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Abstract: Prediabetes, a pivotal phase in glucose metabolism between normalcy and diabetes, exerts
a profound influence on the aging process and the risk of age-related diseases. This comprehensive
review delves into the intricate web of blood-based biomarkers that collectively expedite
senescence, marking the transition from a state of health to age-related complications. Key findings
underscore the significance of diverse biomarkers, such as telomere length, p16INK4a, senescence-
associated secretory phenotype (SASP) factors, DNA methylation clocks, advanced glycation end
products (AGEs), inflammatory and oxidative stress markers, circulating hormones, and additional
factors like folate, B12, osteocalcin, and more. Not only do these biomarkers serve as indicators of
senescence, but they actively fuel chronic inflammation, oxidative stress, and metabolic
dysregulation, all of which contribute to accelerated aging. The implications of this understanding
are profound, as prediabetes emerges as a critical period in an individual's life, influencing various
physiological systems, including the vascular and neural systems, metabolic functions, hormonal
regulation, and bone health. Recognizing the profound influence of prediabetes on senescence
provides a foundation for personalized intervention strategies to mitigate age-related complications
and promote healthy aging. Future research directions call for a more diverse array of biomarkers,
in-depth exploration of their roles, and the development of tailored precision medicine strategies to
ensure a holistic understanding and effective management of prediabetes-induced senescence and
its implications for aging. This knowledge has far-reaching implications for public health and
clinical practice, emphasizing the need for early detection and intervention in prediabetic
individuals to enhance the quality of life in an aging population with diverse needs.

Keywords: prediabetes; senescence; blood-based biomarkers; aging; age-related diseases;
inflammation; oxidative stress; vascular dynamics; metabolic disorders; chronic inflammation

1. Introduction

The global prevalence of prediabetes, a metabolic state characterized by insulin resistance,
elevated blood glucose levels that are below the threshold for diabetes diagnosis, has emerged as a
significant public health concern [1]. Prediabetes is a critical precursor to type 2 diabetes (T2D),
however often remains undiagnosed while individuals with prediabetes are at a heightened risk of
transitioning to T2D [2]. It is also associated with a range of adverse health outcomes and age-related
complications, including cardiovascular diseases, neurodegenerative disorders, and frailty [3]. Given
the growing aging population worldwide, a comprehensive understanding of how prediabetes
impacts senescence is of great significance.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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The relationship between aging and chronic illnesses like diabetes has drawn significant
attention in the field of public health as the world's population ages [4]. Between normoglycemia and
overt diabetes, prediabetes which is defined by increased blood glucose levels is a critical stage in the
continuum of glucose dysregulation[5]. It is critical to comprehend the many mechanisms by which
prediabetes affects the aging process. The realization that prediabetes contributes to an accelerated
aging phenotype in addition to predisposing people to diabetes is the driving force behind this
extensive research [6]. The evaluation of blood-based biomarkers, which act as markers of underlying
physiological and molecular processes connecting prediabetes and senescence, is a crucial
component of this study [7].

Assessing blood-based biomarkers within the framework of prediabetes-induced senescence
provides a comprehensive viewpoint on the complex interplay between metabolic dysregulation and
aging [8]. This is especially important because aging-related diseases and prediabetes share many
pathophysiological pathways [9]. This review is important because it could give researchers and
physicians the resources they need to identify people who are at risk of developing prediabetes as
well as premature aging. By facilitating early intervention and preventive steps to lessen age-related
issues, it provides a proactive approach to healthcare [10]. Furthermore, figuring out the biomarkers
linked to senescence brought on by prediabetes is crucial for deciphering the molecular causes of
aging and presents chances for focused interventions that can lessen the negative effects of
prediabetes on older persons' health [11].

In addition to adding to our understanding of the aging process, the scientific investigation of
blood-based biomarkers in prediabetes-induced senescence holds enormous promise for enhancing
the health and well-being of prediabetic persons [12]. We can find new treatment targets and
preventive measures by dissecting the relationships between particular biomarkers and accelerated
aging [13]. With a deeper understanding of the relationship between metabolic health and senescence
and, ultimately, guidance for the development of interventions to promote healthy aging and lessen
the burden of age-related diseases among prediabetic individuals, these insights could have far-
reaching implications for the fields of gerontology and diabetes care [14].

This comprehensive review aims to investigate the relationship between prediabetes and age-
related changes, with a specific focus on blood-based biomarkers. It will delve into the impact of
prediabetes on telomere length, p16INK4a expression, senescence-associated secretory phenotype
(SASP) factors, DNA methylation clocks, advanced glycation end products (AGEs), inflammatory
markers, and oxidative stress markers. It will further explore the influence of prediabetes on
circulating hormones, growth factors, and metabolic markers. It aims to provide a thorough
exploration of these various blood-based biomarkers that are associated with both prediabetes and
senescence by synthesizing existing knowledge on these biomarkers. Understanding this connection
is of paramount importance in the context of contemporary healthcare, as it holds the potential to
shed light on the mechanisms underlying accelerated biological aging in prediabetic individuals and
provide valuable insights into the pathogenesis of age-related chronic diseases. This analysis will
contribute to our understanding of the complex relationship between prediabetes and the aging
process, ultimately facilitating the development of targeted interventions and strategies for
mitigating the adverse effects of prediabetes-induced senescence.

2. Age-Related Changes in Plasma Biochemistry and Vascular Dynamics in Prediabetes

2.1. Prediabetes as a Precursor to Age-Related Vascular Changes

A key prelude to age-related vascular alterations is prediabetes, which is defined by high blood
glucose levels that do not fulfil the criteria for diabetes [15]. The circulatory system, which includes
the arteries and veins, undergoes structural and functional changes as a result of the complex and
diverse process of vascular aging [16]. It is essential for the emergence of hypertension and associated
problems, as well as age-related cardiovascular illnesses [17]. Prediabetes can dramatically accelerate
vascular aging, increasing the risk of cardiovascular morbidity and mortality in those who have it.
Prediabetes affects about one in three persons in many countries [18].
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Oxidative stress is one of the main ways that prediabetes affects the aging of the blood vessels
[19]. Increased oxidative stress, which is defined as an imbalance between reactive oxygen species
(ROS) and antioxidant defences, is common in people with prediabetes [19]. This oxidative load may
eventually contribute to vascular aging by causing oxidative damage to the walls of blood vessels
(See Figure 1) [20]. Chronic rise of blood glucose and variations in insulin resistance in prediabetes
intensify oxidative stress and foster an environment that is favourable for oxidative alteration of
lipids and proteins in the vascular system [21]. This accelerates these vascular alterations and raises
the risk of age-related cardiovascular problems such endothelial dysfunction and atherosclerosis[21].

Furthermore, prediabetes is closely associated with chronic low-grade inflammation, often
referred to as “meta-inflammation” [22]. Vascular aging is primarily caused by inflammatory
processes, which prediabetes exacerbates [19]. Prediabetes' pro-inflammatory condition can
encourage immune cells within the vascular wall to become activated, triggering an inflammatory
response that hastens the aging process of the vessels [23]. As a result, blood vessel stiffening,
atherosclerotic plaque development, and decreased vascular reactivity occur[23]. The significance of
prediabetes as a prelude to vascular alterations associated with aging is noteworthy, emphasizing
the need to comprehend these mechanisms and ascertain pertinent blood-based indicators to oversee
and address this metabolic disorder [24]. This review explores the role of such biomarkers in tracking
the progression of vascular aging in prediabetes and their potential for mitigating the adverse
outcomes associated with this accelerated aging process.

