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Abstract. In the paper we present a new test for comparison of the means of multivariate samples with
unknown distributions. The test is based on the comparison of the distributions of the distances between the
samples’ elements and their means using univariate two-sample Kolmogorov-Smirnov test. The activity of the
suggested method is illustrated by numerical analysis of the real-world and simulated data.
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1. Introduction

The problem of comparison of two samples obtained in different measurements appears in a
wide range of tasks starting from physical research and ending with social and political studies. The
comparison includes the tests of the samples’ distributions and their parameters, and the result of the
comparison specifies whether the samples were drawn from the same population or not.

For univariate samples, the problem is solved by different methods: the two-sample Student t¢-
test and the Welch t-test (both for comparison of the means for normal distributions), the Fisher F-
test (for comparison of variances for normal distributions), the Wilcoxon rank sum test and the paired
permutation test (for comparison of the locations which differ from the means), the Kolmogorov-
Smirnov test (comparison of the continuous distributions), the Tukey-Duckworth test (comparison
of the samples’ shift), and so on [1].

For multivariate samples, the problem is less studied and was solved for several specific cases.
If the samples are drawn from populations with multivariate normal distributions with equivalent
variances, then the comparison of the multivariate means is provided by the extension of the Student
t-test that is the two-sample Hotelling T?2-test [2]. If the variances of the populations are different,
then comparison of the multivariate means of the samples can be conducted by the family of the tests,
which implement the same extension of the Hotelling statistics [3], or its different versions including
the test with missing data [4].

Finally, there exists a small number of methods that address the multivariate two-sample
problem in which the samples are drawn from the populations with the unknown or differ from
normal distributions. The review of the methods based on the interpoint distances appears in the
thesis [5], and of the non-parametric methods — in the thesis [6].

In particular, the mostly applicable Baringhaus-Franz test [7] implements the Euclidean
distances between the elements of the samples (inter-sample distances) and the distances between
the elements in each sample (intra-sample distances). The resulting statistic is a normalized difference
between the sum of the inter-sample distances and the average of the intra-sample distances. Since
this statistic is not distribution free, critical values are defined by the bootstrapping techniques [8].

In the paper, we follow the line of using the inter- and intra-sample distances and propose a
distribution free test for comparison of the means of multivariate samples with unknown
distributions. The proposed test implements the distances between the elements of the samples and
the centroid of both samples and the distances between the elements of the samples and their
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centroids. These distances are considered as random variables, and the test compares distributions
of these variables. Acceptance of null hypothesis about the equivalence of the distributions indicates
that the populations from which the samples were drawn are equivalent (by equivalence of the means
and forms of the distributions) and rejection of the null hypotheses indicates that the samples are
drawn from the populations with different means.

Thus, in the proposed test the multivariate data samples are reduced to univariate samples of
distances and then the distributions of the univariate samples are compared. If, similar to the
Baringhaus-Franz test, the proposed test uses the Euclidian metrics, then the distances are interpreted
as deviations of the samples’” elements; however, the choice of the metric function is not crucial and
can depend on the nature of the data. Comparison between the distances’ samples is conducted using
the standard two-sample Kolmogorov-Smirnov test.

The proposed test is illustrated by its application to the simulated data and the real-world Iris
flowers [9] and Swiss banknotes [10] datasets, which are widely accepted for benchmark tasks.

2. Problem formulation

Let x = (xl,xz, ...,xmx) and y = (yl,yz, ...,ymy) be two n-dimensional samples such that each

observation x; isarandom vector x; = (X1, Xz, ..., Xin), i = 1,2,...,m,, and each observation y;, is a
random vector y; = (yjl, Vjzs s yjn), j =12,..,m,. In the other words, the samples are represented
by random matrices

X = (xik)lsismx,lsksn and y= (}’ik)lsismy,lsksn-

We assume that the numbers m, and m, of observations appearing in the considered samples
x and y are equal or at least are rather close.

Denote F, and F, the multivariate distributions on the populations X and Y, respectively.

