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Abstract: Jacobian-free Newton Krylov (JFNK) is an attractive method to solve nonlinear equations 

in nuclear engineering systems, and has been successfully applied to steady-state neutron diffusion 

(k-eigenvalue) problems and multi-physics coupling problems. Preconditioning technique plays an 

important role in JFNK algorithm, significantly affecting computational efficiency. The key point is 

how to automatically construct a high-quality preconditioning matrix that can improve the 

convergence rate, and perform the preconditioning matrix factorization efficiently. An efficient 

reordering-based ILU(k) preconditioner is proposed to achieve the above objectives. In detail, the 

finite difference technique combined with the coloring algorithm is utilized to construct an efficient 

preconditioning matrix with low computational cost automatically. Furthermore, the reordering 

algorithm is employed for the ILU(k) to reduce the additional non-zero elements and pursue robust 

computational performance. A two-dimensional LRA neutron steady-state benchmark problem is 

used to evaluate the performance of the proposed preconditioning technique, and steady-state 

neutron diffusion problem with thermal-hydraulic feedback is also utilized as a supplement. The 

results show that coloring algorithms can efficiently and automatically construct the 

preconditioning matrix. The reordering-based ILU(k) preconditioner shows excellent robustness, 

avoiding the effect of fill-in levels k choice in incomplete LU factorization. 

Keywords: preconditioning; JFNK; coloring algorithm; reordering algorithm; incomplete LU 

factorization 

 

1. Introduction  

Due to the inherently featured of multi-scale and multi-physical in the reactor systems, the 

nuclear reactor simulation is a multi-physics coupling calculation [1-2], where a nonlinear coupled 

partial differential equation system is used to describe the physical behavior at different scales and 

physics fields. The steady-state neutron diffusion k-eigenvalue problem is the fundamental 

component of the multi-physics system. After the discretization of these partial differential equations 

(PDEs), it usually leads to a nonlinear algebraic equation problem [3]. The iterative method is a 

preferred option for the large-scale problem, since its smaller storage and computational cost 

compared with the direct matrix inversion method. Compared with the widely-used traditional 

coupling methods, such as operator splitting method and Picard iteration method [4-6], Jacobian-free 

Newton-Krylov (JFNK) algorithm [7] is well-known due to its low storage and high-order convergence 

rate. JFNK algorithm has been widely used in the latest nuclear engineering simulation codes [8-11]. 

Based on the JFNK algorithm, a Multi-physics Object Oriented Simulation Environment (MOOSE) 

has been developed by Idaho National Laboratory (INL) targeted at the solution of coupled nonlinear 

PDEs [12]. MOOSE can facilitate the simulation of nuclear systems and many programs have been 

developed based on this framework, such as reactor multi-physics code MAMOTH [13], advanced 

thermal-hydraulic code Pronghorn [14], and two-phase thermal systems code RELAP-7 [15]. The related 
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works of fuel performance analysis is carried out based on MOOSE due to the strong ability to 

simulate different mesh scales and multi-physics coupling calculation [16]. In addition, input 

uncertainty can be studied on MOOSE, which can provide high-fidelity modeling and a fundamental 

understanding of the various physical interactions [17]. MOOSE is a powerful simulation platform 

featured with finite element mesh system and extensible numerical solution system. However, the 

algorithms need to be further studied to pursue efficient and robust performance for MOOSE based 

applications. 

This work focuses on preconditioning techniques to improve the performance of the JFNK 

method based on MOOSE. Based on the fully coupled concept, all the governing equations will be 

expressed in the form of residual functions. The Newton-Krylov iteration process in the JFNK 

algorithm is applied to solving nonlinear equations. The coefficient matrix of the Newton-Krylov 

system is called the Jacobian matrix. When the nonlinear coupling characteristics of the system are 

complex, the construction of the Jacobian matrix is complicated and even difficult to give analytical 

expressions due to the existence of the first-order partial derivative. Although the JFNK method does 

not need to construct a Jacobian matrix explicitly, its components can be used as preconditioner to 

accelerate the linear iterations. According to the principle of preconditioning, a faster convergence 

rate can be achieved when the preconditioning matrix is as consistent as possible with the Jacobian 

matrix. The widely-used preconditioning matrix is an approximation of the Jacobian matrix, such as 

retaining the matrix information of the main diagonal block region, which is called block Jacobi 

preconditioning. Two requirements need attention when preparing the preconditioning matrix. 

Firstly, the preconditioning matrix should be constructed cheaply and automatically. Secondly, the 

factorization process of the preconditioning matrix should be efficient enough. This work uses the 

Jacobian matrix as the coefficient matrix before factorization to pursue a rapid convergence rate. At 

the same time, the algorithms to improve the efficiency of the factorization process is also considered. 

These two requirements ensure the efficiency of the preconditioning process and overall solution.  

