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Abstract: Fish processing by-products such as frames, trimmings, and viscera of commercial fish 
species are rich in proteins. Thus, they have the potential to be an economical source of proteins that 
may be used to obtain bioactive peptides and functional protein hydrolysates for the food and 
nutraceutical industries. The structure, composition, and biological activities of peptides and 
hydrolysates depend on the freshness and the actual composition of the material. Peptides isolated 
from fisheries by-products showed antioxidant activity. Changes of hydrolysis parameters changed 
the sequence and properties of the peptides, and determined their physiological functions. 
Optimization of the value of such peptides and the production costs must be considered for each 
particular source of marine by-products and for their specific food applications. This review will 
discuss the functional properties of fisheries by-products prepared using hydrolysis and their 
potential food applications. It also reviews the structure-activity relationships of the antioxidant 
activity of peptides as well as challenges to the use of fisheries by-products for protein hydrolysates 
production.  

Keywords: marine protein hydrolysates; hydrolysis variables; structure-function relations; 
antioxidant activity 

 

1. Introduction 

In response to the recognition of the limits of marine sources and the crisis of food security, 
production of aquatic food products is increasing and reached 179 million tonnes in 2018, of which 
22 million tonnes (or 12%) were not used for human consumption [1]. Maximum use of by-products 
from fish processing industries (e.g., heads, frames, skin, trimmings, and viscera from fish, 
cephalothorax and shells from shrimp, heads and tentacles from squids, and shells and byssus 
threads from oysters and mussels), that account for 40-60% of the weight, are necessary to retain them 
in the food chain in line with a sustainable circular economy through production of high-value 
biomolecules [2–5]. Among the different fractions of by-products that are produced after filleting, 
canning, packaging, etc., heads, frames and trimmings constitute >75% of the by-products’ weight 
and contain significant amounts of muscle residue that can be used for direct human consumption or 
can be converted to functional food ingredients. Despite the necessity, using by-products within the 
seafood sector is happening relatively slowly because the seafood industry is more focused on its 
primary raw materials and products that require minimal processing [6].  

One focus has been peptides from marine sources (fish, shellfish, and invertebrates) with 
antioxidant activity [7–10]. Antioxidant peptides have an important role in inhibiting oxidation and 
scavenging free radicals. In the body they may help fight aging and reduce food oxidation. These 
peptides have been prepared using enzymatic or autolytic hydrolysis, or microbial fermentation [2]. 
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Most peptides studied have been 2-10 amino acids (AA), although some were up to 20 AA and had 
molecular weight (MW) of 0.2 to 2 kDa [11–14]. Several proteases with different specificity for peptide 
bond cleavage and different hydrolysis conditions (temperature, time, pH, enzyme to substrate ratio, 
water/by-products ratio, and stirring rate) have been used to produce these marine by-products 
peptides [15–18]. Changes of hydrolysis conditions did change their antioxidant activities [19–21]. 
Antioxidant activity of peptides in foods has been associated with scavenging of the free radicals 
formed during lipid peroxidation, and metal chelation [22], which are dependent on the AA 
composition and sequence, size, hydrophobicity, and N- or C-terminal residues [23–25].  

Marine protein hydrolysates derived using enzymatic hydrolysis showed antioxidant activity 
against free radicals and pro-oxidative metal ions. Thus, they may potentially be used as alternative 
antioxidants in foods and the human body to fight against free radicals-mediated aging [26,27]. The 
structure of antioxidant peptides and protein hydrolysates from marine sources are highly variable 
depending on the types of by-products used as the initial protein source as well as the various 
operating parameters that affect the hydrolysis and the functional outcome. These by-products might 
be stabilized to preserve their freshness with no oxidized products to ensure lower deteriorative 
reactions during enzymatic hydrolysis which is needed to obtain protein hydrolysates with 
acceptable organoleptic properties and storage stability. Marine protein hydrolysates and peptides 
have been shown to reduce oxidation of both lipids and proteins of seafood during storage, thus 
indicating antioxidant and anti-freezing effects [21,28–30].  

Despite the suggested applications for protein hydrolysates from by-products in the food 
industry, there are several challenges that have caused such products to be unable to be 
manufactured on a commercial scale. This review will try to discuss the production and 
characteristics of protein hydrolysates from fisheries by-products derived using hydrolysis, factors 
involved, and their potential applications to control/reduce oxidative deteriorations of seafood 
during storage. It also reviews the structure-activity relationships of the antioxidant activity of 
peptides as well as challenges of industrial processing of by-products and commercialization of 
protein hydrolysates production.  

2. Fish Protein Hydrolysates: Production and Processing Factors 

The fish protein hydrolysates markets are anticipated to reach USD 558 million by 2025 with 

compound annual growth rate (CAGR) of over 5% due to increasing demand for protein-based 

supplements, food formulations, infant nutrition, fertilizers, and aquafeeds due to their higher 

absorption or digestion [2]. These hydrolysates contain peptides with 2-10 amino acids or up to 20 

amino acids and molecular weight of <3 kDa, especially between 0.2 to 2 kDa [2,14]. By-products of 
several commercial species such as tuna [17,20,31], tilapia [12,32–35], marine bony species [19,36,37], 
small pelagics [38–40], salmonids [15,16,41,42], shrimp [18,43,44], marine invertebrates such as 

mollusks [45–47], squid and cuttlefish [48–53], and underutilized fish [54,55] have been used as the 

source for producing protein hydrolysates. By-products from those species showed differences in 

their composition (i.e., different amounts of lipids, blood, proteins, undigested feed in their stomach 

or intestines, etc.), emphasizing the need to adjust the hydrolysis conditions for each source according 

to the inherent characteristics of those by-products (such as sorting by-products to obtain different 
fractions). Depending on the farm conditions or ocean water quality, there are some safety issues 

with by-products from different category of aquatic species that should be considered as undesirable 

metabolites and contaminants that may enter the liquid phase in which peptides are formed, affecting 

the safety of the protein hydrolysates. Table 1 shows the yield, composition, safety concerns, and 

preventive measures for by-products from the main groups of aquatic species (fish, crustaceans, and 

invertebrates).  
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Table 1. Composition and main safety issues in by-products from different categories of aquatic species. 

Species  Yield (%) of 

by-products in 

relation to 

whole weight 

By-products fractions and yiled (%) Chemical 

composition (%) 

Main safety issues Preventive measures References 

Fish       
Atlantic salmon (Salmo 

salar) 
43.8 Heads (9.9), viscera (10.6), frames 

(10.4), trimmings (8.2), skin + scale 
(4.2) 

Heads: 
moisture (53.2), ash 
(5.01), protein (17.2), 
lipid (21.5) 
Frames: 
moisture (52.9), ash 
(6.5), protein (19.3), 
lipid (17.16) 
Trimmings: 
moisture (46.4), ash 
(2.2), protein (18.1), 
lipid (26.4) 
Viscera: 
moisture (46.5), ash 
(0.97), protein (12.4), 
lipid (37 ) 

Fast decomposition by endogenous 
proteolysis, gills and viscera blood, gall 
bladder, off-odor of viscera, formation of 
harmful compounds such as biogenic 
amines and trimethylamine (TMA), loss of 
freshness 

Lowering storage time and temperature, 
sorting of heads, frames from viscera, 
removal of gills where possible  

[10,15,56,57]  

Rainbow trout 
(Oncorhynchus mykiss) 

20-30 Heads (11.2), viscera (7.8), frames 
(7.6), skin (3.4)  

Heads: 
moisture (69.6) 
organic matetr (27.7), 
ash (2.7) 
Trimmings + Frames: 
moisture (66.5) 
organic matetr (30.6), 
ash (3) 

Fast decomposition by endogenous 
proteolysis (autolysis), high abdominal 
fats, blood (gills), non-digested feed in the 
stomach, digesta and fecal matter in the 
intestines 

Cold or frozen storage of by-products, 
sorting heads and viscera, maintaining 
freshness, where possible removal of gills 
with large amounts of blood and 
hemoglobin (e.g., in large fish >2 kg), 
pretreatment with antioxidants  

[16,58,59]  

Yellowfin Tuna 
(Thunnus albacares) 

50-55 Heads (13), fins (1), skin (10), bone 
(6), viscera (8), dark meat 

Upper half: 
moisture (68.2), 
organic matter (26.1), 
ash (5.4) 
Lower half: 
moisture (60.6), 
organic matter (25.1), 
ash (14) 

Long time post catch to processing plant, 
degradation and off-odor of viscera,  
spoilage of gills, tongue, head flesh, 
huge blood release from large gills, 
activation of muscle proteases of heads 
(autolysis of proteins), contamination by 
heavy metals (e.g. cadmium)  

Using fresh by-products (catched by 
longline), removal of gills (blood), cold or 
frozen storage of by-product before 
hydrolysis, sorting of viscera from heads, 
reject batch with high heavy metals  

[17] 
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Turbot (Scophthalmus 

maximus) 
69.6 Heads (19.6), frames (16.4) 

trimmings (13.5), viscera (14.3) 
skin + scale (5.8) 

Heads: 
moisture (71.3), ash 
(6.4), protein (20.2), 
lipid (1.7) 
Frames: 
moisture (58.7), ash 
(7.9), protein (19.1), 
lipid (12.1) 
Trimmings: 
moisture (70.1), ash 
(4.3), protein (20), 
lipid (4.8) 
Viscera: 
moisture (70.9), ash 
(1.6), protein (13.4), 
lipid (10.9) 

Bioaccumulation of heavy metals in muscle 
and by-products, autolysis of by-products, 
long time from catch to delivery at the 
dock, low freshness, bacterial spoilage 

Inhibiting quality deterioration by low 
storage time and temperature, sorting by-
products fractions, reject batch with high 
heavy metals  

[10,60,61]  

European seabass 
(Dicentrarchus labrax) 

55  Heads (21.2), frames (11.9) 
trimmings (7.1), viscera (7.7) 
skin + scale (7) 

Heads: 
moisture (59.4), ash 
(10.1), protein (17.8), 
lipid (11.2) 
Frames: 
moisture (52.6), ash 
(12.4), protein (18.6), 
lipid (13.9) 
Trimmings: 
moisture (57.5), ash 
(6.9), protein (21.2), 
lipid (11.1) 
Viscera: 
moisture (31.9), ash 
(1.5), protein (14.34), 
lipid (39.3) 