The question is: whether the samples x and y were drawn from the same population or
populations X and Y, from which the samples x and y were, respectively, drawn, are statistically
different.

If populations X and Y are univariate, the samples x and y are random vectors, and the
problem is solved by the standard two-sample tests for different known or arbitrary unknown
distributions F, and F,. However, for multivariate populations complete analytical solution — the
two-sample Hotelling T?-test [2] — was suggested only for normal F, and F,. Together with that, in
the last decade were suggested several multivariate two-sample tests [11,12] based on the
multivariate version of the Kolmogorov-Smirnov test [13], but these and similar solutions either
implement bootstrapping techniques or have certain limitations. For other directions in considering
the problem see, e.g., the work [14] and references herein.

In the paper, we assume that the distributions F, and F, are continuous with finite
expectations E(x) and E(y), respectively, and consider the null hypothesis and alternative
hypotheses

Hy:E(x) =E(y) and H;:E(x) # E(y).

From the construction of the test it follows that acceptance of null hypothesis indicates that the
populations X and Y have equivalent expectations and rejection of the null hypotheses indicates
that these populations are statistically different by the difference of their means.

The test of statistical equivalence of the populations X and Y requires additional test which is
conducted after acceptance of the null hypothesis and considers the hypotheses

Hy:F,=F, and H;:F, #F,

given E(x) = E(y). Acceptance of the null hypothesis indicates that the populations X and Y are
equivalent, and rejection of this hypothesis indicates that the populations X and Y are different
with equivalent expectations.
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3. Suggested solution

The proposed test includes two stages: first, the test reduces the multivariate data to the
univariate arrays, and second, it studies these arrays as realizations of certain random variables. For
the univariate data the first stage is avoided, and the analysis includes the second stage only.

Let x and y be independent n-dimensional random samples respectively drawn from the
populations X and Y with distributions F, and F, and finite expectations E(x) and E(y).
Denote by x Uy concatenation of the samples such that if x = (x;,%z ..,%;,) and y=

(3’1'372' ---,ymy), then

zZ=xU y = (xl,xZ, ...,xmx,yl,yz, ...,ymy).
Expectation of the concatenated sample x Ll y is
E(z) = %(E(x) + E(y)).

Now we introduce four univariate random vectors which represent the distances between the
observations x; and y; and the corresponding expectations. The first two vectors

a= (al, a,, ...,amx), a; =lx;—E@)|, i=12,..,m,,

b=(byby b)), b=y —EQ| j=12..m,

are the vectors of distances between the observations and the expected values of these observations.
The third vector is the concatenation of these two vectors a and b

c=alb= (cl, cr Cmr Cmy 410 ---:me+my),

in which ¢;=a;, i=12,..,my, and ¢y, 4; =b;, j =1.2,..,m,. Finally, the fourth vector is the
vector of distances between the observations and the expectation E(z) of the concatenation z = x U
y of the vectors of observations

d= (dl, S Y S P dmy+my)’

where d; = ||lx; —E@)Il, i =12,..,my,and dp, 4; = ||yj — E(z)”, j=12,..,m,.

It is clear that from the equivalence of the expectations E(x) and E(y) follows the equivalence
of the vectors ¢ and d and vice versa. Hence, to check the hypothesis that Hy:E(x) = E(y) it is
enough to check whether the vectors ¢ and d are statistically equivalent.

Similar to the Baringhaus-Franz test [7], assume that the indicated distances are the Euclidian
distances. Then the estimated distances are

al = \/Z;{lzl(‘xlk - fk)za l = 1’2’ ""mx’

b; = JZZ:JJ’jk - }_’k)zl j=12,..,my,

_(a, i= 1,2,..,m,, l=12,..,m,,
Cl_{bj j=12,..,m,, l=my+1,my+2,..,m+m,,

n
Z(yjk - Z_k)Z; j=12,..
k=1
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- 1 My - 1 my - _ 1 My my
where X, = m—xZizlxik, Vi = m_y2i=1yik and Zz, = p— (Zi=1 X + ijlyjk are the elements of

the multivariate estimated centers of distributions ¥ = (X}, %3, ..., %), ¥ = (J1,¥2, ., V) and Z =
(21,25, ..., Z,), respectively.

