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Abstract. In the paper we present a new test for comparison of the means of multivariate samples with 
unknown distributions. The test is based on the comparison of the distributions of the distances between the 
samples’ elements and their means using univariate two-sample Kolmogorov-Smirnov test. The activity of the 
suggested method is illustrated by numerical analysis of the real-world and simulated data. 

Keywords: multivariate two-sample problem; multivariate means test; distance-based statistic; two-sample 
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1. Introduction 

The problem of comparison of two samples obtained in different measurements appears in a 
wide range of tasks starting from physical research and ending with social and political studies. The 
comparison includes the tests of the samples’ distributions and their parameters, and the result of the 
comparison specifies whether the samples were drawn from the same population or not. 

For univariate samples, the problem is solved by different methods: the two-sample Student 𝑡-
test and the Welch 𝑡-test (both for comparison of the means for normal distributions), the Fisher 𝐹-
test (for comparison of variances for normal distributions), the Wilcoxon rank sum test and the paired 
permutation test (for comparison of the locations which differ from the means), the Kolmogorov-
Smirnov test (comparison of the continuous distributions), the Tukey-Duckworth test (comparison 
of the samples’ shift), and so on [1]. 

For multivariate samples, the problem is less studied and was solved for several specific cases. 
If the samples are drawn from populations with multivariate normal distributions with equivalent 
variances, then the comparison of the multivariate means is provided by the extension of the Student 𝑡-test that is the two-sample Hotelling 𝑇2-test [2]. If the variances of the populations are different, 
then comparison of the multivariate means of the samples can be conducted by the family of the tests, 
which implement the same extension of the Hotelling statistics [3], or its different versions including 
the test with missing data [4]. 

Finally, there exists a small number of methods that address the multivariate two-sample 
problem in which the samples are drawn from the populations with the unknown or differ from 
normal distributions. The review of the methods based on the interpoint distances appears in the 
thesis [5], and of the non-parametric methods – in the thesis [6]. 

In particular, the mostly applicable Baringhaus-Franz test [7] implements the Euclidean 
distances between the elements of the samples (inter-sample distances) and the distances between 
the elements in each sample (intra-sample distances). The resulting statistic is a normalized difference 
between the sum of the inter-sample distances and the average of the intra-sample distances. Since 
this statistic is not distribution free, critical values are defined by the bootstrapping techniques [8]. 

In the paper, we follow the line of using the inter- and intra-sample distances and propose a 
distribution free test for comparison of the means of multivariate samples with unknown 
distributions. The proposed test implements the distances between the elements of the samples and 
the centroid of both samples and the distances between the elements of the samples and their 
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centroids. These distances are considered as random variables, and the test compares distributions 
of these variables. Acceptance of null hypothesis about the equivalence of the distributions indicates 
that the populations from which the samples were drawn are equivalent (by equivalence of the means 
and forms of the distributions) and rejection of the null hypotheses indicates that the samples are 
drawn from the populations with different means.  

Thus, in the proposed test the multivariate data samples are reduced to univariate samples of 
distances and then the distributions of the univariate samples are compared. If, similar to the 
Baringhaus-Franz test, the proposed test uses the Euclidian metrics, then the distances are interpreted 
as deviations of the samples’ elements; however, the choice of the metric function is not crucial and 
can depend on the nature of the data. Comparison between the distances’ samples is conducted using 
the standard two-sample Kolmogorov-Smirnov test. 

The proposed test is illustrated by its application to the simulated data and the real-world Iris 
flowers [9] and Swiss banknotes [10] datasets, which are widely accepted for benchmark tasks. 

2. Problem formulation 

Let 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚𝑥) and 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑚𝑦) be two 𝑛-dimensional samples such that each 

observation 𝑥𝑖 is a random vector 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛), 𝑖 = 1,2, … ,𝑚𝑥, and each observation 𝑦𝑗, is a 
random vector 𝑦𝑗 = (𝑦𝑗1, 𝑦𝑗2, … , 𝑦𝑗𝑛), 𝑗 = 1,2,… ,𝑚𝑦. In the other words, the samples are represented 
by random matrices 𝑥 = (𝑥𝑖𝑘)1≤𝑖≤𝑚𝑥,1≤𝑘≤𝑛   and   𝑦 = (𝑦𝑖𝑘)1≤𝑖≤𝑚𝑦,1≤𝑘≤𝑛.  

