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Abstract: In this paper, we obtain the existence and uniqueness theorem for solutions of Caputo type

fractional stochastic delay differential systems (FSDDSs) with Poisson jumps by utilizing delayed

perturbation of Mittag-Leffler function. Moreover, by using Burkholder-Davis-Gundy’s inequality,

Doob’s martingale inequality and Hölder inequality, we prove that the solution of the averaged

FSDDSs converges to that of the standard FSDDSs in the sense of Lp. Some known results in the

literature are extended.
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1. Introduction

Fractional stochastic delay differential systems (FSDDs) are mathematical models that involve

fractional derivatives, stochastic noise, and time delays. The fractional derivatives represent the

memory effects and long-range dependence in the system, while the stochastic noise and delays

account for the random fluctuations and time delays, respectively. FSDDs find applications in many

fields, including physics, biology, finance, and engineering. They can be used to model systems with

memory and randomness, such as anomalous diffusion processes, fractional-order control systems

with stochastic disturbances, and biological systems with fractional-order kinetics and stochastic

effects. They provide a powerful framework for understanding and predicting the behavior of complex

systems with memory, randomness, and time delays. See for examples [1-6], and the references cited

therein.

The averaging principle is a mathematical tool used to simplify the analysis of dynamical systems

with fast and slow time scales. It provides an approximate description of the system’s behavior.

In 1968, Khasminskii [7] first used the average principle to prove that the solution of the average

equation can converge to the solution of the complex system. In [8], the authors presented an averaging

method for stochastic differential equations with non-Gaussian Lévy noise. With the development

of fractional calculus, many works have emerged that apply the averaging principle to fractional

stochastic differential equations (FSDEs). In [9], Xu, et.al. presents an averaging principle for Caputo

FSDEs driven by Brown motion. In [10], Luo, et.al. established an averaging principle for the solution

of the a class of FSDEs with time-delays. In [11], Ahmed and Zhu investigated the averaging principle

for the Hilfer fractional stochastic delay differential equation with Poisson jumps in the sense of mean

square. The periodic averaging method for impulsive conformable fractional stochastic differential
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equations with Poisson jumps are discussed in [12] by Ahmed. In [13], Wang and Lin extended the

averaging principle of the following FSDEs

{

CDα
0 [x(t)− h(t, x(t)] = f (t, x(t)) + g(t, x(t)) dBt

dt , t ∈ J = [0, T],

x(0) = x0,
(1)

in the sense of mean square (L2 convergence) to Lp convergence (p ≥ 2), which generated some works

on the averaging principle for FSDES [9,10,14]. In [15], Yang, et.al. studied the averaging principle for

a class of ψ-Capuo fractional stochastic delay differential equations with Poisson jumps.

Recently, Li and Wang in [16] studied the following Caputo type FSDDEs:

{

(CDα
0Y)(t) = AY(t) + BY(t − h) + f (t, Y(t)) + σ(t, Y(t)) dW(t)

dt , t ∈ J,

Y(t) = Φ(t), −h ≤ t ≤ 0, h > 0,
(2)

the existence, uniqueness and the averaging principle for (1.2) are established.

In the present paper, motivated by [11,13,16], we study the following Caputo FSDDEs with

Poisson jumps











(CDα
0 x)(t) = Ax(t) + Bx(t − τ) + f (t, x(t), x(t − τ)) + σ(t, x(t), x(t − τ)) dW(t)

dt ,

+
∫

V g(t, x(t), x(t − τ), v)N̄(dt, dv), t ∈ J,

x(t) = φ(t), −τ ≤ t ≤ 0,

(3)

where CDα
0 is the left Caputo fractional derivative with 1

2 < α < 1, J = [0, T], A, B ∈ R
n×n are

two constant matrices, the state vector x ∈ R
n is a stochastic process, f : J × R

n × R
n → R

n,

σ : J ×R
n ×R

n → R
n×m and g : J ×R

n ×R
n × V → R

n are measurable continuous functions. Let

(Ω,F , P) be a complete probability space equipped with some filtration (Ft)t≥0 satisfying the usual

condition, W(t) is an m-dimensional Brownian motion on the probability space (Ω,F , P) adapted to

the filtration (Ft)t≥0. Let (V, Φ, λ(dv)) be a σ-finite measurable space. Given stationary Poisson point

process (pt)t≥0, which is defined on (Ω,F , P) with values in V and with characteristic measure λ. We

denote by N(t, dv) the counting measure of pt such that N̄(t, Θ) := E(N(t, Θ)) = tλ(Θ) for Θ ∈ Φ.

Define N̄(t, dv) := N(t, dv)− tλ(dv), and the Poisson martingale measure generated by pt.

In this paper, we first prove the existence and uniqueness of solutions of Caputo type FSDDEs (1.3)

by using delayed perturbation of Mittag-Leffler function and Banach fixed point theorem; Secondly, we

prove the averaging principle for Caputo FSDDEs (1.3) in the sense of Lp (pth moment) with inequality

techniques. The main contributions and advantages of this paper are as follows:

(1) The solution of the averaged FSDDEs converges to that of the standard FSDDEs in the sense of

Lp, which is a generalization of the existing result (p = 2) of the averaging principle for FSDDEs,

(2) The fractional calculus, stochastic inequality and Hölder inequality are effectively used to

establish our result.

(3) our work in this paper is novel and more technical. Our result extends the main results of [17].

This paper will be organized as follows. In Section 2, we will briefly recall some definitions and

preliminaries. In Section 3, we prove the existence and uniqueness of solutions for Caputo FSDDEs

(1.3) with Poisson jumps. In Section 4, we prove that the solution of the FSDDEs (1.3) converges to

that of the standard one in Lp sense. In Section 5, an example is presented to illustrate our theoretical

results. Finally, the paper is concluded in Section 6.

2. Preliminaries

In this section, we recall some basic definitions and lemmas which are used in the sequel.

Let Υ = L
p(Ω,F ,P) denote the space of all F (t) measurable, p squqre integrable functions

x : Ω → R
n with ‖x(t)‖ps :=

(

n

∑
i=1

E(|xi(t)|p)
)1/p

, and ‖x‖ =
n

∑
i=1

|xi| and ‖A‖ = max
1≤i≤n

n

∑
i=1

|aij| be
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the vector norm and matrix norm, respectively. A process x : [−τ, T] → L
p(Ω,F ,P) is said to be

F (t)-adapted if x(t) ∈ Υ.

Definition 2.1 [17]. Let α > 0, and f be an integrable function defined on [a, b]. The left

Riemann-Liouville fractional integral operator of order α of a function f is defined by

a Iα
t f (t) =

1

Γ(α)

∫ t

a
(t − s)α−1 f (s)ds, t > a. (4)

Definition 2.2 [17]. Let n − 1 < α < n, and f ∈ Cn([a, b]). The left Caputo fractional derivative of

order α of a function f is defined by

C
a Dα

t f (t) = (a In−α
t f (n))(t) =

1

Γ(n − α)

∫ t

a
(t − s)n−α−1 f (n)(s)ds, t > a, (5)

where n = [α] + 1.

Definition 2.3 [18]. The coefficient matrices Qk(s), k = 0, 1, 2, ..., satisfy the following multivariate

determining matrix equation

Q0(s) = Qk(−τ) = Θ, Q1(0) = I, k = 0, 1, 2, · · · , s = 0, τ, 2τ, · · · ,

Qk+1(s) = AQk(s) + BQk(s − τ), k = 0, 1, 2, · · · , s = 0, τ, 2τ, · · · ,

where I is an identity matrix and Θ is a zero matrix.