For comparison of the vectors ¢ and d we apply the two-sample Kolmogorov-Smirnov test.
Then for the considered vectors ¢ and d and their empirical distributions F, and F; the
Kolmogorov-Smirnov statistic

Dmx+my,mx+my = Slélpch(E) — F4(®)|

is defined by the difference between the estimated centers of distributions ¥, y and x Uy.

Note that acceptance of the hypothesis Hy: F, = F; does not indicate the equivalence of the
distributions F, and F,. To finalize the test and to check the hypothesis Hy:F, = F, (after
acceptance of Hy:F, = F;) we propose to apply the Kolmogorov-Smirnov test and compare the
distances vectors a and b. Here the Kolmogorov-Smirnov statistic

Dmx,my = SgplFa(f) - F, (O]

is defined by the difference between the distributions of the vectors F, and F,. Acceptance of the
hypothesis Hy:F, = F, , together with the accepted hypothesis Hy:F. = F; , indicates that
distributions F, and F, are statistically equivalent and the samples x and y were drawn from the
same population or two statistically equivalent populations.

4. Examples of univariate and bivariate samples

To clarify the suggested method let us consider two simple examples. We start with the
univariate two-sample problem.
Let the samples

x = (41,21,28,30,11,35,30,13,23,11) and y=(3,7,2,6,5,15,10,12)

of the lengths m, = 10 and m, = 8 be drawn from the population with normal distribution with
the expected value E(x) = 20 (and standard deviation o(x) = 10) and exponential distribution
with E(y) = 10, respectively. For simplicity, we rounded the values in the samples.

Then the distances vectors are

a = (16.7,3.3,3.7,5.7,13.3,10.7,5.7,11.3,1.3,13.3),
b = (45,0.5,5.5,1.5,2.5,7.5,2.5,4.5),
c=(16.7,3.3,3.7,5.7,13.3,10.7,5.7,11.3,1.3,13.3,
4.5,0.5,5.5,1.5,2.5,7.5,2.5,4.5),
d=(242,42,11.2,13.2,5.8,18.2,13.2,3.8,6.2,5.8,
13.8,9.8,14.8,10.8,11.8,1.8,6.8,4.8).
The Kolmogorov-Smirnov test with significance level a = 0.05 rejects the hypothesis Hy: F, =
F,. Thus, it can be concluded that the expectations E(x) and E(y) are different and the samples x
and y were drawn from different populations or, at least, are significantly shifted.
The same result is obtained by direct comparison of the samples x and y. The Kolmogorov-
Smirnov test with significance level a = 0.05 rejects the hypothesis Hy: F, = F,,.
Now let both samples

x = (18,28,15,14,26,19,21,31,15,22) and y =(28,8,21,18,25,23,20,12)

of the lengths m, = 10 and m, = 8 be drawn from the population with normal distribution with
the expected value E(x) = 20 (and standard deviation o(x) = 10).

As expected, the Kolmogorov-Smirnov test with significance level a = 0.05 accepts the
hypothesis Hy: F. = F;, and then accepts the hypothesis Hy: F, = F,,. Thus, it can be concluded that
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samples x and y were drawn from the same population, and direct comparison of the samples x
and y confirms this conclusion.

Now let us consider an example of the bivariate two-sample problem. Assume that the samples
are represented by the matrices

=(17 —4 29 25 20 27 26 20 13 16)
22 17 2 15 28 17 -4 7 22 17/

=(332720 161614)
Y= 5 19 12 13 1 2 o)

The first matrix was drawn from normally distributed population with E(x) = (;8) (and
standard deviation o(x) = (18)) and the second matrix was drawn from exponential distribution
with E(y) = (18) The mean vectors for these samples are

__ (189 ~_ (11.25
= (145) and 7=(47)

The values of the samples and their centers are shown in Figure 1.