2.2. Altered Plasma Biochemistry and Its Implications for Senescence

The biochemical makeup of blood is significantly impacted by prediabetes, which creates the
conditions for accelerated senescence [25]. A vital factor in determining general health, plasma
biochemistry affects a number of physiological functions [26]. Blood plasma composition is altered
in prediabetic individuals due to dysregulated glucose and lipid metabolism in the systemic
environment [27]. Elevated levels of circulating inflammatory markers, such as C-reactive protein
(CRP) and interleukin-6 (IL-6), are one of the major biochemical alterations linked to prediabetes [28].
Pro-inflammatory signals play a role in the persistent low-grade inflammation that is frequently
observed in prediabetes, a condition that is sometimes called "inflammaging" [29]. Since
inflammation is a major factor in senescence, a persistently inflammatory environment speeds up the
aging of many organ systems [30].
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Figure 1. Overview of Prediabetes induced vascular senescence as adapted from source and redrawn
from Bio Render: Several factors can induce senescence in different tissues, such as tissue injury,
telomere shortening, and oncogenic signalling that all lead to DNA damage, the DNA damage
response (DDR), and consequent cell cycle arrest by activation of p16/pRB signalling and/or p53/p21
signalling. Nucleolar stress and ribosome biogenesis defects can also induce RPS14 accumulation in
the nucleus and activates Rb by inhibiting the CDK4/cyclin D1 complex, leading to cell cycle arrest.
Senescent cells also exhibit increased senescence-associated p-galactosidase (SA-B-gal) production,
reactive oxygen species (ROS) accumulation, and anti-apoptotic factors such as BCL-Xt and BCL-2.
Senescent cells exhibit several phenotypic changes such as a resistance to apoptosis, oxidative stress
and damage, metabolic changes, morphological changes, cell cycle arrest, and extracellular vesicle
secretion containing SASP factors such as IL-1, IL-6, TNF, MMP13, and various growth factors. This
SASP can either feedback in an autocrine manner to the senescent cell or in a paracrine manner
influence and promote senescence and inflammation in the surrounding cells and tissues [31].

Moreover, abnormal lipid profiles, such as elevated triglyceride and decreased high-density
lipoprotein (HDL) cholesterol levels, are linked to prediabetes [32]. Due to its pro-atherogenic nature,
dyslipidaemia encourages the build-up of cholesterol in blood vessel walls and the onset of
atherosclerosis, a disease generally associated with advanced age [33]. Atherosclerosis raises the risk
of cardiovascular events like heart attacks and strokes by limiting blood flow and encouraging the
formation of blood clots [34]. The combined effect of these changed parameters related to plasma
biochemistry speeds up the aging process of organ and vascular systems [7].

Prediabetes causes hyperglycaemia by upsetting glucose homeostasis and going beyond
inflammation and dyslipidaemia [35]. The glycation of proteins, including those essential for vascular
health, is promoted by elevated blood glucose levels [36]. This process results in the formation of
advanced glycation end products (AGEs), which promote oxidative stress and the stiffening of
arterial walls [37]. AGEs have broad implications for age-related complications like renal dysfunction
and neurodegenerative diseases, in addition to their association with vascular senescence [38].
Examining the interaction between these biochemical alterations and the aging process in prediabetes
is essential because the altered plasma biochemistry in prediabetes is a critical link in the chain of
events that accelerates senescence [9].

2.3. Role of Biomarkers in Plasma Biochemistry Changes

As a metabolic state that lies between normoglycemia and diabetes, prediabetes is characterized
by a complex interplay of biochemical factors, many of which are important biomarkers for changes
in plasma biochemistry [39]. These biomarkers are essential for comprehending the
pathophysiological changes linked to prediabetes and how they affect senescence [40]. A number of
important biomarkers emerge in the context of changes in plasma biochemistry, providing insight
into the biochemical dysregulations that underlie accelerated aging and age-related vascular
dynamics [41].

2.3.1. Telomere Length: Genomic stability depends on telomeres, the protective caps that sit at
the ends of chromosomes [42]. Since telomere shortening is a sign of cellular aging and senescence,
their length is a crucial factor in determining cellular lifespan [43]. Telomere shortening occurs at a
significantly faster rate in the setting of prediabetes, a disorder characterized by oxidative stress, low-
grade inflammation, and chronic metabolic disruptions [44]. Telomeres are significantly impacted by
these environmental factors, which are frequently linked to prediabetes, hastening their attrition [45].
Telomere length thus functions as a biomarker reflecting the accelerated aging of cells in prediabetic
subjects [44]. This phenomenon has broader implications because, in addition to indicating cellular
aging, short telomeres also contribute to the general senescence seen in prediabetic people [44].
Deciphering the complex interplay between prediabetes and accelerated senescence which will
illuminate the molecular mechanisms underlying this condition's effects on aging and age-related
illnesses requires an understanding of the dynamics of telomere length [44].

2.3.2. pl6INK4a: In the context of cellular senescence, p16INK4a functions as a critical regulator.
Senescence-related irreversible growth arrest of cells is regulated by this biomarker, which functions
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as a sentinel [46]. The expression of p16INK4a is generally higher and more prominent in prediabetes
than in non-prediabetic people [47]. This upregulation, which is a result of the inflammatory and
metabolic environment linked to prediabetes, indicates a higher frequency of senescent cells [48]. The
high frequency of p16INK4a in prediabetics highlights the harmful effects of this metabolic disorder
on the integrity of cells [49]. A state of cellular stress and dysfunction, indicated by elevated
p16INK4a levels, is linked to prediabetic individuals' age-related health conditions as well as the
general aging process [50]. Comprehending the function of p16INK4a is crucial for unravelling the
connection between prediabetes and cellular senescence, providing insight into the molecular
processes that underpin the condition's impact on the aging process [51].

2.3.3. Senescence-Associated Secretory Phenotype (SASP) Factors: The SASP is a broad category
of substances secreted by senescent cells, which includes growth factors, chemokines, and pro-
inflammatory cytokines [52]. These elements have a significant impact on nearby cells and tissues as
well as the microenvironment that senescent cells are in [52]. The production of SASP factor is
primarily driven by the chronic low-grade inflammation that is a feature of prediabetes [53].
Consequently, increased blood levels of SASP factors are linked to prediabetes [54]. These biomarkers
demonstrate how senescent cells actively promote inflammation and modify plasma biochemistry
[55]. The elevated SASP factor levels in prediabetes serve as indicators of the role of senescence in the
systemic changes in plasma biochemistry and the overall inflammatory milieu [56]. The senescence
process in prediabetes and its consequences for age-related health conditions are further complicated
by the interaction between senescence and inflammation, which is reflected by SASP factors [57].
Comprehending the functions of SASP factors in modifications to plasma biochemistry is essential
for clarifying the ways in which prediabetes hastens senescence and influences aging [58].

2.3.4. DNA Methylation Clocks: Epigenetic modifications, specifically DNA methylation, are
essential for controlling gene expression and are crucial in the aging process [59]. DNA methylation
clocks have become useful biomarkers for determining the rate of aging because they quantify the
epigenetic age of cells or tissues [60]. These epigenetic clocks frequently show an accelerated aging
pattern in the context of prediabetes [60]. This acceleration is explained by the disruption of DNA
methylation patterns caused by the metabolic and oxidative stress linked to prediabetes [61]. As a
result, prediabetic people have changes in their epigenetic landscape that correspond to an older
biological age [60]. These biomarkers provide important clues about the epigenetic modifications that
accelerate senescence in prediabetes and shed light on the underlying mechanisms and consequences
for age-related disorders [62]. Comprehending the functions of DNA methylation clocks is crucial in
clarifying the ways in which prediabetes affects the epigenetic control of aging and its wider
consequences on health conditions associated with aging.

2.3.5. Advanced Glycation End Products (AGEs): Advanced Glycation End Products, commonly
known as AGEs, serve as critical biomarkers in the context of prediabetes-induced senescence [63].
Prediabetes is often associated with elevated levels of AGEs, which stem from the persistent
hyperglycaemia and oxidative stress characteristic of the condition [19]. AGEs are formed through a
non-enzymatic reaction between sugars and proteins, and their accumulation is indicative of
glycation and oxidative damage [64]. In prediabetes, the heightened levels of AGEs underscore the
accelerated aging of tissues and systems, with profound implications for age-related complications
[65]. These biomarkers reflect the complex biochemical changes that drive senescence and contribute
to age-related alterations in vascular dynamics and other physiological processes [66].
Comprehending the functions of DNA methylation clocks is crucial in clarifying the ways in which
prediabetes affects the epigenetic control of aging and its wider consequences on health conditions
associated with aging [67].

