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Abstract: While Neural Radiance Fields (NeRF) are gaining increasing interest in various domains as
innovative methods for novel view synthesis and image-based reconstruction, their potential application in the
realm of Cultural Heritage remains unexplored. Purpose of this paper is to assess the effectiveness of applying
NeRF to sets of images of digital heritage objects and sites. The study’s findings demonstrate that NeRF could
be valuable when used in combination with or as a comparison to other well-established techniques such as
photogrammetry, to expand the possibilities of preserving and presenting heritage assets with enhanced visual
fidelity and accuracy. Particularly, NeRF show promising results in improving the rendering of translucent
and reflective surfaces, objects with homogeneous textures, and elements with intricate details. In addition, we
demonstrate that, when considering the same set of input images (with known camera poses), reducing the
image quality or the number of images results in significantly less information loss with NeRF compared to
photogrammetry. This suggests that NeRF is preferentially suited for scenarios involving sparse information
or low-quality photos or videos, which could be especially valuable in risky or challenging situations.

Keywords: NeRF; Cultural Heritage; 3D reconstruction; photogrammetry; 3D surveying

1. Introduction

The process of reconstructing and digitally documenting heritage artifacts and scenes holds
great significance in studying, enhancing and preserving tangible Cultural Heritage (CH). This
significance is demonstrated by the extensive digitization campaigns undertaken, the remarkable
advancements in active and passive sensor-based survey techniques, and the various established
methodologies for three-dimensional reconstruction [1]. Artificial Intelligence, Virtual Reality and
Extended Reality technologies are currently being extensively applied to three-dimensional data for
a wide range of tasks related to the large-scale analysis [2], valorization [3,4] and communication [5,6]
of cultural heritage objects. These technologies are designed to cater the needs of both experts and
the general public, for a series of applications: preservation of CH by creation of digital replicas [7];
support of restoration and conservation activities [8,9]; education and tourism, cultural promotion
(to make CH more accessible, e.g., by virtual tours, interactive exhibits and educational materials)
[10].

In this context, the rendering of material and surface characteristics of existing heritage objects
and sites, faithfully representing actual shape and color of the latter, is of paramount significance.
Image-based reconstruction techniques are studied for this purpose, and Structure-from-Motion
(5fM) and Multi-View-Stereo (MVS) photogrammetry is considered as a consolidated methodology
in this field, currently complementing active survey methods as Light Detection and Ranging
(LiDAR) [11].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Photogrammetry is employed at multiple levels and scales of documentation to produce point
clouds, textured 3D meshes, orthophotos, and to extract metric information, through control points.
These several outputs can be harnessed for further semantic enrichment, in-depth analysis, precise
measurements, animations as well as immersive visualizations [12].

With recent advancements in the realm of Artificial Intelligence applied to digital representation
[5,13,14], and following Mildenhall's pioneering work [15], the introduction of Neural Radiance
Fields (NeRF) might appear a promising alternative to photogrammetry for 3D reconstruction from
images. NeRF rely on a fully connected neural network to generate novel views of 3D objects and
scene based on a series of overlapping images with known camera poses. Initially designed for the
specific task of novel view synthesis [16], NeRF optimize an underlying continuous volumetric scene
function that allows the generation of neural renderings.

NeRF models are photo-realistic [16] and they have achieved visual quality for the reproduction
of real shapes and appearance of a 3D scene. However, the interest in applying NeRFs compared to
other well-established technologies like photogrammetry is still not yet recognized to its full
potential. Even though the starting point is still a series of overlapping images, NeRF use neural
networks to create the so-called radiance fields, instead of relying on the reconstruction of
geometrical relations between image and 3D world space [17]. The output, provided in the form of a
neural rendering, can be turned into common, consolidated 3D objects as point clouds or meshes,
e.g., via the marching cubes algorithm [18].

1.1. Background and motivation

3D reconstruction methods have constituted a major endeavor within the Cultural Heritage
domain. They can be broadly divided into contact and non-contact sensors.

Among non-contact (passive) sensors, photogrammetry relies on capturing and analyzing data
from photographs and does not involve actively emitting any form of energy or signals to gather
information about the objects or the environment being studied. It appears to date as a consolidated
technique for three-dimensional (3D) models reconstruction of features or topographies from
overlaying two-dimensional photographs taken from various locations and points of views [19].