Definition 2.4 [18]. Delayed perturbation of two parameter Mittag-Leffler type matrix function XA,B
τ,α,β

generated by A, B is defined by

XA,B
τ,α,β(t) :=































Θ, t ∈ [−τ, 0),

I, t = 0,
∞

∑
i=0

Qi+1(0)
tiα+β−1

Γ(iα+β)
+

∞

∑
i=1

Qi+1(τ)
(t−τ)iα+β−1

Γ(iα+β)

+ · · ·+
∞

∑
i=0

Qi+1(pτ) (t−pτ)iα+β−1

Γ(iα+β)
, pτ < t ≤ (p + 1)τ.

(6)

From [17], we can easily obtain the following definition.

Definition 2.5. A R
n-value stochastic process {x(t) : −τ ≤ t ≤ T} is called a solution of (1.3) if x(t)

satisfies the integral equation of the following form:

x(t) =































XA,B
τ,α,1(t + τ)φ(−τ) +

∫ 0
−τ XA,B

τ,α,α(t − s)[CDα
−τ+

φ)(s)− Aφ(s)]ds

+
∫ t

0 XA,B
τ,α,α(t − s) f (s, x(s), x(s − τ))ds

+
∫ t

0 XA,B
τ,α,α(t − s)σ(s, x(s), x(s − τ))dW(s)

+
∫ t

0 XA,B
τ,α,α(t − s)

∫

V g(s, x(s), x(s − τ), v)N̄(ds, dv), t ∈ J,

φ(t), t ∈ [−τ, 0],

(7)

where x(t) is F (t)-adapted and E(
∫ T
−τ ‖x(t)‖pdt) < ∞.

Lemma 2.1 ([19]). For any t ≥ 0, 0 < α < 1, 0 < β ≤ 1 and α + β ≥ 1, we have

‖XA,B
τ,α,β(t)‖ ≤ tβ−1Eα,β((‖A‖+ ‖B‖)tα), (8)

where Eα,β(z) = ∑
∞
k=0

zk

Γ(kα+β)
, z ∈ R is the Mittag-Leffler function.
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Lemma 2.2 For any p ≥ 2, α ∈
(

1 − 1
p , 1
)

and γ > 0, one has

∫ t

0
(t − s)pα−pEpα−p+1,1(γspα−p+1)ds ≤ Γ(pα − p + 1)

γ
Epα−p+1,1(γtpα−p+1), (9)

where Γ(α) :=
∫ +∞

0 sα−1e−sds is the Gamma function.

Proof. Let γ > 0 be arbitrary. Consifer the corresponding linear Caputo fractional differential equation

of the following form
CD

pα−p+1
0+

x(t) = γx(t). (10)

From [20], it is easy to know that the Mittag-Leffler function Epα−p+1,1(γtpα−p+1) is a solution of (2.7).

So, the following equality holds:

Epα−p+1,1(γtpα−p+1) = 1 +
γ

Γ(pα − p + 1)

∫ t

0
(t − s)pα−pEpα−p+1,1(γspα−p+1)ds,

which completes the proof.

Lemma 2.3 ([21, 22]). Let φ : R+ × V → Rn and assume that

∫ t

0

∫

V
|φ(s, v)|pλ(dv)ds < ∞, p ≥ 2.

Then there exists Dp > 0 such that

E

(

sup
0≤t≤u

∣

∣

∣

∣

∫ t

0

∫

V
φ(s, v)N̄(ds, dv)

∣

∣

∣

∣

p
)

≤ Dp

{

E

(

∫ u

0

∫

V
|φ(s, v)|2λ(dv)ds

)

p
2

+E

∫ u

0

∫

V
|φ(s, v)|pλ(dv)ds

}

.

(11)

Lemma 2.4 ([23]). Let u, v be two integrable functions and g be continuous defined on domain [a, b].

Moreover, assume that

(1) u and v are nonnegative, and v is nondecreasing;

(2) g is nonnegative and nondecreasing.

If

u(t) ≤ v(t) + g(t)
∫ t

a
(t − τ)α−1u(τ)dτ,

then

u(t) ≤ v(t)Eα(g(t)Γ(α)(t − a)α), ∀t ∈ [a, b],

where Eα(·) is the Mittag-Leffler function.

To study the qualitative properties of solution for (1.3), we impose the following conditions on

data of the problem.

(H1) For any x1, x2, y1, y2 ∈ Rn and t ∈ J, there exist two constants C1, C2 > 0 such that

‖ f (t, x1, y1)− f (t, x2, y2)‖p ∨ ‖σ(t, x1, y1)− σ(t, x2, y2)‖p

∨
∫

V
‖g(t, x1, y1, v)− g(t, x2, y2, v)‖pλ(dv) ≤ C

p
1 (‖x1 − x2‖p + ‖y1 − y2‖p),
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where ‖ · ‖ is the norm of Rn, x ∨ y = max{x, y}.

(H2) Let σ(·, 0, 0) and g(·, 0, 0) are essentially bounded, i.e.

‖σ(·, 0, 0)‖∞ := ess sup
t∈[0,∞)

‖σ(t, 0, 0)‖ < +∞, ‖g(·, 0, 0)‖∞ := ess sup
t∈[0,∞)

‖g(t, 0, 0)‖ < +∞,

and f (·, 0, 0) is Lp integrable, i.e.

‖ f ‖Lp =
∫ T

0
‖ f (t, 0, 0)‖pdt < +∞.

3. Existence and uniqueness result

Let H
p([0, T]) be the space of all the processes x which are measurable, F (t)-adapted, and

satisfied that ‖x‖Hp := sup
0≤t≤T

‖x(t)‖ps < ∞. Obviously, (Hp([0, T]), ‖ · ‖Hp) is a Banach space. Set

µ = ‖A‖+ ‖B‖. For any t ∈ [−τ, T] and φ ∈ C([−τ, 0],Rn), we define an operator T : Hp([0, T]) →
H

p([0, T]) as follows :

(T x)(t) = XA,B
τ,α,1(t + τ)φ(−τ) +

∫ 0

−τ
XA,B

τ,α,α(t − s)[CDα
−τ+φ)(s)− Aφ(s)]ds

+
∫ t

0
XA,B

τ,α,α(t − s) f (s, x(s), x(s − τ))ds

+
∫ t

0
XA,B

τ,α,α(t − s)σ(s, x(s), x(s − τ))dW(s)

+
∫ t

0
XA,B

τ,α,α(t − s)
∫

V
g(s, x(s), x(s − τ), v)N̄(ds, dv).

(12)

Lemma 3.1 Let 1 − 1
p < α < 1. Assume that (H1) and (H2) hold. Then the operator T is well-defined.

Proof. For any x ∈ H
p([0, T]), by (3.1) and the following elementary inequality

∥

∥

∥

∥

∥

m

∑
i=1

ai

∥

∥

∥

∥

∥

p

≤ mp−1
5

∑
i=1

‖ai‖p, ai ∈ R
n, i = 1, 2, ..., m. (13)

we have

‖(T x)(t)‖p
ps ≤ 5p−1

E(‖XA,B
τ,α,1(t + τ)φ(−τ)‖p)

+ 5p−1
E

(∥

∥

∥

∥

∫ 0

−τ
XA,B

τ,α,α(t − s)[(CDα
−τ+φ)(s)− Aφ(s)]ds

∥

∥

∥

∥

p)

+ 5p−1
E

(∥

∥

∥

∥

∫ t

0
XA,B

τ,α,α(t − s) f (s, x(s), x(s − τ))ds

∥

∥

∥

∥

p)

+ 5p−1
E

(∥

∥

∥

∥

∫ t

0
XA,B

τ,α,α(t − s)σ(s, x(s), x(s − τ))dW(s)

∥

∥

∥

∥

p)

+ 5p−1
E

(∥

∥

∥

∥

∫ t

0
XA,B

τ,α,α(t − s)
∫

V
g(s, x(s), x(s − τ), v)N̄(ds, dv)

∥

∥

∥

∥

p)

:= I1 + I2 + I3 + I4 + I5.

