
Article

Not peer-reviewed version

Power Transformers Fault Detection with

Machine Learning: A Comparison of

Classic and autoML Approaches

Guillermo Santamaría-Bonfil , G. Arroyo-Figueroa 

*

 , M. Zuniga-Garcia , Carlos Gustavo Azcárraga Ramos ,

A. Bassam

Posted Date: 28 November 2023

doi: 10.20944/preprints202311.1753.v1

Keywords: Transformers Fault Diagnosis; Machine Learning; Automatic Machine Learning; Power Systems

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/141060
https://sciprofiles.com/profile/516094
https://sciprofiles.com/profile/548590
https://sciprofiles.com/profile/292311


 

Article 

Power Transformers Fault Detection with Machine 
Learning: A Comparison of Classic and  
autoML Approaches 

G. Santamaria-Bonfil 1, G. Arroyo-Figueroa 2,*, M. Zuniga-Garcia 2, C. Azcarraga 2  

and A. Bassam 3 

1 Data Portfolio Manager Department, BBVA Mexico, guillermo.santamaria@bbva.com  
2 Instituto Nacional de Electricidad y Energias Limpias, Mexico; garroyo@ineel.mx 
3 Facultad de Ingeniería,UADY, Mexico; baali@correo.uady.mx  

* Correspondence: garroyo@ineel.mx; Tel.: +52 7773623820, GAF 

Abstract: A key component for the proper functioning, availability, and reliability of power grids is 

the power trans- former. Although these are very reliable assets, the early detection of incipient 

degradation mechanisms are very important to prevent failures that may shorten their lifetime. In 

this work a review and comparative analysis, of classical Machine Learning algorithms (such as 

single and ensemble classification algorithms) and two automatic machine learning classifiers, are 

presented for the fault diagnosis of power transformers. The goal is to determine whether fully 

automated ML approaches are worse or better than traditional ML frameworks that require a 

human in the loop (such as a data scientist) to identify transformer faults from oil-dissolved gases 

data. The methodology uses a DB compiled from published and proprietary transformer fault 

samples. Faults data is obtained from the literature, the Duval pentagon method, and user-expert 

knowledge. The parameters from, either single or ensemble classifiers, were optimized through 

standard machine learning procedures. The results showed that the best performing algorithm is a 

robust automatic machine learning classifiers model followed by classical algorithms such as neural 

networks and stacking ensembles. These results highlight the ability of a robust automatic machine 

learning model for, handling imbalanced power transformers faults datasets with high accuracy, 

using the minimum tuning effort by the electrical experts. By providing the most probable 

transformer fault condition will reduce the time required to find and solve the fault. 

Keywords: transformers fault diagnosis; machine learning; automatic machine learning; power 

systems  

 

1. Introduction 

Power transformers are key components for the proper functioning of transmission and 

distribution grids. Although transformers are very reliable assets, the early detection of incipient 

degradation mechanisms is very important to prevent failures that may shorten their life spawn [1,2]. 

The life-cycle management of the power transformers is composed of several stages such as 

transformer specification, erection, commissioning, operation, maintenance, and end of life 

operations. In particular, for the last two stages, it is of paramount importance to have suitable tools 

for the assessment of power transformers condition. The economical con- sequences of a power 

transformer catastrophic failure causes: i. costs for the lost transmission of electricity and ii. direct 

costs of the power transformer that can vary according to the electrical system, substation topology 

and technical characteristic of the transformer. For example, consider the case for loss transmission 

capability due to a transformer failure of a single-phase unit of 230 kV, 33 MVA, located somewhere 

in Mexico. Then, the economic impact is composed by i. the costs for the loss of transmission which 

arises up to 6, 177.600 USD (since the cost for loss of transmission is around 2.6 USD/kWh in Mexico), 

and ii. the direct costs including a 72 hours affectation window (extinguish fires, damaged facilities 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1753.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202311.1753.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

repairment, soil remediation operations and reserve transformer testing and commissioning, and 

fitting all the substation and system conditions) with a direct cost around 1, 280, 000 USD. Therefore, 

grid operators and utilities are in heavy need for tools that allow them to optimize their decision-

making processes regarding transformers repairmen, refurbishment, or replacement, under the 

umbrella of costing, reliability, and safety optimization [3,4].  

Condition Assessment (CA) is the process of identifying markers and indexes to, determine and 

quantify, the degradation level of transformers components [1,5,6]. Power transformers CA strategies 

includes exhaustive electrical and physicochemical testing, the usage of online and/or offline 

techniques, the analysis of operation and maintenance parameters, and the use of condition based 

strategies supported by current standards and expert knowledge. In fact, expert assessment is the 

most effective, costly, and time consuming CA strategy. It requires taking transformers offline and 

hiring experts for carrying out the analysis. Thus, utilities are looking forward for more cost-effective 

CA strategies where few or zero expert intervention is required. 

One of the main steps of transformers CA is the identification of faults by a Transformers Fault 

Diagnosis (TFD) procedure. The TFD focus on the insulation system whose integrity is fully related 

with transformer reliability [7]. The insulating system is exposed to electrical, mechanical, and 

thermal stresses. These phenomena are considered to be normal if they were considered by the 

transformer design characteristics, otherwise they are considered abnormal. Among the abnormal 

behaviors stand emergency overloading, arc flashes, transient events, thermal faults, to mention a 

few [8,9]. The transformer insulation system is divided into the insulating fluid (commonly mineral 

oil) and the solid insulation (kraft paper, pressboard, and other materials).  Oil plays a very 

important role providing a highly reliable insulation, insulation and working as an efficient coolant, 

removing the heat generated at the core and windings during transformer operation [10]. Further, 

the insulating oil can provide important information regarding transformer degradation and 

behavior at a very low cost, eliminating the necessity of carrying out expensive offline testing. 

Transformer Insulating oil is a petroleum-derived liquid that can be based on isoparaffinic, 

naphthenic, naphthenic-aromatic, and aromatic hydrocarbons. No matter its structure, insulating oil 

can be decomposed by abnormal stresses, producing dissolved byproduct gasses correlated to 

specific faults. Hence, Dissolved Gas Analysis (DGA) is a widely studied diagnostic technique for 

which many tools are already available. These are based in the analysis of each byproduct gas, its 

concentration, and the interrelationship between them. Among the most classical methods to 

diagnose oil samples stands Rogers ratio, IEC ratio, Dornenburg ratios, Key gas method, Duval 

Triangles [2,10–14], and Duval Pentagons [3,15], to mention a few. Most of these methods are based 

on dissolved gas ratio intervals that classify transformers into different faults. However, these are 

prone to misinterpretations near the fault boundaries [13,14]. Furthermore, classical DGA methods 

always identify a fault even when there is not, thus, expert assessment is still required to accurately 

determine if there is a fault or not. On the other side, coarse DGA-based fault classification methods 

have high accuracy rate but have poor usability, whereas fine TFD can be used for decision-making 

but its accuracy rate is lower [13]. In general, to decide whether to remove, repair, or replace a 

transformer in the presence of thermal faults, it is required to determine the fault severity [15], thus, 

finer TFD is preferred. An important venue for TFD methods is Machine Learning (ML). These data-

based algorithms have been proposed to improve TFD performance while avoiding the drawbacks 

earlier mentioned. ML methods provide high flexibility: are able to handle linear and non-linear 

relations, are robust to noise, do not necessarily require to take into account the thermodynamics 

phenomena, and provide high fault diagnosis performance [16]. The ML algorithms that have been 

used for the TFD endeavor can be divided into supervised and unsupervised approaches. Supervised 

ML employs different gas-in-oil ratios already diagnosed by experts or chromatography, to build a 

function that relates these gas ratios with transformers faults or normal/faulty status. Unsupervised 

employs dissolved gases data to cluster into groups of transformers whose gases ratios are similar to 

each other. Nevertheless, expert’s diagnosis is always required to assess the performance of the 

models, thus, this study highlights the supervised approach. Most of the ML works applied to the 

TFD problem covers one or more of the following steps: 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1753.v1

https://doi.org/10.20944/preprints202311.1753.v1


 3 

 

1. ML algorithms: several classifiers have been used such as as Artificial Neural Network (ANN) 

[1,10,11,13,17], expert-guided ANN [13,18], Bayes Networks [1], Decision Trees (DT) [1,11], 

Extremme Learning Machine (ELM) [13], K-Nearest Neighbors (KNN) [1,10,11,17], Logical 

Analysis of Data (LDA) [19], Logistic (LR) and regularized (LASSO) regression [11], Probabilistic 

Neural Networks (PNN) [10,20], Softmax Regression (SR) [13], Support Vector Machines (SVM) 

[11,17]; ensembles such as Boosting and Bagging [1], eXtremme Gradient Boosting (XGBoost) 

[21], Stacked ANN[2]; even state-of-the-art algorithms such as few-shot learning with belief 

functions [4]. 