Significant amount of oil and thus high 
lipid oxidation during hydrolysis, addition 
of lipid-derived carbonyls on the forming 
peptides, viscera spoilage, freshness  

Sorting frames and trimmings from 
viscera, antioxidants addition, using N2 
to control possible oxidation with viscera  

[10,19] 
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Gilthead seabream 
(Sparus aurata) 

59.9 Heads (27.6), frames (12.4) 
trimmings (6), viscera (6.9) 
skin + scale (7) 

Heads: 
moisture (51.9), ash 
(8), protein (15.3), 
lipid (20.3) 
Frames: 
moisture (55.6), ash 
(9.4), protein (19.4), 
lipid (13.7) 
Trimmings: 
moisture (56.5), ash 
(4.4), protein (22.4), 
lipid (13.2) 
Viscera: 
moisture (60.5), ash 
(2), protein (17.2), 
lipid (12.8) 

Significant amount of oil and thus high 
lipid oxidation during hydrolysis, addition 
of lipid-derived carbonyls on the forming 
peptides, viscera spoilage, freshness 

Sorting frames and trimmings from 
viscera, antioxidants addition, using N2 
to control possible oxidation with viscera 

[10,19] 

Herring (Clupea 

harengus) 
~60 Heads (13.7-17), backbone (12.1-

24.6), belly flap (4.5-10.7), tail (1.6-4), 
others (including viscera, blood, roe, 
milt, etc. depending on catch season, 
2.4-17.6)  

Protein (12.8-19.2), 
lipids (5.8-17.6),  
ash (1.3-7.2),  
moisture (65.7-78.7) 

Fast oxidative deterioration, rancidity soon 
after filleting, blood contamination (Hb-
mediated lipid oxidation), autolysis, rapid 
microbial spoilage, loss of freshness 
(biogenic amines formation) 

Low storage temperature, stabilization by 
antioxidants, sorting of heads (due to 
presence of gills and blood) with other 
moer stable fractions 

[62,63]  

Crustaceans       
Shrimp (Litopenaeus sp., 

Macrobrachium sp., 

Fenneropenaeus sp., 

Penaeus spp.)  

44-62.5 Heads (34-54), shell (7.4-7.6), tail 
(1.7-2.8) 

Head:  
moisture (68-75), 
protein (6.6-10), 
lipids (2.2-7), ash (4-
6) 
Shell and tail: 
moisture (58-68), 
protein (8-11.3), 
lipids (0.4-0.8), ash 
(8.5-13.5) 

Endogenous proteases activity, 
polyphenoloxidase activities, appearance 
of melanin (black spot), soft shell, 
antibiotic residue, heavy metals 
contaminants (cadmium, arsenic, mercury, 
lead) 

Cold chain, frozen storage, use of by-
products from extensive shrimp farming 
(no antibiotic use), raw material safety 
through suppliers agreement  

[3,64,65]  

Crab (Portunus sp., 

Polybius sp., Cancer sp., 

Eriocheir sp., Eriphia sp.)  

>50 Shells, liver (hepatopancrease), 
physiological liquid (hemolymph), 
legs 

Moisture (50-58), 
protein (15-30), 
minerals (30-50), 
chitin (15-30), fat (1-
10) 

Heavy metals (arsenic, cadmium, lead, 
chromium, mercury), loss of freshness 
(histamine, cadaverine, …), autolysis 
mediated by endogenous proteases 

Stoarge at low temperature, maintaining 
freshness, reject batch with high heavy 
metals 

[66,67]  
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Lobster (Panulirus spp., 

Jasus sp.) 
45-80 Head (20), shell, liver, eggs, 

hemolymph 
Protein: 
heads (43.5),  
livers (41.1), shells 
(29}  
Lipids:  
liver (24.3), shells 
0.6) Minerals: 
shells (36), heads 
(31.6) 

Heavy metals (arsenic, cadmium, lead, 
chromium, mercury) due to marine 
pollution, loss of freshness (histamine, 
cadaverine, …), autolysis mediated by 
endogenous proteases, TMA formation 

Stoarge at low temperature, maintaining 
freshness, reject batches with high heavy 
metals 

[66–68]  

Cephalopods  
Squid (Loligo sp., Illux 

sp.) 
52 Heads and tentacles (25), fins (15), 

viscera (8), skins (3), pen (1) 
Moisture (80) 
protein (18), lipids 
(1),  
ash (1) 
 

Rapid post-mortem auto-proteolytic 
degradation of proteins, microbial 
spoilage, contamination by persistent 
organic pollutants (POP), high 
concentrations of copper, zinc and 
cadmium in digestive glands 

Keeping freshness, reducing the rate of 
chemical and microbial spoilage, cold 
storage, removing dark ink, reject batch 
contaminated with high concentrations of 
heavy metals  

[69] 

Cuttlefish  
(Sepia 
officinalis) 

58 Head and tentacles (23.3), viscera 
(18.7), fins (8.5), skin (4.2), ink (4.6) 

Moisture (64-75),  
protein (14.9-17.5),  
lipids (4.8-6.2),  
ash (1.7-2.0) 

Inappropriate storage temperature, 
degradation by acid and alkaline 
proteolytic activity, microbial spoilage, 
high quantity of heavy metals such as in 
viscera  

Maintaining freshness 
of by-products , minimizing enzymatic 
degradation and microbial spoilage 
especially in viscera, preservation and 
cold storage of by-products 

[70–74]  

Bivalve mollusk 
Oyster (Pinctada 

fucata), mussle (Mytilus 

edulis), cockle 
(Cerastoderma edule) 

~60 Shell (60), byssus threads, 
extracellular fluid (containing 
hemolymph and extrapallial fluid 
(EP)) 

Shell: 
protein (2.5% on a 
dry weight basis) 

Contamination by heavy metals, gasoline, 
hydrocarbons, pesticides, and 
microorganisms (coliforms, vibrio, 
salmonella, shigella, biotoxins)  

Monitoring concentrations in the 
laboratory each season, reject batches, use 
of disinfected water and refrigeration, 
implementation of good hygiene and 
manufacturing practices, fishermen’s 
health certificates 

[75–77]  
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Enzymatic and autolytic hydrolysis and microbial fermentation have been used for converting 
the proteins of by-products into peptides with varying sizes and bioactivities [2,7,8,78]. The process 
of hydrolysis with commercial proteases can be controlled by selecting appropriate enzymes and 
adjusting the hydrolysis conditions (time, temperature, enzyme concentrations, water ratio, etc.), and 
the final hydrolysates should be stable in terms of structure (such as peptide profile) and functions. 
Autolytic hydrolysis mediated by endogenous enzymes such as acid/aspartyl proteases (such as 
pepsin), serine proteases (trypsin and chymotrypsin), thiol/cysteine protease (cathepsin B, L, and S), 
and muscle proteases (lysosomal cathepsin, alkaline and neutral protease) have been used to 
hydrolyze marine proteins [79,80]. However, acidic proteases have a lesser role in autolysis because 
most studies have shown that hydrolysis by endogenous proteases usually occur at around neutral 
pH [2] unless this group of proteases is first isolated and then their effects are investigated in acidic 
pH [81–83], although, the cost associated with purification of viscera proteases, their stability, and 
activity may be a challenge compared to highly stable commercial enzymes. With autolysis, several 
variables such as the freshness of by-products may affect optimal proteolytic activity and the possible 
denaturation of endogenous enzymes due to improper handling and storage of by-products will 
affect the autolysis efficiency and thus, the end products’ properties. But because autolysis is not part 
of the goals of this review, more detailed information on autolytic hydrolysis technology can be found 
in previous studies [2]. In general, to obtain protein hydrolysates with stable peptide profiles, smell, 
nutritional value, functional properties, biological activities, and bioavailability, the process of 
enzymatic hydrolysis must be controlled at each step of the production process. Figure 1 shows the 
factors involved and main issues to be considered during enzymatic hydrolysis of fisheries by-
products. Properties and structure of the end products are governed by three main factors (the by-
products, enzymes, and operating parameters) (Subsections 3.1-3.3). 
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Figure 1. Main factors contributing to enzymatic hydrolysis of fisheries by-products and properties 

of the end products. 

2.1. By-products Composition, Quality, Storage and Handling 

The type of by-products (viscera, heads, frames, trimmings, or their mixtures) and their 

composition (different amounts of lipids, blood and hemoglobin and metal ions as pro-oxidants) 
influence the composition, nutritional, and antioxidant properties of the protein hydrolysates [15,84]. 
Frames, trimmings and heads are clean by-products with potential uses for direct human 

consumption or as functional hydrolysates. A recent study has shown that 37.2, 56.7, and 81.0% of 
the weight of heads, frames, and trimmings of Atlantic salmon, respectively, are edible as direct 
human food while for the viscera, the edible yield is normally thought of as 0% [10], due to the 

presence of lipids, bile acids, blood, non-digested feed in the intestine, etc., associated with a high 

rate of oxidation and formation of undesirable metabolites during hydrolysis [3]. According to a 

survey of methods to utilized Scottish salmon by-products, 15% of the final utilization (frames, 
trimmings, heads) is for food, 75% (frames, heads, viscera, mixed by-products, skins) is for feed 

purposes, and 10% (blood) is for fuel and fertilizer [6]. Therefore, cleaner by-products (frames, heads, 
trimmings) with acceptable freshness are ideal for food pouposes, including production of protein 

hydrolysates while viscera (alone) is used for producing hydrolyzed protein concentrate and oil, or 

fish meal and oil (rendering) in the form of mixed by-products. Some of the oxidation products can 

add carbonyl derivative to the peptides, decreasing their antioxidant activity and possibly their 

safety. In this regard, Aspevic et al. [85] reported the differences in essential AA, biogenic amines, 
and sensory properties of protein hydrolysates from backbones, heads, and viscera of salmon and 

mackerel. Viscera hydrolysates from salmon (SV) and mackerel (MV) had more intense taste and 

bitterness compared to hydrolysates from heads and backbones. They also showed more small 
peptides with MW <200 Da (64.7 and 74.5% for SV and MV, respectively) due to the activity of 
endogamous enzymes during enzymatic hydrolysis with FoodPro PNL (10 U/g protein, 50 min at 55 

°C). The presence of bile may add to the bitter taste sensation. SV and MV had higher TMA, 
cadaverine and putrescine compared to hydrolysates from heads and backbones. MV showed more 

taste intense and had higher scores for umami, salty, and fish taste compared to salmon hydrolysates, 
partly due to a higher content of ash (38.3%) in mackerel heads hydrolysates, indicating the need for 

salt removal before human use. Heads and backbones hydrolysates showed much lower free AA 

than viscera hydrolysates in both species (~40 g/100 g visceral protein), indicating autolytic 

hydrolysis that causes higher free AA when using viscera as the raw material for protein 

hydrolysates. Despite these results, viscera hydrolysates are unlikely to be suitable for use in foods 

due to safety issues. On the other hand, its potential as functional feed ingredients in the form of acid 

silage or liquid hydrolysates can be used to enhance the growth, nutrition and health at the larval 
stage of aquatic species [86]. However, in most studies, the purpose of hydrolyzing viscera and 

identifying its antioxidant peptides is not clearly stated, although it is generally suggesting the direct 
use of viscera hydrolysates (which raises safety issues) in foods, or the use of synthetized peptides, 
which need to consider the economic viability.  