3. Circulating Hormones and Growth Factors Associated with Aging in Prediabetes

3.1. Hormonal Shifts in Prediabetes and Their Influence on Senescence

A complex interplay of hormonal changes, with significant implications for the senescence
process, characterizes prediabetes [25]. An interruption in the insulin-like growth factor (IGF) axis is
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one of the primary hormonal changes linked to prediabetes [68]. Changes in the levels and
bioavailability of insulin-like growth factor 1 (IGF-1), a hormone essential for tissue repair, cell
growth, and differentiation, are frequently observed in prediabetic individuals [69]. Insulin
resistance, a defining feature of prediabetes, can hinder IGF-1 signalling, exacerbating systemic
metabolic abnormalities [70]. This disturbance of the IGF axis causes accelerated aging of cells and is
associated with the senescence of different tissues, which affects the tissues' ability to regenerate and
their overall physiological function [71]. Furthermore, prediabetics have different hormonal profiles
for other growth factors, like brain-derived neurotrophic factor (BDNF), which is important for
neuronal health and cognitive function [72]. Particularly in older adults, altered BDNF levels in
prediabetes can have an impact on cognitive health [73]. The complex relationships between
hormonal changes in prediabetes and their effects on aging are highlighted by the disruptions in
BDNF signalling, which can cause cognitive decline and exacerbate the senescence process [74].

Moreover, changes in the hormone’s leptin and adiponectin, which are secreted by adipose
tissue, are part of the hormonal landscape of prediabetes [75]. Lower levels of adiponectin, a hormone
that has anti-inflammatory and insulin-sensitizing qualities, are frequently seen in prediabetic people
[76]. Aging-related metabolic alterations and insulin resistance can be made worse by decreased
adiponectin levels [77]. On the other hand, because of modifications in adipose tissue, prediabetes is
also associated with changes in leptin, a hormone involved in appetite regulation and energy
expenditure [21]. These changes in hormones can affect body weight, metabolism, and general health,
which can further accelerate the aging process [78]. In conclusion, deciphering the complex hormonal
changes associated with prediabetes and how they affect senescence is essential to understanding the
metabolic condition's wider effects on aging and age-related health issues [79].

3.2. Growth Factors and Their Role in Age-Associated Processes

Growth factors play a particularly important role in prediabetes-induced senescence [63].
Growth factors are essential for coordinating a number of physiological processes. Examples of these
include vascular endothelial growth factor (VEGF), insulin-like growth factor 1 (IGF-1), and insulin-
like growth factor-binding proteins (IGFBPs) [80]. The hormonal milieu in prediabetic individuals
frequently involves changes to the IGF-1 and IGFBPs system [81]. These alterations have an effect on
tissue healing, cell division, and growth and are intimately related to insulin resistance and metabolic
dysregulation [82]. The IGF-1 signalling axis is disrupted, which speeds up senescence and reduces
cells' and tissues' ability to regenerate [83]. Moreover, prediabetes is associated with alterations in
VEGEF levels, a crucial regulator of angiogenesis and vascular homeostasis [84]. Changes in VEGF
levels can affect tissue perfusion and vascular dynamics, which can lead to the age-related vascular
alterations that are frequently observed in people with prediabetes [85].

Clarifying the intricate interactions between hormonal changes and senescence requires an
understanding of the roles played by these growth factors in age-related processes [86]. Changes in
growth factors such as bone morphogenetic proteins (BMPs) and brain-derived neurotrophic factor
(BDNF) are accompanied by modifications in IGF-1, IGFBPs, and VEGF, which in turn affect different
physiological systems [87]. The regulation of cellular growth, tissue repair, angiogenesis, and
neuroprotection depend on these growth factors, and their disruption in prediabetes highlights the
complex effects of this metabolic disorder on the aging process [88]. Gaining insight into how growth
factor dysregulation in prediabetes affects age-related physiological changes and the emergence of
age-related health conditions requires an understanding of the complexities of this condition (see
Table 1) [89].
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Table 1. Circulating Hormones and Growth Factors Associated with Aging in Prediabetes.

Circulating Indicators of Aging = Dynamics during Aging Function/Risk Factor Reasons for the Condition Lifespan Influence Ref.
Growth Hormone (GH) Altered levels Impact on muscle mass, bone density Insulin resistance Influence on aging [90]
Insulin-like Growth Factor 1 (IGF-1)  Variations during aging Regulation of cell growth, repair Metabolic changes Potential lifespan influence [91]
Dehyd iandrost Sulfat
ehycroeplandrosterone Stitlate Decreased levels Hormonal changes Prediabetes Aging effect [92]
(DHEA-S)
Potential infl
Testosterone (in men) Changes in aging Impact on muscle and bone health Hormonal alterations oren IE felzlp;lnence on [93]
Dt (@) Hormonal s.hlfts during  Effects on bone density, cardiovascular MsTeeusa il e A [94]
aging health
. . . . Role in cell growth, repair, and . . L
Circulating Growth Factors Alterations with age ; Aging process Lifespan variations [95]
regeneration
Brain-Deri hic F p ial infl
ram erlved(glslli;;))trop ic Factor Age-related changes Cognitive health in aging Prediabetes and aging Otenhﬁ f;:p;nence on [96]
Insulin-Like Growth Factor-Binding
Age-rel 1 i lation of IGF-1 effi M lic ch Agi lif 7
Proteins (IGFBPs) ge-related alterations Modulation of IGF-1 effects etabolic changes ging and lifespan [97]
Additional Factors in Aging Dynamics during aging Various influences on aging Prediabetes and aging Lifespan variations [98]
Telomere Length Shortening with age Cellular aging indicator Oxidative stress, inflammation Influence on aging [99]
pl6INK4a Increased levels with age Cellular senescence regulator Prediabetes and aging Accelerated aging [100]
Senescence-Assoclated Secretory Elevated levels with age Impact Oltl 1nf1arr}mat1on and Chronic inflammation Aging implications [101]
Phenotype (SASP) Factors biochemistry
DNA Methylation Clocks Accelerated aging with age Epigenetic changes indicator Metabolic and oxidative stress Influence on aging [102]
A 1 ion End P
dvanced G }Ezaélgrsl) nd Products Increased levels with age Age-related complications indicator Glycation and oxidative stress Accelerated aging [64]
Inflammatory Markers Elevated with age Indicators of chronic inflammation Prediabetes and aging Aging and inflammation  [103,104]
Oxidative Stress Markers Increased with age Oxidative damage indicators Prediabetes and aging Influence on aging [105]
Red Blood Cell Distribution Width Infl ti d metabolic ch
ed Blood Ce (lel‘s/vl;lbu ton Increased with age nammation i?:iiczltf):bo techanges Prediabetes and aging Influence on aging [106]
I tofh 1 i ti d
Hemoglobin Alc (HbAlc) Elevated with age mpacto ypel‘i;’sﬁi:;la onhissues an Chronic hyperglycaemia Aging and diabetes [107]
Serum Albumin Decreased with age Nutritional status indicator Prediabetes and aging Influence on aging [108]
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3.3. Role of Biomarkers in Hormonal Changes

3.3.1. Circulating Growth Hormone (GH) and Insulin-like Growth Factor 1 (IGF-1): Variations
in GH and IGEF-1 levels are common in prediabetic individuals due to insulin resistance and metabolic
changes, which are characteristics of prediabetes[70]. The insulin resistance seen in prediabetes is
closely associated with these hormonal alterations, which are indicative of the endocrine system's
influence on the disease and its function in mediating senescence [109].

3.3.2. Dehydroepiandrosterone Sulphate (DHEA-S): A significant decrease in the levels of the
steroid hormone DHEA-S, which is generated by the adrenal glands, is frequently observed in people
who are prediabetic [110]. This hormonal change plays a crucial role in the context of senescence
brought on by prediabetes because it adds to the range of hormonal aging changes [57]. The synthesis
of sex hormones, such as oestrogen and testosterone, which are essential for many physiological
functions, begins with the production of DHEA-S [111]. The complex relationship between
prediabetes and senescence is further highlighted by the drop in DHEA-S levels in prediabetes, which
is indicative of a significant hormonal shift that affects the aging process [112].