(14)

For I1, from Lemma 2.1, one has

I1 = 5p−1
E(‖XA,B

τ,α,1(t + τ)φ(−τ)‖p) ≤ 5p−1
E(‖XA,B

τ,α,1(t + τ)‖p‖φ(−τ)‖p)

≤ 5p−1‖φ(−τ)‖p(Eα,1(µ(T + τ))α))p.
(15)
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For I2, by Lemma 2.1, Hölder inequality and α > 1 − 1
p , we obtain

I2 = 5p−1
E

(∥

∥

∥

∥

∫ 0

−τ
XA,B

τ,α,α(t − s)[(CDα
−τ+φ)(s)− Aφ(s)]ds

∥

∥

∥

∥

p)

≤ 5p−1
∫ 0

−τ
‖XA,B

τ,α,α(t − s)‖pds ·E
(

∫ 0

−τ
‖(CDα

−τ+φ)(s)− Aφ(s)‖qds

)p−1

≤ 5p−1Ξ
(T + τ)pα−p+1

pα − p + 1
(Eα,α(µ(T + τ)α)))p,

(16)

where 1
p + 1

q = 1 and Ξ =
(

∫ 0
−τ ‖(CDα

−τ+
φ)(s)− Aφ(s)‖qds

)p−1
< ∞.

For I3, applying (H1), (H2), Hölder inequality, Lemma 2.1 and Jensen inequality, one has

I3 = 5p−1
E

(∥

∥

∥

∥

∫ t

0
XA,B

τ,α,α(t − s) f (s, x(s), x(s − τ))ds

∥

∥

∥

∥

p)

≤ 5p−1

(

∫ t

0
‖XA,B

τ,α,α(t − s)‖qds

)

p
q

·E
(

∫ t

0
‖ f (s, x(s), x(s − τ))− f (s, 0, 0) + f (s, 0, 0)‖pds

)

≤ 5p−1

(

∫ t

0
tq(α−1)Eα,α(µ(t − s)α)qds

)

p
q

· 2p−1
E

(

∫ t

0
‖ f (s, x(s), x(s − τ))− f (s, 0, 0)‖pds +

∫ t

0
‖ f (s, 0, 0)‖pds

)

≤ 10p−1Eα,α(µTα)p

(

Tqα−q+1

qα − q + 1

)

p
q

E

(

∫ t

0
C

p
1 (‖x(s)‖p + ‖x(s − τ)‖p)ds +

∫ t

0
‖ f (s, 0, 0)‖pds

)

≤ 10p−1Eα,α(µTα)p

(

Tqα−q+1

qα − q + 1

)

p
q
(

TC
p
1 (2‖x‖p

Hp + ‖φ‖q) + ‖ f ‖Lp

)

,

(17)

since

sup
0≤t≤T

E‖x(t − τ)‖q ≤ max

{

sup
−τ≤t≤0

E‖φ(t)‖q, sup
0≤t≤T

E‖x(t)‖q

}

= max
{

‖φ‖q, ‖x‖q
Hq

}

≤ ‖φ‖q + ‖x‖q
Hq .

For I4, by using (H1), (H2), Cauchy-Schwarz inequality, Ito’s isometry, Lemma 2.1 and Jensen
inequality, we have

I4 = 5p−1
E





(

∥

∥

∥

∥

∫ t

0
XA,B

τ,α,α(t − s)σ(s, x(s), x(s − τ))dW(s)

∥

∥

∥

∥

2
)

p
2





≤ 5p−1
E

(

∫ t

0
‖XA,B

τ,α,α(t − s)‖2‖σ(s, x(s), x(s − τ))‖2ds

)

p
2

≤ 5p−1
E





(

∫ t

0
1

p
p−2 ds

)

p−2
p

·
(

∫ t

0
‖XA,B

τ,α,α(t − s)‖p‖σ(s, x(s), x(s − τ))‖pds

) 2
p





p
2

≤ 5p−1T
p
2 −1

E

(

∫ t

0
‖XA,B

τ,α,α(t − s)‖p‖σ(s, x(s), x(s − τ))‖pds

)

≤ 5p−1T
p
2 −12p−1Eα,α(µTα)p

E

(

∫ t

0
(t − s)pα−p[C

p
1 (‖x(s)‖p + ‖x(s − τ)‖p) + ‖σ(s, 0, 0)‖p]ds

)

≤ 10p−1Tpα− p
2

pα − p + 1
Eα,α(µTα)p(C

p
1 (2‖x‖p

Hp + ‖φ‖p) + ‖σ(·, 0, 0)‖p
∞).

(18)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 November 2023                   doi:10.20944/preprints202311.1668.v1

https://doi.org/10.20944/preprints202311.1668.v1


7 of 19

For I5, by using (H1), (H2), Lemmas 2.1, 2.3 and Jensen inequality, we obtain

I5 = 5p−1
E

(∥

∥

∥

∥

∫ t

0

∫

V
XA,B

τ,α,α(t − s)g(s, x(s), x(s − τ), v)N̄(ds, dv)

∥

∥

∥

∥

p)

≤ 5p−1DpE

(

∫ t

0

∫

V
|XA,B

τ,α,α(t − s)|2g2(s, x(s), x(s − τ), v)λ(dv)ds

)

p
2

+ 5p−1DpE

(

∫ t

0

∫

V
|XA,B

τ,α,α(t − s)|pgp(s, x(s), x(s − τ), v)λ(dv)ds

)

≤ 5p−1Dp(T
p
2 −1 + 1)E

(

∫ t

0
|XA,B

τ,α,α(t − s)|p
∫

V
gp(s, x(s), x(s − τ), v)λ(dv)ds

)

≤ 5p−1Dp(T
p
2 −1 + 1)2p−1Eα,α(µTα)p

·E
(

∫ t

0
(t − s)pα−p[C

p
1 (‖x(s)‖p + ‖x(s − τ)‖p) + ‖g(s, 0, 0, 0)‖p]ds

)

≤ 10p−1Dp(T
p
2 −1 + 1)Tpα−p+1

pα − p + 1
Eα,α(µTα)p(C

p
1 (2‖x‖p

Hp + ‖φ‖p) + ‖g(·, 0, 0, 0)‖p
∞).

(19)

Submitting (3.4)-(3.8) into (3.3), which implies that ‖T x‖Hp < ∞. Thus, the operator T is well-defined.

Theorem 3.1 Let 1 − 1
p < α < 1. Assume that (H1) and (H2) hold, then (1.3) has a unique solution

x ∈ H
p([0, T]).

Proof. For T > 0, we choosing and fix a constant γ > 0 such that

γ > 2 · 3p−1C
p
1 Eα,α(µTα)p(T

p
q + (Dp + 1)T

p
2 −1 + 1)Γ(pα − p + 1). (20)

On the space H
p([0, T]), we define a weighted norm ‖ · ‖γ as below

‖x‖γ := sup
t∈[0,T]

(

E(‖x(t)‖p)

Epα−p+1,1(γtpα−p+1)

) 1
p

, ∀x ∈ H
p([0, T]).