The freshness of by-products is one factor affecting the formation of oxidative compounds 

during hydrolysis, and eventually the structures, functions and shelf life of protein hydrolysates [2,3]. 
Endogenous muscle proteases including matrix metalloprotease (MMP), and serine and cysteine 

proteases degrade myofibrillar proteins and microfibrillar networks, resultuing in a significant 
decrease of quality [87–89]. These proteases are active in trimmings, frames, and heads, which with 

inappropriate storage temperatures, degrade myofibrillar proteins, lowering the initial quality of 
proteins for further hydrolysis. A recent survey of fisheries by-products handling practices in Europe 

indicated that the sorting of by-product fractions was done in >60% of the seafood processing plants, 
while the remainder did not handle their by-products properly and only 25% of the surveyed plants 

managed by-products as food grade. According to that survey, the majority of the processing 

companies used their by-products for non-food purposes, mainly as feed [58]. A study on salmon by-
products (frames, heads, and viscera) showed that storage at 4 or 10 ºC greatly influenced the quality. 
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Several metabolites including tyramine, histamine, trimethylamine (TMA) have been formed, and 

the decline in the quality of viscera increased histamine level that exceeded the limits after 2 days of 
storage at 10 ºC while, those by-products could be stored for up to 7 days at 4 ºC [57]. Therefore, by-
products processing should be done near the fish processing centers so the hydrolysis of by-products 

can be done in the shortest possible time. When the quantity of by-products exceeds the capacity of 
the plant, they should be stored frozen. Therefore, the impact of frozen storage for varying times 

needs further study on the structure of peptides (AA composition, sequence, and size) and their 

biological functions.  

Pretreatments of by-products may lower the concentration of pro-oxidants while resulting in 

purer protein substrates for enzymatic hydrolysis. Rinsing or incubation of herring by-products 

(heads, backbone with caudal fin, skin, intestines, and eggs) with antioxidant solutions including 

Duralox-MANC, isoascorbic acid, isoascorbic acid + ethylenediaminetetraacetic acid (EDTA)) 
decreased the rate of lipid oxidation and hemoglobin levels during storage at 4ºC for up to 12 days 

while, extending the shelf-life of by-products from <1 to >12 days with a rinsing strategy or to >7 days 

with direct addtion into the by-products after mincing [62]. However, due to the high rate of lipid 

oxidation in such a highly sensitive system, upgrading to food grade with proper safety is a big 

challenge. Washing or defatting of underutilized Sind sardine muscle mince significantly decreased 

total pigments (600 and 140 μg/g dry sample) and heme iron (5.3 and 1.2 mg/100 g dry sample) 
content in washed and defatted mince substrates, respectively, compared with non-pretreated mince 

(2570 μg/g dry sample and 23 mg/100 g dry sample for total pigments and heme iron, respectively), 
resulting in lower formation of TBARS but increased DPPH radical scavenging and ferrous chelating 

activities of protein hydrolysates, espcially with defatted mince [54]. Pretreatment of cape hake by-
products with 8 mM CaCl2 + 5 mM citric acid followed by alkaline solubilization of proteins (pH 11) 
resulted in significantly lower phospholipids (1 AU/g) and lipids (0.39%) but higher solublity in 

hydrolysates compared to samples directly produced from by-products (4.2 AU/g and 0.87%, 
respectively). However, these hydrolysates were characterized by higher yellowness and redness that 
was attributed to the alkaline solubilization of heme proteins during protein isolation [90]. Despite 

the relative improvement in by-products quality, the economic issue of carrying out such 

pretreatments at the tonnage scale (i.e., industrially) is a challenge that has not been studied. To tackle 

technological problems associated with heme proteins and to lower oxidation, the use of 
antioxidative extracts from agricultural wastes including lingonberry press-cake, apple-, oat-, barley- 
and shrimp by-products and seaweed (ulva) extracts as helpers all at 30% of the dry weight of the 

by-product, decreased formation of MDA and the oxidation product 4-hydroxy-(E)-2-hexenal (HHE) 
in herring and salmon heads and backbone protein isolates, resulting in more stable substrates. 
Among all helpers, lingonberry press-cake followed by apple peel and ulva were the most effective 

in reduction of lipid oxidation during alkaline solubilization/acid precipitation and 9 days of ice 

storage. The new color (dark purple) in the resulting protein isolates with lingonberry press-cake 

might be advantageous for increasing acceptance of the color by consumers [91]. Further work is 

needed on the interactions between the phenolic compounds of plant extracts as antioxidants and the 

by-products proteins, and how it will affect the structure and biological activity of the protein 

hydrolysates.  

2.2. Proteolytic Enzymes  

Composition and sequence of peptides in whole hydrolysates from the same source of protein 
may differ depending on the type of enzyme used. Endopeptidases (e.g., trypsin, chymotrypsin, 
pepsin, pancreatin, papain, and Alcalase) act away from the N- or C-terminus, while exopeptidases 
(e.g., carboxypeptidase Y, aminopeptidase M, and Flavourzyme) break peptide bonds at the terminus 
of polypeptide chains [92]. Since different enzymes have specific cleavage sites (papain: Arg-, Lys- 
and Phe-; Alcalase: Ala-, Leu-, Val-, Tyr-, Phe- and Try-; trypsin: Arg- and Lys-; pepsin: Phe- and Leu-
), different cleavage sites will affect the AA composition, and sequence of peptides [93]. Salmon skin 
gelatin hydrolyzed with Alcalase showed a higher content of hydrophobic AA, degree of hydrolysis 
(DH), surface hydrophobicity and peptides with MW <1 kDa than hydrolysates produced using 
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Neutrase, Protamex, and Flavourzyme. This was associated with significantly higher OH� and O2�- 

scavenging and Fe2+ chelating activity [42]. From tilapia skin gelatin, different peptides, including 
Gly-Pro-Ala [12], Glu-Gly-Leu (317 Da) and Tyr-Gly-Asp-Glu-Tyr (645 Da) [32], Asp-Pro-Ala-Leu-
Ala-Thr-Glu-Pro-Asp-Pro-Met-Pro-Phe (1383 Da) [33], Leu-Ser-Gly-Tyr-Gly-Pro (592 Da) [34] and 
Tyr-Gly-Thr-Gly-Leu (509 Da) and Leu-Val-Phe-Leu (490 Da) [35] were obtained depending on the 
enzyme used despite starting with the same protein (tilapia skin gelatin (although the method of 
production of the gelatin may have differed)). In abalone viscera, different enzymes resulted in 
different peptide sequences; Alcalase: Gln-Ser-Cys-Ala-Arg-Phe (711 Da), Ala-Ala-Pro-Ala-Val-Ser-
Gly-Arg (728 Da), Asn-Arg-Phe- Gly-Val-Ser-Arg (834 Da), and Pro-Val-Pro-Pro-Tyr-Lys-Ala (770 
Da), Neutrase: Ala-Ala-Gln-Tyr-Ser-Arg-Asn (808 Da), Val-His-Ala-Glu-Pro-Thr-Lys (780 Da), Gly-
Cys-Tyr-Val-Pro-Lys-Cys (769 Da), and Asn-Ser-His-Val-Val-Arg (711 Da); papain: Ala-Ala-Asn-
Asn-Ser-Thr-Arg (732 Da), Thr-Ile-Asp-Cys-Asp-Arg (722 Da), Cys-Ile-Gly-Tyr-Asp-Arg (725 Da), 
Asp-Asp-Ile-Thr-Arg-Asp (734 Da), and Asp-Val-Ala-Phe-Met-Arg (738.3 Da); and trypsin: Met-Glu-
Thr-Tyr (543.3 Da), Tyr-His-Gly-Phe (523 Da), Gln-Cys-Val-Arg (505 Da) [45]. Tyr-Pro-Pro-Ala-Lys 
(574 Da) [46] and Pro-Ile-Ile-Ser-Val-Tyr-Trp-Lys (1005 Da) [47] have been purified from blue mussels 
using Neutrase and pepsin, respectively. Despite the influence of the structure of peptides on the 
selectivity of the enzymes used, the high cost of commercial proteases suggests the minimal use of 
enzymes for hydrolysis. As with Atlantic cod, hydrolysis of heads with a combination of papain and 
bromelain at minimal concentration of 0.1% by weight of the minced heads for 1 h resulted in 
reasonable peptides profile in which 56% of peptides were <2 kDa, while most peptides (~33%) had 
MW between 1 and 2 kDa [94]. 

2.3. Operating Parameters  

The temperature and pH are generally adjusted according to the selected proteases to ensure 
high hydrolytic activity. Thus, the other factors such as the water to by-products ratio, type of 
propeller, stirring rate, enzyme deactivation step, use of nitrogen gas, antioxidant addition, time, etc. 
should be optimized to ensure a stable end-product.  