3.3.3. Testosterone (in men): Changes in testosterone levels are frequently noted in male
prediabetic individuals, impacting various aspects of the aging process [98]. These alterations may
significantly affect bone density, muscle mass, and other aging-related factors[98]. The essential male
sex hormone testosterone is essential for preserving bone health, muscle mass, and general vigour
[113]. The hormonal changes associated with prediabetes underscore the impact of the illness on the
endocrine system and its part in determining the course of aging in men [112]

3.3.4. Oestrogen (in women): Changes in oestrogen levels in women who are prediabetic can
have a substantial effect on different aspects of aging [114]. These hormonal shifts may have an
impact on cardiovascular health, bone density, and a number of other aging-related factors [114]. The
main female sex hormone, oestrogen, has a significant impact on preserving cardiovascular health,
bone health, and general well-being [115]. Changes in oestrogen levels in people with prediabetes
highlight the impact of the disease on the endocrine system and how it affects how people age in
women [116].

4. Age-Associated Inflammatory Factors in Prediabetes

4.1. Inflammatory Mediators in Prediabetes-Induced Senescence

Age-associated senescence is significantly influenced by chronic low-grade inflammation, which
is a metabolic milieu characteristic of prediabetes [117]. A range of inflammatory mediators become
prominent in this context. Notably, prediabetic individuals frequently have elevated levels of pro-
inflammatory cytokines such as interleukin-6 (IL-6), C-reactive protein (CRP), and others [19]. These
mediators of inflammation play a pivotal role as biomarkers reflecting the chronic inflammatory state
associated with prediabetes [19]. For example, CRP is a sensitive indicator of systemic inflammation,
and IL-6 is essential for controlling inflammation and immune responses [118]. Their increased risk
of prediabetes is an essential component of the disease's pathophysiology rather than just a side effect
[118]. The existence of these inflammatory mediators indicates how chronic inflammation contributes
to senescence and how it speeds up aging in people who are prediabetic [119].

Furthermore, there is a strong correlation between prediabetes and elevated oxidative stress,
which amplifies the influence of inflammatory mediators on senescence (see Table 2) [19]. Reactive
oxygen species (ROS) and oxidative damage are caused by the pro-inflammatory state associated
with prediabetes, which is characterized by the release of factors like tumour necrosis factor-alpha
(TNF-a) [120]. The complex interplay between oxidative stress and inflammation in prediabetes-
induced senescence is highlighted by these molecular events [121]. Knowing how inflammatory
mediators contribute to prediabetes-induced senescence offers important new understandings of the
processes that underlie the condition's acceleration of aging and its consequences for age-related
medical disorders.
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Table 2. Age-associated Inflammatory Mediators in Prediabetes-Induced Senescence.

Circulating Biomarker Dynar;’lorciil;lurmg Function/Risk Factor in Aging Molecule Longevity Influence Ref.
Inflammatory Mediators Changes during aging Role in chronic inflammation and aging May influence lifespan [122]

Pro-inflammatory Cytokines (e.g., IL-6) Increased levels Chronic inflammation and aging May shorten lifespan [30,123]
Chemokines (e.g., MCP-1) Altered dynamics Recruitment of immune cells, aging May impact lifespan [124]
Growth Factors (e.g., TGF-f31) Varied with age Modulation of cell growth, aging Influence on lifespan [125]
Senescence-Associated Secretory Phenotype (SASP) Factors Increased with age Promotion of inflammation and aging May influence lifespan [126]
Inflammatory Markers (e.g., CRP) Elevated with age Indicators of chronic inflammation May impact lifespan [56]
Oxidative Stress Markers (e.g., ROS) Increased with age Indicators of oxidative damage May influence lifespan [127]
Endothelial Markers (e.g., vWF) Altered dynamics Indicators of endothelial dysfunction May impact lifespan [128]
DNA Damage Markers (e.g., 8-OHdG) Increased levels Indicators of DNA damage and aging May influence lifespan [129]
Mitochondrial Dysfunction Markers (e.g., mtDNA) Changes during aging Indicators of impaired mitochondrial function May impact lifespan [130]
Immune System Biomarkers (e.g., CD4+ T cells) Altered dynamics Immune system indicators in aging May influence lifespan [123]
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4.2. Chronic Inflammation and Its Implications for Senescence

In prediabetes, chronic inflammation is at the forefront of age-associated senescence and has a
significant impact on multiple physiological systems [19]. Senescence is largely promoted by the
chronic low-grade inflammation that is a feature of prediabetes [117]. In this context, prediabetic
people frequently have elevated levels of various inflammatory mediators, including interleukin-1
beta (IL-1p), interleukin-18 (IL-18), and high-sensitivity C-reactive protein (hs-CRP) [131]. The
systemic inflammation that accelerates aging is largely caused by these inflammatory factors [132].
Pro-inflammatory cytokines that can worsen immune responses and inflammatory pathways include
IL-18 and IL-18 [133]. The persistent inflammatory state in prediabetes is reflected in hs-CRP, a
sensitive marker of systemic inflammation [134]. The increased levels of these mediators indicate the
critical role that chronic inflammation plays in the senescence brought on by prediabetes, impacting
multiple physiological systems and hastening age-related health issues [135].

Moreover, oxidative stress and the inflammatory milieu in prediabetes are tightly linked, which
further complicates the senescence process [136]. Tumour necrosis factor-alpha (TNF-a) and other
inflammatory mediators in prediabetes frequently contribute to the production of reactive oxygen
species (ROS) and oxidative damage [120]. These molecular interactions increase the level of
oxidative stress in prediabetic people, which strengthens the influence of chronic inflammation on
aging [19]. The complex processes that underlie the senescence seen in prediabetes are highlighted
by the interaction between oxidative stress and inflammation [137]. It also emphasizes the necessity
of investigating therapeutic approaches that address oxidative stress and inflammation in order to
lessen the effects of prediabetes on age-related health issues and premature aging [138].

4.3. Role of Biomarkers in Inflammatory Factors

4.3.1. Senescence-Associated Secretory Phenotype (SASP) Factors: Higher than normal levels of
SASP factors, a set of secreted factors linked to senescent cells, are frequently seen in prediabetic
individuals [139]. The chronic inflammation frequently seen in prediabetes is the cause of this rise in
SASP factors [140]. SASP factors are important indicators that highlight the proactive function of
senescent cells in promoting inflammation and modifying the inflammatory environment in people
with prediabetes [141].

4.3.2. Inflammatory Markers: Elevated levels of well-known inflammatory markers, such as
interleukin-6 (IL-6) and C-reactive protein (CRP), are frequently used to diagnose prediabetes [142].
These markers are suggestive of the low-grade chronic inflammation that is commonly seen in people
who are prediabetic [19]. A sensitive indicator of systemic inflammation, CRP captures the persistent
pro-inflammatory milieu linked to prediabetes [143]. In a similar vein, IL-6, an important modulator
of inflammation and immune responses, is crucial in mediating the inflammatory processes
associated with prediabetes [144]. These inflammatory markers demonstrate the active role that
chronic inflammation plays in determining the course of senescence and its role in the accelerated
aging seen in prediabetic individuals [25]. The mechanisms underlying senescence in prediabetes and
its implications for age-related health conditions are clarified by these markers, which also serve as
important indicators of inflammation. (Chronic Inflammation, Prediabetes) [117].

5. Vascular and Neural System Aging in Prediabetes

5.1. Prediabetes-Induced Vascular Changes and Senescence

Prediabetes has a major impact on the vascular system's aging process, starting a series of
alterations that greatly accelerate senescence [145]. The accelerated progression of atherosclerosis and
endothelial dysfunction are two of the main characteristics of vascular aging in prediabetes [146].
Specifically, endothelial dysfunction is a major factor in aging because it indicates a decline in the
endothelium's ability to control vascular tone, preserve homeostasis, and avoid blood clot formation
[147]. Chronic hyperglycaemia and inflammation cause endothelial dysfunction in prediabetic
people, which speeds up vascular senescence [19]. The existence of these vascular alterations
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highlights the complex interplay among prediabetes, endothelial dysfunction, and senescence,
underscoring the diverse effects of prediabetes on the vascular system's aging process [148].