We assume that the numbers 𝑚𝑥 and 𝑚𝑦 of observations appearing in the considered samples 𝑥 and 𝑦 are equal or at least are rather close. 
Denote 𝐹𝑥 and 𝐹𝑦 the multivariate distributions on the populations 𝒳 and 𝒴, respectively. 
The question is: whether the samples 𝑥  and 𝑦  were drawn from the same population or 

populations 𝒳 and 𝒴, from which the samples 𝑥 and 𝑦 were, respectively, drawn, are statistically 
different. 

If populations 𝒳 and 𝒴 are univariate, the samples 𝑥 and 𝑦 are random vectors, and the 
problem is solved by the standard two-sample tests for different known or arbitrary unknown 
distributions 𝐹𝑥 and 𝐹𝑦. However, for multivariate populations complete analytical solution – the 
two-sample Hotelling 𝑇2-test [2] – was suggested only for normal 𝐹𝑥 and 𝐹𝑦. Together with that, in 
the last decade were suggested several multivariate two-sample tests [11,12] based on the 
multivariate version of the Kolmogorov-Smirnov test [13], but these and similar solutions either 
implement bootstrapping techniques or have certain limitations. For other directions in considering 
the problem see, e.g., the work [14] and references herein. 

In the paper, we assume that the distributions 𝐹𝑥  and 𝐹𝑦  are continuous with finite 
expectations 𝐸(𝑥)  and 𝐸(𝑦) , respectively, and consider the null hypothesis and alternative 
hypotheses 𝐻0: 𝐸(𝑥) = 𝐸(𝑦)   and   𝐻1: 𝐸(𝑥) ≠ 𝐸(𝑦).  

From the construction of the test it follows that acceptance of null hypothesis indicates that the 
populations 𝒳 and 𝒴 have equivalent expectations and rejection of the null hypotheses indicates 
that these populations are statistically different by the difference of their means. 

The test of statistical equivalence of the populations 𝒳 and 𝒴 requires additional test which is 
conducted after acceptance of the null hypothesis and considers the hypotheses 𝐻0: 𝐹𝑥 = 𝐹𝑦   and   𝐻1: 𝐹𝑥 ≠ 𝐹𝑦  

given 𝐸(𝑥) = 𝐸(𝑦). Acceptance of the null hypothesis indicates that the populations 𝒳 and 𝒴 are 
equivalent, and rejection of this hypothesis indicates that the populations 𝒳 and 𝒴 are different 
with equivalent expectations. 
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3. Suggested solution 

The proposed test includes two stages: first, the test reduces the multivariate data to the 
univariate arrays, and second, it studies these arrays as realizations of certain random variables. For 
the univariate data the first stage is avoided, and the analysis includes the second stage only. 

Let 𝑥  and 𝑦  be independent 𝑛-dimensional random samples respectively drawn from the 
populations 𝒳  and 𝒴  with distributions 𝐹𝑥  and 𝐹𝑦  and finite expectations 𝐸(𝑥)  and 𝐸(𝑦) . 
Denote by 𝑥 ⊔ 𝑦  concatenation of the samples such that if 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚𝑥)  and 𝑦 =(𝑦1, 𝑦2, … , 𝑦𝑚𝑦), then 𝑧 = 𝑥 ⊔ 𝑦 = (𝑥1, 𝑥2, … , 𝑥𝑚𝑥 , 𝑦1, 𝑦2, … , 𝑦𝑚𝑦).  

Expectation of the concatenated sample 𝑥 ⊔ 𝑦 is 𝐸(𝑧) = 12 (𝐸(𝑥) + 𝐸(𝑦)).  