The construction phase mainly focuses on the calculation of the preconditioning matrix 

elements. Most of the current preconditioners need to provide the analytical expression of elements, 

and MOOSE also supports the corresponding preconditioning strategy, which will be burdened and 

might introduce artificial errors. The finite difference technique can automatically generate the 

preconditioning matrix. Generally, this preconditioner does not consider the sparsity of the matrix, 

so it will bring a large computational cost. This preconditioner usually requires a number of residual 

function evaluations, leading to a relatively high computational cost. In this work, the coloring 

algorithms are used to reduce the number of residual function evaluations, as well as the 

computational cost. 

After obtaining the preconditioning matrix, the factorization phase determines the quality and 

efficiency of the preconditioner. The incomplete LU factorization with fill-in level k algorithm 

(ILU(k)) is widely used in the preconditioning process because of its low computational complexity 
[18]. The computational efficiency highly depends on the choice of the fill-ins in factorization, which is 

a key issue for ILU-based preconditioner. Usually, the selection of the fill-in level is empirical in 

practice, but inappropriate fill-in level selection may decrease computational efficiency. In this work, 

the reordering-based ILU(k) algorithm [19] is developed to improve robustness of the fill-in level 

selection. 

This work proposes an efficient and robust reordering-based ILU(k) preconditioner for solving 

the neutron diffusion problem based on MOOSE. The performance of proposed preconditioners is 

evaluated by the 2D-LRA neutron diffusion k-eigenvalue problem, as well as by a simplified neutron 

diffusion problem with thermal-hydraulic feedback as a supplement. This paper is organized as 

follows. Sec 2 briefly discusses the JFNK method and preconditioning technique. Sec 3 presents the 

coloring and reordering algorithms to improve the preconditioning efficiency and robustness. The 

newly developed preconditioner performance is provided in Sec 4. The paper is concluded in Sec 5. 
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2. Numerical Methods 

2.1. Neutron k-Eigenvalue Problem and JFNK Method 

The steady-state two-group neutron diffusion equations can be given by: ∇ ⋅ [−𝐷ଵ∇𝜙ଵ] + Σ௔,ଵ𝜙ଵ + Σ௦,ଵ→ଶ𝜙ଵ = 1𝑘 ෍ ν௚ᇲΣ௙,௚ᇲ𝜙௚ᇱ௚ᇲୀଵ,ଶ  (1)

∇ ⋅ [−𝐷ଶ∇𝜙ଶ] + Σ௔,ଶ𝜙ଶ =  Σ௦,ଵ→ଶ𝜙ଵ (2)

Where the numerical subscript and 𝑔′ represent the neutron energy group index. The first energy 

group is the fast group and the second one is the thermal group. The items 𝜙, 𝐷, Σ௔, Σ௦, Σ௙, 𝜈, 𝑘 

represent the neutron flux, diffusion coefficient, absorption cross section, scattering cross section, 

fission cross section, average number of neutrons emitted per fission and multiplication factor, 

respectively. The steady-state neutron diffusion problem is also called the k-eigenvalue problem due 

to the existence of the multiplication factor 𝑘. 

The two-dimensional LRA (Laboratorium für Reaktorregelung und Anlagensicherung) 

benchmark problem [20] is a well-known simplified neutron k-eigenvalue problem, which also 

contains the steady-state two-group neutron diffusion equation. The reference values of these 

coefficients in the LRA problem are given in Table 1. The reactor is square in the width of 330𝑐𝑚, 

and a quarter has been modeled because of the symmetry as shown in Figure 1. 

Table 1. Two group constants for the 2D-LRA benchmark [20]. 

Region Group 𝑔 𝐷௚( cm) ∑௔,௚  ൫ cmି1൯ 𝜈∑௙,௚  ൫ cmି1൯ ∑s,1→2  ൫ cmି1൯ 

1 
1 1.255 0.008252 0.004602 0.02533 

2 0.211 0.1003 0.1091 - 

2 
1 1.268 0.007181 0.004609 0.02767 

2 0.1902 0.07047 0.08675 - 

3 
1 1.259 0.008002 0.004663 0.02617 

2 0.2091 0.08344 0.1021 - 

4 
1 1.259 0.008002 0.004663 0.02617 

2 0.2091 0.073324 0.1021 - 

5 
1 1.257 0.0006034 0.0 0.04754 

2 0.1592 0.01911 0.0 - 
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Figure 1. Schematic of LRA benchmark (region numbers indicate material assignment). 