Moreover, age-related changes in prediabetes can also affect the neural system, which is
intricately linked to the vascular system [85]. The illness affects overall neurological health and
cognitive function by accelerating neural senescence[85]. A common feature of aging is cognitive
decline, which is more likely to occur in people with prediabetes [149]. The vascular alterations
associated with prediabetes, such as decreased cerebral blood flow and microvascular dysfunction,
contribute to the neurodegenerative processes. Together, these elements cause the aging of neural
tissue to occur more quickly [150]. Deciphering the connection between vascular alterations brought
on by prediabetes and their consequences for the aging of the neural system is essential to
understanding the larger influence of this metabolic disorder on aging and its consequences on
neurological and cognitive health [151].
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Table 3. Biomarkers in Prediabetes-Induced Vascular and Neural System Aging.
Biomarker Role in Aging Implications for Senescence Ref.
Telomere Length Reflects cellular aging and senescence Accelerated aging and cellular senescence [152]
p16INK4a Regulates cellular senescence Increased cellular senescence [153]
Senescence—Assoc1atedFii:cr)izory Phenotype (SASF) Reflect senescent cell secretions Promote inflammation and senescence [154]
DNA Methylation Clocks Epigenetic aging indicators Accelerated epigenetic aging [155]
Advanced Glycation End Products (AGEs) Reflect glycation and oxidative stress ~ Contribute to accelerated aging and age-related complications  [156]
Inflammatory Markers Indicators of inflammation Contribute to inflammation associated with aging [157]
Oxidative Stress Markers Indicators of oxidative damage and stress Exacerbate age-related oxidative damage [156]
Endothelial Dysfunction Indicators of vascular dysfunction Exacerbate endothelial dysfunction and impact vascular health  [158]
Mitochondprial Dysfunction Reflect mitochondrial function and health Impair mitochondrial function associated with aging [159]
Red Blood Cell Distribution Width (RDW) Reflect changes in red blood cells Indicate inflammation and metabolic changes affecting aging [160]
Haemoglobin Alc (HbAlc) Reflects long-term blood glucose levels Accelerate aging due to chronic hyperglycaemia [161]
Serum Albumin Reflects nutritional status and frailty Affect nutritional status and frailty [159]
Circulating Growth Hormone (GH) and Insulin-like Reflect hormonal changes Influence insulin resistance and metabolic changes [162]
Growth Factor 1 (IGF-1)

DHEA-S Reflects hormonal changes Contribute to hormonal changes associated with aging [163]

Testosterone (in men) Reflects hormonal changes in men Impact muscle mass, bone density, and aging [63,164]
Oestrogen (in women) Reflects hormonal changes in women Affect bone density, cardiovascular health, and aging [165]
Brain-Derived Neurotrophic Factor (BDNF) Reflects changes in neurotrophic factors Influence cognitive health, particularly in aging [156]
IGF-Binding Proteins Reflect changes in IGF-1 bioavailability Contribute to metabolic and aging-related effects [166]
Folate and B12 Reflect nutritional deficiencies Impact DNA methylation and repair essential for aging [167]
Osteocalcin Reflect changes in bone health Affect bone health, a key consideration in aging [168]
Adiponectin Reflects changes in metabolic health Impact insulin resistance and metabolic changes [167]
Leptin Reflects changes in adipose tissue Impact metabolism and aging [155]

Homocysteine Reflects cardiovascular risk May be more prevalent in prediabetic individuals [156,169]

Insulin Resistance Markers Reflect insulin resistance May worsen with age in prediabetic individuals [170,171]
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5.2. Neural System Aging and Cognitive Implications in Prediabetes

Prediabetes affects not only the aging of the vascular system but also the aging of the neural
system, which has important implications for cognition [172]. An inevitable aspect of aging is
cognitive decline, which is more likely to occur early in prediabetic people [173]. The vascular
changes linked to prediabetes are intimately linked to the neurodegenerative changes that are
observed in the condition [174]. Through processes like decreased cerebral blood flow and
microvascular dysfunction, chronic hyperglycaemia and inflammation in prediabetes directly affect
neural tissue. Together, these elements cause the aging of neural tissue to occur more quickly [175].
Prediabetic people exhibit more severe cognitive deficits, especially in areas linked to memory,
executive function, and information processing speed [172]. Gaining an appreciation of the full
impact of this metabolic condition on aging and cognitive health requires an understanding of the
relationship between prediabetes-induced neural system aging and its cognitive implications [176].

Furthermore, through pathways involving oxidative stress, inflammation, and metabolic
alterations, prediabetes can impact neural senescence [137]. Neuroinflammation, a defining feature
of neurodegenerative diseases such as Alzheimer's disease, can result from these processes [137].
Neural senescence is exacerbated by pro-inflammatory mediators in the central nervous system that
are activated by chronic inflammation and oxidative stress in prediabetes [177]. The complex
interactions among these variables highlight the significance of treating cognitive health in people
with prediabetes and creating plans to lessen the effects of neural system aging on cognition [178].

5.3. Role of Biomarkers in Vascular and Neural System Aging

5.3.1. Advanced Glycation End Products (AGEs): Advanced glycation end products (AGEs)
become an important biomarker in the context of vascular and neural system aging in prediabetes
[179]. Elevated levels of AGEs are a common feature of prediabetes, and they have significant
implications for the development of age-related complications and the acceleration of aging [85]. A
class of molecules known as AGEs is produced when proteins and lipids undergo non-enzymatic
glycation and oxidation. An increased production and accumulation of AGEs is a result of
prediabetes' chronic hyperglycaemia and oxidative stress [179]. These molecules actively contribute
to the vascular and neural system aging seen in prediabetic individuals, in addition to reflecting the
biochemical changes that drive senescence [7]. The increased levels of AGEs in prediabetes indicate
that this biomarker plays a crucial role in determining the course of aging, emphasizing the
significance of addressing AGE-related mechanisms to lessen the effects of prediabetes on the brain
and vascular systems [12].

5.3.2 Endothelial Dysfunction: The vascular system ages significantly as a result of prediabetes,
and endothelial dysfunction is emerging as a critical biomarker [180]. A common feature of vascular
aging is endothelial dysfunction, which is made worse by this condition[180]. Endothelial cells are
essential for controlling blood flow and preserving vascular homeostasis [181]. Chronic inflammation
and hyperglycaemia aggravate endothelial dysfunction in prediabetic individuals, indicating a
crucial phase of vascular senescence [19]. A more noticeable effect on endothelial markers like von
Willebrand factor (vWF), a vital mediator of blood clotting and vascular health, is linked to
endothelial dysfunction [182]. In order to lessen the effects of aging on prediabetic people, it is
important to address endothelial markers, as the existence of endothelial dysfunction in the condition
highlights the complex relationship between vascular aging and prediabetes [183].

6. Systemic Inflammaging in Prediabetes

6.1. The Link Between Prediabetes and Systemic Inflammaging

Systemic inflammaging, the long-term low-grade inflammation associated with aging, is
markedly worsened in people with prediabetes, resulting in a complex interaction between the
metabolic disorder and aging [56]. Prediabetes, via a variety of interrelated mechanisms, plays a
major role in the promotion of inflammation [19]. The enduring pro-inflammatory condition
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associated with prediabetes, which is fuelled by oxidative stress and chronic hyperglycaemia, is
crucial to this connection [184]. Systemic inflammation is facilitated by these factors, which also
activate pro-inflammatory pathways and release pro-inflammatory cytokines. Interestingly, elevated
levels of C-reactive protein (CRP), interleukin-6 (IL-6), and other inflammatory markers are
frequently observed in prediabetic individuals, supporting the link between prediabetes and
systemic inflammation [185]. These inflammation biomarkers show the complex relationship
between prediabetes and the accelerated aging process, which ultimately results in the systemic
inflammaging seen in this population. They also serve as indicators of the elevated inflammatory
state in prediabetic individuals [186].
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Figure 2. Prediabetes-induced systemic inflammaging (focusing on immunosenescence which is
immune system aging) as adapted from source and Biorender: Inflammaging at the molecular,
cellular, and organ levels. During the aging process, almost all cells in the body undergo senescence,
a state characterized by a dysfunctional state and senescence-associated secretory phenotype (SASP).
While immune cells play a crucial role in recognizing and eliminating these senescent cells, they are
also affected by SASP, leading to a phenomenon called immunosenescence. Immunosenescence can
impair the immunity to respond to infections and diseases, making the organism more vulnerable to
illnesses. Moreover, the accumulation of senescent cells can trigger inflammation in organs, leading
to organ damage and an increased risk of age-related diseases. This process is exacerbated by positive
feedback loops that drive the accumulation of inflammation and organ damage, leading to further
inflammation and an even higher risk of aging-related diseases [30].