2. Data pre-processing methods: several data transformations have been used such as data 

binarization [19], key [1,2,4,11,13,20,21] and custom gas ratios [2], logarithmic transformation 

[1,2,11], mean subtraction, normalization [2], standardization [1,2,11]; imputation of missing 

values using simple approaches [22]; dimensionality reduction such as Linear Discriminant 

and Principal Components Analyses [10], and belief functions [4]; feature extraction such as 

Genetic Programming [17]; knowledge- based transformations such as expert knowledge 

rules [13] and oil-gas thermodynamics [2]. 

3. TFD approach: the TFD problem has been posed as a binary classification (normal or faulty 

trans- former) [1,2,11,21]; as a multi-class classification with coarse [17,19] and fine fault types 

[2,10,13,20,21], and even diagnosing faults severity [4,10]. 

4. Classes Imbalance: several strategies have been used for balancing such as bootstrap [17], re-

sampling the minority classes [11,13], classes subsetting [11,13], and assigning weight 

coefficients to the minority class [21]. 

5. Parameters optimization: algorithm parameters have been optimized by hand [2] and trial-and-

error [10]; exact methods such as Grid Search (GS) [11,17] and Mixed Integer Linear 

Programming [19]; bayesian methods [21]; and metaheuristics such as the Bat algorithm [20], 

Genetic and Mind Evolutionary algorithms [13]. 

6. Model overfitting assessment: the problem of overfitting the TFD classifiers has been handled 

through the usage of classical [1,11,17] and stratified Cross-Validation (s-CV) [21]. 

7. TFD Performance: algorithms performance has been determined using Accuracy percentage 

[1,2,4,10,11,13,17,19,20], confusion matrix [2,10,17], the Area Under Receiver Operating 

Characteristic (ROC) [1,2,11] and Precision-Recall (PR) [21] Curves, and the micro and macro F1-

measure [21]. 

Even while many works have been delved regarding the usage of ML algorithms for the TFD 

problem, these present one or more shortfalls such as i) training and testing their methods using small 

datasets, ii) carrying out comparisons using only classical ML supervised algorithms, iii) considering 

only coarse faults types by setting aside fault severity (not to mention none of the reviewed works 

considered fault severity as defined by Duval pentagon method), and iv) lack of publicly available 

data. These issues affect obtaining a clear idea of which sequence of methods and algorithms provides 

the best performance for the TFD problem, the reproducibility of the research results, and hampering 

the deployment of ML solutions to solve the TFD problem of real-world utilities. 

The construction of high performance ML pipelines, regardless of its application, requires the 

involvement of data scientists and domain experts. This synergy allows to incorporate domain 

knowledge into the design of specialized ML pipelines (i.e., the sequence of data pre-processing, 

domain-driven feature selection and engineering, and optimized ML models for a given problem 

[23]). However, the construction of specialized ML pipelines using this approach results in a long, 

expensive, complex, iterative, based on trial and error task. Derived from this analysis (and the 

related works), it is shown the difficulty of building intelligent models by operational process experts. 

These power systems experts can be easily overrun by the selection and combination of an ever-

growing alternatives of pre-processing methods, ML algorithms, and their parameter optimization, 

for the solution of the TFD problem. Under these circumstances, the probability of obtaining a final 

ML pipeline that behaves sub-optimally is higher [23,24]. Hence, there is a growing necessity of 

providing power systems technicians with ML tools that can be used straightforward into power 

systems problems (e.g., TFD). In fact, the approaches used for automatically (without human 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1753.v1

https://doi.org/10.20944/preprints202311.1753.v1


 4 

 

intervention) and simultaneously, obtaining a high performing combination of data pre-processing, 

learning algorithm(s), and set of hyperparameters, are branded as Automatic Machine Learning 

(autoML) [24,25]. The autoML is a promising approach that may be used out-of-the-shelf for the TFD 

problem of real-world industries. 

Therefore, in this work a deep comparative analysis of a large supervised ML algorithms pool 

composed of single, ensemble, and autoML classifiers applied to the TFD problem is presented. The 

purpose of this deep review is to compare algorithms performance for the TFD problem under the 

same experimental settings: i) compiling and sharing a Transformers Database (TDb) of the main 

dissolved gases data of 821 transformers, and their corresponding diagnostic; ii) using single and 

ensemble ML algorithms, as well as state-of-the-art autoML frameworks, for solving the TFD 

problem; iii) solving a real-world TFD multi-classification problem using, for the first time (to the 

best of authors knowledge), Duval Pentagons fault and severity classes [26]. In doing so, this review 

provides a deeper comprehension of the ML approaches available for the TFD problem, and a view 

on how much automation can we expect for the TFD problem, particularly when fault severity is 

taken into consideration. 

2. Materials and Methods 

The overall ML system followed by the present work for the multi-class TFD problem is 

presented in Figure 1. For the purpose of comparison, the pipelines used for single and ensemble 

classifiers were branded as Standard ML Framework, whereas the pipeline used for autoML was 

branded as AutoML Framework. In either way, a shared pipeline is specified for both ML approaches. 

The overall ML system consists of five major sections: 

1. Data recollection and labeling, where transformers dissolved gas-in-oil and their corresponding 

diagnostic were recollected. Diagnostics are double checked, first by the Duval Pentagons 

method to obtain the fault severity (if not available), then, the IEEE C57.104-2019 standard and 

expert validation were used for identifying normal operating transformers. 

2. Initial pre-processing, where gas-in-oil information were initially pre-processed following 

several methods studied in the literature, namely the replacement of zero measurements, natural 

logarithm escalation, and derivation of key gas ratios. 

3. Split data into Training (i.e. Xtrain and Ytrain) and Testing (i.e. Xtest and Ytest) datasets.  This 

splitting took into consideration each class proportion for avoiding leaving classes 

unrepresented in any of the datasets. 

 

Figure 1. ML methodology developed for the comparison of single, ensemble, and autoML classifiers 

for the transformers fault classification problem. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1753.v1

https://doi.org/10.20944/preprints202311.1753.v1


 5 

 

4. Train ML system 

a. Standard ML framework, where a second data pre-processing stage, training, and 

parameter optimization was carried out. Parameters from, either single or ensemble 

classifiers, were optimized through the usage of a Grid Search (GS) and Cross-Validation 

(CV) procedures. 

b. AutoML framework, where a warm-start procedure, additional data and feature pre-

processing methods, and classifiers optimization and ensemble construction was carried 

out automatically. 

5. Measuring test error using several multi-class performance measures, where the algorithms are 

comprehensively evaluated using several multi-class performance measures such as the κ score, 

balanced accuracy, and the micro and macro F1 − measure. 

2.1. DGA Data 

A Transformers Database (TDb) comprised by 821 transformers was gathered from different 

bibliographic sources.  These samples were obtained from the specialized literature:  a Db from the 

International Council on Large Electric Systems (CIGRE) Db, a Db from the IEEE [27], technical 

papers [15,28–32], a CIGRE technical brochure [33], and expert curation. For each transformer were 

collected the five so-called thermal hydrocarbon gases and, when reported, their corresponding 

diagnostic. The collected gases are hydrogen (H2), methane (CH4), ethane (C2H6), ethylene (C2H4) and 

acetylene (C2H2). When available, the associated diagnostic was also recovered from the bibliographic 

sources. Otherwise, it was obtained by means of an analysis method. In this paper, Duval Pentagons 

method [15,26] is selected due to the fact that it offers, not only fault types but also the severity for 

thermal faults. It is important to notice, that in some cases, this analysis method was also used to 

confirm the literature provided diagnostic. 

Duval Pentagons Method [26] first calculates the relative percentage ratios by dividing the 

concentration of each gas by the Total Gas Content (TGC). Then, the five relative percentage gas ratios 

are plotted in their corresponding axis in the Duval Pentagon, yielding to a non-regular five-sided 

polygon. The centroid of the irregular polygon provides the first part of the diagnostic, depending 

on the pentagon region where this is located. The diagnostic faults available in the first Duval 

Pentagon are Partial Discharges (PD), low and high energy discharges (D1 and D2 respectively), 

thermal faults involving temperatures less than 300°C (T1), thermal faults with temperatures ranging 

from 300 to 700°C (T2), and thermal faults involving temperatures higher than 700°C. There is an 

additional region in the first Pentagon called Stray Gassing Region (S), which reveals another type of 

gas generation mechanism. Stray gassing is associated to relative low temperatures, oxygen presence, 

and the chemical instability of oil molecules caused by a previous hydrogen treatment whose scope 

is the removal of impurities and undesirable chemical structures in mineral oils. The second part of 

the Duval Pentagons method allows the user to refine the diagnostic of each gas vector, providing 

advanced thermal diagnostic options: high temperature thermal faults that occurs in oil only (T3-H), 

different temperature thermal faults involving paper carbonization (T1-C, T2-C and T3-C), and 

overheating (T1-O). 

However, all the available classical TFD methods (including the Duval Pentagon method) 

always provide a diagnostic, despite gas concentrations may been too low. In order to avoid those 

false positives, IEEE C57.104-2019 standard [34] along with expert’s experience were used to tag the 

corresponding transformers with a normal condition diagnostic. The resulting classes distribution 

for the available dataset is shown in Table 1. 