To simplify the following discussion, the k-eigenvalue problem (Eq.1 and Eq.2) is rewritten in 

matrix form: 𝑴𝜙ሬ⃑ = 1𝑘 𝑭𝜙ሬ⃑  (3)

In Eq.3, 𝜙ሬ⃑  represents the two-group neutron flux after discretization of the equations. The term 𝑀 is the discrete form of the sum of diffusion operator, absorption term and scattering term, while 𝐹  represents the fission matrix and 𝑘  is the eigenvalue of the system. This nonlinear system of 

equations is solved using JFNK method in this work. According to the Ref [21], the constraint equation 

of eigenvalue 𝑘 can be defined as: 𝑘 = ห𝑭𝜙ሬ⃑ ห  (4)

This work uses a technique to treat 𝑘 as an intermediate variable so that Eq.3 is eliminated in 

partial differential equations (PDEs). This treatment is inherited from the nonlinear elimination 

method, which is used to eliminate the nonlinear variables within PDEs to ensure the overall 

convergence of the system [22]. MOOSE has integrated this special treatment and developed the 

“NonlinearEigen” executioner to handle eigenvalue problems, and the detailed implementation can 

be found in Ref [21]. In MOOSE, the residual function required by the JFNK algorithm is defined as 

follows [21]: 𝑓൫𝜙ሬ⃑ ൯ = 𝑴𝜙ሬ⃑ − 1ห𝑭𝜙ሬ⃑ ห 𝑭𝜙ሬ⃑   (5)

JFNK method is a nonlinear solver featured with two iteration layers, including Newton 

iteration as the outer layer and Krylov subspace iteration as the inner layer. The basic concepts of 

JFNK method can be found in the literature [7]. Like most iterative methods, the convergence rate 

depends on the eigenvalue distribution of the system. Preconditioning can improve the convergence 

rate by clustering the eigenvalue distribution of the coefficient matrix. Preconditioning process is an 

equivalent transform of the original problem, by multiplying with the preconditioning matrix. 𝑱𝑷ିଵ𝑷𝛿𝜙ሬ⃑ =  −𝑓൫𝜙ሬ⃑ ൯  (6)

Where 𝛿𝜙ሬ⃑  is the update step of the neutron flux vector in Newton iteration, and 𝐽 is the Jacobian 

matrix and can be represented as a block matrix form: 
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𝑱 =  ൥𝑨𝟏 − 𝜈ଵ𝑘 𝚺𝒇,𝟏 − 𝜈ଵ𝑘 𝚺𝒇,𝟏−𝚺𝒔,𝟏→𝟐 𝑨𝟐 ൩ (7)

It should be noted that Eq.7 is only a non-zero element structural representation of the Jacobian 

matrix. 𝑨ଵ  and 𝑨ଶ  are the discrete form of sum of diffusion operator and absorption term. The 

preconditioner 𝑃 is an approximation of the Jacobian matrix 𝐽, and can be expressed as: 𝑷 =  𝐽ሚ (8)

2.2. Preconditioning Techniques in MOOSE 

The original intention of the preconditioner is to improve the performance and reliability of 

Krylov subspace methods. Preconditioning attempts to improve the spectral properties of the 

coefficient matrix. It can cluster spectrum which results in rapid convergence, particularly when the 

preconditioned matrix is close to normal. Here are some basic preconditioning concepts. 

If 𝑃 is a nonsingular matrix that approximates 𝐴 (in some sense). 𝑷ିଵ𝑨𝜙ሬ⃑ = 𝑷ିଵ𝑏ሬ⃑   (9)

Eq.9 is left preconditioning and has the same solution as original equations but easier to solve. 

The right preconditioning can be performed as: 𝑨𝑷ିଵ𝑦⃑ = 𝑏ሬ⃑ , 𝜙ሬ⃑ = 𝑷ିଵ𝑦⃑ (10)

It is not necessary to compute 𝑷ିଵ𝑨 or 𝑨𝑷ିଵ  explicitly during Krylov subspace iterations. 

Instead, matrix-vector products and linear systems of the form 𝑷𝑧 = 𝑟  are performed, which is 

utilized in JFNK method. As for residual minimizing methods, like GMRES [23], right preconditioning 
[24] is often used. In addition, the residuals for the right-preconditioned system are identical to the 

true residuals 𝑟 = 𝑏ሬ⃑ − 𝑨𝜙ሬ⃑ . 

The preconditioning process can be divided into the matrix construction phase and matrix 

factorization phase, as depicted in Figure 2. The MOOSE platform provides a variety of 

preconditioning matrix construction methods, such as the physics-based preconditioner (PBP), single 

matrix preconditioner (SMP), and field split preconditioner (FSP). They can be used to describe the 

multi-physics coupling problems, and can also be used to depict the scattering and fission effects 

between neutron energy groups. These preconditioners need to provide analytical expressions to 

construct the coefficient matrix, that is, the coefficient matrix is constructed by grid material 

composition and cross section. Especially for multi-physics coupling problems with complex physical 

properties, giving the expressions of the coefficient matrix elements is difficult. The finite difference 

preconditioner (FDP) can construct preconditioning matrices automatically to find a more general 

preconditioner. However, it can be extremely slow since the external computational cost is required 

in the implementation of FDP. The coloring technique can significantly reduce the number of 

nonlinear function evaluations. This method can improve the computational efficiency of FDP based 

on the topological relationships of the coupling terms, and the details will be discussed in Sec 3.1.  
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Figure 2. Preconditioning system in MOOSE. 