Now we introduce four univariate random vectors which represent the distances between the 
observations 𝑥𝑖 and 𝑦𝑗 and the corresponding expectations. The first two vectors 𝑎 = (𝑎1, 𝑎2, … , 𝑎𝑚𝑥),   𝑎𝑖 = ‖𝑥𝑖 − 𝐸(𝑥)‖,   𝑖 = 1,2,… ,𝑚𝑥,  𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑚𝑦),   𝑏𝑗 = ‖𝑦𝑗 − 𝐸(𝑦)‖,   𝑗 = 1,2, … ,𝑚𝑦,  

are the vectors of distances between the observations and the expected values of these observations. 
The third vector is the concatenation of these two vectors 𝑎 and 𝑏 𝑐 = 𝑎 ⊔ 𝑏 = (𝑐1, … , 𝑐𝑚𝑥 , 𝑐𝑚𝑥+1, … , 𝑐𝑚𝑥+𝑚𝑦),  

in which 𝑐𝑖 = 𝑎𝑖 , 𝑖 = 1,2, … ,𝑚𝑥 , and 𝑐𝑚𝑥+𝑗 = 𝑏𝑗 , 𝑗 = 1,2, … ,𝑚𝑦 . Finally, the fourth vector is the 
vector of distances between the observations and the expectation 𝐸(𝑧) of the concatenation 𝑧 = 𝑥 ⊔𝑦 of the vectors of observations 𝑑 = (𝑑1, … , 𝑑𝑚𝑥 , 𝑑𝑚𝑥+1, … , 𝑑𝑚𝑦+𝑚𝑦),  

where 𝑑𝑖 = ‖𝑥𝑖 − 𝐸(𝑧)‖, 𝑖 = 1,2, … ,𝑚𝑥, and 𝑑𝑚𝑥+𝑗 = ‖𝑦𝑗 − 𝐸(𝑧)‖, 𝑗 = 1,2, … ,𝑚𝑦. 
It is clear that from the equivalence of the expectations 𝐸(𝑥) and 𝐸(𝑦) follows the equivalence 

of the vectors 𝑐 and 𝑑 and vice versa. Hence, to check the hypothesis that 𝐻0: 𝐸(𝑥) = 𝐸(𝑦) it is 
enough to check whether the vectors 𝑐 and 𝑑 are statistically equivalent. 

Similar to the Baringhaus-Franz test [7], assume that the indicated distances are the Euclidian 
distances. Then the estimated distances are 𝑎𝑖 = √∑ (𝑥𝑖𝑘 − 𝑥̅𝑘)2𝑛𝑘=1 ,   𝑖 = 1,2, … ,𝑚𝑥,  

𝑏𝑗 = √∑ (𝑦𝑗𝑘 − 𝑦̅𝑘)2𝑛𝑘=1 ,   𝑗 = 1,2, … ,𝑚𝑦,  

𝑐𝑙 = {𝑎𝑖 , 𝑖 = 1,2, … ,𝑚𝑥, 𝑙 = 1,2, … ,𝑚𝑥,                                   𝑏𝑗 , 𝑗 = 1,2, … ,𝑚𝑦, 𝑙 = 𝑚𝑥 + 1,𝑚𝑥 + 2,… ,𝑚𝑥 +𝑚𝑦,  

𝑑𝑙 =
{  
  
  √∑(𝑥𝑖𝑘 − 𝑧𝑘̅)2𝑛

𝑘=1 , 𝑖 = 1,2, … ,𝑚𝑥, 𝑙 = 1,2, … ,𝑚𝑥,                                    
√∑(𝑦𝑗𝑘 − 𝑧𝑘̅)2𝑛
𝑘=1 , 𝑗 = 1,2, … ,𝑚𝑦, 𝑙 = 𝑚𝑥 + 1,𝑚𝑥 + 2,… ,𝑚𝑥 +𝑚𝑦,  
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where 𝑥̅𝑘 = 1𝑚𝑥∑ 𝑥𝑖𝑘𝑚𝑥𝑖=1 , 𝑦̅𝑘 = 1𝑚𝑦∑ 𝑦𝑖𝑘𝑚𝑦𝑖=1  and 𝑧𝑘̅ = 1𝑚𝑥+𝑚𝑦 (∑ 𝑥𝑖𝑘𝑚𝑥𝑖=1 + ∑ 𝑦𝑗𝑘𝑚𝑦𝑗=1 )  are the elements of 