Random samples x and y

30 -
- sample x
o sample y
25 ¢ center x
- ¢ center y
~ 20 o
= | | |
o 15
‘B o . "
% a
£ 10
k=] S [ ]
5
a |
0 g o
~ ) ) ) L]
-10 0 10 20 30
dimension 1

Figure 1. The bivariate samples x and y and their centers ¥ and ¥.

Then the distances vectors are
a=(79,23.1,15.9,6.1,13.7,8.5,19.6,7.4,9.7,4.0),
b = (9.5,8.4,20.0,10.2,12.0,7.8, 6.7, 7.3),
c¢=(79,23.1,159,6.1,13.7,8.5,19.6,7.4,9.7,4.0,
9.5,8.4,20.0,10.2,12.0,7.8,6.7,7.3),
d =(11.2,204,16.2,10.3,17.6,13.0,18.3,6.0,11.3,6.1,
15.4,13.8,14.0,4.6,14.6,13.8,9.0,11.0).
The Kolmogorov-Smirnov test with significance level a = 0.05 rejects the hypothesis Hy: F, =
F,. Thus, it can be concluded that the expectations E(x) and E(y) are different and the samples x
and y were drawn from different populations or, at least, are significantly shifted.
Note that direct comparison of the vectors a and b results in acceptance of the hypothesis

Hy: F, = F,, which, however, does not lead to additional conclusions about the expectations E (x)
and E(y) and about the distributions F, and F,.
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5. The algorithm of two-sample test
For convenience, let us formulate the proposed test in the algorithmic form.
Algorithm: two-sample test of means difference for multivariate datasets
Input: two n-dimensional samples that are independent random matrices x = (Xjx)1<i<my,1<k<n

and y = (Yik)lsismy,lsksrv
Output: conclusions about difference between the expectations E(x) and E(y) and about

difference between the distributions F, and F, of the samples.

Compute the multivariate mean X (n-dimentional vector) of the sample x.
Compute the multivariate mean ¥ (n-dimentional vector) of the sample y.
Compute the distance between each element x; of the sample x and its mean X and combine
them into vector a.
4. Compute the distance between each element y; of the sample y and its mean y and combine
them into vector b.
Concatenate the vectors a and b of the distances into the vector c.
Concatenate the samples x and y into the sample z.

Compute the multivariate mean z (n-dimensional vector) of the sample z.

® N T

Compute the distance between each element z; of the sample z and its mean Z and combine

them into vector d.

9. Apply the two-sample Kolmogorov-Smirnov test for the distributions F, and F; of the vectors
c and d.

10. If the hypothesis H,: F, = F; is accepted, then

11. Accept the hypothesis Hy: E(x) = E(y),

12. Apply the two-sample Kolmogorov-Smirnov test for the distributions F, and F, of the

vectors a and b,

13. If the hypothesis Hy: F, = F, is accepted, then

14. Accept the hypothesis Hy:F, = F,,
15. else

16. Accept the hypothesis Hy: F, # F,,
17. end if,

18. else

19. Accept the hypothesis H;:E(x) # E(y),
20. end if.

21. Return the accepted hypotheses.

Note again that the numbers m, and m, of observations in the samples x and y should be
equal or at least rather close.

Application of the squared differences between the samples’ elements and the means leads to
certain similarity between the suggested method and the one-way analysis of variance [15] but
without crucial requirement of the normal distribution of the samples.

6. Verification of the method

The suggested method was verified using real-world and simulated data. For verifications, we
implemented the algorithm in MATLAB® and used the appropriate functions from its statistical
toolbox. The significance level in the two-sample Kolmogorov-Smirnov tests is @ = 0.05.
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6.1. Trials on the simulated data

For the first trials we generated two multivariate samples with different distributions and
parameters and then applied the suggested algorithm to these samples. Each sample includes m,,
m, = 100 elements. Examples of the simulated bivariate normally distributed samples are shown in
Figure 2. In the figure, the samples have different predefined means and different standard
deviations. For simplicity here we show the samples with difference in their means only in one
dimension; in the other dimension the means are equal to zero.