As depicted in Figure 2, the matrix factorization method is required after building the 

preconditioning matrix. In MOOSE, the main factorization methods for the preconditioning matrix 

include the incomplete factorization method [25] and iterative method [3]. Each of these methods has 

its advantages and applicability. Incomplete LU factorization method (ILU) is often used in 

preconditioning because of its extremely low computational cost. Particular attention needs to be 

paid to the location of the fill-in elements during the factorization process, which is discussed in 

Sec3.2. Besides, the ILU factorization can be optimized according to the sparsity of the matrix, it can 

be referred to Sec 3.3 reordering method. 

3. Numerical Techniques in Preconditioning 

This section mainly discusses the numerical algorithms used in preconditioning. The coloring 

algorithm can significantly reduce the huge computational cost in FDP, which is discussed in Sec 3.1. 

Similarly, the computational cost of preconditioning factorization phase also deserves attention. ILU 

with reordering algorithm will enhance the computational behavior and its robustness, as provided 

in Sec 3.2 and Sec 3.3. 

3.1. Coloring 

The preconditioning matrix is a partial Jacobian matrix, which could be calculated automatically 

by finite difference of the nonlinear function. In this work, the coloring algorithms [26] is utilized for 

the preconditioning matrix to reduce the number of nonlinear function evaluations and enhance the 

computational performance. Here we briefly introduce the principle of coloring algorithms and 

different coloring types. 

The nonlinear problem can be described by the residual function 𝑓: 𝑅௡ ⟶ 𝑅௡ , such as Eq.5 

which describes the steady-state neutron diffusion problem. The number of elements in solution 

vectors is 𝑛 = 50  for illustration, so the dimension of the preconditioning matrix is 𝑛 × 𝑛  as 

depicted in Figure 3. The color block in the figure represents the non-zero elements, and the blank 

denotes a zero entry in 𝑃. The colors in Figure 3 represent the number of colors, which means that 

non-zero elements will be divided into these groups. The coloring process will be described in detail 

below. 
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Figure 3. Preconditioning matrix and its compressed representation in steady-state neutron diffusion 

problem. 

Define a unit vector 𝑒௞  ∈ 𝑅௡ with 1 in the kth row and 0 in all other rows. Then the difference 

approximation can be rewritten in [𝐹(𝑥 + 𝜖𝑒௞) − 𝐹(𝑥)]/𝜖 ≈ 𝑃𝑒௞ . The kth column of 𝑃  can be 

estimated through an additional function evaluation 𝐹(𝑥 + 𝜖𝑒௞). Here 𝜖 is a small step size. Hence 

if sparsity is not utilized, the construction of a preconditioning matrix with 𝑛 columns would require 𝑛 additional function evaluations. 

The columns of the preconditioning matrix could be divided into several groups, where any two 

columns in the same group are not both non-zeros in a common row. It means the columns in the 

same group are structurally orthogonal [27]. For example, the first column and the sixth column are 

structurally orthogonal in Figure 3. Now consider a column vector 𝑑  with 1  in components 

corresponding to the indices of columns in structurally orthogonal group and 0  in other 

components, which in this case is 𝑑 = [1,0,0,0,0,1,0, … ,0]. The elements in structurally orthogonal 

columns can be easily acquired by differencing the function 𝐹(𝑥) along the vector 𝑑. In this way, by 

partitioning the columns of the 𝑃 into fewest groups, the required number of function evaluations 

is minimized. Figure 3 shows the preconditioning matrix of schematic neutron diffusion problem and 

its compressed representation. By reasonably dividing structurally orthogonal columns, the 

compressed matrix has only 8 columns. This means that only an additional 8 function evaluations 𝐹(𝑥 + 𝜖𝑑) are required to complete the construction of the preconditioning matrix. 

Here are some basic graph theory definitions about the matrix and its coloring algorithms. A 

graph G is an ordered pair (V, E) containing vertex set V {V: vଵ, vଶ, vଷ, … … , v୬} and edge set E. The 

degree of a vertex v୧ in a graph G is the number of edges having v୧ as an endpoint, and can be 

represented by deg(v୧). The matrix could be expressed by a graph, where columns in the matrix are 

the vertices in the graph. If there is an edge links between two vertices, it means for these two 

corresponding columns in the matrix are non-orthogonal. The graph coloring issue is to find the 

coloring partition where any adjacent vertices have different colors. Therefore, the matrix coloring 

problem are equivalent to minimum graph coloring issue. The vertex will be gradually colored 

according to the order, and assign the smallest color not used by any of its neighbors. This method is 

also called greedy coloring algorithm [28], outlined in algorithm3.1. 

The coloring produced by the sequential algorithm is dependent on the ordering of columns [29]. 