the multivariate estimated centers of distributions 𝑥̅ = (𝑥̅1, 𝑥̅2, … , 𝑥̅𝑛) , 𝑦̅ = (𝑦̅1, 𝑦̅2, … , 𝑦̅𝑛)  and 𝑧̅ =(𝑧1̅, 𝑧2̅, … , 𝑧𝑛̅), respectively. 
For comparison of the vectors 𝑐 and 𝑑 we apply the two-sample Kolmogorov-Smirnov test. 

Then for the considered vectors 𝑐  and 𝑑  and their empirical distributions 𝐹𝑐  and 𝐹𝑑  the 
Kolmogorov-Smirnov statistic 𝐷𝑚𝑥+𝑚𝑦,𝑚𝑥+𝑚𝑦 = sup𝜉 |𝐹𝑐(𝜉) − 𝐹𝑑(𝜉)|  

is defined by the difference between the estimated centers of distributions 𝑥̅, 𝑦̅ and 𝑥 ⊔ 𝑦̅̅ ̅̅ ̅̅ ̅. 
Note that acceptance of the hypothesis 𝐻0: 𝐹𝑐 = 𝐹𝑑  does not indicate the equivalence of the 

distributions 𝐹𝑥  and 𝐹𝑦 . To finalize the test and to check the hypothesis 𝐻0: 𝐹𝑥 = 𝐹𝑦  (after 
acceptance of 𝐻0: 𝐹𝑐 = 𝐹𝑑 ) we propose to apply the Kolmogorov-Smirnov test and compare the 
distances vectors 𝑎 and 𝑏. Here the Kolmogorov-Smirnov statistic 𝐷𝑚𝑥, 𝑚𝑦 = sup𝜉 |𝐹𝑎(𝜉) − 𝐹𝑏(𝜉)|  

is defined by the difference between the distributions of the vectors 𝐹𝑎 and 𝐹𝑏. Acceptance of the 
hypothesis 𝐻0: 𝐹𝑎 = 𝐹𝑏 , together with the accepted hypothesis 𝐻0: 𝐹𝑐 = 𝐹𝑑 , indicates that 
distributions 𝐹𝑥 and 𝐹𝑦 are statistically equivalent and the samples 𝑥 and 𝑦 were drawn from the 
same population or two statistically equivalent populations. 

4. Examples of univariate and bivariate samples 

To clarify the suggested method let us consider two simple examples. We start with the 
univariate two-sample problem. 

Let the samples 𝑥 = (41, 21, 28, 30, 11, 35, 30, 13, 23, 11)   and   𝑦 = (3, 7, 2 ,6, 5, 15, 10, 12)  

of the lengths 𝑚𝑥 = 10 and 𝑚𝑦 = 8 be drawn from the population with normal distribution with 
the expected value 𝐸(𝑥) = 20  (and standard deviation 𝜎(𝑥) = 10) and exponential distribution 
with 𝐸(𝑦) = 10, respectively. For simplicity, we rounded the values in the samples. 

Then the distances vectors are 𝑎 = (16.7, 3.3, 3.7, 5.7, 13.3, 10.7, 5.7, 11.3, 1.3, 13.3), 𝑏 = (4.5, 0.5, 5.5, 1.5, 2.5, 7.5, 2.5, 4.5), 𝑐 = (16.7, 3.3, 3.7, 5.7, 13.3, 10.7, 5.7, 11.3, 1.3, 13.3,  4.5, 0.5, 5.5, 1.5, 2.5, 7.5, 2.5, 4.5), 𝑑 = (24.2, 4.2, 11.2, 13.2, 5.8, 18.2, 13.2, 3.8, 6.2, 5.8,  13.8, 9.8, 14.8, 10.8, 11.8, 1.8, 6.8, 4.8). 
The Kolmogorov-Smirnov test with significance level 𝛼 = 0.05 rejects the hypothesis 𝐻0: 𝐹𝑐 =𝐹𝑑. Thus, it can be concluded that the expectations 𝐸(𝑥) and 𝐸(𝑦) are different and the samples 𝑥 

and 𝑦 were drawn from different populations or, at least, are significantly shifted. 
The same result is obtained by direct comparison of the samples 𝑥 and 𝑦. The Kolmogorov-