Random samples x and y Random samples x and y

40 - 60
- sample x - ®  sample x
- o sample y o sample y
" ¢ center x 40 ¢ center x
20+ . ¢ center y - - ¢ centery
™~ o~
S s 2
2 o Z
[} - [}
£ £ 0
i=l °
-20 1
-20
-40 -40
-50 0 50 50
dimension 1 dimension 1
(a) (b)
Random samples x and y Random samples x and y
40 = sample X 40 - = sample x
n u ° o sample y - " gn o sample y
20 aaow o 9 o ¢ center x o * center x
I @ %o G ¢ centery 20 b I .-s “a ¢ centery
LN | l"' E&] Du:ﬂ o '-'\ .
N - 1] ut® o = O oo sl ™ = "o t. EIEE%D
j 0 .ﬁ J W _mEpgm .0 < s sma™
ko] L] ’.' o %ﬁ 0o o - =)
%) F LS m 0O .% [p?] [} » 0 L] -vx [}
% -" .'F L R o % f.. ad a
£ -20 e om0 70 E == E i5°
© - an e e © H r - o
20t % a=g
-40 " L "': &
a " L |
-
-60 0 -
-50 0 50 -100 -50 0 50 100
dimension 1 dimension 1
(c) (d)

Figure 2. Randomly generated bivariate normally distributed samples with standard deviations
o(x) =15 and o(y) = 10: (a) expectations E(x) = E(y) = 0; (b) expectations E(x) = —15, E(y) =
15; (c) expectations E(x) = =30, E(y) = 30; (d) expectations E(x) = —45, and E(y) = 45.

The results of the tests of these samples by the suggested algorithm are summarized in Table 1.

Table 1. Results of the tests of the illustrative bivariate normally distributed samples with standard
deviations a(x) = 15 and o(y) = 10.

Sample x Sample y Hy:E(x) = E(y) Hy:F, =F,
E(x)=0 E(y)=0 Accepted Rejected
E(x) =-15 E(y) =15 Rejected Rejected”
E(x) = -30 E(y) =30 Rejected Rejected”
E(x) = —45 E(y) =45 Rejected Rejected”

"Hypothesis was rejected by the rejection of the hypothesis Hy: E(x) = E(y).
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As it was expected, for the first two samples the test accepted the hypothesis Hy: E(x) = E(y)
for equivalent expectations and rejected the hypothesis Hy: F, = F, because of different standard
deviations. In the next three cases, the test rejected the hypothesis Hy:E(x) = E(y) since the
expectations were indeed different and because of this difference the hypothesis Hy: F, = F, wasalso
rejected.

In the next trials we compared the activity of the Hotelling T?-test [2] with the activity of the
proposed test. The implementation of the Hotelling T2-test was downloaded from the MATLAB
Central File Exchange [16].

Following the requirement of the Hotelling T?2-test, in the trials, we compared two samples
drawn from normally distributed populations with varying standard deviations ¢(x) = g(y) and
the expectations E(x) and E(y) such that the difference between them changes from zero
(equivalent expectations) to the values for which the samples are separated with certainty. Results of
the trials are summarized in Table 2.

Table 2. Results of the Hotelling T?-test and the suggested test for bivariate normally distributed
samples with different expected values and standard deviations.

Hotelling T? test Suggested test
E(x) E(y) o=05 o=1.0 o=15 o=0.5 o=1.0 o=1.5
0 0 H, H, H, H, H, H,
0 0.5 H, H, H, H, H, H,
0 1.0 H, H, H, H, H, H,
0 15 H, H, H, H, H, H,
0 2.0 H, H, H, H, H, H,

The obtained results demonstrate that for normally distributed samples the suggested test
recognizes the differences between the samples as correct as the Hotelling T?-test, but as expected, it
is less sensitive than the Hotelling T2-test. Thus, if it is known that the samples were drawn from the
populations with normal distributions, then the Hotelling T? -test is preferable, and if the
distributions of the populations are not normal or unknown, then the suggested test can be applied.