Abalone food muscle hydrolyzed with papain (HPP), Protamex® (HP) or an animal protease 
(HA) for 0.5 or 4 h showed differences in physicochemical and structural properties governed by the 
time of hydrolysis and enzyme type. The fluorescence emission spectra of all hydrolysates showed a 
red shift of 10-12 nm compared with that of control while, fluorescence intensity was higher in 
hydrolysates than non-hydrolyzed proteins (AFP). Hydrolysis for 4 h resulted in higher intensities in 
HPP, HP, and HA compared to lower hydrolysis time. Among all samples, HA-4, HPP-0.5, and HPP-
4 had higher absolute ζ-potential values than AFP, indicating a higher number of ionizable groups 
on the protein surface that inhibited the formation of protein aggregates, consistant with solubility, 
S-S bonds and free –SH groups [95]. 

de la Fuente et al. [96] reported the differences in peptides identified from salmon viscera 
obtained using two different stirring methods including conventional stirring (30 min in distilled 
water at room temperature) and pressurized liquid extraction (PLE; 1500 psi, distilled water as 
solvent, pH 7.0, 50 ºC, 15 min) despite using the same protein source. For viscera subjected to PLE, 
137 peptides were identified and contained several small antioxidant peptides with sequences of Gly-
Pro-Pro and Gly-Ala-Ala. On the other hand, only 67 peptides were identified in the control extract. 
In both extracts, the MW was in the range of 0.6 to 2.6 kDa. However, the PLE extracts contained 
greater amounts of small peptides. Total antioxidant capacity, measured using ORAC and TEAC 
showed that PLE viscera extract had higher values (3790 and 7770 μM Trolox Eq for TEAC and 
ORAC, respectively) compared to the control extracts (788 and 2450 μM Trolox Eq for TEAC and 
ORAC, respectively).  

During hydrolysis, especially at the industrial scale, the high water addition increases the 
production costs due to the heating and drying needed to obtain a powder or a concentrated liquid 
[3]. Using less water during hydrolysis can be beneficial as long as it does not affect other processes 
and efficiency. For cod head hydrolysates with different water to heads ratios (1:1, 1:0.75, and 1:0.5 
kg/kg), the ratio was found to have little effect on hydrolysis yield, protein content, and MW 
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distribution of peptides and thus, high water addition might possibly be unnecessary. In addition, 
the hydrolysis reaction time of 1 h was suitable to obtain hydrolysates with desirable properties [94].  

Lipid oxidation is one of the main challenges during enzymatic/autolytic hydrolysis of by-
products, resulting in unpleasant odors and flavors, dark colorations and formation of oxidative 
products in the FPH [2,3]. Due to the low lipid content of heads (1-4%), a separated oil faction was 
not formed in the cod head hydrolysates (0.65% lipids in the FPH) [94]. When working with a mixture 
of cod viscera and trimmings, a separate oil faction was formed after enzymatic hydrolysis and a 
minimum of 6 g of lipids/100 g wet weight by-products was required to form an oil fraction [97]. The 
intensity of lipid oxidation during hydrolysis will be different among by-products with different 
compositions, which may affect the structure and safety of the resulting peptides and their 
antioxidant activity. Reduction of oxygen and replacing it with an inert gas such as nitrogen were 
shown to decrease lipid oxidation in Sind sardine [54] and tuna [98] protein hydrolysates.  

Enzyme deactivation is the last step of the hydrolysis process. The high temperature (80-100 ºC, 
10-15 min) is often used to deactivate enzymes [11–16]. This temperature may lead to structural 
changes of the protein hydrolysates and peptides, decreasing antioxidant or other bioactivities. Xie 
et al. [99] used slow (+4 ºC) and rapid (-18 ºC) cold deactivation temperatures, a 100 ºC water bath, 
and no deactivation and found that the deactivation method significantly affected the DH, surface 
hydrophobicity, average particle size, intrinsic fluorescence, secondary structure content (α-helix, β-
sheet, β-turns, and random coils) and antioxidant activity.  

Storage of protein hydrolysates as a powder following spray-drying may affect their function 
and properties during storage due to hygroscopicity. If stored at temperatures above the glass 
transition temperature (Tg), protein hydrolysates will be sticky (10 – 20 °C above Tg), cake (20 – 30 °C 
above Tg) and collapse (40 – 50 °C above Tg). Thus, to avoid loss of quality and function, powders 
must be stored at temperatures below their Tg [40].  
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Table 2. Enzymatic hydrolysis and characteristics of protein hydrolysates from fisheries by-products. 

Species By-products Enzymes Hydrolysis conditions  Characteristics Suggested 

applications Refere

nces 

Channel catfish 
(Ictalurus punctatus) 

Heads + frames (3:2 
w/w) 

Papain, ficin, bromelain, 
neutrase, alcalase, protamex, 
novo-proD and thermolysin  

Enzymes concentrations: 
10-80 AzU/g of protein in 
substrate 
Hydrolysis time: 10-120 min 
Temperature: 40-70 ºC (for 
thermolysin) and 30-60 ºC for all 
other proteases 
pH: 7.2 

Highest DH (71%) was obtained with 
ficin (80 AzU/g, 120 min, 30 ºC), 
hydrolysates from novo-proD (5 and 
25 AzU/g, 10 and 20 min) and 
thermolysin (25 AzU/g, 20 min) at 30 
and 60 ºC showed comparable 
emulsion activity index (EAI) and 
emulsion stability index (ESI) as soy 
protein isolate (SPI) 

Alternative to soy 
or other proteins  

[100] 

Hake (Merluccius 

merluccius) 
Undersize 
(discards) 

A: endopeptidase of the serine 
type,  
P: broad-spectrum 
endopeptidase,  
T: trypsin-specific protease,  
C: chymotrypsin-specific 
protease,  
G: glutamic acid-specific 
protease, P + G 

A: 1%, 50-70 ºC, pH 6-9 
P: 1%, 50 ºC, pH 6 
T: 1%, 45 ºC, pH 6 
C: 1%, 70 ºC, pH 6 
G: 1%, 50 ºC, pH 6 
P + G: 1% of each enzyme, 50 ºC, 
pH 6 

Protein extarction yield: 68%, average 
MW: 2.5 kDa, antioxidant activity: 
88.5 mg TE/g protein obtained with 
endopeptidase of the serine type (A) 

Food ingredient  [101]  

Smooth hound 
(Mustelus mustelus) 

Viscera Neutrase®, Esperase®, 
Purafect®, 
endogenous enzymes  

Purafect: pH 10.0, 50 °C, 
Esperase: pH 9.0, 50 °C,  
Neutrase: pH 7.0, 50 °C,  
autolysis: pH 8.0, 50 °C 

DH value of 30, 27.1, 14.2, and 6.8 
was obtained using Purafect, 
Esperase, Endogenous enzymes, and 
Neutrase, respectively . 
Ultrafiltration (UF) fraction with 
MW<5 kDa from Purafect 
hydrolysates showed the highest 
antioxidant and antihypertensive 
activities  

Functional foods  [102]  

Tilapia (Oreochromis 

niloticus) 
Frames Properase E, pepsin, trypsin, 

flavourzyme, neutrase, gc106, 
papain 

Properase E: pH 9, 50 °C, 4 h, 
E/S: 1:50 
Pepsin: pH 2, 37 °C, 6 h, E/S: 
1:50 

DH: 3.8-15.1 
DPPH RSA: 26-70% 
�OH RSA: 23.7-89% 
�O2 RSA: 1.5-58.5% 
H2O2 RSA: 29-72% 

Functional foods  [103]  
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Trypsin: pH 7.5, 45°C, 3 h, E/S: 
1:100 
Flavourzyme: pH 7, 45 °C, 4 h, 
E/S: 1:100 
Neutrase: pH 7, 45 °C, 4 h, E/S: 
1:50 
Gc106: pH 4.5, 45 °C, 6 h, E/S: 
1:33 
Papain: pH 6, 37 °C, 3 h, E/S: 
1:100 

Anchovy (Engraulis 

encrasicolus) 
Viscera Combined Alcalase, 

Flavourzyme, and Protamex at 
1.1:1.0:0:9 ratio 

Temperature: 50 ºC 
pH: 7.5 
Stirring: 150 rpm 
Time: 3 h 
E:S ration: 3% (w/w) 

Glutamic cid, glycine, alanine, and 
lysine consisted 11.8, 10.9, 12 and 10.9 
g/100 g of hydrolysates 
Heavy metals (mg/kg): 
Cd: 0.04 
Pb: 0.25 
Hg: 0.02 

Nutraceuticls [104,10
5]  

Bigeye tuna (Thunnus 

obesus) 
Mixture of heads, 
fins and backbone 

Pepsin Enzyme concentration: 
0.1 g/ 100 g waste mince 
Hydrolysis time: 5 h 
Temperature: 37 ºC  
pH: 2.0 

Protein: 76.4% 
Lipid: 10.8% 
Ash: 12.2% 
Moisture: 2% 
Yield: 11% 
DH: 39% 
EAA: 25% 
NEAA: 10.3% 

Aquafeed [106]  

Rainbow trout 
(Oncorhynchus mykiss) 

Mixture of heads, 
frames, and viscera 

Endogenous enzymes (autolysis) Time: 1-3 h  
Temperature: 40-60 ºC 
pH: 7.1 (original pH of the by-
products, no pH adjustment) 

Peptide <1 kDa: 93.2% at 40 ºC for 1 h 
of autolysis 
DPPH: 2.7-4.1 μM TE/g hydrolysate 
HRSA: 81-98.2% 
Metal chelating: 6.2-28.5 μM EDTA/g 
hydrolysate 

Food/feed 
ingredients 

[59]   

Red tilapia 
(Oreochromis spp.) 

Viscera Alcalase E:S ratio: 1:10 (w/w) 
Temperature: 59 ºC 
Protein concentration: 10 g/L 
Stirring speed: 51rpm, 
Time: 3 h 

Protein: 42.2%, 
Lipid: 3.6% 
Ash: 22.9% 
EAA: 349 residue/1000 residues 
HAA: 387 residue/1000 residue 
Peptides with MW of 336 Da were the 
main fraction 

Food applications [107,10
8]  
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ABTS RSA: 536 μM TE/g, 
FRAP: 115 μM TE/g, 
Chelation of Fe2+: 377 μM EDTA/g 

Red tilapia 
(Oreochromis spp.) 