Table 1. Transformers Faults classes distribution. 

Fault Type Freq. % 

Normal condition 270 33 

D1 78 10 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1753.v1

https://doi.org/10.20944/preprints202311.1753.v1


 6 

 

D2 77 9 

PD 23 3 

S 83 11 

T1-C 4 > 1 

T1-O 97 16 

T2-C 23 3 

T3-C 25 3 

T3-H 97 12 

2.2. Initial Pre-processing of DGA Data 

Before any TFD can be carried out, either by the standard ML or the autoML frameworks, the 

TDb requires to be initially pre-processed. This pre-processing stage consisted of three steps: (i) the 

replacement of zero measurements; (ii) the scaling of measurement values using the natural 

logarithm function; and (iii) the derivation of features from dissolved gases ratios. The main reasons 

for carrying out an initial data pre-processing stage are two-fold. On one hand, data-preprocessing 

methods does improve the performance of standard ML frameworks for the TFD problem 

[1,2,4,11,13,20,21]. On the other hand, autoML frameworks have put more attention in the selection 

of ML models and their HPO, than in the feature engineering (i.e., creation) and data-preprocessing 

methods [23,35]. Furthermore, the selected autoML algorithm used in this review, does not consider 

the pre-processing methods used in the proposed pipeline, nor a feature engineering method that can 

derive dissolved gases ratios from TDb sample measurements. 

The initial pre-processing of DGA data is as follows. First, gases measurements whose reported 

values were zero were considered to be below the limits of detection of the chemical procedure 

analysis. Thus, for the zero measurements a small constant value was assumed for mathematical 

convenience (i.e., 1); particularly, for the C2H2 a smaller constant was considered (i.e. 0.1). Second, 

gases values were scaled using the ln function. This process is generally suggested for scaling features 

with positively skewed distributions (i.e., heavy-tails), which enable both to improve their normality 

and for reducing their variances [36]. Third, feature engineering consisting in the estimation of 

different ratios from transformed gases values were obtained. The relationship between fault types 

and proportions of dissolved gases in the insulating system have been exploited by traditional DGA 

methods [7,21,28]. Therefore, several relative ratios based on CH4, C2H6, C2H4, C2H2, and H2 were 

derived. This are shown in Table 2. In this Table, THC (Total Hydrocarbon Content) stands for the 

sum of hydrocarbon gas contents, whereas TGC (Total Gas Content) stands for the total amount of 

dissolved gas contents in the transformer oil. 

Table 2. Derived features from dissolved gases. 

Feature Name Definition Feature Name Definition 

F1 H2 F13 CH4/THC 

F2 CH4 F14 C2H2/THC 

F3 C2H2 F15 C2H4/THC 

F4 C2H4 F16 C2H6/THC 

F5 C2H6 F17 CH4/H2 

F6 THC = CH4 + C2H2 + C2H4 + C2H6 F18 C2H6/CH4 

F7 TGC = H2 + THC F19 C2H4/CH4 

F8 H2/TGC F20 C2H2/CH4 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1753.v1

https://doi.org/10.20944/preprints202311.1753.v1


 7 

 

F9 CH4/TGC F21 C2H4/C2H6 

F10 C2H2/TGC F22 C2H2/C2H6 

F11 C2H4/TGC F23 C2H2/C2H4 

F12 C2H6/TGC - - 

2.3. Splitting data and Training the ML system 

Once data is initially prepared, it is splitted into training and testing datasets. This splitting was 

carried out taking into consideration classes proportions. Thus, each fault type is represented in both 

datasets, training (Xtrain, Ytrain) and testing (Xtest, Ytest). The proportions used for splitting the TDb were 

70% for training and 30% for testing. Both subsets kept the same classes distribution ratios, as in the 

full TDb, to assess classifiers performance with imbalanced datasets. Afterwards, the ML systems 

were trained. Before delving into the details of both ML frameworks i.e., standard and autoML, it is 

worth to highlight that a second stage of data pre-processing was considered for convenience. This 

is, to avoid carrying out the same data pre-processing method (i.e., standardization) twice by the 

autoML approaches. 

2.3.1. Standard ML framework 

The standard ML framework follows a classical pipeline: i) data pre-processing, ii) selection of 

the classifier (either single or ensemble), iii) optimize classifiers parameters (using a GS-CV 

procedure). To complete the data pre-processing treatment, TDb gases measures are standardized by 

subtracting its mean and scaling values by their variance. Next, a classification algorithm is selected, 

either a single (ANN, DT, Gaussian Processes (GP), Na¨ıve Bayes (NB), KNN, LR, and SVM) or an 

ensemble algorithm. The main difference between single and ensemble classifiers is that, the first 

looks forward to obtain a robust model which attains a good generalization, whereas the second 

employs several instances of the same classifier. Usually, the classifiers composing the ensemble 

perform slightly better than a random classifier (e.g., by overfitting), and by using different 

combining strategies a good generalization is attained. Among the ensemble strategies stand 

Boosting (Bagging Classifier (BC), Histogram (HGB) and Extreme (XGBoost) Gradient Boosting), 

Bagging (Random Forest (RF)), and Stacking (SE). The stacked ensemble is a particular case, where 

two or more strong classifiers are sequentially chained. For this study, a ANN followed by SVM is 

employed. 

Single and ensemble classifiers have been neatly discussed elsewhere, however, for the sake of 

completeness, they are briefly detailed in Appendix A.1 and Appendix A.2, respectively. On the other 

hand, in Table 3 the parameters employed by single and ensemble classifiers are presented. The 

optimal values are estimated using a grid search cross validation procedure with k = 5 folds. 

2.3.2. AutoML Problem and Frameworks 

In accordance to [23], an ML pipeline h : X → Y involves the, computational-intensive and 

repetitive, sequential combination of algorithms that maps any given observation, i.e.,  x ∈ X, into a 

discrete (e.g., class) or continuous value, i.e., y ∈ Y. 

To define an ML pipeline, i.e., h, lets first define its components. The set of specific algorithms, 

e.g., data pre-processing, feature selection, and classification, is defined as A = {A1, A2, . . . , An}. For 

each algorithm Ai, a configuration vector of hyperparameters is defined as λ(i) ∈ ΛA(i). Algorithms of 

A are connected with each other in accordance to a structure g.  Such structure is defined as a 

Directed Acyclic Graph (DAG) where nodes represent algorithms and edges represent the data flow. 

The structure has implicit constrains (e.g., an imputation algorithm must precede a classification one), 

thus, it belongs to a set of valid pipeline structures G; its cardinality (i.e., number of consecutive 

sequential algorithms) is given by |g|. Therefore, an ML pipeline is formally given by P(g, A, λ) 

where, g ∈ G stands for the structure of the valid pipeline, the vector A ∈ A|g| stands for the algorithms 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1753.v1

https://doi.org/10.20944/preprints202311.1753.v1


 8 

 

selected for each node, and the vector λ ∈ ΛA stands for the hyperparameters for each of the selected 

algorithm in the pipeline. 

Therefore, given a problem defined by the i.i.d.  samples D = {(x1, y1), . . . , (xm, ym)} drawn  from  

the joint probability distribution P (X, Y), an ML pipeline is created by finding the structure,  

algorithms,  and their  corresponding  hyperparameters  which  minimizes  the  Empirical  

Pipeline  Performance  (EPP) 𝑅෠ such as: 

𝑅෠൫𝑃௚,஺,஛, 𝐷൯ = 1𝑚 ෍ 𝐿(ℎ(𝑋௜௠
௜ ), 𝑌௜),       (1)

Table 3. Fault classification models parameters. 

 
where h(xi) is the predicted output of the pipeline P, and L is a loss function. Further, to avoid 

overfitting P cross-validation is considered. Hence, D is splitted into k disjoint folds, this is {Dvalid(1) , 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1753.v1

https://doi.org/10.20944/preprints202311.1753.v1


 9 

 

…, Dvalid(k)} and { Dtrain(1) , . . . , Dtrain(k)}. By rewriting Eq. 1 to include these, the final objective function 

is obtained: 

൫𝑃௚,஺,ఒ,൯€  arg 𝑚𝑖𝑛𝑔𝜖𝐺, 𝐴 ∈ 𝐴|𝑔|, 𝜆 ∈ ʌ  1𝑘 ෍ 𝑅෠௞
௜  ൬𝑃௚,஺,ఒ,஽೟ೝೌ೔೙(೟)  , 𝐷௩௔௟௜ௗ(௧)  ൰       (2)

To minimize the cost function presented in Eq. 2, three sub-problems must be addressed 

altogether: the i) Structure Search, the ii) Algorithms selection, and iii) algorithms HyperParameter 

Optimization (HPO). On one hand, in a recent survey [23] it was stated that most of the autoML 

frameworks avoid solving the structure search by following a best practice fixed pipeline structure. 