For validation of the suggested test on the samples drawn from the populations with not normal
distributions it was trialed on several pair of samples with different distributions. For example, in
Table 3 we summarized the results of the test on the samples with uniform distributions.

Table 3. Results of the suggested test for bivariate uniformly distributed samples with different
expected values and interval widths.

E(x) E(y) |b—al =05 |[b—al=1.0 |[b—al =15
0 0 H, H, H,
0 0.15 H, H, H,
0 0.30 H,; H, H,
0 0.45 H,; H, H,
0 0.60 H,; H,; H,

In addition, from the results presented in Table 2 and Table 3 it follows that similarly to any
other statistical test, the sensitivity of the test is as lower as the spreading of the data (standard
deviation ¢ in Table 2 and interval widths |b — a| in Table 3) is higher.

6.2. Trials on the real-world data

For additional verification, we applied the suggested algorithm on two widely known datasets.
The first is the Iris flower dataset [9], which contains three samples of Iris plant: Iris setosa, Iris
versicolour and Iris virginica. The plants are described by n = 4 numerical parameters: sepal length,
sepal width, petal length and petal width. Each sample includes m = 50 elements.

The sample representing the Iris setosa is linearly separable from the other two samples, the Iris
versicolour and the Iris virginica, but these two samples are not linearly separable.
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The trial includes six independent two-sample tests. The first three tests consider the samples
and compare each of them with each of two others. In these tests it was expected that the suggested
method will identify that the samples represent different populations.

The second three tests compared each of the samples with itself. We compared the subsample of
the first 25 elements with the subsample of the last 25 elements. In these tests, we certainly
expected that the method will identify that the compared parts of the same sample are statistically
equivalent.

Results of the tests are summarized in Table 4.

Table 4. Results of the tests of the Iris plant samples.

Sample x Sample y Hy:E(x) = E(y) Hy:F, =F,
Iris setosa Iris versicolor Rejected Rejected”
Iris setosa Iris virginica Rejected Rejected”
Iris versicolor Iris virginica Rejected Rejected”
Iris setosa Iris setosa Accepted Accepted
Iris versicolor Iris versicolor Accepted Accepted
Iris virginica Iris virginica Accepted Accepted

"Hypothesis was rejected by the rejection of the hypothesis Hy: E(x) = E(y).

As expected, the method correctly identified that the samples representing different types of Iris
plants are statistically different. In all comparisons the hypotheses Hy: E(x) = E(y) was rejected.
Note that the method correctly identified the difference between two linearly non separable samples.

Also, the method correctly identified statistical equivalence of the subsamples taken from the
same samples. In these comparisons the methods correctly accepted both the hypothesis Hy: E(x) =
E(y) and the hypothesis H,:F, = E,.

The second dataset is the dataset of Swiss banknotes [10], which includes m = 200 records
about 100 genuine and 100 counterfeit banknotes included in the samples x and y, respectively.
Each banknote is characterized by n = 6 numerical parameters specifying their geometrical sizes.

The suggested test correctly rejected the null hypothesis Hy: E(x) = E(y) and separated the
records about genuine and counterfeit banknotes with significance level @ = 0.05 and p-value close
to zero.

Note that the same result was reported for the two-sample Hoteling T? test which also rejected
the null hypothesis about the equivalence of the samples and separated the records with p-value
close to zero.

7. Conclusion

The proposed test for comparison of the means of multivariate samples with unknown
distributions correctly identifies statistical equivalence and difference between the samples.

Since the test implements the Kolmogorov-Smirnov statistic, it does not require specific
distributions of the samples and can be applied to any reasonable data.

In addition, the proposed method, in contrast to the existing tests, does not consider the pairwise
relations between all elements of the samples and so it requires less computation power.

The method was verified on simulated and real-world data and in all trials it demonstrated
correct results.
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