Viscera Alcalase Optimal conditions: 
E:S ratio: 0.306 U/g,  
Substarte concentration: 8 g 
protein/L, 
Time: 3 h,  
Temperature: 60 ºC, 
pH: 10 

DH: 42.5% 
Iron-binding capacity of hydrolysate 
(RTVH-B): 67.1% 
Iron-binding capacity of <1 kDa UF 
fraction (FRTVH-V): 95.8% 

Dietary 
supplements to 
improve iron 
absorption 

[109]  

Monkfish (Lophius 

piscatorius) 
Heads, viscera  Alcalase Optimal conditions: 

E:S ratio: 0.05% (v/w) 
Time: 3 h  
Temperature: 57 ºC 
pH: 8.3 
Stirring rate: 200 rpm 

Head hydrolysate: 
Protein: 69.8% 
Lipid: 2.4% 
Ash: 18.5% 
Moisture: 9.3% 
Peptides <1 kDa: 54.6% 
DPPH RSA: 45% 
ABTS RSA: 13.5 μg BHT/mL 
Viscera hydrolysate: 
Protein: 67.4% 
Lipid: 4.8% 
Ash: 19.7% 
Moisture: 5.2% 
Peptides <1 kDa: 73.7% 
DPPH RSA: 49.7% 
ABTS RSA: 14.5 μg BHT/mL 

Protein-rich 
ingredient for food 
or feed applications 

[110]  

Atlantic salmon 
(Salmo salar) 

Heads, trimmings, 
frames 

Alcalase Optimal conditions: 
E:S ratio: 0.2% (v/w) 
Time: 3 h  
Temperature: 64 ºC 
pH: 9.0 
Stirring rate: 200 rpm 
Solid:liquid: 1:1 

Head hydrolysate: 
Protein: 64.2% 
Peptides <1 kDa: 33% 
Digestability: 93% 
DPPH RSA: 45.3% 
ABTS RSA: 13.1 μg BHT/mL 
Frames + trimmings hydrolysate (S-
TF): 
Protein: 71.1% 
Peptides <1 kDa: 48.4% 
Digestability: 94.1% 
DPPH RSA: 56.8% 

Aquafeed [16]  
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ABTS RSA: 16.8 μg BHT/mL 
Gurnard (Trigla spp.) Heads, skin + bone Alcalase Concentration: 2.5 mL/kg by-

products 
Time: 3 h  
Temperature: 61 ºC 
pH: 8.6 
Stirring rate: 200 rpm 

Heads hydrolysate: 
DH: 24–27% 
Average MW: 1379-1626 Da  
Total soluble protein: 88-94.8 g/L 
Skin + bone hydrolysate: 
DH: 19–24% 
Average MW: 1203-1562 Da 
Total soluble protein: 81.9-89.2 g/L 

Food and 
nutraceutical 
ingredient 

[84] 

Blue Whiting 
(Micromesistius 

poutassou) 

Undersized fish Food-grade protease of microbial 
origin 

Fish:water ratio: 1.7-2:1 
Time: 45-120 min  
Temperature: 50 ºC 
 

DH: 27-45% 
Protein: 70–74%  
Lipid <0.5% 
Peptides <1 kDa: 55-78% 

Anti-diabetic 
related functional 
ingredients 

[111]  

Sprat (Sprattus 

sprattus) 
Undersized fish Commercial SPH from BioMarine 

Ingredients Ireland Ltd. 
Simulated gastrointestinal 
digestion (SGID):  
Pepsin E:S ratio: 2.5% (w/w), pH 
2 for 90 min at 37 ºC 
Pancreatin E:S ratio: 1% (w/w), 
pH 7 for 150 min at 37 ºC 

DH: 39.7% 
Peptide<1 kDa: 88.7% 
EAA: 335.9 
NEAA: 498.3 
TAA: 834.2 
Solubility >90% over pH range of 2-12 
ORAC: 588 μM TE/g sample,  
FRAP: 10.9 μM TE/g sample  

Promote muscle 
enhancement 

[112] 

Pacific white shrimp 
(Litopenaeus vannamei) 

Shells and heads Papain Box Behnken Design (BBD) 
optimization: 
Temperature: 45-55 ºC 
pH: 6.5-7.5 
Time: 30-90 min 
E/S (%): 1-2 

CPSH: 
DH: 46-57% 
Protein: 86.2% DPPH: 89.6% FRAP: 
2230 μmol TE/mL 
CPSS: 
DH: 47-54% 
Protein: 83.3% 
DPPH: 79% 
FRAP: 1380 μmol TE/mL 

As a nutraceutical 
in the food industry 

[113] 
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2.4. Process Scale-Up 

One roadblock towards the industrial production of protein hydrolysates from by-products is 
that most studies with by-products were done at the laboratory scale, which limits their industrial 
adaptation [114]. Some studies attempted pilot trials to confirm the technical feasibility of the 
laboratory scale at an industrial scale. In this sense, the process of producing peptides from hake by-
catches was scaled up from a 0.5 to a 150 L reactor using the optimized hydrolysis conditions (2% 
enzyme, 2 h, 50% solids, pH 9, 70 ºC) that were obtained in the laboratory [101]. The authors found 
similar results at the pilot plant scale in term of protein extraction yield (60.0% pilot and 61.4% lab), 
antioxidant capacity (172 mg TEAC/g protein in pilot and 224 mg TEAC/g protein in lab), and 
antioxidant capacity yield (103 mg TEAC/g protein in pilot and 132 mg TEAC/g protein in lab). 
Furthermore, liquid, solid, and bone yield did not show any significant differences from the results 
of the laboratory trials. Monkfish by-products (heads and viscera) hydrolysis was scaled up from 100 
mL to a 5 L glass reactor at optimized laboratory conditions: 57 ºC, pH 8.3, solid to liquid (S/L) ratio 
of 1:1 (w/w), 0.05% Alcalase and 200 rpm stirring rate for 3 h. Following hydrolysis, the hydrolysates 
were filtered (100 μm) to remove non-hydrolyzed materials. Results validated the properties of the 
FPH obtained by the optimization trial at the laboratory scale. However, the 5 L reactor may still be 
considered a bench-scale trial and it needs work with larger reactors [110]. An industrial-scale 
production of hydrolysates from Atlantic salmon by-products (heads, frames, and viscera) using the 
laboratory (4 L glass vessel) hydrolysis parameters such as enzyme type and concentrations, time and 
temperature, except for a shorter time from slaughter to hydrolysis (2 h), avoidance of preheating of 
water inside the reactor, separation using a decanter, and no drying of the hydrolysis solution 
(acidified with formic acid to reach pH <4) was tested in an industrial plant. The authors attributed 
the main differences to lower hydrolysis efficiency, separation, and storage conditions [15]. Overall, 
the cost of enzymes, high water usage, drying or condensation of the hydrolysis solution, as well as 
the use of separators (one or more steps) to remove oil and other undigested materials are the main 
cause of the greater process costs at an industrial scale, although the complexity of the hydrolysis line 
depends on the type and composition of the by-products.  

3. Antioxidant Activity of Fisheries By-Products Protein Hydrolysates and Peptides  

The antioxidant peptides had 2-10 amino acids, although some were up to 20 amino acids and 

had a MW of 0.2 to 2 kDa. Antioxidant activity of peptides is mostly related to the presence and 

position of specific amino acid residues in the peptide chain. Primary structure, amino acid 

composition, hydrophobicity, spatial conformation, etc. are characteristics that are affected by 

enzymatic hydrolysis and determine its antioxidant activity [115]. Peptides show antioxidant activity 

due to the presence of one or more hydrophobic (Pro, Ala, Gly, Leu, Ile, Met, Trp, Phe, Val) and 

aromatic (Tyr, Trp, Phe) amino acids that can quench free radicals by various mechanisms including 

hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT), and 

sequential proton loss by electron transfer (SPLET) mechanisms [116]. Scavenging free radicals and 

oxidants using HAT, SET-PT, and SPLET generally leads to the same end results, although the 

kinetics and potential for side reactions vary. SPLET, SET-PT, and HAT may occur in parallel; 
however, the dominant mechanism depends on the antioxidant’s conformational and geometrical 
features, solubility, partition coefficient, and the type of solvents [117]. Antioxidant activity of 
hydrophobic amino acids has been attributed to their ability to interact with lipid molecules by 

increasing the solubility of peptides in lipids and scavenging lipid-derived radicals through electron 

donating substituents such as OH and NH2 on amino acid side chains in peptides. The presence of 
hydrophobic amino acids can improve the antioxidant activity of peptides by providing a potential 
pool of free electrons. Additionally, it is believed that aromatic amino acid residues might possess 

antioxidant properties due to the chelating ability of the imidazole ring and the trapping ability of 
lipids [116,117]. 

Peptides containing proline-rich sequences have been identified to possess antioxidant 
properties. Proline has an electron-rich nitrogen-containing pyrrolidone ring that stabilizes the 
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radical peptide formed after electron donation [118,119]. Peptides with Pro at the C-terminus (e.g., 
Pox: Tyr-Tyr-His-Pro) were the most potent antioxidant (0.8 TE at 2.5 μM). Modification of the 
structure by moving Pro into positions X1 (Pro-Tyr-Tyr-His), X2 (Tyr-Pro-Tyr-His), and X3 (Tyr-Tyr-
Pro-His), but leaving the other residues in the same order as in Pox, resulted in a significant difference 
in ORAC which was 0.2, 0.1, and 0.55 TE at 2.5 μM for X1, X2, and X3, respectively [120]. Strong 
antioxidant activity has been reported for small peptides containing amino acid residues such as Tyr, 
His, and Pro [121,122]. The dipeptide Tyr-Tyr at the N-terminal position of Tyr-Tyr-His-Pro and Tyr-
Tyr-Pro-His was the portion responsible for stronger antioxidant activity. However, Tyr-Pro-Tyr-His 
showed the weakest ORAC, inhibited ROS production by 36% at 0.07 μM in human keratinocyte cells 
(HaCat) after treatment with H2O2 when compared to Tyr-Tyr-His-Pro (with the highest ORAC) 
which showed almost similar inhibition of ROS production at 2.5 μM (40%) [120]. It is believed that 
besides amino acid composition and sequence, the changes of secondary structure have a significant 
impact on the capture and dissipation of free radicals. The nanopeptide Val-Leu-Leu-Tyr-Lys-Asp-
His-Cys-His (1127 Da) produced using self-assembly of pine nut Val-Leu-Leu-Tyr (506 Da) and sea 
cucumber Lys-Asp-His-Cys-His (638 Da) had significanly higher antioxidant activity compared to 
individual peptides due to changes in the secondary structure as seen in the lower electron 
paramagnetic resonance (EPR) signal, higher random crimp degree, and increased supply of 
hydrogen protons (i.e., the higher exposure to active hydrogen) from Raman spectroscopy and 1H 
NMR spectrum analysis in the nanopeptide than the tetrapeptide and the pentapeptide. The DPPH 
radical scavenging activity at 3 mmol/mL were 6.1, 9.4, and 80.7% of the 4, 5 and 10 amino acid 
peptides, respectively [123].  

