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Abstract: Memristive spiking neural networks are a promising emerging technology in the field

of deep learning. These models can be implemented using neuromorphic hardware and therefore

offer low power consumption and low latency, crucial to edge-computing applications. These

systems, however, pose several challenges, including on-chip training and connectivity reduction.

The latter is essential to ease the manufacturing complexity of the system. On-chip training can be

realized using synaptic plasticity enabled by memristors. In this work, we compare two methods of

connectivity reduction applicable to memristive spiking networks: an ensemble-based approach and

a probabilistic sparse connectivity approach. We evaluate both of these methods in conjunction with

a three-layer spiking neural network on the handwritten and spoken digits classification tasks using

two memristive plasticity models and a classical time-dependent plasticity rule. On the handwritten

digits recognition task, both methods achieve the F1-score of 0.89–0.93, and yield the 0.80–0.96

F1-score on the spoken digits recognition task.

Keywords: spiking neural networks; neuromorphic computing; STDP; memristive plasticity; sparse

connectivity; sound classification; image classification;

1. Introduction

Neural network-based intelligent systems are widely employed in a wide range of tasks, from

natural language processing to computer vision and signal processing. In edge computing, however,

the use of deep learning methods still poses a variety of challenges, including latency and power

consumption constraints, both during training and inference.

Neuromorphic computing devices, in which the information is encoded and processed in the form

of binary events called spikes, offer a prospective solution to these problems. Modern neuroprocessors,

e.g. TrueNorth [1], Loihi [2], or Altai 1, were shown to achieve power consumption on the order of

milliwatts [3]. Thus, these devices offer a powerful inference interface, which can be used to deploy

spiking neural networks (SNNs) for inference.

In turn, memristor-based training poses its own unique set of challenges and limitations. The

most prominent one arises from the hardware implementation of synapses, where each memristor can

1 https://motivnt.ru/neurochip-altai (accessed 23 November 2023)
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have only a limited amount of synapses [4–6], imposing limitations on the number of weights that a

given network may have. In this regard, sparsely connected spiking networks, where the connectivity

can be reduced depending on the hardware specifications, are a plausible solution.

In this study, we compare two methods of reducing connectivity in memristive spiking neural

networks: a bagging ensemble of spiking neural networks and a probabilistic sparse SNN. Using a

three-layer SNN with inhibitory and excitatory synapses, we solve the handwritten and spoken digits

classification tasks and compare the outcomes for the proposed connectivity reduction types and three

plasticity models. The main contributions of this work are:

– We design a probabilistic sparse connectivity approach to creating a two-layer spiking neural

network, implement a bagging ensemble of two-layer SNNs, and compare these two methods;
– We propose an efficiency index that facilitates the comparison among different methods of

connectivity reduction, and apply it to the SNNs used in the study;
– We demonstrate that both connectivity reduction methods achieve competitive results on

handwritten and spoken digits classification tasks and can be used with the memristive plasticity

models.

The rest of the study is structured as follows: In Section 2 we provide a brief overview of the

existing connectivity reduction methods for SNNs. In Section 3 we describe the datasets we use,

the plasticity models and the base spiking neural structure, and the sparsity methods we utilize for

comparison. In Section 4 we provide the accuracy estimations for the proposed approaches and discuss

the obtained results in Section 5. Finally, we draw the conclusions in Section 6.

2. Literature Review

Connectivity reduction concerning spiking and artificial neural networks has been studied in

several existing works. For example, the study [7] proposes a probabilistic approach to connectivity

reduction in SNNs based on the spatial structure of the network’s layers. It is shown that a spiking

neural network pruned according to this method achieves 98% accuracy on the EMNIST [8] dataset.