Smirnov test with significance level 𝛼 = 0.05 rejects the hypothesis 𝐻0: 𝐹𝑥 = 𝐹𝑦. 
Now let both samples 𝑥 = (18, 28, 15, 14, 26, 19, 21, 31, 15, 22)   and   𝑦 = (28, 8, 21, 18, 25, 23, 20, 12)  

of the lengths 𝑚𝑥 = 10 and 𝑚𝑦 = 8 be drawn from the population with normal distribution with 
the expected value 𝐸(𝑥) = 20 (and standard deviation 𝜎(𝑥) = 10). 

As expected, the Kolmogorov-Smirnov test with significance level 𝛼 = 0.05  accepts the 
hypothesis 𝐻0: 𝐹𝑐 = 𝐹𝑑, and then accepts the hypothesis 𝐻0: 𝐹𝑎 = 𝐹𝑏. Thus, it can be concluded that 
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samples 𝑥 and 𝑦 were drawn from the same population, and direct comparison of the samples 𝑥 
and 𝑦 confirms this conclusion. 

Now let us consider an example of the bivariate two-sample problem. Assume that the samples 
are represented by the matrices 𝑥 = (17 −4 29 25 20 27 26 20 13 1622 17   2 15 28 17 −4   7 22 17),  

𝑦 = (3 3 27 20   1 6 16 142 5 19 12 13 1   2    0).  

The first matrix was drawn from normally distributed population with 𝐸(𝑥) = (2020)  (and 

standard deviation 𝜎(𝑥) = (1010)) and the second matrix was drawn from exponential distribution 

with 𝐸(𝑦) = (1010). The mean vectors for these samples are 𝑥̅ = (18.914.3)   and   𝑦̅ = (11.25  6.75).  

The values of the samples and their centers are shown in Figure 1. 

 

Figure 1. The bivariate samples 𝑥 and 𝑦 and their centers 𝑥̅ and 𝑦̅. 

Then the distances vectors are 𝑎 = (7.9, 23.1, 15.9, 6.1, 13.7, 8.5, 19.6, 7.4, 9.7, 4.0), 𝑏 = (9.5, 8.4, 20.0, 10.2, 12.0, 7.8, 6.7, 7.3), 𝑐 = (7.9, 23.1, 15.9, 6.1, 13.7, 8.5, 19.6, 7.4, 9.7, 4.0, 9.5, 8.4, 20.0, 10.2, 12.0, 7.8, 6.7, 7.3), 𝑑 = (11.2, 20.4, 16.2, 10.3, 17.6, 13.0, 18.3, 6.0, 11.3, 6.1,  15.4, 13.8, 14.0, 4.6, 14.6, 13.8, 9.0, 11.0). 
The Kolmogorov-Smirnov test with significance level 𝛼 = 0.05 rejects the hypothesis 𝐻0: 𝐹𝑐 =𝐹𝑑. Thus, it can be concluded that the expectations 𝐸(𝑥) and 𝐸(𝑦) are different and the samples 𝑥 

and 𝑦 were drawn from different populations or, at least, are significantly shifted. 
Note that direct comparison of the vectors 𝑎 and 𝑏 results in acceptance of the hypothesis 𝐻0: 𝐹𝑎 = 𝐹𝑏, which, however, does not lead to additional conclusions about the expectations 𝐸(𝑥) 

and 𝐸(𝑦) and about the distributions 𝐹𝑥 and 𝐹𝑦. 
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5. The algorithm of two-sample test 

For convenience, let us formulate the proposed test in the algorithmic form. 

Algorithm: two-sample test of means difference for multivariate datasets 

Input: two 𝑛-dimensional samples that are independent random matrices 𝑥 = (𝑥𝑖𝑘)1≤𝑖≤𝑚𝑥,1≤𝑘≤𝑛 

and 𝑦 = (𝑦𝑖𝑘)1≤𝑖≤𝑚𝑦,1≤𝑘≤𝑛. 