This approach removes the burden of determining the graph structure g in Eq. 2. On the other hand, 

the algorithms selection and its HPO are simultaneously determined by solving the Combined 

Algorithm Selection and Hyperparameter optimization (CASH) problem [23–25]. Solving the CASH 

problem is similar to solving Eq. 2. If the pipeline structure g is fixed i.e., |g|= 1, the CASH problem 

is defined as (𝐴, 𝜆) ∗ 𝑎𝑟𝑔 𝑚𝑖𝑛𝐴 ∈ 𝐴, ʎ ∈ 𝐴 𝑅൫𝑃௚,஺,ఒ,஽ , 𝐷൯       (3)

To simultaneously consider which sequence of algorithms use and their corresponding 

hyperparameters, λr vector is defined. This allows to map the sequence of algorithms into the Λ 

configuration space such that ʌ = ʌ஺(ଵ)𝑥 .  .  . ʌ஺(௡)𝑥 𝜆௥ .                
In consequence, the CASH minimization problem is stated as 𝜆 ∗∈  arg 𝑚𝑖𝑛𝑅(𝑝௚,ఒ,஽,𝐷).𝜆 ∈ ʌ                (4)

Eq. 4 is a mixed-integer nonlinear optimization problem. Its solution involves finding algorithms 

numerical or categorical hyperparameters, which are mandatory or conditional (whose value 

depends on the selection of other hyperparameters) [23]. 

To solve all of these numerical cruxes, several autoML frameworks based on classical ML 

and ensembles [23,37], as well as neural networks deep learning frameworks [38], have been 

proposed. Due to the infancy of the autoML area, recent reviews reveal that most of the available 

autoML tools obtain competitive, but similar, results across several ml tasks [23,35]. Therefore, 

we selected the auto-Sklearn algorithm, which is one of the first autoML frameworks, and 

provides robust and expert-competitive results in several ml tasks [23,25,37]. The auto-Sklearn 

is an algorithm based upon Python scikit-learn (sklearn) library [39]. It is employed for 

building classification and regression pipelines searching over classical ML and ensemble 

models. This algorithm explores semi-fixed structured pipelines by setting an initial fixed set of 

data cleaning steps. Then, a Sequential Model-based Algorithm Configuration (SMAC) using a 

Bayesian Optimization in combination with a Random Forest regression, allows the selection 

and tuning of optional pre-processing and mandatory modeling algorithms. Also, Auto-sklearn 

provides parallelization features, meta-learning to initialize the optimization procedure, and 

ensemble learning through the combination of the best pipelines [23,25,37]. 

To improve the analysis between standard and autoML frameworks, two autoML versions are 

considered, namely, vanilla auto-Sklearn and robust auto-Sklearn models. The main differences 

between these two are: i) the vanilla model only considers a single regression model whereas the 

robust model employs an ensemble, and ii) the vanilla model does not employ the meta-learning 

warm-start stage to initialize the optimization procedure, whereas the robust model does employ it. 

In this sense, the vanilla model serves as a baseline for the autoML framework. 

2.4. Classification Performance Metrics 

In order to compare the performance of the Standard and the AutoML algorithms, several multi- 

classification metrics are employed. As mentioned before, several classification metrics have been 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1753.v1

https://doi.org/10.20944/preprints202311.1753.v1


 10 

 

employed for the analysis of algorithms performance for the TFD problem (i.e., the accuracy 

percentage, confusion matrix, the Area Under the Receiver Operating Characteristic (AUCROC) and 

Precision-Recall (AUCPR) Curves, and the micro and macro F1-measure. However, neither the 

accuracy percentage nor the AUCROC, are sensitive to classes imbalance. Further, neither the 

AUCROC nor the AUCPR are suitable for analyzing a multi-classification problem. Therefore, in this 

work the Confusion Matrix (CM), the Balanced Accuracy (BA), the F1-measure (F1) using micro and 

macro averages, the Cohen’s Kappa (κ) metric, and Matthews Correlation Coefficient (MCC) are 

employed. 

On one hand, the CM is a tool to a understand the errors of classifiers in binary, multi-class, 

and even multi-label scenarios. On the other, the remaining performance metrics used in this 

work are obtained from it. The selected metrics are usefulness for assessing the overall 

performance of a classifier in a multi-class problem. From these, MCC and κ (and in a lower 

sense, F1-macro) are more robust than the remaining for assessing the expected performance of 

classifiers in the presence of classes imbalance.  

2.5. Software 

All the experimentation required for TFD ML algorithms comparison, i.e., pre-

processing, training, and testing were conducted using the programming language Python 

in a Jupyter notebook. Standard Python packages such as numpy [40] and pandas [41] were 

used for the initial pre-processing stages. For training classical and most of the ensemble ML 

algorithms, the sklearn [39] package is employed (in the case of xGB the xgboost [42] 

package is used). For the AutoML case, the autosklearn package is used [25]. The computer 

notebook is available at a Github repository. 

It is worth to note that, while it would be a good idea to use the MCC and κ as a cost function 

for training the algorithms, due to sklearn package limitations1, algorithms training cost function is 

restrained to F1-macro. 

3. Results 

This section presents the TFD classification results obtained for algorithms of both, the standard 

and the autoML frameworks. For each classifier, five (5) performance metrics are calculated (as 

described in the above section). Using these metrics, a quantitative comparative analysis is carried 

out to determine the best algorithm(s). To have a deeper analysis of the performance for the rest of 

the algorithms, a Multi-Objective Decision Making (MODM) comparison is carried out. Afterwards, 

classes imbalance, false positives, and false negatives of the best performing algorithm are analyzed 

through the CM. 

3.1. Overall classifiers performance for the TFD problem 

In Table 4, the performance of standard and the autoML frameworks results for the five quality 

metrics are presented. Best performing solutions are highlighted in bold. Observe that, in general, the 

best performing algorithm is the robust auto-Sklearn model for the five quality metrics. This model 

outperformed the rest of the algorithms, particularly, for the F1-macro measure where the closest 

competitors (ANN and SE models) attained approximately 10% lower F1-macro scores. These results 

show the ability of the robust auto- Sklearn model for handling the imbalanced TDb, providing the 

highest classification performance among all the tested algorithms, using the minimum tuning effort 

by the human-in-loop (i.e., electrical experts carrying out a TFD). Therefore, the robust auto-Sklearn 

model should be preferred for an out-of-the-shelf solution for the TFD problem.  

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1753.v1

https://doi.org/10.20944/preprints202311.1753.v1


 11 

 

Table 4. Classifiers performance attained on the transformers fault detection problem. 

Model BA F1-

micro 

F1-

macro 

κ MC

C 

vanilla auto-

Sklearn 

0.81

2 

0.866 0.769 0.83

7 

0.837 

robust auto-

Sklearn 

0.89

3 

0.906 0.909 0.88

5 

0.885 

ANN 0.84

0 

0.882 0.785 0.85

6 

0.857 

BC 0.74

5 

0.858 0.742 0.82

5 

0.826 

DT 0.74

4 

0.837 0.695 0.80

2 

0.802 

GP 0.72

8 

0.900 0.746 0.87

5 

0.876 

HGB 0.72

3 

0.886 0.706 0.86

0 

0.862 

KNN 0.76

5 

0.858 0.756 0.82

3 

0.823 

LR 0.66

6 

0.823 0.673 0.79

1 

0.792 

NB 0.70

0 

0.764 0.650 0.71

4 

0.715 

RF 0.71

7 

0.870 0.721 0.84

0 

0.841 

SE 0.83

8 

0.886 0.809 0.86

0 

0.861 

SVM 0.76

6 

0.882 0.767 0.85

6 

0.857 

XGB 0.70

2 

0.861 0.683 0.83

1 

0.833 

MCC. Therefore, to improve the performance comparison, metric results for each algorithm are 

transformed using vanilla auto-Sklearn result as a baseline as follows: 𝑁௜(𝐴) = 1 − 𝑀௜(𝐴)𝑀௜(𝑎𝑢𝑡𝑜 𝑆𝑘𝑙𝑒𝑎𝑟𝑛 𝑣𝑎𝑖𝑛𝑖𝑙𝑙𝑎)               (5)

where Mi(A) corresponds to the i metric result for algorithm A, Mi(auto − Sklearn vanilla) 

corresponds to the i metric result for the vanilla auto-Sklearn model, and Ni(A) corresponds to the 

baseline transformed value for the i metric and algorithm A. For instance, for BA and ANN the 

baseline transformed value B˜A(ANN) is obtained such as 1 − ୆୅(ୟ୳୲୭ିୗ୩୪ୣୟ୰୬ ୴ୟ୬୧୪୪ୟ)୆୅(୅୒୒) . The transformed 

values can be interpreted as follows, an Ni(A) > 0 value implies that the performance of A algorithm 

is better than the vanilla auto- Sklearn algorithm. In contrast, if Ni(A) < 0, then, the A algorithm 

performance is worse than the vanilla auto-Sklearn algorithm. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1753.v1

https://doi.org/10.20944/preprints202311.1753.v1


 12 

 

Once metric values are transformed, a MODM comparison is carried out. MODM deal with 

problems where two or more performance criteria are used altogether for taking a decision: in our 

case, looking forward for the algorithm which is able to identify specific electric transformer faults, 

as accurate as possible, in terms of five performance metrics. In a MODM, models quality is defined 

by a n-dimensional vector where n corresponds to the number of metrics used. Hence, an algorithm 

solving a MODM must consider either, a way to simplify a vector of quality metrics into a single 

scalar, or a way to handle multiple objective functions all at once. 