The authors of [9] propose a joined connectivity and weight learning approach inspired by synapse

elimination and synaptogenesis in biological neurons. The gradient in this work is redefined as an

additional synaptic parameter, facilitating better adaptation of the network topology. A multilayer

convolutional SNN trained with error backpropagation and pruned according to the designed method

demonstrates an accuracy loss of 3.5% on MNIST [10] and 0.73% on CIFAR-10 [11] datasets. In [12]

a two-stage pruning method for on-chip SNNs is developed. The pruning is first performed during

training based on the weight update history and spike timing, and then after training via weight

thresholding. By training a deep SNN with time-to-first-spike coding using the proposed approach the

authors decrease latency by a factor of 2 and reduce the network connectivity by 92% without accuracy

loss. Another example can be found in [13], the authors use a method of zeroing weights above a given

threshold and achieve a 70% reduction in connectivity. In this paper the network consists of a mixture

of formal and spiking convolutional layers, and the resulting sparse hybrid network achieves more than

71% accuracy on the IVS 3cls [14] dataset. Finally, in [15] a sparse SNN topology is proposed, where the

connectivity reduction is performed via a combination of pruning and quantization based on the power

law weight-dependent plasticity model. After training, the three-layer fully connected SNN designed

in the study achieves a classification accuracy of 92% on the MNIST dataset. Another approach to

connectivity reduction present in the literature is based on designing locally-connected SNNs, the

weights in which are created in a sparse fashion according to a certain rule. In [16], for example, a

routing scheme using a hybrid of short-range direct connectivity and address event representation

network is developed. Without providing any benchmark results, the authors focus on the details of

mapping a given SNN to the proposed architecture and show that it yields up to a 90% reduction in

connectivity. In [17], sparsity in a formal multilayer convolutional network is achieved by limiting the

number of connections associated with each neuron by a factor of 2. The proposed approach is shown
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to achieve high accuracy on such classical datasets as DVS-Gesture [18] (98%) MNIST (99%), CIFAR-10

(94%), and N-MNIST [19] (99%). The authors of [20] propose locally connected SNN layers, in which

subsets of neurons compete via inhibitory interactions to learn features from different parts of the input

space. A three-layer locally connected spiking neural network is used in the study to solve the MNIST

and EMNIST classification challenges, on which it achieves 95% and 70% accuracy scores, respectively.

Thus, currently employed methods of reducing the connectivity in spiking neural networks are mostly

encompassed by pruning, quantization, and local connectivity. However, ensemble learning, where

multiple smaller networks are used together to form a stronger classifier can be also viewed as a

single sparse network. In this work, we explore this path to connectivity reduction and compare it

to a probabilistic locally connected SNN topology proposed in the work [21] and investigated in our

previous research with different types of plasticity models[22–24].

3. Materials and Methods

3.1. Datasets and Preprocessing

For training and evaluation of the proposed methods, we use two benchmark datasets: scikit-learn

Digits [25] and the Free Spoken Digits Dataset [26]. The former consists of 1797 8 × 8 images of

handwritten digits, while the latter contains 3000 audio recordings of the spoken numbers from 0 to 9

in English.

Thus, both datasets have 10 classes, resulting in 180 samples per class for Digits and 300 samples

per class for FSDD; additionally, the samples in FSDD vary by speaker: 6 speakers in total, 50 recordings

of each digits per speaker with different intonnations.

The raw data was preprocessed as follows:

(1) Feature engineering: for Digits, the original features in the form of pixel intensity were used

without changes; for FSDD, features were extracted by splitting the signal into frames, extracting

30 Mel Frequency Cepstral Coefficients [27] (MFCC) and then averaging across frames.
(2) Normalization: Depending on the type of plasticity, the input vectors were normalized either by

reducing to zero mean and one standard deviation (Standard Scaling) or by L2 normalization.
(3) Gaussian Receptive Fields (GRF): This step is necessary to significantly increase the selectivity of

the network, as a consequence, increase the number of weights between the input and output

layers of the spike network. At this stage, the normalized feature vectors were divided into M

equal intervals for each feature. At each interval j = 1, ..., M, a Gaussian peak was constructed

with center µj and standard deviation σ (see Eq. 1, Figure 1). The value of each component xi of

the input vector was replaced by a set of values Gj(x) characterizing the proximity of xi to the

center of the j-th receptive field. Thus, the dimension of the input vector increased M times.
(4) Spike encoding: To convert the normalized and GRF-processed input vectors into spike

sequences, we used a frequency-based approach. With this encoding method, each input neuron

(spike generator) emits spikes at frequency ν during the entire sample time te, where ν = νmax · k.