Taking a matrix in Figure 4 as an example, {𝑣ଵ, 𝑣ଶ, 𝑣ଷ, 𝑣ସ, 𝑣ହ, 𝑣଺, 𝑣଻}  denote columns in the 

preconditioning matrix and 𝜒 represents the number of colors. According to the truncated-max-

degree bound theorem in graph theory [30], it is evident from the sequential coloring procedure that 

coloring the columns of large degree first will give upper bound of the coloring. The determination 

of a sequential coloring corresponding to such an ordering will be termed the largest-first algorithm 

(LF). The max-subgraph min-degree bound is always sharper than truncated-max degree bound in 

graph theory [31]. Inspired by this theorem, the small-last algorithm (SL) ranks the column of the 

smallest degree last and continues to search for such column in the remaining columns. The process 

of obtaining the ordering by LF and SL algorithms can refer to Figure 4. The gray squares in the figure 

represents the position of the non-zero elements. In Figure 4, column 3 is not orthogonal to column {vଵ, vଶ, vସ, vହ, v଺}, which means that vertex 3 is linked to these vertices through edges in the graph. The 

index of vertex is represented in red numbers in Figure 5, and 𝑑𝑒𝑣(𝑣௜)  is represented in black 
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numbers. In addition, the two figures represent the matrix form and the graph form of the algorithms, 

respectively. The LF algorithm ranks the vertices with large degrees to the forefront of the ordering, 

while the SL algorithm ranks the vertices with small degrees to the end of the ordering. Note that the 

determination of a SL ordering has a feature of recursiveness not shared by the LF ordering procedure 
[32], which means that the ordered vertices need to be removed in the process to generate a new graph 

as present in Figure 5. Columns that have been ranked in the SL ordering will be removed from the 

matrix to form a degenerate matrix as shown in Figure 5. From the perspective of matrix form, the 

degrees of columns in SL ordering are over the degenerate matrix, whereas LF ordering utilizes only 

the degrees of columns in the whole matrix. After obtaining the ordering of the two algorithms, the 

vertices can be colored according to Algorithm 3.1. It should be noted that, in this case both coloring 

algorithms have the same orderings, as shown in Figure 5. In addition to these two methods, this 

work also evaluates the performance of the incidence degree (ID) coloring algorithm, and its specific 

principles can be referred to in the literature [33-35].  

 

Figure 4. Matrix form of generating large-first and small-last ordering. 

 

Figure 5. Graph form of generating large-first/small-last ordering and the colored graph. 

ALGORITHM 3.1 Sequential(greedy) coloring algorithm 

  Procedure SEQ(𝐺 = (𝑉, 𝐸)) 

    Formulate a vertex ordering {𝑣ଵ, 𝑣ଶ, 𝑣ଷ, … … , 𝑣௡} 
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    Assign 𝑣ଵ as color 1 

    For 𝑖 = 2 to 𝑛 do 

        Assign 𝑣௜ the smallest color not used by any of its neighbors 

    End for 
End procedure 

3.2. Incomplete LU Factorization Method 

In the preconditioning, the computational cost highly depends on the process of matrix 

inversion, which is mainly realized by matrix factorization. Even though the matrix is sparse, extra 

fill-in non-zero elements usually take place after factorization. This means the triangular factor 𝐿 and 𝑈  are considerably less sparse than the original one. A new form of preconditioner 𝑃 =  𝐿ത𝑈ഥ  is 

obtained by discarding part (or all) of the fill-in non-zero elements during the factorization process 
[36]. This factorization can form a simple but effective preconditioner, also known as incomplete LU 

factorization. 

To illustrate this method, we formally define a subset of matrix element locations 𝑆, in which 

the main diagonal and all (𝑖, 𝑗)  that ൛𝑎௜௝  ⊂  𝑃ห 𝑎௜,௝ ≠ 0}  are usually included. Besides, 𝑆  also 

contains other fill-ins, which are allowed to be non-zeros during the factorization process. 

Consequently, an incomplete factorization step can be described as: 𝑎௜௝ ← ቊ𝑎௜௝ − 𝑎௜௞𝑎௞௞ିଵ𝑎௞௝,      if (𝑖, 𝑗) ∈ 𝒮,𝑎௜௝ ,      otherwise 
 (11)

Where 𝑘  is recursive for 𝑘 < 𝑖, 𝑗 . If 𝑆  is same as the non-zero positions in 𝑃 , the no-fill ILU 

factorization, or ILU(0), is obtained. Subset 𝑆  governs the dropping of fill-in in the incomplete 

factors, and becomes the criteria in different ILU variants [37]. However, no-fill ILU factorization can 

only provide a relatively low quality preconditioner. In order to obtain better preconditioning 

quality, more fill-ins need to be considered in incomplete factorization process.  

A hierarchical ILU preconditioner based on the “level of fill-in” concept has been proposed [38]. 

The method defines a rule that govern the dropping of fill-in in the incomplete factors. The definition 

of “level of fill-in” is as follow, and the initial level of fill of a matrix entry 𝑎௜,௝ is: lev௜௝ = ൜0,      if 𝑎௜௝ ≠ 0 or 𝑖 = 𝑗∞,      otherwise 
 (12)

After an ILU process, the level of fill must be updated: 𝑙𝑒𝑣௜௝ = 𝑚𝑖𝑛൛𝑙𝑒𝑣௜௝ , 𝑙𝑒𝑣௜௞ + 𝑙𝑒𝑣௞௝ + 1ൟ 

Let 𝑘 be a nonnegative integer. In an ILU(k) preconditioner, all fill-ins whose level is greater 

than 𝑘 are dropped. In many situations, ILU(1) has significant improvement over ILU(0), and the its 

computational cost is acceptable. With the increase of 𝑘, the computational cost and fill-ins will rise 

rapidly. For some complex problems, a higher fill-in level 𝑘 is required in order to ensure a better 

preconditioning quality.  