Prediabetes also affects the endocrine system, causing hormonal changes that feed
inflammation, which further contributes to systemic inflammaging [78]. For example, prediabetes is
frequently associated with altered levels of adipokines, such as adiponectin and leptin, which
promote a pro-inflammatory milieu [187]. The body's delicate balance between pro- and anti-
inflammatory components is also impacted by this hormonal imbalance, which exacerbates
inflammation [188]. The complex interaction of inflammatory markers, hormonal changes, and
prediabetes highlights the complexity of systemic inflammation in this metabolic condition [189].
Comprehending the connection between prediabetes and systemic inflammation is crucial in order
to appreciate the wider influence of this illness on the aging process and its consequences for health
issues associated with aging [120].
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6.2. Inflammatory Factors and Their Contribution to Senescence

The aging of different physiological systems is largely caused by the chronic inflammation that
is a feature of systemic inflammaging in prediabetes [190]. A number of important inflammatory
markers, including interleukin-6 (IL-6) and C-reactive protein (CRP), are frequently elevated in
prediabetics [19]. These markers indicate a chronic pro-inflammatory condition that accelerates aging
by substantially contributing to senescence[19]. A sensitive measure of systemic inflammation, CRP
is a good way to see if prediabetes is still linked to a pro-inflammatory state [28]. Similarly, IL-6 plays
a major role in coordinating the inflammatory processes associated with prediabetes. It is a central
regulator of immune responses and inflammation [191]. The existence of these inflammatory markers
emphasizes how crucial a role they play in encouraging senescence and the faster aging seen in
prediabetic people [119].

Moreover, oxidative stress, which increases the effect of inflammatory factors on senescence, is
intimately linked to chronic inflammation in prediabetes [119]. Reactive oxygen species (ROS) and
oxidative damage are fostered by the pro-inflammatory state associated with prediabetes, which is
marked by the release of factors like tumor necrosis factor-alpha (TNF-a) [192]. The complex
interplay between oxidative stress and inflammation in prediabetes-induced senescence is
highlighted by these molecular events [192]. The coexistence of oxidative stress and chronic
inflammation in prediabetes, as well as their combined effect on senescence, provide a thorough
understanding of the mechanisms through which the condition speeds up aging and emphasize the
significance of treating inflammation in prediabetic individuals to manage age-related health
conditions [19].

6.3. Role of Biomarkers in Systemic Inflammaging

6.3.1. Inflammatory Markers (continued): Interleukin-6 (IL-6) and C-reactive protein (CRP) are
two inflammatory markers that play a significant role in the context of systemic inflammation in
prediabetes [193]. Elevated levels of these inflammatory markers are often associated with
prediabetes, indicating a persistent pro-inflammatory state that is commonly seen in the condition
[19]. As a sensitive measure of systemic inflammation, CRP is an important window into the
persistent pro-inflammatory environment linked to prediabetes [194]. In a similar vein, IL-6, an
important modulator of inflammation and immune responses, is crucial in mediating the
inflammatory processes associated with prediabetes [19]. These inflammatory markers are important
markers of inflammation and play a major role in the chronic inflammation that comes with aging in
people with prediabetes [137]. Understanding the mechanisms by which prediabetes accelerates
systemic inflammaging and its implications for age-related health conditions depends on the
identification of these biomarkers [29].

6.3.2. Oxidative Stress Markers: The role of elevated oxidative stress in the context of systemic
inflammation in prediabetes cannot be understated [195]. Elevated oxidative stress is frequently
linked to prediabetes, which can worsen the age-related rise in reactive oxygen species (ROS) and
oxidative damage [137]. Oxidative stress is closely associated with the chronic pro-inflammatory state
that characterizes prediabetes, which fosters the production of reactive oxygen species (ROS) and
subsequent oxidative damage [196]. The intricate relationship between prediabetes, inflammation,
and oxidative stress is highlighted by the presence of oxidative stress markers, which further
highlights the complex web of factors that contribute to systemic inflammation [197]. Understanding
the wider effects of prediabetes on aging and its consequences for age-related health issues, especially
in light of systemic inflammation, requires an understanding of the role of oxidative stress markers
in this metabolic condition [198].
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7. Regeneration and Metabolic Disorders in Prediabetes

7.1. Impaired Regeneration Mechanisms in Prediabetes

The body's ability to regenerate itself is greatly impacted by prediabetes, and this ability is
crucial for preserving tissue integrity and fending off the consequences of aging [199]. A number of
variables, such as oxidative stress, metabolic dysregulation, and chronic inflammation, are associated
with impaired regeneration mechanisms in prediabetes [136]. The body's capacity to initiate and
maintain regenerative processes is hampered by chronic inflammation, a defining feature of
prediabetes [200]. The inflammatory mediators that are activated during a persistent pro-
inflammatory state obstruct the body's regenerative processes, especially when it comes to tissue
repair and cellular turnover [201]. Prediabetic individuals may encounter delayed wound healing
and compromised tissue regeneration, particularly in tissues with a high cellular turnover rate like
the skin and the lining of the gastrointestinal tract. These tissues are most affected by this hindrance
to regeneration [202]. Understanding prediabetes' effects on aging and its consequences for age-
related health conditions requires an understanding of the interaction between inflammation and
regeneration brought on by the condition [200].

The impairment of regeneration mechanisms is further compounded by metabolic dysregulation
in prediabetes. A defining feature of prediabetes is insulin resistance, which impairs the body's
capacity to use glucose effectively for cellular upkeep and energy production. Since glucose is a
necessary fuel for many regenerative mechanisms, such as tissue repair and cell proliferation, this
metabolic disruption has a negative impact on the regenerative processes. Cellular energy
deficiencies impair the body's capacity to mount a strong regenerative response in prediabetes, which
is one of the factors contributing to the impaired regeneration seen in prediabetic patients. Gaining
an appreciation of the complete influence of prediabetes on the aging process and its consequences
for age-related health complications requires an understanding of the connection between impaired
regeneration, prediabetes, and the related metabolic disorders.

7.2. Metabolic Disorders and Their Impact on Senescence

Senescence and the body's ability to regenerate itself are significantly impacted by prediabetes,
a metabolic condition characterized by insulin resistance and dysregulated glucose metabolism [119].
One characteristic that sets prediabetes apart is insulin resistance, which impairs cells' ability to
absorb glucose [136]. The main energy source for cellular processes, including regeneration, is
glucose [203]. The metabolic abnormalities in prediabetic people make it difficult for glucose to be
used efficiently, upsetting the energy balance required for regenerative processes [204]. This
metabolic dysregulation impairs the body's capacity for effective tissue regeneration and repair,
which in turn adds to the general senescence seen in prediabetic patients [89]. The complex
relationship that exists between senescence and metabolic disorders highlights how critical it is to
address metabolic factors in order to lessen the effects of prediabetes on aging [57].

Moreover, mitochondrial dysfunction, a major contributor to aging, is closely linked to
metabolic disorders in prediabetes [205]. Impaired insulin signalling and elevated oxidative stress
have a deleterious effect on prediabetes’ mitochondria, the cellular powerhouses in charge of
producing energy [196]. Because these mitochondrial disruptions reduce the cell's ability to produce
energy for regenerative processes, they worsen cellular aging and senescence [196]. The complex
mechanisms by which prediabetes accelerates the aging process are highlighted by the interplay
between metabolic disorders, mitochondrial dysfunction, and senescence [206]. This underscores the
importance of addressing metabolic factors to manage age-related health conditions in prediabetic
individuals [206]. Comprehending how metabolic disorders contribute to prediabetes-induced
senescence is essential to understanding how this metabolic condition affects aging in general and
what that means for age-related health complications [47].
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Figure 3. Prediabetes-induced metabolic aging as adapted from source and redrawn from BioRender:
The concentrations of important metabolites like NAD+ and AMP rise whereas those of glucose,
amino acids, and fats decrease during calorie restriction. A number of metabolic sensors, including
insulin-IGF1 signaling (IIS), AMP kinase (AMPK), sirtuins (SIRTs), and the target of rapamycin (TOR),
are modulated by these metabolites. Transcription factors like PGCla and FOXO (peroxisome
proliferator-activated receptor-y coactivator) regulate mitochondrial physiology and homeostasis by
acting as a bridge to metabolic sensors. Deficits in mitochondrial homeostasis lead to frailty and illness
when this multilayer regulatory mechanism is dysregulated. The abbreviations Ac, ACC, and LKB1
stand for acetyl group, acetyl-CoA carboxylase, and UNC51-like kinase 1, respectively. [130].