Here νmax is the maximum frequency of spike emission, and k is the value of the input vector

component. After time te has passed, the generators do not emit spikes for tp = 50 ms to allow

the neuron potentials to return to their original values.

Gj(xi) = exp

(

(xi − µj)
2

σ2

)

(1)
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Figure 1. An example of Gaussian receptive fields with number of fields equal to 5. The input

feature xi is intersected with overlapping Gaussians to produce a vectorized feature representation

Gj(xi), j ∈ [0, 5) ∩N.

3.2. Synaptic Plasticity Models

In this work, we consider two memristive plasticity models: nanocomposite (NC) [28] and

poly-p-xylylene (PPX) [29]. These models were proposed to approximate the real-world dependence

of synaptic conductance change ∆w on the value of the conductance w and on the time difference ∆t

between presynaptic and postsynaptic spikes and are defined in Eq. 2 and Eq. 3.

∆w(∆t) =







A+ · w ·
[

1 + tanh
(

−∆t−µ+
τ+

)]

if ∆t > 0;

A− · w ·
[

1 + tanh
(

∆t−µ−
τ−

)]

if ∆t < 0;
(2)

In 2, A+ = 0.074, A− = −0.047, µ+ = 26.7 ms, µ− = −22.3 ms, τ+ = 9.3 ms, τ− = 10.8 ms.

∆w(∆t) =







|∆t|
τ α+e

−β+( wmax−w
wmax−wmin

)
e−γ+( ∆t

τ )2
if ∆t > 0;

|∆t|
τ α−e

−β−(
w−wmin

wmax−wmin
)
e−γ−( ∆t

τ )2
if ∆t < 0.

(3)

Here τ = 10 ms, α+ = 0.316, α− = 0.011, β+ = 2.213, β− = −5.969, γ+ = 0.032, γ− = 0.146,

wmax = 1, wmin = 0.

Additionally, we consider a classical additive Spike Timing-Dependent Plasticity (STDP) [30]

model to study the impact of sparcity on the memristor-based network relative to the simpler synapse

models.

3.3. Spiking Classification Models

Within the framework of the frequency approach to encoding input data, we considered a hybrid

architecture consisting of a three-layer Winner-Takes-All (WTA) network [21] serving as a feature

extraction module in combination with a formal classifier.

The WTA network is based on three layers (see Figure 2). The input layer consists of spike

generators that convert input vectors into spike sequences according to the algorithm described above.

The size of the input layer corresponds to the size of the input vector after preprocessing steps. The

generated spike sequences are transmitted to the layer of Leaky Integrate-and-Fire (LIF) neurons with

an adaptive threshold (excitatory layer). This layer is connected to the input via trainable weights with

one of the previously described plasticities according to the “all-to-all” rule. The number of neurons in

the excitatory layer can be optimized depending on the complexity of the problem being solved. In
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turn, the excitatory layer is connected to the third layer of non-adaptive LIF neurons of the same size,

which is called the inhibitory layer. Connections from the excitatory to the inhibitory layer are not

trainable and have a fixed positive weight wsyn,exc > 0. In this case, each neuron in the excitatory layer

is connected to a single neuron (partner) in the inhibitory layer. The connections directed from the

inhibitory layer to the excitatory layer are called inhibitory connections. These connections are static

and have weight wsyn,inh < 0. Each neuron in the inhibitory layer is connected to all neurons in the

excitatory layer except its partner. Finally, generators in the input layer are also connected to inhibitory

neurons by randomly distributed static links with weight wsyn,gen > 0. In all our experiments, the

number of such connections is equal to 10% of the number of connections between the input and

excitatory layers.

Figure 2. WTA spiking neural network topology. Poisson generators, adaptive excitatory LIF neurons

and inhibitory LIF neurons are shown in yellow, green and red, respectively. Trainable synapses are

depicted in blue, excitatory-to-inhibitory connections are shown in green, and inhibitory-to-excitatory

connections are denoted in red. Finally, generator-to-inhibitory connections are expressed using a

dashed green arrow.

The spiking neural network was implemented using the NEST simulator[31].

We chose logistic regression (LGR) optimized for multi-class problems using the one-versus-all

(OVR) scheme as the formal classifier [32].