Common photogrammetric software as MICMAC, RealityCapture and Agisoft Metashape
enable the reconstruction of 3D data, in the form of point clouds, polygonal meshes, textured meshes.
Ortho-rectified imagery and bi-dimensional maps can even be derived from a photogrammetric
model, and properly geo-referenced based on the combination with traditional topographic
surveying methods [11]. Photogrammetry is widely applied in many domains ranging from
industrial design [20] to archeology [21], architecture [22] and agriculture [23], geology [24] etc..
However, photogrammetric reconstruction techniques face many common limitations in case of
objects exhibiting challenging optical properties (as absorptivity, intense reflectivity or extensive
scattering) [25], variations in lighting conditions as shadows, glare or inconsistent lighting, uniform
or repetitive textures [11], and complex shapes or geometries [26].

In this context, NeRFs emerge as a cutting-edge technology that holds great promise for
addressing some of these inherent limitations [16]. They rely on a supervised neural network model,
the Multi-Layer Perceptron (MLP), i.e., a feedforward (non-convolutional) deep network that consists
of fully connected neurons with a nonlinear kind of activation function.

The process essentially consists of three phases (Figure 1):

e  First, as in photogrammetry, images are oriented in 3D space.

e  Then, the sampled points, characterized by their three spatial and by the viewing direction, are
processed by the MLP, resulting in a color and volume density information as output.

e  Finally, volumetric rendering techniques as ray tracing [15] or cone tracing [27] are used to
synthesize the output information from the previous phase to produce new views (novel view
synthesis).

In NeRF’s formulation, the scene is intended as a continuous 5D function that associates to every
point in space the corresponding radiance emitted in each direction. The function maps spatial
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coordinates within the scene (x, y, z) and two viewing angles, azimuthal and polar, which specify the
viewing direction (9, ¢), to output the volume density o and a RGB color dependent on the viewing
direction. The volume is intended as a differential opacity indicative of the radiance accumulated by
a ray passing through each point. Considering the Multi-Layer Perceptron Fy, the following
formulation applies:

Fy:(x,d) - (c,0) ()
Where x = (x,y,z) are the in-scene coordinates, the direction is expressed as a 3D Cartesian unit
vector d (9, ¢); ¢ = (r,g,b) represents the color values; o indicates the volume density. Although o is
independent of the viewing direction, ¢ depends on both viewing direction and in-scene coordinates.
The theoretical formulation of NeRF has the following consequences: (i) the 3D scene is
represented as neural rendering and not - at least initially - as a point cloud or mesh; (ii) the
representation of the scene is view-dependent, which results in a more realistic variation in color and
illumination, both with respect to lighting conditions and handling of reflective surfaces.

Since their introduction in 2020, NeRFs have seen numerous implementations and have been
extended to various fields of research, including urban mapping [28,29], robotics [30,31], autonomous
driving [32], simulation of climate effects [33], industrial design [34], human pose estimation [35].
Mazzacca et al. [36] have proposed several methods such as noise level, geometric accuracy, and the
number of required images (i.e., image baselines) to evaluate NeRF-based 3D reconstructions.

In the specific field of cultural heritage, the first experiments began with the work by Condorelli
and Rinaudo [37], and they have continued over the past three years, incorporating the developments
and improvements that NeRFs have undergone since their earliest version. Interest in the application
of NeRF to the Cultural Heritage sector is on the rise, as evidenced by a recent session at the CIPA
2023 Conference on Documenting, Understanding, Preserving Cultural Heritage, entirely dedicated
to the theme “Al and NeRF for 3D reconstruction’ [36,38—41].
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Figure 1. NeRF training overview, adapted from the original NeRF paper by Mildenhall et al. [15].

1.2. Research aim

The aim of this work is to assess the intrinsic advantages or limitations of NeRF compared to
photogrammetry and the possible benefits of integrating the two methods for digital 3D
reconstruction of cultural heritage objects. Considering a same set of input images with known
camera poses, we aim at comparing the two techniques in terms of quality and consistency of the
results, handling of challenging scenes (e.g.: objects with reflective, metallic or translucent surfaces),
realistic renderings of the detected objects, processing time and impact of image resolution and
numbering on the accuracy and fidelity of the 3D reconstruction.
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2. Case studies

The analyzed case studies (Figures 2 and 3) are related to datasets that are typically difficult to
handle for photogrammetry, due to different peculiarities of the objects’ surfaces, e.g. very fine details
or specific material characteristics (homogeneity, roughness, brilliance, chromaticity, luminosity and
hardness). Some of these objects feature non-Lambertian surfaces, meaning that they do not reflect
light uniformly in all directions and exhibit angle-dependent reflectance properties.