Similar to the Theorem 1 in [18], It is easy to know that the norms ‖ · ‖Hp and ‖ · ‖γ are equivalent.

Hence, (Hp([0, T]), ‖ · ‖γ) is a Banach space. We can easily prove that T : Hp([0, T]) → H
p([0, T])

defined in (3.1) is uniformly bounded operator by Lemma 3.1. Next, we only check that T is a

contraction operator.

Firstly, by using Hölder inequality, (H1) and Lemma 2.1, we obtain

∥

∥

∥

∥

∫ t

0
XA,B

τ,α,α(t − s)( f (s, x(s), x(s − τ))− f (s, y(s), y(s − τ)))ds

∥

∥

∥

∥

p

≤
(

∫ t

0
1qds

)

p
q

·
∫ t

0
‖XA,B

τ,α,α(t − s)‖p‖ f (s, x(s), x(s − τ))− f (s, y(s), y(s − τ))‖pds

≤ t
p
q

∫ t

0
(t − s)p(α−1)Eα,α(µ(t − s)α)p‖ f (s, x(s), x(s − τ))− f (s, y(s), y(s − τ))‖pds

≤ T
p
q Eα,α(µTα)pC

p
1

∫ t

0
(t − s)p(α−1)(‖x(s)− y(s)‖p + ‖x(s − τ)− y(s − τ)‖p)ds.

(21)
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Secondly, similar to the proof of (3.7), one has

∥

∥

∥

∥

∫ t

0
XA,B

τ,α,α(t − s)(σ(s, x(s), x(s − τ))− σ(s, y(s), y(s − τ)))dW(s)

∥

∥

∥

∥

p

≤ T
p
2 −1

∫ t

0
‖XA,B

τ,α,α(t − s)‖p‖σ(s, x(s), x(s − τ))− σ(s, y(s), y(s − τ))‖pds

≤ T
p
2 −1Eα,α(µTα)p

∫ t

0
(t − s)pα−p[C

p
1 (‖x(s)− y(s)‖p + ‖x(s − τ)− y(s − τ)‖p)ds

≤ T
p
2 −1C

p
1 Eα,α(µTα)p

∫ t

0
(t − s)pα−p(‖x(s)− y(s)‖p + ‖x(s − τ)− y(s − τ)‖p)ds.

(22)

Thirdly, similar to the proof of (3.8), we obtain
∥

∥

∥

∥

∫ t

0
XA,B

τ,α,α(t − s)
∫

V
(g(s, x(s), x(s − τ), v)− g(s, y(s), y(s − τ), v))N̄(ds, dv)

∥

∥

∥

∥

≤ Dp

(

∫ t

0
‖XA,B

τ,α,α(t − s)‖2
∫

V
‖g(s, x(s), x(s − τ), v)− g(s, y(s), y(s − τ), v)‖2λ(dv)ds

)

p
2

+Dp

∫ t

0
|XA,B

τ,α,α(t − s)|p
∫

V
|g(s, x(s), x(s − τ), v)− g(s, y(s), y(s − τ), v)|pλ(dv)ds

≤ Dp(T
p
2 −1 + 1)

∫ t

0
‖XA,B

τ,α,α(T − s)‖p
∫

V
‖g(s, x(s), x(s − τ), v)− g(s, y(s), y(s − τ), v)‖pλ(dv)ds

≤ DpC
p
1 (T

p
2 −1 + 1)Eα,α(µTα)p

∫ t

0
(t − s)pα−p(‖x(s)− y(s)‖p + ‖x(s − τ)− y(s − τ‖p)ds.

(3.12)

For each x, y ∈ H
p([0, T]), from (3.1), (3.2), and (3.10)-(3.12), we have

E(‖T x(t)− T y(t)‖p)

≤ 3p−1
E

(∥

∥

∥

∥

∫ t

0
XA,B

τ,α,α(t − s)( f (s, x(s), x(s − τ))− f (s, y(s), y(s − τ)))ds

∥

∥

∥

∥

p)

+3p−1
E

(∥

∥

∥

∥

∫ t

0
XA,B

τ,α,α(t − s)(σ(s, x(s), x(s − τ))− σ(s, y(s), y(s − τ)))dW(s)

∥

∥

∥

∥

p)

+3p−1
E

(∥

∥

∥

∥

∫ t

0
XA,B

τ,α,α(t − s)
∫

V
(g(s, x(s), x(s − τ), v)− g(s, y(s), y(s − τ), v))N̄(ds, dv)

∥

∥

∥

∥

p)

≤ 3p−1T
p
q C

p
1 Eα,α(µTα)p

∫ t

0
(t − s)p(α−1)

E(‖x(s)− y(s)‖p + ‖x(s − τ)− y(s − τ‖p)ds

+3p−1T
p
2 −1C

p
1 Eα,α(µTα)p

∫ t

0
(t − s)pα−p

E(‖x(s)− y(s)‖p + ‖x(s − τ)− y(s − τ‖p)ds

+3p−1C
p
1 Dp(T

p
2 −1 + 1)Eα,α(µTα)p

∫ t

0
(t − s)pα−p

E(‖x(s)− y(s)‖p + ‖x(s − τ)− y(s − τ‖p)ds

= ω

∫ t

0
(t − s)pα−p

E(‖x(s)− y(s)‖p + ‖x(s − τ)− y(s − τ‖p)ds,

(3.13)

where

ω := 3p−1C
p
1 Eα,α(µTα)p(T

p
q + (Dp + 1)T

p
2 −1 + Dp).
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For t > τ, one has

∫ t

0
(t − s)p(α−1)‖x(s − τ)− y(s − τ)‖pds =

∫ τ

0
+
∫ t

τ
(t − s)p(α−1)‖x(s − τ)− y(s − τ)‖pds

=
∫ t

τ
(t − s)p(α−1)‖x(s − τ)− y(s − τ)‖pds

=
∫ t−τ

0
(t − τ − u)p(α−1)‖x(u)− y(u)‖pdu. (3.14)

From Lemma 2.2, combining (3.13) and (3.14), for each t ∈ [0, T], we get

E(‖T x(t)− T y(t)‖p)

Epα−p+1,1(γtpα−p+1)

≤ ω

Epα−p+1,1(γtpα−p+1)

∫ t

0
(t − s)pα−pEpα−p+1,1(γspα−p+1)ds‖x − y‖p

γ

+
ω

Epα−p+1,1(γ(t − τ)pα−p+1)

∫ t−τ

0
(t − τ − u)pα−pEpα−p+1,1(γupα−p+1)du‖x − y‖p

γ

≤ 2ωΓ(pα − p + 1)

γ
‖x − y‖p

γ,

which implies that

‖T x − T y‖γ ≤ ρ‖x − y‖γ,

where ρ =
(

2ωΓ(pα−p+1)
γ

) 1
p
.

Based on (3.9), one can obtain ρ < 1 and the operator T is a contractive. Thus, there exists a

unique solution of (1.3) by using of the Banach fixed point theorem. The proof of this theorem is

complete.

4. An averaging principle

In this section, we shall investigate the averaging principle for Caputo type FSDDEs. For any

t ∈ J, we consider the following standard form of (1.3)

xǫ(t) = XA,B
τ,α,1(t + τ)φ(−τ) +

∫ 0

−τ
XA,B

τ,α,α(t − s)[CDα
−τ+φ)(s)− Aφ(s)]ds

+ ǫ

∫ t

0
XA,B

τ,α,α(t − s) f (s, x(s), x(s − τ))ds

+
√

ǫ

∫ t

0
XA,B

τ,α,α(t − s)σ(s, x(s), x(s − τ))dW(s)

+
√

ǫ

∫ t

0
XA,B

τ,α,α(t − s)
∫

V
g(s, x(s), x(s − τ), v)N̄(ds, dv),

(23)

where ǫ ∈ (0, ǫ0] is a positive small parameter with ǫ0 being a fixed number.