The presence of Tyr at the N-terminal position of peptide Tyr-Ala-Glu-Glu-Arg-Tyr-Pro-Ile-Leu 
has been reported as the residue that most contributed to antioxidant activity (3.8 μM TE/mg protein). 
However, Tyr-Pro-Ile and Tyr-Gln-Ile-Gly-Leu with Tyr at the same position showed lower ORAC 
(1.6 and 1.7 μM TE/mg protein, respectively), indicating the role of adjacent amino acids and chain 
length on antioxidant activity [124]. Tyr-containing peptides from abalone viscera showed strong 
ABTS radical scavenging activity in the order of Cys-Ile-Gly-Tyr-Asp-Arg (0.144 mg/mL) > Tyr-His-
Gly-Phe (0.268 mg/mL) > and Gly-Cys-Tyr-Val-Pro-Lys-Cys (0.389 mg/mL). The first and last 
peptides, which contained both Tyr and Cys showed similar trends for scavenging DPPH radicals 
(IC50 of 0.207 and 0.405 mg/mL, respectively). Despite the observed high ABTS radical scavenging 
activity, peptides Met-Glu-Thr-Tyr and Tyr-His-Gly-Phe which had Tyr at the C- or N-terminal 
position, respectively, had weak scavenging activity against DPPH radicals (<20%) which was 
attributed to the lack of Cys in their sequence. Despite having different size or amino acids residues, 
peptides Gln-Cys-Val-Arg and Gln-Ser-Cys-Ala-Arg-Phe showed similar DPPH radical scavenging 
activity (IC50 of 0.392 and 0.416 mg/mL, respectively), indicating the complexity of the relation 
between the peptides’ structures, and function. Regarding the number of amino acid residues within 
peptide sequence, The peptide Gly-Cys-Tyr-Val-Pro-Lys-Cys, containing two Cys residues showed 
lower free radical scavenging activity (IC50 of 0.389 and 0.405 mg/mL for scavenging ABTS and DHHP 
radicals, respectively) than Cys-Ile-Gly-Tyr-Asp-Arg, which contained only one Cys (IC50 of 0.144 
and 0.207 mg/mL for scavenging ABTS and DPPH radicals, respectively [125]. Thus, a simple 
relationship between the number of Cys and antioxidant effects of peptides is not clear and is more 
related to its position in the peptide chain and the type of amino acids adjacent to it. Generally, the 
thiol group of Cys have an antioxidant activity that works by donating hydrogen from the SH group 
or the loss of an electron from its sulfur atom, thus neutralizing free radicals [24]. 

It was shown that the presence of a Tyr, Trp, Cys, or Met residue with electron/hydrogen 
donating ability was the driving force for dipeptides to scavenge radicals. The presence of Tyr, Trp, 
and Cys in the sequence was required for dipeptides to scavenge ABTS�+, while the presence of Tyr, 
Trp, Cys, and Met was needed for dipeptides to scavenge ROO� when using the ORAC assay. 
Structure-activity relationships showed that Tyr and Trp-containing dipeptides with Tyr/Trp residue 
at the N-terminus (Tyr/Trp-X; Tyr-Gly, Tyr-Ser, Tyr-Gln, Tyr-Glu) had stronger ORAC and ABTS�+ 
scavenging activity than that at the C-terminus (X-Tyr/Trp; Gly-Tyr and Glu-Tyr) and the steric 
effects, hydrophobicity and hydrogen bonding also affected the neighboring AA. Tyr-containing 
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dipeptides showed higher ABTS�+ scavenging activity. In contrast, Trp dipeptides (Trp-Gly, Trp-Ser, 
Trp-Gln, Trp-Glu, Gly-Trp, Glu-Trp) had higher ORAC, and only Cys-containing dipeptides showed 
moderate reducing power activities [126]. Calculation of BDE, IP, PA, and ETE of Tyr/Trp-X and X-
Tyr/Trp (where X was Gly, Leu, Pro, Phe, Ser, Thr, Asn, Gln, Asp, Glu, Lys and Arg) showed that 
there were little differences among dipeptides, indicating that the neighboring AA did not affect the 
intrinsic hydrogen or electron-donating ability of the dipeptides studied. Thus, the differences in their 
radical scavenging activity can be attributed to other factors (such as steric effects, and inter/intra-
molecular hydrogen bonds). Furthermore, BDE and PA of Tyr-containing dipeptides were much 
lower. At the same time, its IP was higher than Trp-X or X-Trp, indicating that HAT and SPLET 
mechanisms were more favorable for Tyr-containing dipeptides, while SET-PT was the primary 
mechanism of antioxidant activity of Trp containing dipeptides [126].  

Aromatic and acidic amino acids are effective proton and electron donors to neutralize free 
radicals [127]. The high DPPH� and OH� scavenging activity of Glu-Ala-Pro-Val-Glu-Gly-Gly-Leu-
Phe-Asp-Tyr-Val-Lys from scallop has been attributed to the presence of the acidic amino acids (Glu 
and Asp) and two aromatic amino acids (Phe and Tyr) in the sequence. At the same time, Arg at the 
C-terminal contributed to high ORAC (6.18 μM TE/μmol) of Lys-Leu-Ala-Asp-Met-Leu-Asn-Pro-
Glu-Arg [128]. Tyr and Phe in Gly-Glu-Tyr-Gly-Phe-Glu and Phe in Gly-Ile-Glu-Leu-Phe-Pro-Gly-
Leu-Pro sturgeon cartilage contributed to higher DPPH� and OH� scavenging activity [129].  

Antioxidant activity of His-containing peptides has been reported and attributed to the chelating 
and lipid radical-trapping ability of the imidazole ring [130]. Removal of His from the C-terminal 
position of Val-Asn-Ala-Val-Leu-His (MW: 651 Da) significantly decreased DPPH (~20%) and ABTS 
(~16%) radical scavenging activity of the modified peptide Val-Asn-Ala-Val-Leu (MW: 514 Da) 
compared to ~33% and 21% for the original sequence. From circular dichroism (CD) spectroscopy, 
the secondary structure of Val-Asn-Ala-Val-Leu had no α-helix with a low band intensity at 195 nm, 
probably due to shortening of the peptide size after removing the C-terminal His. Treatment of the 
original and modified peptides with 40 kV/cm pulsed electric field (PEF), transferred β-sheet to the 
random coil. This led to higher antioxidant activity, and Val-Asn-Ala-Val-Leu-His was much more 
sensitive to PEF than Val-Asn-Ala-Val-Leu, which exposed the leading active site of the C-terminal 
His by altering the secondary structure of the peptide [122].  

Metal-chelating peptides (MCP) can complex transition metal ions, such as Fe2+ and Cu2+, 
involved in ROS production using the Fenton and Haber Weiss reactions. Therefore, peptides with 
metal chelating ability can act as indirect antioxidants, reducing or inhibiting food oxidation, and 
increasing food shelf life, while reducing the oxidation products associated with age-related diseases 
[131]. These peptides can also be used as supplements to provide dietary minerals such as Ca, Zn and 
Fe with high absorption rates [132–134]. His, Lys, Arg, Pro, and Gly were abundant in peptides with 
metal chelating ability [135]. Glu, Asp, and Gly residues were the major AA in the 26 identified 
peptides from anchovy stick water hydrolysates. Peptides containing these AA formed complexes 
with Ca ions more effectively [133]. From tilapia skin gelatin, Gly-Pro-Ala-Gly-Pro-Ala-Gly-Glu-Lys 
(782 Da), Asp-Gly-Pro-Ser-Gly-Pro-Lys-Gly-Asp-Arg (984 Da), Gly-Leu-Pro-Gly-Pro-Ser-Gly-Glu-
Glu-Gly-Lys-Arg (1198 Da) and Asp-Gly-Pro-Ser-Gly-Pro-Lys-Gly-Asp-Arg-Gly-Glu-Thr-Gly-Leu 
(1441 Da) have been purified from trypsin hydrolysates and showed high Fe2+ chelating capacity. 
Each peptide contained one or more acidic amino acids, i.e., Glu and Asp, or basic amino acids such 
as Lys and Arg. In addition, three of the four Fe2+-chelating peptides contained Ser [132]. Asp, Glu, 
Gly, and Pro were the primary amino acids in sea cucumber metal-chelating peptides [134]. 

4. Application of Fish By-Products Protein Hydrolysates to Control Oxidative Deteriorations of 

Seafood  

Oxidation of lipids is often the major cause of quality loss of foods during storage, as seen in the 
changes in color, texture, flavor, and aroma, which impairs sensory and nutritional properties and 
the shelf-life of foods [28]. Decomposition of the hydroperoxides formed by pro-oxidative metal ions 
is a driving factor for lipid oxidation, producing highly reactive alkoxyl lipid radicals and hydroxyl 
ions. Alkoxyl radicals degrade rapidly to form volatile decomposition products often with off-odors 
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[29]. Furthermore, protein carbonyls can be introduced into proteins using a covalent linkage of lipid 
carbonyls (e.g., protein-bound malondialdehyde). Protein oxidation leads to functional property 
changes such as decreased solubility, digestibility, and water-holding capacity [30]. On the other 
hand, the loss of nutrients and myofibrillar water, and the changes in texture are inevitable during 
frozen storage [135,136]. The formation of ice crystals, associated with cell membrane rupture and 
muscle fibers, often lead to protein denaturation and undesirable reactions such as aggregation and 
decrease of solubility, solute concentration (macromolecular crowding), lipid oxidation, and 
instability of proteins at the ice-water interphase [137,138]. Protein hydrolysates and peptides may 
be potential antioxidants to reduce oxidation during food storage, thus extending the shelf life [28]. 
The antioxidant activity of protein hydrolysates was related to amino acid composition, sequence, 
size, and the amino acid residues at the C- or N-terminal positions [115]. Enzymatic hydrolysis 
disrupts the tertiary structure of food proteins, leading to the increase of solvent accessibility of 
peptides to scavenge free radicals and chelate pro-oxidative metal ions. Protein hydrolysates and 
peptides have been reported to control food oxidation through various mechanisms including 
inactivating ROS, scavenging of free radicals, chelation of pro-oxidative metal ions, reducing lipid 
hydroperoxides, and changes of the physical state of foods. At the same time, peptides control the 
formation of ice crystals and decrease protein oxidation and denaturation during storage, thus 
showing bi-functional effects in foods, i.e., antioxidant and cryoprotective activities [25,139]. Table 3 
shows the effects of peptides and protein hydrolysates from marine by-product sources on the 
inhibition/reduction of oxidation of seafood lipids and proteins during processing or storage. 
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Table 3. Effects of marine protein hydrolysates to control oxidative deteriorations in seafood during processing or storage. 