We consider objects of various scales, ranging from small museum artifacts to monumental
statues and even urban contexts. In this contribution, we present the results of three specific case
studies, anticipating that other cases are still being implemented at the time of writing. The pilot case
study chosen to test the approach is the statue of the Terpsichore, the masterpiece of the Italian artist,
sculptural exponent of Neoclassicism, Antonio Canova (Figure 2a).

The statue represents the muse of dance and choral singing Terpsichore, as can be deduced from
the lyre placed on the high pedestal. The work has intricate details, such as the strings and soundbox
of the lyre or the drapery of the robe, and has specific material characteristics that are difficult to
reproduce, such as the homogeneity of the color and the white and pink veining of its material. The
original dataset consists of 233 images.

Figure 2. The three case studies analyzed: (a) Terpsichore by Antonio Canova, (b) eagle-shaped lectern
and (c) Caprona Tower.

Figure 3. Image acquisition pattern displayed for the neural renderings of: (a) the Terpsichore, (b)
the eagle-shaped lectern and (c) the Caprona Tower.

The second case study considered is that of the eagle-shaped lectern (254 images), that presents
specular reflections and other variations in appearance based on the direction of incoming light and
the viewing angle, due to the metallic, shiny surface of the bronze (Figure 2b).

Finally, the Caprona Tower dataset, composed of 124 images acquired by drone, presents a
wider context scale comprising the natural environment surrounding the tower, composed of trees
and shrubs (Figure 2c). The photogrammetric reconstruction of this study object, together with the
historical remarks on the tower, were previously documented in reference [44].
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3. Methodology

This present study aims to test the validity and potential advantages of using NeRF in
comparison to well-established image-based reconstruction techniques, with photogrammetry being
the foremost among them.

For a direct comparison between NeRF and photogrammetry, this research employs the same
set of synthetic images.

These images depict objects with non-Lambertian surfaces or composed of very fine materials.
In this dataset, following standard photogrammetric practices, the object of study is captured through
a sequence of successive shots, ensuring more than 70% overlap.

Over these initial datasets, two distinct methodologies are employed (Figure 4):

e  Photogrammetric Procedure. This involved estimating camera orientation parameters for sparse
point cloud construction, generating a dense point cloud, creating a mesh, and extracting
textures. The software used for this task is Agisoft Metashape, and the alignment, dense point
cloud, mesh and texture generation phases are run in high quality mode.

e  NeRF-Based Reconstruction. This method requires the camera pose estimate to be known. With
this input, a Multi-Layer Perceptron is trained for novel view synthesis, and the neural rendering
(volumetric model) is generated. For the latter part, the NeRFstudio Application Programming
Interface by Tancik et al. [42]. By default, this application applies a scaling factor to the images

to reduce their dimensions and expedite the training process (downscaling).

wd Metashape
Image acquisition Photogrammetry k‘

L l Build dense cloud —»  Mesh generation —»  Textured mesh
Image downscaling Al t i
% — ignmen +
xml data conversion Multi-Layer __,. Novel view synthesis Comparison of the
NeRFs and export to Perceptron training and volumetric model Qutput results and
Nerfstudio alignment evaluation of possible
l combinations methods
' tudli
. nerfstudio T CloudCompare”
conversion and export . il s
Raw output Textured mesh S
Derived output conversion and export

Figure 4. Overview of the proposed methodology.

As the alignment procedure is common to both processes and is executed following
photogrammetry principles, an initial assumption is made about the dataset: the images used for
reconstructing the 3D scene can be aligned, which is to say that the estimation of camera poses is
feasible using the input images.

In both cases, camera orientation parameters are calculated using the Agisoft Metashape
software. The camera data file, in .xml format, exported from Metashape, is then imported into
NeRFstudio [42], serving as initial data for the 3D scene reconstruction. It is important to note that
for this step to work, all images are required to be of the same sensor type.

By way of comparison, since the output of photogrammetry cannot be directly confronted with
neural rendering, an additional conversion phase is introduced. NeRFstudio allows the export of
NeREF to point clouds and meshes via the ns-export function. The marching cubes algorithm [18] and
the Poisson surface reconstruction method [43] are used for this purpose, while texture coordinates
are derived via the xatlas library (github.com/mworchel/xatlaspython).