7.3. Role of Biomarkers in Metabolic Changes

7.3.1. Mitochondrial Dysfunction: Mitochondria are the cellular powerhouses responsible for
energy production, and their proper functioning is essential for various cellular processes, including
regeneration [207]. However, in prediabetes, insulin resistance and metabolic alterations lead to
disturbances in mitochondrial function, which manifest as decreased mitochondrial efficiency and
increased oxidative stress [208]. The compromised mitochondrial function associated with
prediabetes not only affects cellular energy production but also exacerbates aging and senescence in
prediabetic individuals [209]. Mitochondrial dysfunction is a critical biomarker associated with
metabolic changes in prediabetes [205].
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7.3.2. Red Blood Cell Distribution Width (RDW): Increased Red Blood Cell Distribution Width
(RDW) is a common biomarker of prediabetes, reflecting the condition's associated inflammation and
metabolic abnormalities [210]. Red blood cell width variation, or RDW, is a measure of underlying
inflammation and metabolic disturbances [211]. An increase in RDW is suggestive of these conditions
[211]. When elevated RDW is seen in prediabetic patients, it indicates systemic inflammation and
metabolic changes that impact aging [212]. The connection between RDW, inflammation, and
metabolic alterations highlights the necessity of addressing these factors in order to reduce the risk
of age-related health complications in people who are prediabetic [213].

7.3.3. Haemoglobin Alc (HbAlc): Elevated HbAlc levels in prediabetes can significantly affect
how people age [214]. Higher HbAlc values indicate chronic hyperglycemia, while lower levels show
the average blood glucose levels over an extended period of time [215]. In prediabetic people, long-
term exposure to high blood sugar levels can hasten the aging process by impacting multiple organs
and systems [88]. Advanced glycation end products (AGEs), which can harm proteins and lipids and
result in tissue dysfunction, are formed in part by chronic hyperglycaemia. Because of the critical role
that glycation-induced damage plays in the aging of organs and tissues, HbAlc is an important
biomarker for understanding how prediabetes affects age-related health conditions, especially when
it comes to diabetes-related aging [64].

7.3.4. Serum Albumin: Serum albumin levels, a biomarker of nutritional status, may be lower in
prediabetic individuals [216]. Serum albumin levels dropping may have an impact on frailty and
nutritional deficits [217]. The protein albumin is necessary to keep the colloid osmotic pressure
constant and to carry vital nutrients throughout the bloodstream [218]. Reduced serum albumin
levels in prediabetes may indicate insufficient dietary intake or poor nutrient absorption, which can
lead to nutritional deficiencies [219]. These dietary deficits, especially in important vitamins and
minerals, can make age-related health problems worse [220]. Additionally, decreased serum albumin
levels have been linked to frailty in the elderly, which makes this biomarker an important one for
assessing the possibility of frailty in people with prediabetes [217]. In order to effectively manage
age-related health complications in this population, it is essential to comprehend the relationship
between prediabetes, lower serum albumin levels, and their implications for nutritional status and
frailty [221]. Nutritional deficiencies and pre-diabetes.

7.3.5. Folate and B12: Deficits in certain nutrients, especially folate and vitamin B12, can have a
major impact on the metabolic alterations linked to prediabetes [222]. The processes of DNA
methylation and repair, which are crucial for preserving genomic stability and controlling aging, are
directly impacted by these deficiencies [223]. Prevalence of these nutritional deficiencies can be
higher in prediabetic individuals, which can accelerate aging [224]. The correct operation of enzymes
involved in DNA methylation, a process that regulates gene expression and controls cellular
functions, depends on folate and vitamin B12 [225]. Dysregulated DNA methylation can impact
aging-related gene expression patterns when it is insufficient [226]. Understanding the complete
effects of this metabolic condition on aging and its implications for age-related health complications
requires an understanding of the role that folate and vitamin B12 deficiencies play in prediabetes-
induced metabolic changes and their impact on senescence [167].

7.3.6. Osteocalcin: Changes in osteocalcin levels are a sign of prediabetes and a biomarker of
bone health [227]. Osteoblasts, the cells that form bones, produce a protein called osteocalcin [228].
These changed osteocalcin levels in prediabetic people have consequences for bone health, which is
important for aging people [229]. Osteocalcin is essential for preserving the strength and density of
bones [230]. Variations in its concentrations can affect bone turnover and, in turn, bone quality. This
change in osteocalcin levels may result in decreased bone mineralization and density, which could
put older people at higher risk for fractures and other bone-related problems [231]. It's critical to
comprehend the relationship between osteocalcin levels and prediabetes in order to develop risk-
reduction strategies and to comprehend the possible effects on bone health as we age [232].

7.3.7. Adiponectin: Reduced levels of adiponectin, an adipokine with important metabolic and
anti-inflammatory properties, can aggravate insulin resistance and age-related metabolic changes in
prediabetes [233]. The main job of the protein hormone adiponectin, which is secreted by adipose
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tissue, is to control the metabolism of fats and carbohydrates [234]. These metabolic processes can be
disrupted by decreased adiponectin levels in prediabetes, especially when it comes to the body's
inability to properly use insulin, which eventually results in insulin resistance [70]. One of the main
causes of the aging-related metabolic alterations is the deteriorating insulin resistance [235].
Therefore, comprehending the mechanisms behind metabolic alterations and their implications for
age-related health conditions requires an understanding of the relationship between prediabetes and
adiponectin levels [236].

7.3.8. Leptin: Because of changes in adipose tissue, prediabetics may have changed leptin levels,
which can ultimately impact metabolism and ageing [237]. The hormone leptin, which is mostly
produced by adipocytes, is essential for controlling metabolism and hunger [238]. These changed
leptin levels in prediabetes can have far-reaching effects [239]. Leptin resistance, or decreased
sensitivity to leptin, may arise from abnormalities in leptin signalling caused by the alterations in
adipose tissue [240]. Overeating, weight gain, and an unbalanced energy intake are all associated
with leptin resistance and can aggravate metabolic changes and hasten the aging process [78].
Addressing the underlying mechanisms of age-related health issues in prediabetic individuals
requires an understanding of the complex relationship between prediabetes, altered leptin levels, and
their impact on metabolism and aging [241].

7.3.9. Brain-Derived Neurotrophic Factor (BDNF): Particularly in older adults, altered BDNF
levels in prediabetes can have a major impact on cognitive health [242]. A protein called BDNF is
essential for the development, upkeep, and plasticity of brain neurons [243]. Changes in BDNF levels
in prediabetes may have an impact on cognitive function [244]. A higher risk of neurodegenerative
diseases and cognitive decline have been linked to decreased BDNF levels [245]. A key component of
aging is cognitive health, and abnormalities in BDNF levels can affect memory, learning, and other
cognitive processes [246]. Understanding the possible effects on cognitive health in the context of
aging and creating strategies to support cognitive well-being in prediabetic individuals require an
understanding of the relationship between prediabetes and altered BDNF levels [247].

7.3.10. IGF-Binding Proteins: Metabolic and aging-related effects can be attributed to changes in
IGF-binding proteins (IGFBPs) in prediabetes, which can have a major effect on the bioavailability of
insulin-like growth factor 1 (IGF-1) [248]. IGFBPs play a crucial role in controlling the availability of
IGF-1, a growth factor that is important for metabolism, cell division, and growth. Changes in IGFBPs
in prediabetes can impact IGF-1 binding and release, which may impact its signaling pathways [249].
Variations in IGF-1 bioavailability can affect metabolic regulation and tissue maintenance, among
other physiological processes [250]. Comprehending the relationship between prediabetes and
IGFBPs is crucial to understanding the mechanisms behind effects related to metabolism and aging
in this population [88]. Understanding IGFBPs' function in the context of prediabetes offers valuable
information about possible treatment targets for reducing the age-related effects of this illness [80].