3.3. Reordering 

Sparsity is the main feature of the preconditioning matrix, especially for the neutron eigenvalue 

problem. When ILU(k) factorization is used, it will introduce considerable computational cost in the 

pursuit of higher preconditioning quality and applying larger k. Exploring mathematical algorithms 

based on sparsity to increase factorization efficiency is essential. The reordering algorithms are 

chosen so that pivoting down the diagonal in order on the resulting permuted preconditioning matrix 𝑅𝑃𝑅் = 𝐿ത𝑈ഥ produces much less fill-in. In addition, the order and permutation matrix 𝑅 can save the 

cost when calculating the factors in 𝐿ത𝑈ഥ[39]. The principle of the permutation is briefly described here. 

Suppose an arbitrary 𝑛 × 𝑛 sparse matrix 𝑃 = {𝑎௜,௝}, determine a permutation matrix 𝑅 such 

that 𝑅𝑃𝑅்  has a small bandwidth and a small profile. The bandwidth of 𝑃  is defined by the 
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maximum of the set {|𝑖 − 𝑗|: 𝑎௜,௝ ≠ 0}. To acquire the profile of 𝑃, set 𝑓௜ = min {𝑗: 𝑎௜,௝ ≠ 0} with all 𝑎௜,௜ ≠ 0 and let 𝑑௜ = 𝑖 − 𝑓௜ . The profile is defined by ∑ 𝑑௜ேଵ . The permutation matrix can reduce 

storage and computational cost when solving linear equations. One of the main objectives is to cluster 

non-zeros as much as possible in the main diagonal. The generation of permutation matrices can be 

attributed to the reordering method, which focuses mainly on the bandwidth and profile of matrices. 

Moreover, the current mainstream reordering rule is based on graph theory. 

According to the optimization objectives, reordering methods can be divided into two 

categories: reduced fill-in elements algorithm, and reduced bandwidths and profiles algorithm. The 

algorithms in the first category include the quotient minimum degree (QMD), the one-way dissection 

(1WD), and the nested dissection (ND) method [40]. While the algorithm belonging to the second 

category is mainly reverse Cuthill-McKee (RCM) method [41]. To illustrate the differences between 

several reordering methods, the steady state neutron diffusion model in Sec 3.1 is taken as an example 

to show the ILU factorization effect after different reordering algorithms. Because the matrix 

dimension is small, the ILU factorization with fill-in level 20 is used to show the different reordering 

algorithm performances. The structures of 𝐿ത𝑈ഥ  matrix after ILU(20) factorization by different 

reordering algorithms are shown in Figure 6. The general conclusion was that the reverse Cuthill-

McKee (RCM) algorithms usually produced the smallest bandwidths. The QMD and ND method 

does not guarantee the optimal bandwidth, but reduces the filling elements and computational 

complexity during the matrix factorization. In addition, the ND algorithm usually guarantees the 

minimum number of filling elements. The effect of reordering depends on the specific sparse 

structure of the matrix, and there is no optimal algorithm at present. 

 

Figure 6. Matrix structure of different reordering methods using ILU(20). 

4. Results and Discussions 

The 2D-LRA benchmark is utilized to evaluate the performance of improved preconditioners. 

The mesh of the benchmark is generated by the mesh generation software, using a triangle adaptive 

mesh leading to 7696 meshes. The total degree of freedoms (DOFs) is 15392, including two groups of 

neutron flux variables. The MOOSE-v1.0 is used in this work and all programs are executed serially. 

This work does not involve the analysis of parallel performance. As mentioned before, we mainly 

focus on the construction and factorization processes to pursue an efficiency and robustness scheme. 

It is worth noting that the choice of optimal preconditioning is problem-related, and the article only 

reveals the effects of different numerical techniques. 
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4.1. Preconditioning Matrix Construction Techniques 

In order to meet the requirement of automatically building the preconditioning matrix, FDP is 

used here. Besides, FDP can be used as a robust preconditioner, especially when the preconditioning 

matrix elements of the problem cannot be explicitly given. However, the direct use of FDP will bring 

a huge computational cost, which will seriously increase the whole solution time. The coloring 

method can utilize the sparse structure of the preconditioning matrix and partition the columns into 

the fewest groups of structurally orthogonal columns. Therefore, it can significantly reduce the 

evaluation times in FDP, and reduce the cost of constructing the preconditioning matrix. As shown 

in Table 2, the computational efficiency of the FDP with coloring could be about 60 times higher than 

that of the preconditioner without coloring algorithm. 