Referring to known measurements from topographic surveys, the point clouds obtained through
photogrammetry and NeRF are individually scaled and aligned. Subsequently, they are processed to
derive a cloud-to-cloud comparison using the CloudCompare software (CloudCompare 2.12.4, 2023).
Various configurations -of both input image sizes and quantities- are considered in this phase to
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determine whether reducing the resolution or the number of images leads to a decrease in the quality
of the 3D reconstruction.

For the pilot case of the Terpsichore statue, considering that the production process of
volumetric models using NeRF includes, by default, a downscaling factor, i.e. a reduction of the
image size by factor 3 (Figures 5 and 6) and even considering that a lower number of images results
in a reduction of the training times, 4 different dataset configurations are tested, as follows:

1. 233 photos, no downscale;

2. 233 photos with downscale of factor 3 (3x);

3. Reduced dataset of 116 photos (~50% of the input dataset) with no downscale;
4

Reduced dataset of 116 photos with downscale 3x.
It has to be noted that, in combinations 3 and 4, the reduction in dataset size is accomplished by
systematically removing images one by one.

Figure 5. Comparison of image sizes between initial dataset (a, 2752x4128 pixels) and reduced dataset,
downscaled by factor 3 (to the left, 344x516 pixels).

Figure 6. Comparison of image resolution between initial dataset (a, 2752x4128 pixels) and reduced
dataset, downscaled by factor 3 (b, 344x516 pixels).
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4. Results

For each of the 4 combinations considered, we proceeded by drawing up synoptic tables
showing the comparison, respectively, between the point cloud and the mesh acquired from
photogrammetry, and between the neural rendering, the point cloud and the mesh extracted from
Nerfstudio (Figures 7, 8, 9).

The point cloud extracted by NeRFstudio and the photogrammetric point cloud are later aligned
on CloudCompare and compared with each other (Figure 10), to derive an analysis of deviation
between minimum values (in blue) and maximum values (in red).

Figure 8. Neural renderings of the Terpsichore statue from different points of view, case 1.
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Figure 9. Several details of the neural renderings of the Terpsichore statue, case 4.

The complete synoptic tables for all 4 datasets are presented, respectively, in Figures 11, 12, 13
and 14. First, each synoptic tables illustrates a general overview of the whole result, respectively: of
point cloud and mesh from photogrammetry; of neural rendering, extracted point cloud and
extracted mesh from NeRF; of the cloud-to-cloud comparison between NeRF and photogrammetry.
In addition, detailed, zoomed-in views of specific areas where the differences among the various tests
are most pronounced are presented for each result. These areas of focus include the head, pedestal,
base, and the rear of the statue, with specific attention to details of the lira.
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Figure 10. Scheme of the comparison between NeRF and photogrammetric point cloud.
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Figure 11. Analysis of the deviation between NeRF and photogrammetric processing results. Dataset
1: 233 images, no downscale.
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Figure 12. Analysis of the deviation between NeRF and photogrammetric processing results. Dataset 2: 233

images with 3x downscale.
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Figure 14. Analysis of the deviation between NeRF and photogrammetric processing results. Dataset
4: 116 images with 3x downscale.
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In detail, Figures 11-14 reveal that as image resolution and the number of available images
decrease (provided image alignment remains feasible), NeRFs exhibit significantly less quantitative
information loss compared to photogrammetry. This phenomenon becomes particularly pronounced
when examining specific details such as the statue's head (present in only a few initial dataset images)
and the upper and lower sections of the pedestal. Additionally, a noticeable enhancement in
rendering very fine lyre details is observed when transitioning from case 1 to case 4.

The deviation analysis shows a general range from 0 mm (blue points) to a maximum value of
10 mm (red points). In the first dataset (Figure 11), the maximum deviation occurs at the top of
Terpsichore's head and at the upper and lower sections of the pedestal. Moreover, it can be noted
that the point cloud obtained from NeRF exhibits more noise, with deviations spread across all
surfaces. This is particularly noticeable where the deviation is minimal (1 mm in blue), but there
appear isolated points with medium (4 to 7 mm in green-yellow) and high (1 cm in red) deviations.

In the second dataset (Figure 12), the maximum deviation of 1 cm is found in the Terpsichore
head and the lower section of the pedestal. Compared to the previous case, deviations between 1 and
4 mm are present throughout the entire statue, while the lyre and the pedestal maintain 1 mm
deviations.

For the third dataset (Figure 13), maximum deviations of 1 cm shift to the lower part of the
pedestal, concentrated between the square of the pedestal and the drapery.The deviations in the
Terpsichore head decrease to an average of 3 to 8 mm.