In this work, we considered two methods for reducing connectivity in the WTA network: an

ensemble of several classifiers trained using the bagging technique and sparse connectivity between

layers.

3.3.1. Classification Ensemble

The Bagging method was chosen as an ensemble creation technique, in which several identical

classifiers are trained on subsets of input data, after which their predictions are aggregated by voting.

This method has several advantages compared to using a single larger network, in particular, it reduces

the total number of connections within the network and increases the classification speed due to

parallelization. In addition, it allows you to break unwanted correlations in the training data set,

resulting in improved architecture stability.

Connectivity within an ensemble is controlled using the following parameters:

– n_estimators: defines the number of models within the ensemble.
– max_features: determines the proportion of input features that are passed to the input of each of

the models in the ensemble.
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In addition, the bagging architecture allows you to regulate the number of examples on which

each network is trained using the max_samples parameter.

The ensemble was implemented using the BaggingClassifier method of the Scikit-Learn [25] library.

In all experiments, based on the preliminary empirical observations the parameters max_ f eatures = 1.0

and max_samples = 0.7 were fixed.

3.3.2. Sparse Connectivity

Another way to reduce the connectivity of a spike network is to set a rule that allows you to

regulate the number of connections and their organization. To this end, we formally place the neurons

of the excitatory and inhibitory layers on two-dimensional square grids of size 1 mm × 1 mm (the

dimension was chosen for the convenience of further presentation), oriented mirror-image relative

to each other. Neurons on the grids may be arranged irregularly. Initialization of sparse connections

occurs according to the following algorithm:

(1) The presynaptic neuron projects onto the plane of the postsynaptic neurons.
(2) The projection of the presynaptic neuron becomes the center of a circular neighborhood, all

postsynaptic neurons within which will be connected to this presynaptic neuron with some

probability.

This process is shown schematically in Figure 3.

Figure 3. Sparse connectivity: neuron projection. The projection neighborhood is shown in red; all

postsynaptic neurons inside it will be connected to the projected presynaptic neuron.

Thus, connectivity within the network is regulated using two parameters:

– Probability P of connection formation between pre- and postsynaptic neurons.
– The radius of the circular neighborhood is R. This parameter is defined only for connections

between the inhibitory and excitatory layers since neurons in the input layer do not have a spatial

structure.

In this work, we regulate the connectivity between the input and excitatory layers using the

parameter Pgen_exc = 0.4, as well as between the inhibitory and excitatory layers using the parameters

Pinh_exc = 0.4 and Rinh_exc = 0.9. The connections between the excitatory and inhibitory, as well as the

input and inhibitory layers remain unchanged.

4. Experiments and Results

Experiments on the Digits dataset were conducted using hold-out cross-validation; 20% of training

examples were used for testing. On FSDD, a fixed testing data set was used. For all experiments, such

parameters as the number of neurons in the networks, the number of receptive fields, and the number

of networks in the ensemble were optimized for each plasticity and for each data set by maximizing

the training classification accuracy.
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In all experiments, the time for submitting one example to the WTA network was 350 ms, followed

by a relaxation period of 50 ms; learning took place over one epoch.

As a baseline, we conducted an experiment using the classical WTA network. The parameters for

the base WTA network are presented in Table A1.

Additionally, for this and subsequent experiments, we present the number of connections within

the network with a breakdown by type of pre- and postsynaptic neurons (see Table 1).

Table 1. Connectivity within the base WTA network.

Connection type WTA model for Digits WTA model for FSDD

Gen-to-Exc 128000 120000
Exc-to-Inh 400 400
Inh-to-Exc 159600 159600
Gen-to-Inh 12800 12000

After applying the selected methods for reducing the number of connections in the WTA network,

the parameters of the resulting models, which demonstrate the best accuracy, are presented in the

Table 2.

Table 2. Experimental results for the WTA Network.

Reduction type Connection type
Digits FSDD

STDP NC PPX STDP NC PPX

Bagging

Gen-to-Exc 470400 470400 224000 231000 231000 231000
Exc-to-Inh 1050 1050 500 1100 1100 1100
Inh-to-Exc 51450 51450 49500 108900 108900 108900
Gen-to-Inh 47040 47040 22400 23100 23100 23100

Sparse Conn.