Output: conclusions about difference between the expectations 𝐸(𝑥)  and 𝐸(𝑦)  and about 

difference between the distributions 𝐹𝑥 and 𝐹𝑦 of the samples. 

1. Compute the multivariate mean 𝑥̅ (𝑛-dimentional vector) of the sample 𝑥. 

2. Compute the multivariate mean 𝑦̅ (𝑛-dimentional vector) of the sample 𝑦. 

3. Compute the distance between each element 𝑥𝑖 of the sample 𝑥 and its mean 𝑥̅ and combine 

them into vector 𝑎. 

4. Compute the distance between each element 𝑦𝑗 of the sample 𝑦 and its mean 𝑦̅ and combine 

them into vector 𝑏. 

5. Concatenate the vectors 𝑎 and 𝑏 of the distances into the vector 𝑐. 

6. Concatenate the samples 𝑥 and 𝑦 into the sample 𝑧. 

7. Compute the multivariate mean 𝑧̅ (𝑛-dimensional vector) of the sample 𝑧. 

8. Compute the distance between each element 𝑧𝑙 of the sample 𝑧 and its mean 𝑧̅ and combine 

them into vector 𝑑. 

9. Apply the two-sample Kolmogorov-Smirnov test for the distributions 𝐹𝑐 and 𝐹𝑑 of the vectors 𝑐 and 𝑑. 

10. If the hypothesis 𝐻0: 𝐹𝑐 = 𝐹𝑑 is accepted, then 

11. Accept the hypothesis 𝐻0: 𝐸(𝑥) = 𝐸(𝑦), 
12. Apply the two-sample Kolmogorov-Smirnov test for the distributions 𝐹𝑎  and 𝐹𝑏  of the 

vectors 𝑎 and 𝑏, 

13. If the hypothesis 𝐻0: 𝐹𝑎 = 𝐹𝑏 is accepted, then 

14. Accept the hypothesis 𝐻0: 𝐹𝑥 = 𝐹𝑦, 

15. else 

16. Accept the hypothesis 𝐻1: 𝐹𝑥 ≠ 𝐹𝑦, 

17. end if, 

18. else 

19. Accept the hypothesis 𝐻1: 𝐸(𝑥) ≠ 𝐸(𝑦), 
20. end if. 

21. Return the accepted hypotheses. 

Note again that the numbers 𝑚𝑥 and 𝑚𝑦 of observations in the samples 𝑥 and 𝑦 should be 
equal or at least rather close. 

Application of the squared differences between the samples’ elements and the means leads to 
certain similarity between the suggested method and the one-way analysis of variance [15] but 
without crucial requirement of the normal distribution of the samples. 

6. Verification of the method 

The suggested method was verified using real-world and simulated data. For verifications, we 
implemented the algorithm in MATLAB® and used the appropriate functions from its statistical 
toolbox. The significance level in the two-sample Kolmogorov-Smirnov tests is 𝛼 = 0.05. 
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6.1. Trials on the simulated data 

For the first trials we generated two multivariate samples with different distributions and 
parameters and then applied the suggested algorithm to these samples. Each sample includes 𝑚𝑥 =𝑚𝑦 = 100 elements. Examples of the simulated bivariate normally distributed samples are shown in 
Figure 2. In the figure, the samples have different predefined means and different standard 
deviations. For simplicity here we show the samples with difference in their means only in one 
dimension; in the other dimension the means are equal to zero. 

  

(a) (b) 

  

(c) (d) 

Figure 2. Randomly generated bivariate normally distributed samples with standard deviations 𝜎(𝑥) = 15 and 𝜎(𝑦) = 10: (a) expectations 𝐸(𝑥) = 𝐸(𝑦) = 0; (b) expectations 𝐸(𝑥) = −15, 𝐸(𝑦) =15; (c) expectations 𝐸(𝑥) = −30, 𝐸(𝑦) = 30; (d) expectations 𝐸(𝑥) = −45, and 𝐸(𝑦) = 45. 