Table 2. Computing performance of different coloring methods. 

 Smallest-last Large-first Incidence-degree No-coloring 

Total computational time(s) 120.563 122.516 121.030 7276.910 

Speed-up ratio 60.35 59.40 60.12 1 

Preconditioner construction 

time(s) 

1.872 1.882 1.858 7163.736 

Numbers of residual evaluations 535 585 537 23658 

Colors used 31 41 32 - 

Nonlinear steps 5 5 5 5 

Total linear steps 123 123 123 123 

For each coloring algorithm we cite five statistics, including total computational time, numbers 

of residual evaluations, numbers of coloring, nonlinear steps, and total linear steps. The convergence 

criteria selected in this example are 𝑒௥ = 10ି଼ . Three coloring algorithms exhibit only a slight 

variation in these evaluation parameters. In addition, the number of colors needed by the SL 

algorithm tended to be slightly less than LF and ID algorithm. The results also show that the SL 

algorithm's min-degree bound is stricter than that of the LF algorithm, which can provide fewer 

colors. It is necessary to illustrate the enormous preconditioning construction cost when not using 

the coloring algorithm. This version of the MOOSE program does not optimize the calculation of the 

coefficient matrix. When the Jacobian matrix is used as a preconditioner’s coefficient matrix, the 

number of residual function calls is equal to degrees of freedom, which will bring a huge 

computational cost, especially for the problem with a large number of grids. By comparing the 

residual history in Figure 7, it can be inferred that the preconditioning matrices constructed by the 

three algorithms are identical. The “Normalized nonlinear residual” here represents the initial 

residual norm (L2 norm) as 1, and the dotted line in Figure 7 also shows the convergence criterion 

of the algorithm. In fact, this is also consistent with the concepts of coloring that using sparsity to 

reduce the computational cost, but not change the matrix elements.  
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Figure 7. Residual history in three coloring methods using FDP. 

4.2. Preconditioning Matrix Factorization Techniques 

After building the preconditioning matrix, it is also necessary to factorize it and ensure each 

iteration is affordable. The ILU(k) algorithm has been widely-used among existing preconditioners 

as a general-purpose technique. It should be noted that the numerical examples in this subsection are 

carried out using FDP with the SL coloring algorithm. All the comparisons here are to expose the 

performance of the factorization techniques.  

The total computational time and ILU factorization time for LRA problems under different fill-

in levels the ILU(k) method are shown in Figure 8. Figure 9 shows total linear steps and non-zeros 

under different fill-in levels, where the coefficient matrix is automatically generated by FDP. Please 

note that although high fill-in levels, such as larger than 5, seem redundant for the simple LRA 

problem, they can provide some insights for the algorithm performance analysis. As illustrated in 

Figure 9, with increase in the fill-in level, the number of linear steps required for calculation will 

decrease due to the faster convergence rate. Thus, the number of linear iteration steps is reduced. At 

the same time, as the fill-in level increases, the number of non-zero elements in the factorized matrix 

also increases, which means more computational complexity. This ultimately leads to a rise in the 

factorization time of the ILU(k) method, as shown in Figure 8, where the factorization time of ILU(20) 

is 7 times that of ILU(0). The ILU factorization process dominates the entire computational cost at 

high fill-in levels. Therefore, the parameter fill-in level 𝑘 is a key issue to make a balance between 

the factorization cost and the linear convergence rate. For this case, the total computational time is 

minimal at 𝑘 = 3. Please note that, in practice, the optimal fill-in level is not easy to determine, which 

is a problem-related topic. 

In order to find a robust preconditioner, the key point is to make the preconditioner not sensitive 

to the user-defined fill-in level 𝑘. Therefore, it should reduce the computational cost of ILU(k) at the 

high fill-in levels. Here, the reordering algorithms is used for the high fill-in level ILU factorization, 

and the fill-in levels of 𝑘 = 10 are considered in this work.  

The computational performance of the different reordering algorithms using ILU(10) is listed in 

Table 3. In this case, the number nonlinear/linear steps are the same. However, compared with the 

ILU(10) under the natural ordering, the number of non-zeros after factorizations under reordering 

algorithms is reduced, therefore, the total computational time of ILU(10) under reordering algorithms 

is less than that of natural ordering. In detail, for the one-way dissection (1WD) algorithm, it only 

reorders the preconditioning matrix from one direction (horizontal or vertical), so the number of non-

zero elements after factorization is still relatively large, whose value is 2442293 in this case. The ND 

algorithm exhibits a better computational efficiency, reducing the computational time by 15% 

compared with natural ordering. The algorithm is based on the quotient graph for matrix 
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factorization that can obtain minimum non-zeros. Please note that, the current LRA steady-state 

diffusion problem is a relatively simple case, in order to further analyze the performance of the 

reordering-based ILU(k) preconditioner, a steady-state neutron diffusion problem with thermal-

hydraulic feedback is also utilized as a supplement. 

  
(a) Computational time (b) Factorization time 

Figure 8. The total computational time and factorization time in ILU(k) algorithm. 