Marine species By-product Hydrolysis conditions Structural properties of 

FPH/peptides 

Food 

products 

Storage conditions Oxidation inhibition/quality 

preservation  

References 

Amur sturgeon 
(Acipenser 

schrenckii) 

Skin Gelatin was hydrolyzed with 
Alcalase (5% w/w, pH 8.0, 50 
ºC) for 3 h 

Pro-Ala-Gly-Tyr 
(405 Da) 

Japanese 
seabass 
mince 

Six freezing (-18 °C) 
and thawing (+4 °C) 
cycles  

Peptide maintained intra-
myofibrillar water (T21) pool and 
reduced free water (T22) 
population, preserved thermal 
properties of myosin and actin, 
and lowered TBARS formation 

[11] 

Tilapia 
(Oreochromis 

niloticus) 

Skin Collagen was hydrolyzed 
with Alcalase at 4000 U/g 
and 60 °C for 3 h to obtain 
tilapia skin collagen peptide 
(TSCP) 

Peptides with MW <2.5 
kDa accounted 
for 57.1% of TSCP, Gly 
accounted for 
20.2% of amino acids, 
and the hydrophilic 
amino 
acids content was 38.3%. 
The active peptide was 
Asn-His-Gly-Lys (454 
Da) 

Scallop 
adductor 
muscles  

-18 °C for 2 wk Frozen scallop muscles treated 
with 3 g/100 g TSCP showed 
higher salt soluble protein 
concentration, total sulfhydryl 
content, Ca2+-ATPase 
activity, and water-holding 
capacity during the 8 wk storage 
period 

[140] 

Squid (Loligo 

opalescens) 
Skin Squid skin collagen was 

hydrolyzed with acid 
protease at 6000 U/g at 40 °C 
for 3 h to obtain collagen 
hydrolysates from squid skin 
(CH-SS) 

82.3% peptides had MW 
<5000 Da, among them 
22.69% had MW between 
1-2 kDa; Asp-Val-Arg-
Gly-Ala-Glu-Gly-Ser-
Ala-Gly-Leu rich in Gly 
tripeptide repeat 
sequence was identified 
as the active peptide  

Shrimp 
muscle  

14 freezing (-25 °C) 
and thawing (+4 °C) 
cycles 

CH-SS reduced the mechanical 
injury caused by ice crystals to 
shrimp muscle as well as 
carbonyl formation, maitained 
the integrity of fiber structure, 
threby redcing drip loss, higher 
content of α-helix and lower 
random coil compared to 
untreated muscle was found 
when CH-SS was used 

[141] 

Threadfin bream 
(Nemipterus 

hexodon) 

Skin  Skin gelatin was hydrolyzed 
with lizardfish pepsin (pH 
2.0 and 40 ◦C) and papain 
(pH 7.0 and 40 ◦C) 
for 60 min  

Gelatin hydrolysates had 
DH of 10, 20, 30 and 40% 

Natural 
actomyosin 
(NAM) 

NAM with 8% 
gelatin hydrolysates 
was subjected to six 
freeze-thaw cycles 
(20 h freezing at - 
18 °C and 4 h 

NAM with 20% DH gelatin 
hydrolysates showed the highest 
Ca2+-ATPase activity, total 
sulfhydryl groups and solubility 
along with lower disulfide bond 
content and TBARS  

[142] 
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thawing at 4 °C for 
each cycle)  

Silver carp 
(Hypophthalmichthys 

molitrix) 

Muscle  Muscle homogenate was 
hydrolyzed with protamex 
(1.5 AU/g) for 30 min at 50 
°C 

DH of the hydrolysates 
was 13.6 

Unwashed 
surimi 

Storage at 
conventional (- 
18 °C) or ultra-low (- 
60 °C) temperatures 
and subject to three 
and six freeze-thaw 
(per cycle 
- 18/- 60 °C, 12 h; 
4 °C, 12 h) 

Hydrolysates reduce the 
formation of carbonyls, TBARS, 
and volatiles hexanal, nonanal 
and 1-octen-3-ol while 
maintained total sulfhydryl 
groups, samples stored at - 18 °C 
showed lower lipid and protein 
oxidation than those of 
samples stored at - 60 °C, 
indicating structural 
deterioration of surimi 
underultra-low frozen 
temperature storage  

[143]  

Silver carp Meat 
leftovers on 
bones and 
heads 

Defatted ground mince (5-
folds isopropanol at 25 ºC for 
1 h) was hydrolyzes with 
alcalase (AH; 3000 U/g; pH 8, 
60 ºC) or Protamex (PH; 2400 
U/g, pH 7, 50 ºC) for 30 min 

DH for alcalase and 
protamex hydrolysates 
was 12.9 and 13.2% 
respectively, peptides 
with MW of <138, 286-
780, and ~1420 Da 
accounted for 3.5, 39.1, 
and 50.6% in alcalase 
hydrolysates and 4.7, 
16.8, and 37.4% in 
protamex hydrolysates,  

Surimi Surimi with 2, 4, and 
6% hydrolysates 
subjected to six 
freeze-thaw cycles (-
25 ± 1 ºC for 12 h 
and 4 ± 1 ºC for 12 h 
per cycle) 

Surimi with addition of 2 g of 
protamex hydrolysate  
displayed the highest actomyosin 
extractability, Ca2+-ATPase 
activity and correspondingly, 
lowest surface hydrophobicity of 
actomyosin, while maintaining 
total sulfhydryl groups and 
texture of heat-set gel  

[144] 

Large yellow 
croaker 
(Pseudosciaena 

crocea) 

Muscle  Lyophilized protein (0.02 
mg/mL) was hydrolyzed 
with pepsin (pH 2, 40 ºC), 
trypsin (pH 8, 45 ºC, and 
neutral protease (pH 7, 50 
ºC) at 5000 U/g for 5 h 

Peptides with MW<500 
Da constituted 77.8, 78.5, 
and 74.3% of pepsin, 
trypsin and neutral 
protease hydrolysates, 
respectively, trypsin 
hydrolysates showed the 
highest content of 
hydrophilic amino acids 
(51.87%) compared to 
pepsin (47.26%) and 

Turbot fillets Fillets were soaked 
in 2 mg/mL 
hydrolysates alone 
or in combination 
with 4% sucrose) for 
4 h, then subjected 
to 3 freeze-thaw 
cycles (-20 ºC for 24 
h, 4 ºC for 12 h for 
each cycle) 

Trypsin hydrolysates reduced 
the loss of Ca2+-ATP enzyme 
activity and the structural 
integrity damage of myofibrillar 
protein better than other 
hydrolysates 

[145] 
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neutral protease (39.14%) 
hydrolysates 

Argentine croaker 
(Umbrina canosai) 

Muscle  Alkali-solubilised protein 
was hydrolyzed with 
Alcalase (pH 8, 50 ºC) or 
protamex (pH 7, 50 ºC) at 30 
U/g until DH of 20% 

MW of Alcalase and 
Protamex hydrolysates 
were 1083 and 1350 Da, 
respectively 

Flounder 
fillets 

Fillets coated with 
agar film containing 
Alcalase 
hydrolysates were 
stored at 5 ºC for 15 
days 

Agar-hydrolysate film showed 
higher transparency and 
mechanical properties than clove 
essential oil film. It improved 
biochemical and microbiological 
qualities of fillets without the 
sensory limitation of the essential 
oil volatile compounds 

[146] 

Common carp 
(Cyprinus carpio) 

Skin Gelatin was hydrolyzed by 
2% (proten basis) Protamex® 

at pH 7 and 50 ºC for 3 h  

DPPH RSA, metal 
chelating ability and 
FRAP of gelatin 
hydrolysates were 23.8%, 
64%, and 2.65 μM TE/mg 
sample, respectively, 
dipeptide Ala-Tyr (MW: 
252 Da ) was isolated as 
active antioxidant 
peptide with FRAP of 
89.3 μM TE/mg sample  

Atlantic 
mackerel 
fillets 

-18 °C/ 4 
month 

Ala-Tyr peptide layer on the 
furcellaran/gelatin hydrolysate 
(FUR/HGEL) films increased 
antioxidant activity, mechanical 
and rheological properties, while 
reducing the water solubility of 
the films, reduction of fillet 
oxidation was not significant, 
TVB-N formation was inhibited 
by the film 

[147,148] 
 

Blue whiting 
(Micromesistius 

poutassou) 

Discards  Hydrolsysi by trypsin (0.1% 
E:S) at pH 8 and 50 ºC until 
reaching DH of 4% 

EC50 values of DPPH 
RSA, reducing and 
chelating power were 
1.46,11, and 0.95 mg/mL, 
respectively. BPH 
contained 60% of 
peptides between 0.5 and 
3 kDa. Protein, lipid, ash 
and moisture were 76.8, 
9.4, 7.3 and 3.35%, 
respectively. 