Consider the averaged form which corresponds to the standard form (4.1) as follows :
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yǫ(t) = XA,B
τ,α,1(t + τ)φ(−τ) +

∫ 0

−τ
XA,B

τ,α,α(t − s)[CDα
−τ+φ)(s)− Aφ(s)]ds

+ ǫ

∫ t

0
XA,B

τ,α,α(t − s) f̂ (s, y(s), y(s − τ))ds

+
√

ǫ

∫ t

0
XA,B

τ,α,α(t − s)σ̂(s, y(s), y(s − τ))dW(s)

+
√

ǫ

∫ t

0
XA,B

τ,α,α(t − s)
∫

V
ĝ(s, y(s), y(s − τ), v)N̄(ds, dv),

(24)

where f̂ : Rn × Rn → Rn, σ̂ : Rn × Rn → Rn×m, and ĝ : Rn × Rn × V → Rn satisfying the following

averaging condition :

(H3) For any t ∈ J, x, y ∈ R
n, and p ≥ 2, there exists a positive bounded function ϕi(·), i = 1, 2, 3

such that

1

t

∫ t

0
‖ f (s, x, y)− f̂ (x, y)‖pds ≤ ϕ1(t)(1 + ‖x‖p + ‖y‖p),

1

t

∫ t

0
‖(t − s)α−1(σ(s, x, y)− σ̂(x, y))‖pds ≤ ϕ2(t)(1 + ‖x‖p + ‖y‖p),

1

t

∫ t

0

(

∫

V
‖(t − s)α−1(g(s, x, y, v)− ĝ(x, y, v))‖pλ(dv)

)

ds ≤ ϕ3(t)(1 + ‖x‖p + ‖y‖p),

where lim
t→∞

ϕi(t) = 0, i = 1, 2, 3.

Theorem 4.1. Assume that (H1)-(H3) are satisfied. Then for a given arbitrary small number δ > 0,

p ≥ 2 with 1 − 1
p < α < 1, there exist L > 0, ǫ1 ∈ (0, ǫ0] and β ∈ (0, 1) such that

E



 sup
t∈[−τ,Lǫ−β ]

|xǫ(t)− yǫ(t)|p


 ≤ δ, (25)

for all ǫ ∈ (0, ǫ1].

Proof. If p = 2, it is easy to prove that (4.3) holds by using the similar method as in [20]. In the

following, we will only consider the case of p > 2. From Eqs. (4.2), (4.3), and inequality (3.2), we obtain

‖xǫ(t)− yǫ(t)‖p ≤ 3p−1ǫp

∥

∥

∥

∥

∫ t

0
XA,B

τ,α,α(t − s)[ f (s, xǫ(s), xǫ(s − τ))− f̂ (yǫ(s), yǫ(s − τ))]ds

∥

∥

∥

∥

p

+ 3p−1ǫ
p
2

∥

∥

∥

∥

∫ t

0
XA,B

τ,α,α(t − s)[σ(s, xǫ(s), xǫ(s − τ))− σ̂(yǫ(s), yǫ(s − τ))]dW(s)

∥

∥

∥

∥

p

+ 3p−1ǫ
p
2

∥

∥

∥

∥

∫ t

0
XA,B

τ,α,α(t − s)
∫

V
[g(s, xǫ(s), xǫ(s − τ), v))− ĝ(xǫ(s), xǫ(s − τ), v))]N̄(ds, dv)

∥

∥

∥

∥

p

.

(26)
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For any t ∈ [0, u] ⊂ [0, T], taking the expectation on both sides Eq. (4.4), we have

E

(

sup
0≤t≤u

‖xǫ(t)− yǫ(t)‖p

)

≤ 3p−1ǫp
E

(

sup
0≤t≤u

∥

∥

∥

∥

∫ t

0
XA,B

τ,α,α(t − s)[ f (s, xǫ(s), xǫ(s − τ))− f̂ (yǫ(s), yǫ(s − τ))]ds

∥

∥

∥

∥

p
)

+ 3p−1ǫ
p
2 E

(

sup
0≤t≤u

∥

∥

∥

∥

∫ t

0
XA,B

τ,α,α(t − s)[σ(s, xǫ(s), xǫ(s − τ))− σ̂(yǫ(s), yǫ(s − τ))]dW(s)

∥

∥

∥

∥

p
)

+ 3p−1ǫ
p
2 E

(

sup
0≤t≤u

∥

∥

∥

∥

∫ t

0
XA,B

τ,α,α(t − s)
∫

V
[g(s, xǫ(s), xǫ(s − τ), v))− ĝ(xǫ(s), xǫ(s − τ), v))]N̄(ds, dv)

∥

∥

∥

∥

p
)

= I1 + I2 + I3.

(27)

Applying Jensen’s inequality, we get

I1 ≤ 6p−1ǫp ·E
(

sup
0≤t≤u

∥

∥

∥

∥

∫ t

0
XA,B

τ,α,α(t − s)[ f (s, xǫ(s), xǫ(s − τ))− f (s, yǫ(s), yǫ(s − τ))]ds

∥

∥

∥

∥

p
)

+ 6p−1ǫp ·E
(

sup
0≤t≤u

∥

∥

∥

∥

∫ t

0
XA,B

τ,α,α(t − s)[ f (s, yǫ(s), yǫ(s − τ))− f̂ (yǫ(s), yǫ(s − τ))]ds

∥

∥

∥

∥

p
)

= I11 + I12.

(28)

Thanks to Hölder inequality and (H2), we obtain

I11 ≤ 6p−1ǫp

(

∫ u

0
1qds

)

p
q

·E
(

sup
0≤t≤u

∫ t

0
‖XA,B

τ,α,α(t − s)‖p‖ f (s, xǫ(s), xǫ(s − τ))− f (s, yǫ(s), yǫ(s − τ))‖pds

)

≤ 6p−1ǫpup−1C
p
1 Eα,α(µuα)p

·E
(

sup
0≤t≤u

∫ t

0
(t − s)p(α−1)[‖xǫ(s)− yǫ(s)‖p + ‖xǫ(s − τ))− yǫ(s − τ))‖p]ds

)

≤ 6p−1ǫpup−1C
p
1 Eα,α(µuα)p

·
∫ u

0
(u − s)p(α−1)

[

E

(

sup
0≤θ≤s

‖xǫ(θ)− yǫ(θ)‖p

)

+E

(

sup
0≤θ≤s

‖xǫ(θ − τ)− yǫ(θ − τ)‖p

)]

ds

≤ 2 · 6p−1ǫpup−1C
p
1 Eα,α(µuα)p

∫ u

0
(t − s)p(α−1)

E

(

sup
0≤θ≤s

‖xǫ(θ)− yǫ(θ)‖p

)

ds,

(29)

since

sup
0≤θ≤s

‖xǫ(θ − τ)− yǫ(θ − τ)‖p ≤ sup
0≤θ≤s

‖xǫ(θ)− yǫ(θ)‖p.
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Applying Hölder inequality, we obtain

I12 ≤ 6p−1ǫp ·E
(

sup
0≤t≤u

(

(

∫ t

0
‖XA,B

τ,α,α(t − s)‖qds

)

p
q

·
∫ t

0
‖ f (s, yǫ(s), yǫ(s − τ))− f̂ (yǫ(s), yǫ(s − τ))‖pds

))

≤ 6p−1ǫpEα,α(µuα)p

(

uqα−q+1

qα − q + 1

)

p
q

· u‖ϕ1‖∞

[

1 +E

(

sup
0≤t≤u

‖yǫ(t)‖p

)

+E

(

sup
0≤t≤u

‖yǫ(t − τ)‖p

)]

= 6p−1‖ϕ1‖∞ M1(qα − q + 1)−(p−1)ǫpEα,α(µuα)pupα,

(30)

here ‖ϕ1‖∞ = supt∈[0,u] |ϕ1(t)|, M1 = 1 +E

(

sup
0≤t≤u

‖yǫ(t)‖p

)

+E

(

sup
0≤t≤u

‖yǫ(t − τ)‖p

)

.

