment analysis. At the heart of SDGCN’s methodology lies the

innovative application of Graph Convolutional Networks (GCN) to intricately map out and analyze

the sentiment interconnections among various aspects within a single sentence. A distinct feature of

SDGCN is its integration of a bidirectional attention mechanism, enhanced with positional encoding.

This approach enables the model to generate representations that are not only aspect-specific but

also deeply informed by the positional context of each aspect within the text. Furthermore, SDGCN

employs an advanced message-passing technique to effectively decode the complex web of sentiment

dependencies between aspects, a facet often overlooked in previous research endeavors.

Our empirical evaluations, conducted using the SemEval 2014 dataset, have conclusively

demonstrated SDGCN’s superior performance capabilities. Particularly noteworthy is the

SDGCN-BERT variant, which has achieved unprecedented results, setting new benchmarks in the

field of aspect-level sentiment analysis. Through meticulous case studies, SDGCN has proven its

proficiency in not only identifying key words pivotal for determining aspect sentiment polarities but

also in discerning words that play a crucial role in establishing the sentiment relationships between

different aspects. This dual focus endows SDGCN with a remarkable ability to capture the subtle

nuances of sentiment interplay within textual data.

Looking ahead, our research will venture into the realm of refining and enhancing the sentiment

graph structures interlinking aspects. The current model utilizes two varieties of undirected sentiment

graphs, which, while effective, offer scope for further sophistication. We hypothesize that leveraging

the rich contextual cues present in the textual data could pave the way for constructing more intricate

and precise graph structures. This advancement has the potential to not only fine-tune the sentiment

analysis process but also to unveil deeper, more intricate layers of sentiment interrelations, thereby

pushing the frontiers of aspect-based sentiment analysis.
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