Regarding the methods that solve a multiple objective functions all stand the Pareto Approach 

(PA) [43]. In the PA, instead of handling the burden of collapsing multiple metrics into a single value, 

PA looks forward finding a set of solutions (e.g., TFD classification algorithms) that are non-dominated. 

To define this concept, is easier first to define the opposite, dominance. A solution si is said to dominate 

sj iff, si is strictly better than sj in at least one of the quality metrics ci, i = 1, . . . , n, and equal or better 

in the remaining  metrics.  Formally, this is i) ∃ci | ci(si) > cj(si) and ii) ∀ci | ci(si) ≥ cj(si) (where ci(si) 

stands for the quality metric value for solution si) [43]. On the other hand, two solutions si and sj are 

said to be non-dominating with respect to each other iff: i) quality metric values for solution si are 

strictly better than sj in at least one of the ci, i = 1, . . . , n, and ii) quality metric values for solution si 

are strictly worse than sj in at least one of the quality metrics ci, i = 1, . . . , n. The set of non-dominated 

solutions is also known as the Pareto frontier. In Figure 2 the Pareto analysis carried out on the vanilla 

transformed quality metrics, excluding the robust auto-Sklearn model, is shown. 

 

Figure 2. Models fault classification performance. 

Observe that the vanilla auto-Sklearn model is shown at the origin (0,0); algorithms in the 

pareto frontier are depicted in red, whereas the worst performing algorithms are displayed in 

blue. From this figure note that the SE, ANN, and GP algorithms performed better than the 

vanilla auto-Sklearn (for BA the improvements were 3%, 3%, and -10%, respectively, whereas 

for κ the improvements were 3%, 2%, and 4.5%, respectively). Hence, and without considering 

the robust auto-Sklearn algorithm, either of these can be selected for the TFD problem. On the 

other side, HGB and SVM, while performed better for the κ metric than the vanilla auto-

Sklearn (3% and 2% respectively), could be considered as good as the vanilla auto-Sklearn 

model, in a Pareto front sense (and in a lesser sense, the RF case). The remaining algorithms 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1753.v1

https://doi.org/10.20944/preprints202311.1753.v1


 13 

 

should be considered to perform worse than the vanilla auto-Sklearn model. Specifically, 

LR and NB algorithms performed considerably worse than the vanilla model: for the BA 

metric 17% and 14% worse, and for the κ metric 5% and 14%, respectively. In summary, 

single autoML frameworks provide a good identification of transformers faults with 

minimal human intervention, still, classical ML approaches such as ANN, SE, or GP 

classifiers would provide better results for the TFD problem. 

3.2. Transformers fault diagnosis in detail 

In accordance to the above results, the overall best performing algorithm for the TFD problem 

is the robust auto-Sklearn algorithm. However, how was its performance for each transformer fault 

type? and how its performance is compared against one of the algorithms belonging to the Pareto 

frontier such as the SE algorithm? In Figure 3 confusion matrix for both algorithms are presented: in 

Figure 3a the robust auto-Sklearn is shown, whereas in Figure 3b the SE is displayed. Observe that, 

in general, for both algorithms most fault types were identified with a good (≥ 80%) to very good (≥ 

90%) accuracy, excepting: in (a) for PD and S with an accuracy of 71% and 78%, respectively; in b) for 

S, T2-C, and T3-C, with an accuracy of 78%, 71%, and 75%, respectively. To examine the regular 

performance on these fault types it is useful to recall that when analyzing the performance of an 

algorithm using the multi-class CM (see section Appendix B.1), rows indicate FN and columns 

indicate FP, respectively. Thus, for the case of the robust auto-Sklearn algorithm, PD faults were 

misclassified 29% of the times as S fault types; S faults were misclassified 19% of the times as T1-O 

fault and 3.7% as Normal condition. For the case of the SE algorithm, S faults are misclassified 22% 

times as a T1-O faults; T2-C faults are misclassified 14% of the times as T1-O and T1-C each; T3-C 

faults are misclassified 12% of the times as T3-H and S each. From all of these errors, the robust auto-

Sklearn algorithm incurs in the most expensive ones (i.e., classifying a fault as a normal condition). 

Further, the misclassification from both algorithms can be attributed to the fault regions described by 

these for each fault type. These do not necessarily match the Duval pentagon fault regions, which are 

geometrically contiguous and do not overlap [15]. In addition, recall that all of these classes, i.e., PD, 

S, T2-C, and T3-C, are under represented in the DB (see Table 1). In the light of these, we can conclude 

that samples misclassified may lay at the classes limits, and/or class boundaries found by the 

algorithms have a different geometric shape that the one defined by the Duval pentagon. Therefore, 

increasing the sample size of imbalanced classes (either real or synthetic samples) should be useful 

for improving the boundaries defined in the feature space for each class by both algorithms. Finally, 

it is worth to note that both algorithms classified with 100% of accuracy the low thermal faults 

involving paper carbonization (i.e., T1-C), which is the most under represented class in the DB. 

3. Conclusions 

This paper presents a review and comparative analysis, of classical Machine Learning 

algorithms (such as single and ensemble classification algorithms) and two automatic machine 

learning classifiers for the fault diagnosis of power transformers. The purpose of this work is to 

compare under the same experimental settings the performance of classical ML classification 

algorithms, that requires a human-in-the-loop expert for tuning these, and two autoML approaches 

which requires almost zero human operation. For such purposes, transformers faults data was 

gathered from literature and Mexican and foreign utilities and test laboratories databases.  Then, 

raw data was curated, specifically faults were validated and assigned using both the Duval pentagon 

method and expert knowledge. The methodology used for comparison included: i) several pre-

processing steps for feature engineering and data normalization; ii) different ML approaches (single 

ML and ensemble algorithms were trained and tuned using a GS-CV by a data scientist, whereas, the 

autoML models were trained and tuned using a bayesian optimization in combination with a 

Random Forest regression with zero human intervention); iii) several algorithms performance 

approaches using global metrics, a pareto front analysis, and a CM to have a detailed looked into the 

type of biases algorithms suffer. A key contribution of this work is that it defines for the first time (to 

the best of authors knowledge), fault classes using Duval Pentagons and severity classes.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1753.v1

https://doi.org/10.20944/preprints202311.1753.v1


 14 

 

  
(a) (b) 

Figure 2. Confusion matrix for the (a) robust auto-Sklearn model and (b) for the stacking ensemble 

algorithms. 

Results showed that the robust auto-Sklearn achieved the best global performance metrics over 

either single or ensemble ML algorithms. On the other side, the PA showed that the vanilla autoML 

approach performed worse than some single (ANN, SVM) and ensemble (SE, HGB, GP, and RF) ML 

algorithms. Even the CM revealed that, while the robust auto- Sklearn algorithm obtained the highest 

global performance metric values, it misclassifies some TF as a normal condition. This type of error 

can have a very negative impact in power grid performance (blackouts) with high economical costs. 

Nevertheless, the misclassification can be attributed to the imbalanced BD. Increasing the sample size 

of the imbalanced classes (either real or synthetic samples) should be useful for improving the 

boundaries defined in the feature space for each class. In conclusion, the robust auto-Sklearn model 

is not only a good out-of-the-shelf solution for the TFD while handling imbalanced datasets, but also 

achieved the highest global classification performance scores using the minimum tuning effort by a 

human (i.e., electrical experts carrying out a fault diagnosis). As future work, this model will be 

incorporated into a power transformer condition assessment of a maintenance management system. 

It is expected that, failure classification indicating the most probable defect will be used to help 

engineers to reduce the time needed to find and repair incipient faults, avoiding catastrophic failures 

and fires.  

Funding: This research received no external funding. 

Acknowledgments: The authors would like to thank Dr. Liñan from Instituto Nacional de Electricidad y 

Energías Limpias for his comments and reviews. 

Conflicts of Interest: The author G.S.B. wants to clarify that the presented work is all his own opinion and 

research lines, and not necessarily the opinion of BBVA Mexico. 

Appendix A. Machine Learning algorithms 

Appendix A.1. Single classifiers 

Appendix A.1.1. Artificial neural networks 

Artificial Neural Networks (ANN) are models inspired by the central nervous system, which are 

made of interconnected neurons [44]. The calculation of a single layer perceptron is performed by the 

following equation: 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1753.v1

https://doi.org/10.20944/preprints202311.1753.v1


 15 

 

𝑦(ˆX) = 𝑔 ൭෍(𝑤௜௡
௜ୀଵ 𝑥௜) + 𝑏𝑖𝑎𝑠൱ (A.1)

Where g is the activation function. Most artificial neural networks are composed of three types 

of layers of neurons: an input layer, one or more hidden layers and an output layer. These are called 

Multilayer Perceptrons (MLPs). The input layer is responsible for receiving a given input vector and 

transform into an output that becomes the input for another layer. Hidden layers transforms the 

output from a previous layer by means of an activation function. Output layer makes the final 

weighted sum. 