For the last case (Figure 14), higher deviations, reaching the value of 1 cm, are observed in the
head of the statue, as well as in the lower part of the pedestal: indeed, these parts appear to be entirely
missing in the photogrammetric result. Meanwhile, average deviations of 4 to 5 mm are found along
the entire drapery. The consideration on the observed noise in the NeRF point cloud, as anticipated
for the first case, is relevant for all the other cases mentioned above. This can also be appreciated by
a visual comparison between the volumetric rendering and the photogrammetric mesh.

Overall, these results on the pilot case study suggest that:

e Compared to photogrammetry, NeRF may offer the ability to handle reduced image data or
reduced resolution of the images, with lower quantitative information loss. For the 3rd and 4t
cases analyzed, indeed, NeRF capture details, such as the head and lower pedestal, that are
absent in the photogrammetric output. This is true, however, if the reconstruction of camera
poses is possible over the reduced datasets;

e  NeRF neural renderings more faithfully reproduce the statue's material texture compared to the
textured mesh obtained through photogrammetry.

e  However, NeRF are more prone to noise and, for higher-resolution datasets, they may encounter
challenges in capturing specific fine details compared to photogrammetry.

To underscore the stark contrast in texture rendering between photogrammetry and NeRF, the
example of the eagle-shaped lectern vividly demonstrates the concept of view-dependency achieved
through NeRF. In the series of images provided as input, the illumination on the eagle's chest varies
dramatically. Examining the result obtained via photogrammetry, such variation in appearance
cannot be observed. NeRF, in this instance, excels in providing color changes and reflections that
faithfully mimic the actual bronze surface, creating a highly realistic representation: as in Figure 15,
the illumination on the eagle's chest varies dramatically. The images below, taken from different

viewpoints clearly show how the rendering of the raptor's metallic surface changes depending on the
view direction.
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Figure 15. From left to right: the right side of the eagle's chest is bathed in light, while in the second
image, the reflective part shifts towards the left. In the third image, the light centers and descends

lower on the sculpture.

In stark contrast, the photogrammetric model appears quite matter in terms of texture (Figures
16 and 17). It does not convey the material's true nature, making it difficult to distinguish whether
the surface is made of bronze or wood, illustrating the limitations of photogrammetry in capturing
the nuanced material properties of the subject.

Photogrammetry -
Textured Mesh

Neural Radiance Fields -
Volumetric representation

Figure 16. Photogrammetry and NeRF comparison results of the eagle-shaped lectern.

!
0

Figure 17. Photogrammetry and NeRF comparison results of the eagle-shaped lectern.
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Concerning the case study of the Caprona Tower, when comparing the results obtained through
NeRF with those produced by photogrammetry, a striking disparity becomes evident in terms of
representing the vegetation surrounding the Tower (Figures 18 and 19). Notably, there are low
bushes scattered about, and certain parts of the mesh model exhibit holes or pronounced sharpness,
which are rendered exceptionally well-defined in the volumetric representation. This discrepancy is
particularly noticeable when observing the tree on the left side of the tower and some of the lower
bushes.

Photogrammetry -
Textured Mesh

Neural Radiance
Fields - Volumetric
representation

Figure 18. Photogrammetry and NeRF comparison results for the Caprona Tower.

dim % AL,

Figure 19. Photogrammetry and NeRF comparison results for the Caprona Tower.
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Neural Radiance
Fields - Volumetric
representation

However, it is essential to acknowledge that while NeRF excels in capturing the volumetric
details of natural elements, such as the aforementioned vegetation, it may fall short in representing
the finer details of the Tower's masonry texture. In contrast, photogrammetry excels in capturing the
intricate texture of the Tower's facades.

Given this disparity in strengths and weaknesses, a possible solution may involve integrating
the two models. Combining the precision of NeRF in representing natural elements with the texture
detail captured by photogrammetry could lead to a more comprehensive and accurate overall
representation of the scene. This fusion of techniques could strike a balance between volumetric
accuracy and textural fidelity, offering a more holistic view of the subject matter.

5. Discussion

Considering the outcomes of our investigation, the discussion comparing NeRF and
photogrammetry can be framed around several key factors, including model description, data
processing time and possible conversion to other forms of representation. In any case, a shared
characteristic between these two techniques is represented by the reconstruction of internal and
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external camera orientation parameters. As a result, ensuring that the model maintains metric
correctness and accurate scaling necessitates processes like georeferencing or the utilization of known
measurements. The main differences between the two methods are explained below.