  
(a) Total linear steps (b) Number of non-zeros 

Figure 9. The linear steps and non-zeros after ILU factorization. 

Table 3. Computing performance of different reordering algorithms in ILU(10). 

 Natural 1WD ND QMD RCM 

Total computational time 34.996 30.609 29.756 31.193 29.871 

Non-zeros after factorizations  3884202 2442293 1879544 2337351 1919274 

Number of residual evaluations 556 556 556 556 556 

Nonlinear steps 11 11 11 11 11 

Linear steps 225 225 225 225 225 

It is a simplified 2-D PWR (Pressurized Water Reactor) reactor model, which includes the steady-

state neutron diffusion equation as well as other three physical fields to consider the thermal-

hydraulic feedback effect: coolant temperature, pressure and velocity. As with most reactor systems, 

the neutronics and thermal-hydraulics are tightly two-way coupled. The governing equations, 

coefficients, dimensions and boundary conditions can be found in the reference paper [42-43]. As a 

simplified model, a 40 × 40 cylindrical grid is used here. Here, the convergence criterion consistent 

with the previous example is used, and the SL coloring algorithm is used to generate the coefficient 

matrix automatically. 
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Figure 10 shows the results of the total computational time and the number of non-zero elements 

after factorization under different fill-in levels and reordering algorithms. The results of fill-in levels 

from 0 to 12 are provided, and the higher fill-in levels are redundant in practice for this multi-physics 

coupling problem. Compared with the ILU factorization under natural ordering, the total 

computational time of ILU with reordering algorithms is not sensitive to the fill-in levels. 

Additionally, the computational performances are close to the optimal computational cost for natural 

ordering, as shown in Figure 10. 

  
(a) Total computational time (b) Number of non-zeros 

Figure 10. The total computational time and non-zeros of ILU factorization for simplified PWR 

model. 

In order to further discuss the features of reordering algorithms in detail, Table 4 summarizes 

the results of different reordering algorithms under the optimal fill-in levels. The factorization times 

of low fill-in levels are relatively small, but more nonlinear/linear steps are required to achieve 

convergence. The reordering algorithms can reduce the cost of factorization at high fill-in levels. 

Although it is still time-consuming, it can improve efficiency by reducing the number of iteration 

steps. As a result, The performance of ILU(11) with ND algorithm is slightly superior to ILU(3) with 

natural ordering. So, although natural ordering only could achieve good computational efficiency at 

low fill-in levels, such as k = 3, the computational time will increase sharply as the fill-in level 

increases. The superiority of reordering algorithms emerges in this situation. The reordering-based 

ILU preconditioner can adapt to a wide range of fill-in levels without empirical selection.  

Table 4. The optimal fill-in level and computational performance in different reordering algorithms. 

 Natural ND RCM 1WD QMD 

Fill-in level 𝑘 3 11 8 7 11 

Total computational 

time (s) 
30.89 30.76 31.02 31.08 30.93 

Factorization time (s) 23.26 26.35 24.33 24.26 26.52 

Total nonlinear steps 6 3 4 4 3 

Total linear steps 119 38 55 57 38 

5. Conclusions 

Efficient and robust preconditioners is a key issue in solving nonlinear problems, especially in 

the JFNK method. A high linear convergence rate can be obtained by retaining the complete 
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coefficient matrix and used for preconditioning. However, using the finite difference method to 

calculate the preconditioning matrix is time-consuming. An efficient preconditioning-based coloring 

algorithm is developed in this work, which significantly reduces the cost of finite difference 

computation by partitioning the columns of the coefficient matrix. In addition, the robust reordering-

based ILU(k) preconditioner is developed which could achieve a high computational performance 

for a wide range of fill-in levels. As a preliminary work, the 2-D LRA neutron eigenvalue problem 

and a simplified PWR model are provided to demonstrate the performance of the preconditioner. 

The results show that the proposed preconditioner can automatically generate the preconditioning 

matrix and has strong robustness. The main conclusions are: 

1. The proposed preconditioner can automatically generate matrices with high convergence rate. 

Combined with the coloring algorithms, the preconditioner can significantly improve the 

computational efficiency.  

2. The reordering-based ILU(k) algorithm is an efficient preconditioning matrix factorization 

method. By using the incomplete factorization and the sparsity of the preconditioning matrix, 

the computational cost of matrix factorization under high fill-in level can be greatly reduced. 

3. Reordering algorithms enhances the robustness of the preconditioner, and it can maintain high 

efficiency for wide range of fill-in levels using ILU factorization. The ND reordering algorithm 

shows better performance in this work, which can reduce 40% of the non-zero elements in the 

high fill-in levels after factorization. 

The reordering-based ILU(k) factorization presented in this work exhibit good computational 

performance and robustness. Future work will focus on the performance of the proposed 

preconditioner for practical multi-physics coupling problems featured with complicated non-zero 

structure, especially when natural ordering cannot achieve the desired efficiency. 
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