For the second term I2, we have

I2 ≤ 6p−1ǫ
p
2 E

(

sup
0≤t≤u

∥

∥

∥

∥

∫ t

0
XA,B

τ,α,α(t − s)[σ(s, xǫ(s), xǫ(s − τ))− σ(s, yǫ(s), yǫ(s − τ))]dW(s)

∥

∥

∥

∥

p
)

+ 6p−1ǫ
p
2 E

(

sup
0≤t≤u

∥

∥

∥

∥

∫ t

0
XA,B

τ,α,α(t − s)[σ(s, yǫ(s), yǫ(s − τ))− σ̂(yǫ(s), yǫ(s − τ))]dW(s)

∥

∥

∥

∥

p
)

= I21 + I22.

(31)

In view of the Burkholder-Davis-Gundy’s inequality, Hölder’s inequality and Doob’s martingale

inequality, and (H1), one has

I21 ≤ 6p−1ǫ
p
2 E

(

sup
0≤t≤u

∫ t

0
‖XA,B

τ,α,α(t − s)‖2‖σ(s, xǫ(s), xǫ(s − τ))− σ(s, yǫ(s), yǫ(s − τ))‖2ds

)

p
2

≤ 6p−1ǫ
p
2 E



 sup
0≤t≤u





(

∫ t

0
1

p
p−2 ds

)

p−2
p · p

2

·
∫ t

0
‖XA,B

τ,α,α(t − s)‖p‖σ(s, xǫ(s), xǫ(s − τ))− σ(s, yǫ(s), yǫ(s − τ))‖pds

))

≤ 6p−1ǫ
p
2 C

p
1 u

p
2 −1Eα,α(µuα)

·
∫ u

0
(u − s)pα−p

[

E

(

sup
0≤θ≤s

‖xǫ(θ)− yǫ(θ)‖p

)

+E

(

sup
0≤θ≤s

‖xǫ(θ − τ)− yǫ(θ − τ)‖p

)]

ds

≤ 2 · 6p−1ǫ
p
2 C

p
1 u

p
2 −1Eα,α(µuα)

∫ u

0
(u − s)pα−p

E

(

sup
0≤θ≤s

‖xǫ(θ)− yǫ(θ)‖p

)

ds.

(32)
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Applying (H3) and an estimation method similar to Eq. (4.10), we get

I22 ≤ 6p−1ǫ
p
2 u

p
2 −1

E

(

sup
0≤θ≤u

∫ t

0
‖XA,B

τ,α,α(t − s)‖p‖σ(s, yǫ(s), yǫ(s − τ))− σ̂(yǫ(s), yǫ(s − τ))‖pds

)

≤ 6p−1ǫ
p
2 u

p
2 −1Eα,α(µuα)pu‖ϕ2‖∞

[

1 +E

(

sup
0≤t≤u

|yǫ(t)|p
)

+E

(

sup
0≤t≤u

|yǫ(t − τ)|p
)]

= 6p−1M1‖ϕ2‖∞ǫ
p
2 Eα,α(µuα)pu

p
2 .

(33)
For the third term I3, we have

I3 ≤ 3p−1ǫ
p
2 E

(

sup
0≤t≤u

∫ t

0

∥

∥

∥

∥

∫

V
XA,B

τ,α,α(t − s)[g(s, xǫ(s), xǫ(s − τ), v)− g(s, yǫ(s), yǫ(s − τ), v)]N̄(ds, dv)

∥

∥

∥

∥

p
)

+ 3p−1ǫ
p
2 E

(

sup
0≤t≤u

∫ t

0

∥

∥

∥

∥

∫

V
XA,B

τ,α,α(t − s)[g(s, yǫ(s), yǫ(s − τ), v)− ĝ(yǫ(s), yǫ(s − τ), v)]N̄(ds, dv)

∥

∥

∥

∥

p
)

= I31 + I32.

(34)

From Lemma 2.3, similar to the proof of (3.8), one has

I31 ≤ 3p−1ǫ
p
2 DpE

(

sup
0≤t≤u

∫ t

0

∫

V
‖XA,B

τ,α,α(t − s)‖2‖g(s, xǫ(s), xǫ(s − τ), v)− g(s, yǫ(s), yǫ(s − τ), v)‖2λ(dv)ds

)

p
2

+ 3p−1ǫ
p
2 E

(

sup
0≤t≤u

∫ t

0

∫

V
‖XA,B

τ,α,α(t − s)‖p‖g(s, xǫ(s), xǫ(s − τ), v)− g(s, yǫ(s), yǫ(s − τ), v)‖pλ(dv)ds

)

≤ 3p−1ǫ
p
2 (Dpu

p
2 −1 + 1)

·E
(

sup
0≤t≤u

∫ t

0

∫

V
‖XA,B

τ,α,α(t − s)‖p‖g(s, xǫ(s), xǫ(s − τ), v)− g(s, yǫ(s), yǫ(s − τ), v)‖pλ(dv)ds

)

≤ 3p−1ǫ
p
2 (Dpu

p
2 −1 + 1)Eα,α(µuα)pC

p
1

·
∫ u

0
(u − s)pα−p

[

E

(

sup
0≤θ≤s

‖xǫ(θ)− yǫ(θ)‖p

)

+E

(

sup
0≤θ≤s

‖xǫ(θ − τ)− yǫ(θ − τ)‖p

)]

ds

≤ 2 · 3p−1C
p
1 ǫ

p
2 (Dpu

p
2 −1 + 1)Eα,α(µuα)p

∫ u

0
(t − s)pα−p

E

(

sup
0≤θ≤s

‖xǫ(θ)− yǫ(θ)‖p

)

ds.