Model Description. The comparisons between these two techniques reveal that, with respect to
characterizing the shape of models, NeRF introduces a unique capability. It allows the appearance of
materials to be contingent on the observer's perspective, an attribute that proves exceptionally
powerful when dealing with surfaces that are not opaque, but rather transparent or reflective, and
when handling textures that are uniformly consistent. These are challenging scenarios for standard
photogrammetry to replicate. Moreover, the results on the pilot case of the Tersicore dataset
demonstrate that NeRF models restitute finer details and parts as the number or the resolution of the
input images decreases.

Representation. A notable difference in the model output between NeRF and photogrammetry
lies in their representation: NeRF generates a continuous volumetric model, while photogrammetry
produces a dense cloud or mesh-based model with discrete textured surfaces. This contrast in
representation can significantly influence the suitability of each method for specific use cases,
although many techniques for extracting meshes or point clouds from neural rendering are being
proposed [42].

Data Processing Times. When it comes to the time required for processing data,
photogrammetry typically demands a longer duration to generate a textured mesh from the same set
of images. In contrast, NeRF training, although not instantaneous, is relatively swift, usually
completing in approximately 30 minutes to an hour, contingent on the initial image file size.
Furthermore, NeRF offers the capability to explore the model even before training reaches 100%.
However, it is important to note that NeRF faces difficulties when processing very high-resolution
images.

Sensitivity to reduction in number and resolution of images and trade-off with noise. NeRF
is generally less sensitive to a number reduction of input images or to image downscaling than
photogrammetry. In other words, NeRF models can maintain a more consistent level of detail in the
3D reconstruction, even with a smaller image dataset. However, it's important to note that as the
number and resolution of images decrease, the NeRF point cloud can become noisier.

Conversion to Other Representations and Exporting Extension. A distinction between these
methods pertains to their openness. Standard photogrammetry, particularly when based on
Structure-from-Motion (SfM), adopts an open system approach. This allows for relatively
straightforward conversion to alternative forms of representation and the exportation of models to
various file formats. On the other hand, NeRF operates as a closed system, making the conversion to
alternative representations and the export to different file extensions still challenging.

In conclusion, it must be noted that, as for the case of the Caprona Tower case study, a
combination of NeRF and photogrammetry might offer a complementary approach, leveraging the
strengths of each method for more comprehensive and versatile 3D modeling solutions. This hybrid
approach could potentially yield superior results by addressing the limitations of each technique and
opening up new possibilities for diverse applications in fields such as computer vision, augmented
reality, and environmental mapping.

6. Conclusions

In this paper, we provide a comparative evaluation of NeRF and photogrammetry for
applications in the Cultural Heritage domain. Our processing results, based on the pilot case study
of the Terpsichore statue, indicate that as the input data and image resolution decrease on the same
initial set of images, NeRF exhibits better preservation of both completeness and material description
compared to photogrammetry. Consequently, we recommend the use of NeRF for datasets with
limited images or low resolution, provided that the camera poses for the initial image set are known.
This approach holds great significance in scenarios requiring large-scale area mapping by aerial
surveying, especially during emergency situations in which the swift acquisition of extensive survey
data is critical, and resources and accessibility are constrained. Based on the results of the three case
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studied considered, a comparison between photogrammetry and NeRF is conducted in Section 5,
respectively in terms of: model description and representation, data processing times, sensitivity to
reduction in number and resolution of images and trade-off with noise, conversion to other
representations and exporting extension.

Despite being a more recent technique still under development compared to the well-established
photogrammetry, NeRF display higher potential for describing material characteristics. This
technology may find applications in enhancing the representation of view-dependent materials and
objects with intricate details, especially in cases of limited number of input images. Furthermore, the
rendering property of NeRF may appear particularly useful for materials featuring homogeneous
textures.

Our future developments encompass extending these findings to other case studies to validate
and expand the range of possibilities for NeRF applications in cultural heritage, architecture, and
industrial design. Specifically, we are interested in exploring applications on planar surfaces such as
building facades, objects with homogeneous textures like statues or bronze furnishings, and
mechanical components constructed from steel or other materials with reflective surfaces.

The very recent applications for creating models categorized into classes through semantic labels
(semantic segmentation) [45] or for the reconstruction of in-the-wild scenes [46] further suggest
possible developments in this context. The exploration of NeRFs in Virtual and Augmented Reality
applications, following the works by Deng et al. [47], is also the subject of ongoing work.
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