𝑦(ˆX) = 𝑔 ൭෍(𝑤௜𝑥௜) + 𝑏𝑖𝑎𝑠௡
௜ୀଵ ൱ (A.2)

Appendix A.1.2. Decision trees 

A decision tree is a classification method which creates a recursive partition of the data set [45].  

It consists of nodes that builds a tree, which has a node called ”root” that has no incoming 

connections, and a set of nodes that have exactly one incoming connection. Nodes with outgoing 

connections are called internal nodes and all other nodes (except the root node) are called leaves or 

decision nodes.  Each internal node splits the dataset into two or more sub-datasets using certain a 

condition or criteria of the input variables. 

The objective is to construct the following classifier: 

𝑌(𝑋) = ෍ 𝑌௜𝑥𝑙௜(𝑋)௡
௜ୀଵ  (A.3)

Appendix A.1.3. Gaussian processes 

The Gaussian process classifier is a classification method that assumes the class densities follows 

a normal distribution [46]. A Gaussian process, is a generalization of multivariate Gaussian 

distribution of infinite random variables. 

A multivariate Gaussian distribution is defined by the following equation: 𝑁(𝑥; µ, ∑) = 1(2𝜋)ௗ ଶൗ ∑ିଵ ଶൗ 𝑒𝑥𝑝ିଵଶ(𝑥 − µ)∑ିଵ (𝑥 − µ)்    (A.4)

Where x is the vector of random variables, µ is the vector of means, and Σ is the covariance 

matrix of all random variables. 

A Gaussian process is a random process in which any point t ∈ Rd is assigned to a random 

variable Zt such that every (Zt1 , Zt2 ,...,Ztd) is a multivariate Gaussian. 

Appendix A.1.4. K-nearest neighbor 

K Nearest Neighbors (KNN) is one of the most basic and essential classification algorithms in 

Machine Learning [47]. It belongs to the domain of supervised learning and finds intense application 

in pattern recognition, data mining, and intrusion detection. The KNN classifier is also an instance-

based, non- parametric learning algorithm. Instance-based learning means that our algorithm does 

not explicitly learn a model. Instead, he chooses to memorize the training instances that are later used 

as ”knowledge” for the prediction phase. Specifically, this means that only when a query is made to 

our database, that is, when we ask it to predict a label with an input, the algorithm will use the 

training instances to give an answer. 

The KNN algorithm assumes that pairs (X1, Y1), (X2, Y2) . . . (Xn, Yn) takes values in the coordinate 

space Rd, where Xn ∈ Rd and Yn is the label of the element Xn. Then, to perform a classification y of a 

new point x ∈ Rd, the KNN uses some distance measure ∥·∥ in Rd such that the dataset of pairs (X(1), 

Y(1)), (X(2), Y(2)) . . . (X(n), Y(n)) is reordered given that ∥X(1) − x∥ ≤ ∥X(2) − x∥ . . . ∥X(n) − x∥.  The class y is 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1753.v1

https://doi.org/10.20944/preprints202311.1753.v1


 16 

 

assigned given the maximum probability of the Y(1) . . . Y(K) estimated, where K is the number of 

neighbors selected to make the classification. 

Appendix A.1.5. Naıve Bayes 

In simple terms, it assumes that the presence or absence of a particular characteristic is not 

related to the presence or absence of any other characteristic, given the variable class [48]. For 

example, a fruit can be considered an apple if it is red, round, and about 7 cm in diameter. A Naive 

Bayes classifier considers that each of these characteristics contributes independently to the 

probability that this fruit is an apple, regardless of the presence or absence of the other characteristics. 

This method is based on the Bayes theorem, which is described as follows: 𝑃(𝐴|𝑅) = 𝑃(𝑅|𝐴)𝑃(𝐴)𝑃(𝑅)     (A.5)

Naive Bayes method assumes that the probability of all variables is constant, so the Bayes 

theorem can be rewritten as follows: 𝑃(𝐴|𝑅) = 𝑃(𝑅). ෑ 𝑃(𝑅|𝐴)௡௜ୀଵ       (A.6)

Appendix A.1.6. Logistic regression 

Regression analysis determines how a variable y is related to one or more, other variables X = x1, 

x2, ..., xk. In logistic regression [49], the yis are considered binary variables and the distribution of yi 

given X is assumed to follow a Bernoulli distribution (which is a special case of a binomial 

distribution) such that: 

𝑙𝑜𝑔 ቆ 𝑝(𝑦௜ = 1|𝑋)1 − 𝑝(𝑦௜ = 1|𝑋)ቇ  = 𝛽଴ + ෍ 𝛽௝௞
௝ୀଵ 𝑋௝௜               (A.7)

Of the several methods to estimates the βs, the method of maximum likelihood is one most 

commonly used for logistic regression. 

Appendix A.1.7. Support vector machines 

Support Vector Machines (SVM) are supervised learning models used for data prediction and 

classification [50]. This method was first presented by [51] in 1998. Even though SVM are commonly 

used for classification problems where training data is linearly separable, nonlinear data can be 

mapped into a high dimensional feature space, with help of a kernel function where linear regression 

can be applied (The hyperplane). The method builds two bounds with radius epsilon (ϵ) parallel to 

the hyperplane that covers the most quantity of data, where ϵ defines a margin of tolerance where no 

penalty is given to errors and ϵ is the distance between data not covered by support vectors and 

bounds [52]. By minimizing the following expression: 𝑦 = 𝑚𝑎𝑥 2‖𝑤‖               (A.8)

Subject to: 𝑤. 𝑥 + 𝑏 ≥ 1,⩝ 𝑥 = 𝐶ଵ            (A.9)𝑤. 𝑥 + 𝑏 ≥ −1,⩝ 𝑥 = 𝐶ଶ            
Appendix A.2. Ensembles 

Ensemble methods are algorithms that improves accuracy by joining/merging 2 or more simpler 

algorithms. Basically, there are two kinds of Ensemble algorithms: sequential and parallel. Sequential 

ensemble algorithms have the characteristic to maintain dependence across the different models 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1753.v1

https://doi.org/10.20944/preprints202311.1753.v1


 17 

 

generated. On the other hand, parallel ensemble algorithms look for independence among the 

different models. 

Appendix A.2.1. Random forest 

Random forest is a parallel type ensemble algorithm [53]. A random forest, is a combination of 

decision trees so that each tree analyzes on a random segment of the data with the same distribution 

for each of them. The essential idea is to average many noisy but approximately unbiased models, 

and thereby reduce variance. 

Appendix A.2.2. Bagging classifier 

Bagging classifier is a parallel ensemble algorithm. This algorithm is very similar to the random 

forest [54]. It takes several samples of the data with the same distribution to train different models 

using a variety of methods. The final classifier makes a prediction by combining the predictions of all 

other models. 

Appendix A.2.3. Gradient boosting 

Gradient boosting is a sequential ensemble algorithm [55]. Gradient boosting has two important 

characteristics: weak models and a differentiable loss function. This algorithm uses weak models as 

an optimization parameter and it decides to add or remove models depending on the gradient value 

of the loss function. 

Appendix A.2.4. Stacking ensemble 

Stacking ensemble is a sequential algorithm [56]. It uses a meta learning algorithm to learn how 

to best combine the predictions of two or more basic machine learning algorithms. The predictions 

of the basic machine learning algorithms are used to create a second training set. This second training 

set is used to train the meta learning algorithm. 

Appendix B. Performance Measures 

Appendix B.1. Confusion matrix 

A Confusion Matrix (CM) is employed to assess a classifiers performance by comparing 

predictions against true class labels. From it, several performance measurements can be obtained [57–

59]. Most of CM derived performance metrics were devised for binary classification problems, and 

only a few are available for a multi-class problem [59]. 

The confusion matrix for the binary and the multi-class problems are presented in Figure B.1. 

The TP stands for True Positive, FP stands for False Positive, TN stands for True Negative, and FN 

stands for False Negative. Thus, columns represent classifiers predictions whereas rows represent the 

true class. Thus, the CM element at row i and column j (i.e., Ci,j) provides the frequency of the 

predicted class j for the actual class i. 

In the case of a binary classification problem, the CM is given by a 2 × 2 matrix. In the case of 

multi-class problem, the matrix is given by the N different class labels ci|i = 1, 2, . . . , N , thus, the CM 

is of size N × N. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1753.v1

https://doi.org/10.20944/preprints202311.1753.v1


 18 

 

 

Figure B.1. On (a) the CM for a binary classification problem, on (b) the CM for a multi-classification 

problem. TP stands for True Positive, TN stands for True Negative, FP stands for False Positive, and 

FN stands for False Negative. Observe that in the multi-class case, only C2 is being shown. 