(35)

Moreover, by (H3), we also have

I32 ≤ 3p−1ǫ
p
2 DpE

(

sup
0≤t≤u

∫ t

0

∫

V
‖XA,B

τ,α,α(t − s)‖2‖g(s, yǫ(s), yǫ(s − τ), v)− ĝ(yǫ(s), yǫ(s − τ), v)‖2λ(dv)ds

)

p
2

+3p−1ǫ
p
2 E

(

sup
0≤t≤u

∫ t

0

∫

V
‖XA,B

τ,α,α(t − s)‖p‖g(s, yǫ(s), yǫ(s − τ), v)− ĝ(yǫ(s), yǫ(s − τ), v)‖pλ(dv)ds

)

≤ 3p−1ǫ
p
2 (Dpu

p
2 −1 + 1)

·E
(

sup
0≤t≤u

∫ t

0

∫

V
‖XA,B

τ,α,α(t − s)‖p‖g(s, yǫ(s), yǫ(s − τ), v)− ĝ(yǫ(s), yǫ(s − τ), v)‖pλ(dv)ds

)

≤ 3p−1ǫ
p
2 (Dpu

p
2 −1 + 1)Eα,α(µuα)pu‖ϕ3‖∞

[

1 +E

(

sup
0≤t≤u

‖yǫ(t)‖p

)

+E

(

sup
0≤t≤u

‖yǫ(t − τ)‖p

)]

≤ 3p−1M1‖ϕ3‖∞ǫ
p
2 Eα,α(µuα)p(Dpu

p
2 + u). (4.14)
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From (4.5)-(4.14), for u ∈ (0, T], we obtain

E

(

sup
0≤t≤u

‖xǫ(t)− yǫ(t)‖p

)

≤ A(u) + B(u)
∫ u

0
(u − s)pα−p

E

(

sup
0≤θ≤s

‖xǫ(θ)− yǫ(θ)‖p

)

ds,

(4.15)

where
A(u) = 6p−1‖ϕ1‖∞ M1(qα − q + 1)−(p−1)ǫpEα,α(µuα)pupα

+ 6p−1M1‖ϕ2‖∞ǫ
p
2 Eα,α(µuα)pu

p
2

+ 3p−1M1‖ϕ3‖∞ǫ
p
2 Eα,α(µuα)p(Dpu

p
2 + u),

and
B(u) = 2 · 6p−1C

p
1 ǫpEα,α(µuα)pup−1 + 2 · 6p−1C

p
1 ǫ

p
2 Eα,α(µuα)pu

p
2 −1

+ 2 · 3p−1C
p
1 ǫ

p
2 Eα,α(µuα)p(Dpu

p
2 −1 + 1).

By using of Lemma 2.4, we get

E

(

sup
0≤t≤u

‖xǫ(t)− yǫ(t)‖p

)

≤ A(u)Ep(α−1)+1

(

B(u)Γ(p(α − 1) + 1)up(α−1)+1
)

.

Choose L > 0 and β ∈ (0, 1) such that for all t ∈ (0, Lǫ−β] ⊂ (0, T] satisfies the following

E

(

sup
0<t≤Lǫ−β

‖xǫ(t)− yǫ(t)‖p

)

≤ Ā(ǫ)Ep(α−1)+1(B̄(ǫ)Γ(p(α − 1) + 1))ǫ1−β,

where
Ā(ǫ) = 6p−1Eα,α(µTα)p‖ϕ1‖∞ M1(qα − q + 1)−(p−1)Lpαǫp(1−αβ)

+ 6p−1M1‖ϕ2‖∞Eα,α(µTα)pL
p
2 ǫ

p
2 (1−β)

+ 3p−1M1‖ϕ3‖∞Eα,α(µTα)p(DpL
p
2 ǫ

p
2 (1−β) + Lǫ

p
2 −β),

and
B̄(ǫ) = 2 · 6p−1C

p
1 Eα,α(µTα)pLp−1ǫp−(p−1)β

+ 2 · 6p−1C
p
1 Eα,α(µTα)pL

p
2 −1ǫ

p
2 −(

p
2 −1)β

+ 2 · 3p−1C
p
1 Eα,α(µTα)p(DpL

p
2 −1ǫ

p
2 −(

p
2 −1)β + ǫ

p
2 ).

are two constants. Thus, for any given number δ > 0, there exists ǫ1 ∈ (0, ǫ0] such that for each

ǫ ∈ (0, ǫ1] and t ∈ [0, Lǫ−β] ⊂ J,

E



 sup
t∈[0,Lǫ−β ]

‖xǫ(t)− yǫ(t)‖p



 ≤ δ.

Remark 4.1. If p = 2 and g ≡ 0, then FSDDEs (1.3) reduces to FSDEs (1.1) in [14]. Therefore, Theorem

3.1 generalizes the main result of [14].

By using Theorem 4.1 and Chebyshev-Markov inequality, we can obtain the following Corollary.

Corollary 4.1. Assume that (H1)-(H3) are satisfied. Then for a given arbitrary small number δ > 0,

p ≥ 2 with 1 − 1
p < α < 1, then for arbitrarily number δ̄ > 0 such that for L > 0, ǫ1 ∈ (0, ǫ0] and

β ∈ (0, 1) satisfying for all ǫ ∈ (0, ǫ1]

lim
ǫ→0

P



 sup
t∈[0,Le−β ]

‖xǫ(t)− yǫ‖p
> δ̄



 = 0.
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5. An Example

Example 5.1. Consider the following Caputo fractional stochastic delay differential equation (FSDDEs)

with Poisson jumps :











(CD0.7
0 x)t) = Ax(t) + Bx(t − 0.4) + f (t, x(t), x(t − 0.4)) + σ(t, x(t), x(t − 0.4)) dW(t)

dt

+
∫

V g(t, x(t), x(t − 0.4), v)N̄(dt, dv), t ∈ J,

x(t) = φ(t), −0.4 ≤ t ≤ 0,

(36)

where α = 0.9, τ = 0.4, J = [0, 4], x(t) = (x1(t), x2(t))
T , and

A =

(

0.3 0.1

0.15 0.2

)

, B =

(

0.2 0.1

0.15 0.25

)

, φ(t) =

(

1
1
2

)

,

and

f (t, x(t), x(t − 0.4)) =

(

1
3 e−2t sin(x1(t)) +

1
4 e−t sin3 t arctan(x1(t − 0.4)) + 1

7
1
3 e−2t cos(x2(t)) +

1
4 e−t cos3 t arctan(x2(t − 0.4)) + 1

6

)

,

and

σ(t, x(t), x(t − 0.4)) =

(

1
4 e−t arctan(x1(t)) +

1
3 e−2t cos2 t sin(x1(t − 0.4)) + 1

3
1
4 e−t sin(x2(t)) +

1
3 e−t sin2 t arctan(x2(t − 0.4)) + 1

6

)

,

and

g(t, x(t), x(t − 0.4), v) =

(

1
2
1
3

)

.

For each x(t), y(t) ∈ Υ and t ∈ [0, T], we have

‖ f (t, x(t), x(t − 0.4))− f (t, y(t), y(t − 0.4))‖

≤ 1

3
|x1(t)− y1(t)|+

1

4
|x1(t − 0.4)− y1(t − 0.4)|+ 1

3
|x2(t)− y2(t)|+

1

4
|x2(t − 0.4)− y2(t − 0.4)|

≤ 1

3
(‖x(t)− y(t)‖+ ‖x(t − 0.4)− y(t − 0.4)‖).

Thus

‖ f (t, x(t), x(t − 0.4))− f (t, y(t), y(t − 0.4))‖3 ≤ 22

33
(‖x(t)− y(t)‖3 + ‖x(t − 0.4)− y(t − 0.4)‖3),

which implies that the function f satisfy the assumption (H1) and (H2). Similarly, we can obtain that

the functions σ and g satisfy the assumption (H1) and (H2).
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Let p = 3. By calculation, we have µ = ‖A‖+ ‖B‖ = 0.8, ‖ f ‖Lp =
∫ 4

0 ‖ f (t, 0, 0)‖3dt = 0.0651,

‖σ(·, 0, 0)‖∞ = 1
2 , ‖g(·, 0, 0)‖∞ = 5

6 , C1 = 4
27 and

Ξ =

(

∫ 0

−0.4
‖(CD0.9

−0.4+φ)(s)− Aφ(s)‖ 3
2 ds

)2

≤
(√

2
∫ 0

−0.4
(‖(CD0.9

−0.4+φ)(s)‖ 3
2 + ‖Aφ(s)‖ 3

2 )ds

)2

≤





√
2
∫ 0

−0.4





∥

∥

∥

∥

∥

(

1
Γ(0.1)

∫ s
−0.4(s − t)−0.9dt

1
2Γ(0.1)

∫ s
−0.4(s − t)−0.9dt

)∥

∥

∥

∥

∥

3
2

+

∥

∥

∥

∥

∥

(

0.35

0.25

)∥

∥

∥

∥

∥

3
2









2

≤ 2

(

∫ 0

−0.4

(

(

3

2Γ(1.1)

) 3
2

(s + 0.4)0.15 + 0.61.5

)

ds

)2

= 1.5722.