Omega-3 
emulsion 
from refined 
commercial 
fish oil (18% 
EPA and 12% 
DHA) 

20 °C/ 10 days BPH increased its droplet size 
during storage while suffering a 
significant lipid oxidation. 
However, it was not able to 
prevent omega-3 oxidation in 
spite of in vitro radical 
scavenging or chelating effect 
comapred to whey (WPH) or soy 
(SPH) protein hydrolysates 

[149]  

Silver carp  Surimi 
processing 
by-
products 
(SPB; head, 
skin, fin, 

SPB was heated at 121 ºC for 
2 h and lyophilized powder 
hydrolyzed with Alcalase (55 
ºC, pH 8) and trypsin (37 ºC, 
pH 8) for 4 h 

Peptide with MW <0.5 
kDa accounted for 40.4 
and 47.9% in trypsin (DH 
13.4%) and Alcalase (DH 
18.0%) hydrolysates after 
4 h, respectively 

Surimi -18 °C/3 
month 

Partial replacement of sucrose 
with 2% trypsin and Alcalase 
hydrolysates effectively delayed 
the oxidation of Cys, 
carbonylation of amino 
acids, loss of Ca2+-ATPase 

[150] 
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scale, bone, 
white 
muscle 
leftover on 
bones, 
and dark 
muscle) 

activity, and the destruction of 
structural integrity of 
myofibrillar protein 

Silver carp  Fins Fins were dried, dispersed in 
distilled 
water (1:5, w/v), and heated 
at 121 °C for 3 h and the 
obtained gelatin was 
hydrolyzed using 4 enzymes 
(Alcalase: pH 8.0 and 50 °C, 
trypsin: pH 8.0 and 37 °C, 
neutrase: 
pH 7.0 and 45 °C, and 
papain: pH 7.0 and 55 °C) at 
2% for 4 h 

A total of 102 and 61 
peptides 
below 2 kDa were 
identified in trypsin and 
Alcalase hydrolysates, 
respectively, some of the 
indentified peptides 
shared similar repeated 
structures of Gly-Pro-X, 
such as Gly-Asp-Thr-
Gly-Hyp-Ser-Gly-Hyp-
Leu, Hyp-Gly- Hyp-Ile-
Gly- Hyp-Hyp-Gly- Hyp-
Arg, Gly-Gly-Arg-Gly- 
Hyp-Hyp -Gly-Glu-Arg  

Bighead carp 
fillets 

Fillets were 
immersed in 2% of 
alcalase or trypsin 
hydrolysates with 
higher antioxidant 
activity and frozen 
at -18 °C for 1 wk 
and thawed at 4 °C 
(once a wk, as one 
freeze-tahw cycle) 
and a total of 6 
cycles 

Protein oxidation 
(carbonyls and disulfide bonds) 
and degradation (the loss of Ca2+-
ATPase activity), and lipid 
oxidation (PV, TBARS, FFA, and 
fluorescent compounds) were 
significantly inhibited by fin 
hydrolysates 

[151] 

Silver carp  Surimi 
processing 
by-
products  

By-products powders were 
hydrolyzed with Alcalase at 
1:60 w/w at pH 8.5 and 55 ºC 

-- Surimi Surimi mixed with 
0.6 or 1.2% protein 
hydrolysates stored 
at -20 ºC for 60 days 

Surimi with protein hydrolysates 
showed lower TBARS, carbonyl 
content and surface 
hydrophobicity, higher Ca2+-
ATPase activity, total sulfhydryl 
groups and salt-soluble proteins, 
reduced degradation of MP, thus 
induce cross-linking more 
effectively, leading to formation 
of denser gel network 

[152] 

Silver carp  Muscle 
mince  

Mince was hydrolyzed with 
Protamex (2400 U/g, pH 6.5 
and 50 ºC) for 30 min and 
then fractionated into <3, 3-
10, and >10 kDa fractions  

DH was 13.6% and >50% 
peptides had MW of 
1000-2500 Da  

Interactions 
between 
peptides and 
ice planes  

Computational 
simulations 

Gly-Val-Asp-Asn-Pro-Gly-His-
Pro-Phe-Ile-Met, Gly-Val-Asp-
Asn-Pro-Gly-His-Pro-Phe-Ile-
Met-Thr, and Ile-Ile-Thr-Asn-trp-
Asp-Asp-Met-Glu-Lys in the 
fractions with MW <3 kDa 

[153] 
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interacted firmly with water 
molecules and inhibited growth 
of ice crystals 

Bighead carp 
(Aristichthys nobilis) 

Gills Gills autoclaved (121 ºC for 4 
h to solubilize collagen) were 
hydrolyzed with 
Flavourzyme (pH 7.0), 
Alcalase 
(pH 8.0), neutral protease 
(pH 7.0), and papain (pH 7.0) 
at 5000 U/g for 4 h 

Peptides with MW of 
<0.5, 0.-1, and 1-2 kDa 
were the dominant 
peptides especially with 
increasing hydrolysis 
time  

Surimi Surimi (81% 
moisture) mixed 
with 1 or 2% neutral 
protease 
hydrolysates stored 
at -18 ºC for 4 
months 

Surimi with hydrolysates had 
higher sulfhydryl and salt-
soluble proteins and 
Ca2+-ATPase activity, lower 
disulfide bonds, carbonyls and 
hydrophobicity 

[154] 

Common carp Skin Single-layer biopolymer 
films: 
furcellaran + carp skin 
gelatin hydrolysate; two-
layer films: furcellaran + carp 
skin gelatin hydrolysate + 
Ala-Tyr 

Synthetic Ala-Tyr 
peptide  

Atlantic 
mackerel 
carcasses 

Storage 4 °C, 15 
days 

Single- and double-layer coatings 
decreased lipid oxidation, but 
addition of peptide layer to the 
hydrolysate-furcellaran film did 
not improve its antioxidant effect  

[155] 

Pacific hake 
(Merluccius 

productus) 

Fillets  Protamex (1%) was used to 
hydrolyze fillets for 1 h and 
with no pH adjustment 
(optimal condition) 

Peptide were in the range 
of 95 to ~900 Da 

Fish balls  Six freeze-thaw 
cycles (18 h at -25 ºC 
and 6 h at 4 ºC) 

Protein hydrolysates decreased 
expressible moisture and cook 
loss while maintaining salt 
extractable proteins and thermal 
properties of myosin 

[156] 
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5. Conclusions and Future Challenges Facing By-products Upgrading  

Marine by-products have been studied as a source of antioxidant peptides for food, feed and 
nutraceutical applications. Those studies generally recommended them as potential functional 
ingredients to enhance health and nutrition. However, the differences in composition of by-products, 
the type of proteases used and different hydrolysis parameters resulted in various end-products from 
the same protein. To ensure consistency, the process of upgrading at three levels, i.e., by-products, 
enzymes, and operating parameters must be optimized for each source of by-products.  

Different peptides were produced by different enzymes. However, it has not been determined 
which peptide is a more potent antioxidant in controlling oxidation in which food system? Different 
foods, due to inherent composition differences (i.e., different amounts of pro-oxidants, oxidation 
prone substances and internal antioxidant enzymes) will probably have different reactions with 
antioxidant peptides with a specific structure during storage. Therefore, the effect of peptides with 
specific structure or protein hydrolysates produced using a specific condition in different food 
matrices need be investigated.  

Although the structure of peptides was influenced by the specificity of the proteases used, most 
studies used fresh by-products with acceptable initial quality. It is less know if the same peptides 
structure and function can be obtained using previously stored by-products and how the quality of 
proteins in refrigerated or frozen by-products as well as associated chemical reactions during storage 
will affect the hydrolysis and products structure, function, and stability. This area need to be further 
investigated, especially in by-products with high lipid and blood contents such as herring and 
salmonid by-products and to understand which fractions are more oxidized and contribute greater 
to undesirable biochemical reactions during hydrolysis. Several researchers tried to stabilize by-
products before up-grading using antioxidants. There is a price to adding synthetic antioxidants or 
to maintain the initial quality and safety of agricultural wastes as sources of antioxidative extracts. 
The practical ability to do this for large quantities of by-products, the space required with energy 
consumption to create low storage temperature are among the issues that make the valorization more 
complicated. 

Few studies have investigated the relationship between the initial microbial and chemical 
quality of by-products and the safety of the resulting protein hydrolysates for food applications. 
Residual antibiotics in protein hydrolysates from intensive fish/shrimp farming, the amount of 
biogenic amines such as histamine as well as the presence of contaminants (such as cadmium, arsenic, 
mercury and lead) caused by pollution of the sea or culture water are safety issues that should be 
considered when selecting by-products.  

By-products processing should be done near the fish production and processing centers so the 
hydrolysis of by-products can be done in the shortest possible time. When the quantity of by-products 
exceeds the capacity of the plant, they should be stored frozen. Therefore, the impact of frozen storage 
for varying times needs further study on the structure of peptides (amino acid composition, sequence, 
and size) and the occurrence of undesirable oxidative deteriorations and biochemical changes that 
may affect its biological functions. There is limited information about the effect of initial protein 
quality due to processing and storage on the functional and biological activities of hydrolysates and 
peptides for food applications. Maintaining the consistency of the raw material properties (in terms 
of composition, freshness and storage) is likely to be necessary to have a consistent end product from 
each production batch. 

Many studies are underway regarding the use of fish protein hydrolysates in food. Nevertheless, 
the supply of fresh raw materials with acceptable safety, competitive prices with other commercial 
ingredients from plant and other sources, and the lack of efficient and standardized techniques to 

transform fish by-products into marketable forms limits their utilization.  

Although the role of protein hydrolysates in maintaining the quality of seafood products has 
been shown, a standard method for its production from a specific source of marine by-products on a 
pilot or an industrial scale and its industrial application has not yet been undertaken. Yet, industry 
prefers to use synthetic preservatives with lower price to maintain the seafood products quality 
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during storage. As an example, in case of shrimp processing, the suggested use of hydrolysates to 
soak shrimp (as whole or peeled) for 1 h (compared to only a few min in case of sulphate additives) 
to ensure water holding capacity and protein quality is not practical at an industrial scale for shrimp 
processors. They cannot wait for such a long time for processing of several tonnes of shrimp that 
come to a plant each day and should be processed with minimum time. 

Protein hydrolysates may also affect the sensory characteristics of food. So how to mask or 
remove the fish smell using encapsulating methods and the cost of such pretreatments on protein 
hydrolysates and the market demand for it needs to be addressed.  
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