Appendix B.2. Precision and Recall 

Two performance measures obtained from the confusion matrix of a binary classification 

problem, namely Precision (Prec) and Recall (Rec): 𝑃𝑟𝑒𝑐 =  𝑇𝑃𝑇𝑃 + 𝐹𝑃          (B.1)

𝑅𝑒𝑐 =  𝑇𝑃𝑇𝑃 + 𝐹𝑁          (B.2)

Loosely speaking, Precision quantifies a classifier discrimination ability for separating between 

the classes, whereas Recall quantifies a classifier ability of identifying the samples of a given class in 

the data set. 

Appendix B.2.1. Micro and Macro averages for Multi-class 

To use these metrics in a multi-classification problem, one must choses from macro or micro 

averaging. In the case of the former, the metric is calculated for each class and then averaged (i.e., 

treating all classes equally). In the case of the latter, the contribution of each class is aggregated before 

computing the average metric, putting more weight on the most populous classes. Formally, if we 

define Preci and Reci as the precision and recall obtained for class i ∈ N , respectively. Then, the macro 

and micro Prec and Rec are defined as follows 

  𝑃𝑟𝑒𝑐௠௔௖௥௢ = 1𝑁 ෍ 𝑃𝑟𝑒𝑐௜ ே
௜ୀଵ  (B.3)

𝑅𝑒𝑐௠௔௖௥௢ = 1𝑁 ෍ 𝑅𝑒𝑐௜ே
௜ୀଵ  (B.4)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1753.v1

https://doi.org/10.20944/preprints202311.1753.v1


 19 

 

  𝑃𝑟𝑒𝑐௠௜௖௥௢ = ∑  𝑇𝑃௜ ே௜ୀଵ∑   ே௜ୀଵ 𝑇𝑃௜ + 𝐹𝑃௜          (B.5)

  𝑅𝑒𝑐௠௜௖௥௢ = ∑  𝑇𝑃௜ ே௜ୀଵ∑   ே௜ୀଵ 𝑇𝑃௜ + 𝐹𝑁௜          (B.6)

where N is the number of available classes. 

Appendix B.3. Balanced Accuracy 

BA is one of the most common multi-class performance measure used when classes imbalance 

is present. It is obtained as follows: 

𝐵𝐴 = 1𝑁 ෍ 𝑅𝑒𝑐௜ ,   ே
௜ୀଵ           (B.7)

where Reci stands for the recall obtained for class i ∈ N . Hence, the BA is the same as the Recmacro 

[58]. This function takes values between BA ∈ [0, 1] where a perfect classifier attains an BA = 1 while 

a BA = 0 is obtained by a classifier always predicting the wrong class. 

Appendix B.4. F-1 Measure 

Other metric obtained from the Eqs. B.1 and B.2 is the F1 score. It assesses a model performance 

using the harmonic mean of the Precision and Recall measures. As in the case of Prec and Rec, in the 

multi-class setting is obtained by macro or micro averaging. Thus, the F1 score for both averaging 

approaches is defined as follows: 𝐹1௠௔௖௥௢ = 2. 𝑅𝑒𝑐௠௔௖௥௢. 𝑃𝑟𝑒𝑐௠௔௖௥௢𝑅𝑒𝑐௠௔௖௥௢. 𝑃𝑟𝑒𝑐௠௔௖௥௢          (B.8)

𝐹1௠௜௖௥௢ = 2. 𝑅𝑒𝑐௠௜௖௥௢. 𝑃𝑟𝑒𝑐௠௜௖௥௢𝑅𝑒𝑐௠௜௖௥௢. 𝑃𝑟𝑒𝑐௠௜௖௥௢          (B.9)

In both cases, the F1 function takes values between F1 ∈ [0, 1]. More specifically, in the case of 

Eq. B.8, high values indicate that the algorithm has good performance on all the classes, whereas low 

values indicate that all classes were predicted poorly. In contrast, the Eq. B.9 gives more importance 

to populous classes, neglecting errors in classes with few samples [58]. Consequently, F1macro is a 

better metric than F1micro for assessing the performance of classifiers in the presence of classes 

imbalance. 

Appendix B.5. Matthews Correlation Coefficient 

A more recent metric, which is robuster to classes imbalance is MCC. This can be formally 

defined as 𝑀𝐶𝐶 = 𝑐𝑥𝑠 − ∑ 𝑝௜𝑥𝑡௜ே௜ୀଵඥ(𝑠ଶ − ∑ 𝑝௜ଶே௜ୀଵ )(𝑠ଶ − ∑ 𝑡௜ଶே௜ୀଵ )          (B.10)

where c = ΣN i=1 TPi corresponds to the TP for class i, s is the total number of samples, pi = TPi +FPi 

is the sum of times the classifier predicted class i (either correctly or incorrectly classified), and ti = 

TPi +FNi is the total number of samples class i appears in the dataset.  

MCC values ranged from MCC ∈ [−1, 1]. For higher positive values (MCC ≈ 1), the MCC indicates 

a strong positive correlation between predictions and the true Labels. On the contrary, large negative 

values (MCC < 0) indicate that the classifier does identify the classes but systematically predict them 

wrong (rather as consequence of an implementation problem). If the classifier is randomly guessing 

there will be no correlation between predictions and true labels, hence, the MCC is (≈ 0). Another 

virtue of MCC is that is sensitive to classes imbalance, hence, good for measuring a classifier 

performance when such feature is present in the dataset [58]. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1753.v1

https://doi.org/10.20944/preprints202311.1753.v1


 20 

 

Appendix B.6. Cohen’s Kappa 

The last performance measure is κ. This metric was initially devised as statistical hypothesis test 

for quantifying the level of agreement between two raters on a nominal scale [58,60]. This metric has 

been extended for binary and multi classification problems. In the case of the latter, the κ function is 

defined as follows 𝐾 = 𝑐𝑥𝑠 − ∑ 𝑝௜𝑥𝑡௜ே௜ୀଵ𝑠ଶ − ∑ 𝑝௜ே௜ୀଵ 𝑥𝑡௜           (B.11)

where, similar to the MCC metric, 𝑐 = ∑ 𝑇𝑃𝑖ே௜ୀଵ  corresponds to the TP for class i, s is 

the total number of samples, pi = TPi + FPi is the sum of times the classifier predicted class i 

(either correctly or incorrectly classified), and ti  = TPi + FNi  is the total number of samples class 

i appears in the dataset.  Thus, both the MCC and the κ are highly related, providing slightly 

larger values for κ in comparison to the MCC. Cohen’s Kappa values ranges from κ ∈ [−1, 1], 

where a κ = 1 points out a perfect agreement between classifier predictions and true labels, a κ = 

0 points out a random agreement attained due to the independence between predictions 

and the actual labels, and κ < 0 points out that the classifier is performing worse than a 

random classifier. Some key advantages of κ are, i) it measures the dependency between a model 

predictions and the true classes distribution, ii) is useful for assessing classifiers performance 

when classes imbalance is present, and iii) it can be used to compare classifiers performance on 

two different datasets (e.g., two TFD datasets with different faults and/or severity details) 

References 

1. M. E. A. Senoussaoui, M. Brahami, I. Fofana. Combining and comparing various machine learning 

algorithms to improve dissolved gas analysis interpretation. IET Generation, Transmission and Distribution, 

2018, 12(15), 3673-3679. 

2. I. B. Taha, S. S. Dessouky, S. S. Ghoneim, Transformer fault types and severity class prediction based on 

neural pattern-recognition techniques, Electric Power Systems Research,  2020,  191, 106899. 

3. R. M. Arias Velasquez, J. V. Mejia Lara, Root cause analysis improved with machine learning for failure 

analysis in power transformers, Engineering Failure Analysis, 2020, 115, 104684. 

4. Y. Xu, Y. Li, Y. Wang, D. Zhong, G. Zhang, Improved few-shot learning method for transformer fault 

diagnosis based on approximation space and belief functions, Expert Systems with Applications, 2021, 

167,114105. 

5. R. Arias, J. Mejia, Health index for transformer condition assessment, IEEE Latin America Transactions, 2018, 

16(12), 2843–2849. 

6. S. S. M. Ghoneim, I. B. M. Taha, Comparative study of full and reduced feature scenarios for health index 

computation of power transformers, IEEE Access, 2020, 8, 181326–181339. 

7. R. Rogers, IEEE and IEC Codes to Interpret Incipient Faults in Transformers, Using Gas in Oil Analysis, 

IEEE Transactions on Electrical Insulation, 1978, 13 (5), 349–354. 

8. W.G. A2. 37, Transformer reliability surveys, CIGRE Technical Brochure 642, 2015. 

9. W. Bartley, Analysis of transformer failures, In Proceedings of International Association OF Engineering 

Insurers, 36th Annual Conference, pp. 1–12, 2013. 

10. T. Nagpal, Y. S. Brar, Artificial neural network approaches for fault classification: comparison and 

performance, Neural Computing and Applications, 2014, 25 (7-8), 1863–1870. 

11. P. Mirowski, Y. Lecun, Statistical machine learning and dissolved gas analysis: A review, IEEE Transactions 

on Power Delivery, 2012, 27 (4), 1791–1799. 