7.3.11. Homocysteine: An amino acid called homocysteine, which is involved in a number of
metabolic processes, has been linked to an increased risk of cardiovascular disease and may be more
common in people who are prediabetic [251]. It is well recognized that homocysteine contributes to
the development of atherosclerosis and other cardiovascular diseases [252]. Elevated homocysteine
levels in prediabetes can be caused by metabolic abnormalities as well as changes in folate and
vitamin B12 levels [251]. This homocysteine increase can exacerbate oxidative stress and endothelial
dysfunction, two conditions that hasten the vascular system's aging process[251]. Recognizing the
age-related implications of prediabetes, especially with regard to the vascular system, requires an
understanding of the relationship between elevated homocysteine levels, cardiovascular risk, and the
condition [253].

7.3.12. Insulin Resistance Markers: One of the hallmarks of prediabetes is elevated insulin
resistance markers, which can get worse with age [254]. One such marker is the Homeostatic Model
Assessment of Insulin Resistance (HOMA-IR) [254]. One of the main features of prediabetes is insulin
resistance, which is typified by the body's decreased sensitivity to the insulin hormone. Insulin
resistance markers are frequently elevated in prediabetic individuals, indicating a compromised cell's
ability to effectively absorb glucose [255]. Insulin resistance can progress more quickly in older people
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[256]. The deterioration of insulin resistance is a major factor in the age- and metabolic-related
consequences of prediabetes [257]. Understanding the complete impact of prediabetes on the aging
process requires an understanding of the role of insulin resistance markers in this condition and their
potential to exacerbate age-related metabolic changes [2].

8. Perspectives for Future Research

8.1. Gaps in Current Understanding and the Need for Further Research

Although this thorough review clarifies the complex interactions among prediabetes,
senescence, and blood-based biomarkers, there are still a number of unanswered questions that
underscore the need for more in-depth study in the future [258]. First and foremost, investigating the
temporal correlations between these biomarkers and prediabetes-induced senescence is imperative
[12]. Examining whether particular biomarkers are early markers of prediabetes or if the condition
only manifests them as it advances could yield important information for prompt diagnosis and
treatment [259]. Furthermore, additional investigation is required to clarify the interplay and possible
synergies between these biomarkers [259]. It is crucial to understand how various biomarkers may
work together to accelerate age-related diseases and senescence in prediabetic people. This is an area
that needs more research [260].

Furthermore, more research is needed to determine how pharmacological and lifestyle
interventions affect blood-based biomarkers of prediabetes-induced senescence [261]. It is crucial to
find interventions that can adjust these biomarker levels, delay aging, and lower the chance of age-
related problems in people who are prediabetic [60]. Furthermore, it is an exciting direction for future
research to investigate these biomarkers' potential as therapeutic targets [262]. Creating therapies that
target the identified biomarkers directly could provide fresh approaches to improving health
outcomes and delaying prediabetes-related senescence [263]. All things considered, filling in these
knowledge gaps and carrying out additional research are essential to improving our comprehension
of prediabetes-induced senescence and creating practical plans to lessen its effects on aging and age-
related illnesses [264].

8.2. Potential Blood-Based Biomarkers and Intervention Strategies

Future studies should concentrate on finding more blood-based biomarkers that can function as
early warning systems for age-related complications linked to prediabetes-induced senescence [6].
The identification of new biomarkers would improve our capacity to identify prediabetes early on
and to take preventative action [265]. Furthermore, studies ought to focus on creating customized
intervention plans according to the unique biomarker profiles of people who are prediabetic [266].
Customized therapies that focus on each patient's distinct biomarker patterns could offer more
accurate and successful methods for slowing down aging and averting age-related illnesses [267]. It
is crucial to look into how pharmacological treatments, dietary changes, and exercise routines might
affect these biomarkers [267]. These intervention strategies may improve the general health and
longevity of prediabetic individuals while also delaying the onset of senescence. The Role of
Additional Biomarkers (e.g., Folate and B12, Osteocalcin) in Future Research on Prediabetes-Induced
Senescence [264]

Subsequent investigations ought to delve into the complex functions of supplementary blood-
based indicators, like folate and B12, concerning prediabetes-induced senescence [268]. It is crucial to
look into how dietary deficiencies, particularly in regard to important nutrients like folate and B12,
affect senescence and the effects of aging on people who are prediabetic [269]. Gaining knowledge
about how these biomarkers affect DNA methylation and repair —both essential for good aging —can
help identify the underlying processes [59].

Furthermore, future studies should concentrate on the function of biomarkers like osteocalcin in
bone health and aging [270]. The importance of osteocalcin in preserving bone density and general
skeletal health is widely established, and in the context of prediabetes-induced senescence, it can
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provide information about tactics for protecting musculoskeletal integrity in older prediabetic
patients [229].

For a more comprehensive understanding of the condition's impact on aging, a thorough
assessment of these additional biomarkers in prediabetes-induced senescence is imperative. It has the
potential to reveal novel approaches to addressing nutritional inadequacies and bone health, two
critical facets of ageing well. Future studies examining these biomarkers may lead to better
therapeutic and preventive strategies for prediabetic patients in an effort to support healthy aging
[47].

9. Conclusion

9.1. Summarizing Key Findings on Blood-Based Biomarkers in Prediabetes-Induced Senescence

Several important findings are highlighted in this thorough review of blood-based biomarkers
in prediabetes-induced senescence [47]. Prediabetes is linked to a complex web of biomarkers that
interact to speed up aging, raise the chance of developing age-related illnesses, and impact different
physiological systems [271]. Telomere length, p16INK4a, advanced glycation end products (AGEs),
senescence-associated secretory phenotype (SASP) factors, DNA methylation clocks, inflammatory
markers, oxidative stress markers, circulating hormones, growth factors, and other biomarkers like
folate and B12, osteocalcin, and others are some of these biomarkers [272]. The review highlights the
fact that these biomarkers are active contributors to chronic inflammation, oxidative stress, and
metabolic dysregulation all of which accelerate aging in addition to acting as markers of senescence
[62]. With the potential to improve quality of life and encourage healthy aging, the thorough
understanding of these biomarkers and their complex relationships with prediabetes-induced
senescence serves as a basis for the development of customized intervention strategies aimed at
mitigating age-related complications in prediabetic individuals [260].

9.2. Implications for Understanding Senescence and Aging-Related Disorders in Prediabetes

It is critical to comprehend the effects of aging and disorders related to senescence in the context
of prediabetes [57]. This thorough analysis emphasizes that prediabetes is a crucial stage that
profoundly affects age-related disorders and the aging process; it is not just a stage between normal
glucose metabolism and diabetes. In this case, senescence—which is accelerated by the complex
interactions among blood-based biomarkers—is essential [47]. The ramifications are extensive and
touch on many physiological systems, such as the nervous and circulatory systems, metabolism,
inflammation, and hormone control [273]. In addition, the review indicates that the influence of
prediabetes on senescence can vary greatly among individuals, emphasizing the necessity of tailored
intervention approaches to successfully lessen the effects of aging-related illnesses [274]. These
findings highlight the significance of early detection and intervention in prediabetic individuals to
promote healthy aging and lower the burden of age-related diseases, with significant implications
for public health and clinical practice. In the end, gaining an understanding of the consequences of
senescence in prediabetes is essential to improving our capacity to improve the well-being and
quality of life for an aging population with a variety of needs.

9.3. Future Directions for Research Incorporating Diverse Biomarkers in Prediabetes-Induced Senescence

Future studies on prediabetes-induced senescence ought to focus on incorporating an even
wider range of biomarkers in order to obtain a thorough grasp of the complex mechanisms
underlying this condition. This strategy may entail both the discovery of novel blood-based
biomarkers and a closer examination of the functions of those that have already been identified.
Studies ought to investigate the interactions among these biomarkers and evaluate how they all
contribute to physiological systems' aging process, which in turn affects age-related illnesses. Future
research should also put a high priority on creating novel diagnostic instruments and intervention
plans that make use of these various biomarkers for precision medicine. This will enable prediabetic
patients to receive individualized care that will delay senescence and encourage healthy aging. A
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more nuanced understanding of the variability of prediabetes and the complex nature of senescence
will be possible through the integration of a wide range of biomarkers, opening the door to more
efficient and individualized treatment of this illness and its effects on aging.
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