Gen-to-Exc 51376 51379 51440 231000 231000 231000
Exc-to-Inh 400 400 400 400 400 400
Inh-to-Exc 59184 59548 59215 59505 59919 58941
Gen-to-Inh 12800 12800 12800 12000 12000 12000

The results of experiments of applying different types of reduction methods on the F1-score metric

are presented in Table 3.

Table 3. Experimental results WTA Network.

Reduction type
Digits FSDD

STDP NC PPX STDP NC PPX

Base (no reduction) 0.84 0.96 0.95 0.90 0.91 0.82
Bagging 0.88 0.92 0.91 0.96 0.93 0.94
Sparse Conn. 0.90 0.89 0.89 0.83 0.83 0.80

5. Discussion

Since the number of neurons and connections differs for each plasticity and for each dataset, to

evaluate the effectiveness of the connectivity reduction methods, we introduce the connectivity index

κ defined in Eq. 4:

κ =
Nsparse

Nbase
(4)

Here Nsparse and Nbase are the total number of connections in the sparse network and the

equivalent fully connected WTA network, respectively. Based on this definition, the efficiency of

the connectivity reduction method can be assessed by calculating the ratio of the classification accuracy

to the connectivity index (see Eq. 5, where the efficiency is represented by the index η).
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η =
F1_score

κ
(5)

The values of connectivity and efficiency indices for different data sets, plasticities and network

types are presented in Table 4.

Table 4. Efficiency estimation of different sparsity types.

Sparsity Plasticity Dataset κ η

Bagging STDP Digits 0.35 2.50
Bagging NC Digits 0.35 2.61
Bagging PPX Digits 0.60 1.52
Bagging STDP FSDD 0.25 3.86
Bagging NC FSDD 0.25 3.74
Bagging PPX FSDD 0.25 3.78

Sparse Conn. STDP Digits 0.79 1.14
Sparse Conn. NC Digits 0.79 1.13
Sparse Conn. PPX Digits 0.79 1.13
Sparse Conn. STDP FSDD 0.41 2.02
Sparse Conn. NC FSDD 0.41 2.02
Sparse Conn. PPX FSDD 0.41 1.96

From the table above it follows that in our experiments, the relative efficiency of ensembles of

spike networks in comparison with spike networks with sparse connectivity is higher: on average

across plasticities and datasets, the efficiency of bagging is 3.0, while the efficiency of the sparse WTA

network is on average equal to 1.58. In addition, the average connectivity index κ is lower for the

Bagging method - 0.34 versus 0.6 for the sparse WTA network.

Despite that, both methods can be effectively used to reduce connectivity depending on the

specifics of the problem and the hardware requirements. In the context of on-chip memristive spiking

neural networks, the bagging ensemble technique is preferable if there is a strong limitation on the

overall network connectivity, especially with regard to plastic synapses. On the other hand, the

necessity of orchestrating multiple networks may become a concern. The probabilistic sparse WTA

network is simpler in design and can be applied in situations where the connectivity limitations mainly

affect inhibitory static synapses.

6. Conclusions

In this work, we have compared two approaches to connectivity reduction in memristive spiking

neural networks: the bagging ensemble technique and probabilistic sparse connectivity. Using a

three-layer WTA network, we have demonstrated that both methods achieve competitive performance

on the handwritten digits and spoken digits classification tasks. On the Digits dataset, the bagging

ensemble yields the F1-score of 0.88, 0.92, and 0.91 for the STDP, NC, and PPX plasticity rules,

respectively, while the sparse WTA network achieves 0.90, 0.89 and 0.89.

On FSDD the F1-score values lie within the 0.94 – 0.96 range for the ensemble of WTA networks,

and within 0.80 – 0.83 interval for the sparse WTA network.

Additionally, by studying the ratio between the proposed connectivity index and the F1-score

we show that the bagging ensemble achieves higher efficiency relative to the overall number of

connections, while the sparse WTA network effectively reduces the number of inhibitory connections

while being significantly simpler in design.