12. J. Golarz, Understanding Dissolved Gas Analysis (DGA) techniques and interpretations, In Proceedings of 

the IEEE Power Engineering Society Transmission and Distribution Conference, July 2016. 

13. Q. Wu, H. Zhang, A novel expertise-guided machine learning model for internal fault state diagnosis of 

power transformers, Sustainability, 2019, 11 (6). 

14. E. Li, L. Wang, B. Song, Fault diagnosis of power transformers with membership degree, IEEE Access, 2019, 

7, 28791–28798. 

15. L. Cheim, M. Duval, S. Haider, Combined duval pentagons: A simplified approach, Energies, 2020, 13 (11), 

2859. 

16. J. Wang, X. Zhang, F. Zhang, J. Wan, L. Kou, W. Ke, Review on evolution of intelligent algorithms for 

transformer condition assessment, Frontiers in Energy Research, 2022, 10. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1753.v1

https://doi.org/10.20944/preprints202311.1753.v1


 21 

 

17. A. Shintemirov, W. Tang, Q. H. Wu, Power transformer fault classification based on dissolved gas analysis 

by implementing bootstrap and genetic programming, IEEE Transactions on Systems, Man and Cybernetics 

Part C: Applications and Reviews, 2009,  39 (1), 69–79. 

18. X. Wu, P. Wang, L. Wang, Y. Xu, Z. Zhao, Transformer combination weighting evaluation model based on 

bp neural network, In Proceedings Genetic and Evolutionary Computing. ICGEC 2021. Lecture Notes in 

Electrical Engineering, 833, 2022. 

19. M. A. Mortada, S. Yacout, A. Lakis, Fault diagnosis in power transformers using multi-class logical analysis 

of data, Journal of Intelligent Manufacturing, 2014, 25 (6), 1429–1439. 

20. X. Yang, W. Chen, A. Li, C. Yang, Z. Xie, H. Dong, BA-PNN-based methods for power transformer fault 

diagnosis, Avanced Engineering Informatics, 2019, 39, 178–185. 

21. D. Zhang, C. Li, M. Shahidehpour, Q. Wu, B. Zhou, C. Zhang, A bi-level machine learning method for fault 

diagnosis of oil-immersed transformers with feature explainability, International Journal of Electrical Power 

and Energy Systems, 2022, 134, 107356. 

22. L. Cheim, Machine Learning Tools in Support of Transformer Diagnostics, In Proceedings CIGRE Paris 

Session 2018, CIGRE, pp. A2–206, 2018. 

23. M.-A. Z¨oller, M. F. Huber, Benchmark and Survey of Automated Machine Learning Frameworks, Journal 

of Artificial Intelligence Research, 2021, 70, 409–472. 

24. C. Thornton, F. Hutter, H. H. Hoos, K. Leyton-Brown, Auto-WEKA: Combined selection and 

hyperparameter optimization of classification algorithms, In Proceedings of the ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining Part F128815, 847–855, 2013. 

25. M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, F. Hutter, Efficient and Robust 

Automated Machine Learning, Advances in Neural Information Processing Systems, 2015, 2962–2970. 

26. M. Duval, L. Lamarre, The Duval pentagon-a new complementary tool for the interpretation of dissolved 

gas analysis in transformers, IEEE Electrical Insulation Magazine, 2014, 30 (6), 9–12. 

27. E. Li, Dissolved gas data in transformer oil—fault diagnosis of power transformers with membership 

degree (2019). URL https://dx.doi.org/10.21227/h8g0-8z5 

28. F. Jakob, J. J. Dukarm, Thermodynamic estimation of transformer fault severity, IEEE Transactions on Power 

Delivery, 2015, 30 (4), 1941–1948. 

29. J. Dukarm, F. Jakob, Thermodynamic estimation of transformer fault severity, In Proceedings IEEE/PES 

Transmission and Distribution Conference and Exposition (T&D 2016), IEEE, 1–1, 2016. 

30. S. M. P. Londono, J. A. Cadena, J. M. Cadena, Aplicacion de redes neuronales probabilısticas en la deteccion 

de fallas incipientes en transformadores., Scientia et technical, 2008, 2 (39), 48–53. 

31. C. Ranga, A. K. Chandel, R. Chandel, Condition assessment of power transformers based on multi-

attributes using fuzzy logic, IET Science, Measurement & Technology, 2017, 11 (8), 983–990. 

32. E. T. Mharakurwa, R. Goboza, Multiparameter-based fuzzy logic health index assessment for oil-immersed 

power transformers, Advances in Fuzzy Systems, 2019. 

33. CIGRE TB 761 Condition assessment of power transformers, 2019. 

34. IEEE Guide for the Interpretation of Gases Generated in Mineral Oil-Immersed Transformers, 2019. 

35. A. Truong, A. Walters, J. Goodsitt, K. Hines, C. B. Bruss, R. Farivar, Towards automated machine learning: 

Evaluation and comparison of AutoML approaches and tools, In Proceedings IEEE 31st international 

conference on tools with artificial intelligence (ICTAI), 1471–1479, 2019. 

36. Osborne, Notes on the use of data transformations, Practical assessment, research, and evaluation, 2002, 8 (1), 

6. 

37. M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, F. Hutter, Auto-Sklearn 2.0: Hands-free AutoML via 

Meta-Learning, arXiv preprint arXiv:2007.04074, 0–18, 2020. 

38. X. He, K. Zhao, X. Chu, AutoML: A survey of the state-of-the-art, Knowledge-Based Systems 212 (Dl) 

arXiv:1908.00709, 2021. 

39. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. 

Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-

learn: Machine learning in Python, Journal of Machine Learning Research, 2011, 12, 2825–2830. 

40. T. E. Oliphant, A guide to NumPy, Vol. 1, Trelgol Publishing USA, 2006. 

41. W. McKinney, pandas: a foundational python library for data analysis and statistics, in: Workshop Python 

for High Performance and Scientific Computing, 1–9, 2011. 

42. T. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, In Proceedings of the 22nd ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining, KDD ’16, ACM, New York, NY, USA, 

785–794, 2016. 

43. A. A. Freitas, A critical review of multi-objective optimization in data mining, ACM SIGKDD Explorations 

Newsletter, 2004, 6 (2), 77–86. 

44. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Springer Series in Statistics, 

Springer New York Inc., 2001. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1753.v1

https://doi.org/10.20944/preprints202311.1753.v1


 22 

 

45. L. Rokach, O. Z. Maimon, Data mining with decision trees: theory and applications, World scientific, 2007, 

69. 

46. G. d. G. Alexander, Matthews, jiri hron, mark rowland, richard e. turner, and zoubin ghahramani. gaussian 

process behaviour in wide deep neural networks, In Proceedings of International Conference on Learning 

Representations, 4, 77–86, 2018. 

47. T. M. Mitchell, T. M. Mitchell, Machine learning, Vol. 1, McGraw-hill New York, 1997. 

48. G. Shobha, S. Rangaswamy, Chapter 8 - machine learning, in: V. N. Gudivada, C. Rao (Eds.), Computational 

Analysis and Understanding of Natural Languages: Principles, Methods and Applications, Vol. 38 of 

Handbook of Statistics, Elsevier, 197–228, 2018. 

49. Y. Benjamini, M. Leshno, Statistical methods for data mining, in: Data mining and knowledge discovery 

handbook, Springer, 565–587, 2005. 

50. B. Scholkopf, A. J. Smola, F. Bach, et al., Learning with kernels: support vector machines, regularization, 

optimization, and beyond, MIT press, 2002. 

51. V. N. Vapnik, Statistical Learning Theory, Wiley-Interscience, 1998. 

52. S. R. Gunn, Support vector machines for classification and regression, 1998. 

53. G. Biau, E. Scornet, A random forest guided tour, Test 25, 197–227, 2016. 

54. C. D. Sutton, Classification and regression trees, bagging, and boosting, Handbook of statistics 24, 303–329, 

2005. 

55. J. H. Friedman, Stochastic gradient boosting, Computational statistics & data analysis 38 (4), 367–378, 2002 

56. J. Moon, S. Jung, J. Rew, S. Rho, E. Hwang, Combination of short-term load forecasting models based on a 

stacking ensemble approach, Energy and Buildings 216, 109921, 2020. 

57. T. Kautz, B. M. Eskofier, C. F. Pasluosta, Generic performance measure for multiclass-classifiers, Pattern 

Recognition, 2017, 68, 111–125. 

58. M. Grandini, E. Bagli, G. Visani, Metrics for multi-class classification: an overview, arXiv preprint 

arXiv:2008.05756, 2020. 

59. I. Markoulidakis, I. Rallis, I. Georgoulas, G. Kopsiaftis, A. Doulamis, N. Doulamis, Multiclass confusion 

matrix reduction method and its application on net promoter score classification problem, Technologies, 

2021, 9 (4), 81. 

60. M. J. Warrens, Five ways to look at cohen’s kappa, Journal of Psychology & Psychotherapy, 2015, 5 (4), 1. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1753.v1

https://doi.org/10.20944/preprints202311.1753.v1