The results of the tests of these samples by the suggested algorithm are summarized in Table 1. 

Table 1. Results of the tests of the illustrative bivariate normally distributed samples with standard 
deviations 𝜎(𝑥) = 15 and 𝜎(𝑦) = 10. 

Sample 𝑥 Sample 𝑦 𝐻0: 𝐸(𝑥) = 𝐸(𝑦) 𝐻0: 𝐹𝑥 = 𝐹𝑦 
 𝐸(𝑥) = 0 𝐸(𝑦) = 0 Accepted Rejected 𝐸(𝑥) = −15 𝐸(𝑦) = 15 Rejected Rejected* 𝐸(𝑥) = −30 𝐸(𝑦) = 30 Rejected Rejected* 𝐸(𝑥) = −45 𝐸(𝑦) = 45 Rejected Rejected* 

*Hypothesis was rejected by the rejection of the hypothesis 𝐻0: 𝐸(𝑥) = 𝐸(𝑦). 
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As it was expected, for the first two samples the test accepted the hypothesis 𝐻0: 𝐸(𝑥) = 𝐸(𝑦) 
for equivalent expectations and rejected the hypothesis 𝐻0: 𝐹𝑥 = 𝐹𝑦  because of different standard 
deviations. In the next three cases, the test rejected the hypothesis 𝐻0: 𝐸(𝑥) = 𝐸(𝑦)  since the 
expectations were indeed different and because of this difference the hypothesis 𝐻0: 𝐹𝑥 = 𝐹𝑦 was also 
rejected. 

In the next trials we compared the activity of the Hotelling 𝑇2-test [2] with the activity of the 
proposed test. The implementation of the Hotelling 𝑇2-test was downloaded from the MATLAB 
Central File Exchange [16]. 

Following the requirement of the Hotelling 𝑇2-test, in the trials, we compared two samples 
drawn from normally distributed populations with varying standard deviations 𝜎(𝑥) = 𝜎(𝑦) and 
the expectations 𝐸(𝑥)  and 𝐸(𝑦)  such that the difference between them changes from zero 
(equivalent expectations) to the values for which the samples are separated with certainty. Results of 
the trials are summarized in Table 2. 

Table 2. Results of the Hotelling 𝑇2-test and the suggested test for bivariate normally distributed 
samples with different expected values and standard deviations. 

  Hotelling 𝑇2 test Suggested test 𝐸(𝑥) 𝐸(𝑦) 𝜎 = 0.5 𝜎 = 1.0 𝜎 = 1.5 𝜎 = 0.5 𝜎 = 1.0 𝜎 = 1.5 0 0 𝐻0 𝐻0 𝐻0 𝐻0 𝐻0 𝐻0 0 0.5 𝐻1 𝐻1 𝐻0 𝐻0 𝐻0 𝐻0 0 1.0 𝐻1 𝐻1 𝐻1 𝐻1 𝐻0 𝐻0 0 1.5 𝐻1 𝐻1 𝐻1 𝐻1 𝐻1 𝐻0 0 2.0 𝐻1 𝐻1 𝐻1 𝐻1 𝐻1 𝐻1 

The obtained results demonstrate that for normally distributed samples the suggested test 
recognizes the differences between the samples as correct as the Hotelling 𝑇2-test, but as expected, it 
is less sensitive than the Hotelling 𝑇2-test. Thus, if it is known that the samples were drawn from the 
populations with normal distributions, then the Hotelling 𝑇2 -test is preferable, and if the 
distributions of the populations are not normal or unknown, then the suggested test can be applied. 

For validation of the suggested test on the samples drawn from the populations with not normal 
distributions it was trialed on several pair of samples with different distributions. For example, in 
Table 3 we summarized the results of the test on the samples with uniform distributions. 