In our future research, we plan to expand the scope of the classification problems that can be

solved using the proposed methods, as well as work on hardware implementations of the designed

networks.
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Abbreviations

The following abbreviations are used in this manuscript:

SNN Spiking Neural Network

ANN Artificial Neural Network

STDP Spike Timing-Dependent Plasticity

NC Nanocomposite

PPX Poly-p-xylylene

WTA Winner-Takes-All

FSDD Free Spoken Digits Dataset

Appendix A. Experimental Hyperparameters

Here we present the hyperparameters that were used for each of the considered datasets and

plasticity models. Only the parameters that differ for spike networks in each experiment are given:

– norm – input normalization method: L2 or standard scaling (STD);
– n_fields – number of Gaussian receptive fields (GRF);
– n_neurons – number of excitatory neurons in the network;
– n_estimators – number of networks in the bagging ensemble (for the ensemble approach,

everywhere else it is equal to 1);
– τm,exc and τm,inh – characteristic time of the membrane potential decay for the excitatory and

inhibitory neurons in milliseconds;
– frequency – maximal spiking frequency of the poisson generators;
– tre f ,exc and tre f ,inh – refractory time for the excitatory and inhibitory neurons in milliseconds;
– wsyn,exc and wsyn,inh – synaptic weights of the excitatory-to-inhibitory and inhibitory-to-excitatory

connections, respectively.
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Table A1. Experimental settings for the base WTA Network.

Dataset Parameter STDP NC PPX

Digits norm L2 STD STD
Digits n_fields 5 5 5
Digits n_neurons 400 400 400
Digits τm,exc 130 130 130
Digits τm,inh 30 30 30
Digits frequency 600 350 450
Digits tre f ,exc 5 4 6

Digits tre f ,inh 3 3 3

Digits wsyn,exc 18 20 20
Digits wsyn,inh -13 -15 -15

FSDD norm L2 STD L2
FSDD n_fields 10 10 10
FSDD n_neurons 400 400 400
FSDD τm,exc 130 130 130
FSDD τm,inh 30 30 30
FSDD frequency 800 800 800
FSDD tre f ,exc 5 4 4

FSDD tre f ,inh 3 3 3

FSDD wsyn,exc 20 20 20
FSDD wsyn,inh -13 -15 -13

Table A2. Experimental settings for the bagging ensemble of WTA Network.

Dataset Parameter STDP NC PPX

Digits norm STD STD STD
Digits n_fields 7 7 7
Digits n_neurons 50 50 100
Digits n_estimators 21 21 5
Digits τm,exc 50 50 50
Digits τm,inh 60 60 60
Digits frequency 500 500 500
Digits tre f ,exc 4 4 4

Digits tre f ,inh 9 9 9

Digits wsyn,exc 20 20 20
Digits wsyn,inh -15 -15 -15

FSDD norm STD STD STD
FSDD n_fields 7 7 7
FSDD n_neurons 100 100 100
FSDD n_estimators 11 11 11
FSDD τm,exc 130 130 130
FSDD τm,inh 30 30 30
FSDD frequency 550 550 550
FSDD tre f ,exc 4 4 4

FSDD tre f ,inh 3 3 3

FSDD wsyn,exc 13 13 13
FSDD wsyn,inh -12 -12 -12
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Table A3. Experimental settings for the sparse WTA Network.

Dataset Parameter STDP NC PPX

Digits norm L2 STD STD
Digits n_fields 5 5 5
Digits n_neurons 400 400 400
Digits τm,exc 130 130 130
Digits τm,inh 30 30 30
Digits frequency 600 350 450
Digits tre f ,exc 5 4 6

Digits tre f ,inh 3 3 3

Digits wsyn,exc 18 20 20
Digits wsyn,inh -13 -15 -15

FSDD norm L2 STD L2
FSDD n_fields 10 10 10
FSDD n_neurons 400 400 400
FSDD τm,exc 130 130 130
FSDD τm,inh 30 30 30
FSDD frequency 800 800 800
FSDD tre f ,exc 5 4 4

FSDD tre f ,inh 3 3 3

FSDD wsyn,exc 20 20 20
FSDD wsyn,inh -13 -15 -13
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