Table 3. Results of the suggested test for bivariate uniformly distributed samples with different 
expected values and interval widths. 𝐸(𝑥) 𝐸(𝑦) |𝑏 − 𝑎| = 0.5 |𝑏 − 𝑎| = 1.0 |𝑏 − 𝑎| = 1.5 0 0 𝐻0 𝐻0 𝐻0 0 0.15 𝐻1 𝐻0 𝐻0 0 0.30 𝐻1 𝐻1 𝐻0 0 0.45 𝐻1 𝐻1 𝐻1 0 0.60 𝐻1 𝐻1 𝐻1 

In addition, from the results presented in Table 2 and Table 3 it follows that similarly to any 
other statistical test, the sensitivity of the test is as lower as the spreading of the data (standard 
deviation 𝜎 in Table 2 and interval widths |𝑏 − 𝑎| in Table 3) is higher. 

6.2. Trials on the real-world data 

For additional verification, we applied the suggested algorithm on two widely known datasets. 
The first is the Iris flower dataset [9], which contains three samples of Iris plant: Iris setosa, Iris 

versicolour and Iris virginica. The plants are described by 𝑛 = 4 numerical parameters: sepal length, 
sepal width, petal length and petal width. Each sample includes 𝑚 = 50 elements. 

The sample representing the Iris setosa is linearly separable from the other two samples, the Iris 

versicolour and the Iris virginica, but these two samples are not linearly separable. 
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The trial includes six independent two-sample tests. The first three tests consider the samples 
and compare each of them with each of two others. In these tests it was expected that the suggested 
method will identify that the samples represent different populations. 

The second three tests compared each of the samples with itself. We compared the subsample of 
the first 25  elements with the subsample of the last 25  elements. In these tests, we certainly 
expected that the method will identify that the compared parts of the same sample are statistically 
equivalent. 

Results of the tests are summarized in Table 4. 

Table 4. Results of the tests of the Iris plant samples. 

Sample 𝑥 Sample 𝑦 𝐻0: 𝐸(𝑥) = 𝐸(𝑦) 𝐻0: 𝐹𝑥 = 𝐹𝑦 

Iris setosa Iris versicolor Rejected Rejected* 

Iris setosa Iris virginica Rejected Rejected* 

Iris versicolor Iris virginica Rejected Rejected* 

Iris setosa Iris setosa Accepted Accepted 

Iris versicolor Iris versicolor Accepted Accepted 

Iris virginica Iris virginica Accepted Accepted 
*Hypothesis was rejected by the rejection of the hypothesis 𝐻0: 𝐸(𝑥) = 𝐸(𝑦). 

As expected, the method correctly identified that the samples representing different types of Iris 
plants are statistically different. In all comparisons the hypotheses 𝐻0: 𝐸(𝑥) = 𝐸(𝑦) was rejected. 
Note that the method correctly identified the difference between two linearly non separable samples. 

Also, the method correctly identified statistical equivalence of the subsamples taken from the 
same samples. In these comparisons the methods correctly accepted both the hypothesis 𝐻0: 𝐸(𝑥) =𝐸(𝑦) and the hypothesis 𝐻0: 𝐹𝑥 = 𝐹𝑦. 

The second dataset is the dataset of Swiss banknotes [10], which includes 𝑚 = 200 records 
about 100 genuine and 100 counterfeit banknotes included in the samples 𝑥 and 𝑦, respectively. 
Each banknote is characterized by 𝑛 = 6 numerical parameters specifying their geometrical sizes. 

The suggested test correctly rejected the null hypothesis 𝐻0: 𝐸(𝑥) = 𝐸(𝑦) and separated the 
records about genuine and counterfeit banknotes with significance level 𝛼 = 0.05 and 𝑝-value close 
to zero. 

Note that the same result was reported for the two-sample Hoteling 𝑇2 test which also rejected 
the null hypothesis about the equivalence of the samples and separated the records with 𝑝-value 
close to zero. 

7. Conclusion 

The proposed test for comparison of the means of multivariate samples with unknown 
distributions correctly identifies statistical equivalence and difference between the samples. 

Since the test implements the Kolmogorov-Smirnov statistic, it does not require specific 
distributions of the samples and can be applied to any reasonable data. 

In addition, the proposed method, in contrast to the existing tests, does not consider the pairwise 
relations between all elements of the samples and so it requires less computation power. 

The method was verified on simulated and real-world data and in all trials it demonstrated 
correct results. 
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