Hence, we may choose a suitable value γ > 0 such that

2 · 32C3
1 E0.9,0.9(0.8 · 40.9)3(42 + (D3 + 1)2 + 1)Γ(0.7) < γ.

By Theorem 3.1, FSDDEs (5.1) has a unique solution x ∈ H
3([0, 4]).

In the following, we consider the standard form (4.1) as follows











(CD0.7
0 xǫ)t) = Axǫ(t) + Bxǫ(t − 0.4) + ǫ f (t, xǫ(t), xǫ(t − 0.4)) +

√
ǫσ(t, xǫ(t), xǫ(t − 0.4)) dW(t)

dt

+
√

ǫ
∫

V g(t, xǫ(t), xǫ(t − 0.4), v)N̄(dt, dv), t ∈ J,

xǫ(t) = φ(t), −0.4 ≤ t ≤ 0,
(37)

where xǫ(t) = (x1,ǫ(t), x2,ǫ(t))
T , and

f (t, xǫ(t), xǫ(t − 0.4)) =

(

1
3 e−2t sin(x1,ǫ(t)) +

1
4 e−t sin3 t arctan(x1,ǫ(t − 0.4)) + 1

7
1
3 e−2t cos(x2,ǫ(t)) +

1
4 e−t cos3 t arctan(x2,ǫ(t − 0.4)) + 1

6

)

,

and

σ(t, xǫ(t), xǫ(t − 0.4)) =

(

1
4 e−t arctan(x1,ǫ(t)) +

1
3 e−2t cos2 t sin(x1,ǫ(t − 0.4)) + 1

3
1
4 e−t sin(x2,ǫ(t)) +

1
3 e−2t sin2 t arctan(x2,ǫ(t − 0.4)) + 1

6

)

,

and

g(t, xǫ(t), xǫ(t − 0.4), v) =

(

1
2
1
3

)

.

Under conditions (H1) and (H2), by Theorem 3.1, FSDDEs (5.2) has a unique solution xǫ given by

xǫ(t) = XA,B
0.4,0.9,1(t + 0.4)φ(−0.4) +

∫ 0
−0.4 XA,B

0.4,0.9,0.9(t − s)[CD0.9
−0.4+

φ)(s)− Aφ(s)]ds

+ǫ
∫ t

0 XA,B
0.4,0.9,0.9(t − s) f (s, xǫ(s), xǫ(s − 0.4))ds

+
√

ǫ
∫ t

0 XA,B
0.4,0.9,0.9(t − s)σ(s, xǫ(s), xǫ(s − 0.4))dW(s)

+
√

ǫ
∫ t

0 XA,B
0.4,0.9,0.9(t − s)

∫

V g(s, xǫ(s), xǫ(s − 0.4), v)N̄(ds, dv).

(38)

By calculation, one has

f̄ (xε(t), xε(t − τ)) = lim
t→∞

1

t

∫ t

0
f (s, xǫ(s), xǫ(s − τ))ds =

(

1
7
1
6

)

,
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σ̄(xε(t), xε(t − τ)) = lim
t→∞

1

t

∫ t

0
σ(s, xε(s), xε(s − τ))ds =

(

1
3
1
6

)

,

ḡ(xε(t), xε(t − τ), v) = lim
t→∞

1

t

∫ t

0
g(s, xε(s), xε(s − τ), v)ds =

(

1
2
1
3

)

.

We now check that the condition (H3) is satisfied. In fact, one has

1

t

∫ t

0
‖ f (s, xε(s), xε(s − τ))− f̄ (xε(s), xε(s − τ))‖pds

=
1

t

∫ t

0

∥

∥

∥

∥

∥

(

1
3 e−2s sin(x1,ǫ(s)) +

1
4 e−s sin3 s arctan(x1,ǫ(s − 0.4))

1
3 e−2s cos(x2,ǫ(s)) +

1
4 e−s cos3 s arctan(x2,ǫ(s − 0.4))

)∥

∥

∥

∥

∥

p

ds

=
1

3pt

∫ t

0
(e−s(|x1,ǫ(s)|+ |x2,ǫ(s)|) + e−s(|x1,ǫ(s − 0.4)|+ |x2,ǫ(s − 0.4)|))pds

=
1

3pt

∫ t

0
(e−ps(‖xǫ(s)‖+ ‖xǫ(s − 0.4)‖)pds

≤ 2p−1

3pt
(‖xǫ(s)‖p + ‖xǫ(s − 0.4)‖p)

∫ t

0
e−psds

=
2p−1(1 − e−pt)

3p pt
(1 + ‖xǫ(s)‖p + ‖xǫ(s − 0.4)‖p).

1

t

∫ t

0
‖(t − s)α−1(σ(s, xǫ(s), xǫ(s − τ))− σ̄(xǫ(s), xǫ(s − τ)))‖pds

=
1

t

∫ t

0

∥

∥

∥

∥

∥

(

1
4 (t − s)α−1e−s arctan(x1,ǫ(s)) +

1
3 (t − s)α−1e−2s cos2 s sin(x1,ǫ(s − 0.4))

1
4 (t − s)α−1e−s sin(x2,ǫ(s)) +

1
3 (t − s)α−1e−s sin2 s arctan(x2,ǫ(s − 0.4))

)∥

∥

∥

∥

∥

p

ds

≤ 2p−1

3pt
(‖xǫ(s)‖p + ‖xǫ(s − 0.4)‖p)

∫ t

0
(t − s)pα−pds

=
2p−1

(pα − p + 1)3p tpα−p(1 + ‖xǫ(s)‖p + ‖xǫ(s − 0.4)‖p).

1

t

∫ t

0

(

∫

V
‖(t − s)α−1(g(s, xǫ(s), xǫ(s − 0.4), v)− ĝ(xǫ(s), xǫ(s − 0.4), v)‖pλ(dv)

)

ds

=
1

t

∫ t

0

∫

V

∥

∥

∥

∥

∥

(

1
2 (t − s)α−1

1
3 (t − s)α−1

)∥

∥

∥

∥

∥

p

λ(dv)ds

=
1

t

(

5

6

)p

λ(V)
∫ t

0
(t − s)p(α−1)ds

≤ 5pλ(V)

(pα − p + 1)6p tpα−p(1 + ‖xǫ(s)‖p + ‖xǫ(s − 0.4)‖p).

Thus, (H3) is satisfied with

ϕ1(t) =
2p−1(1 − e−pt)

3p pt
, ϕ2(t) =

2p−1

(pα − p + 1)3p tpα−p, and ϕ3(t) =
5p|Ω|

(pα − p + 1)6p tpα−p.
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It is easy to check that the conditions of Theorem 4.1 and Corollary 4.1 are satisfied. So, as ǫ → 0, the

original solution xǫ(·) → yǫ(·) in the sense of p square (p = 3) and in the probability, where

yǫ(t) = XA,B
0.4,0.9,1(t + 0.4)φ(−0.4) +

∫ 0
−0.4 XA,B

0.4,0.9,0.9(t − s)[CD0.9
−0.4+

φ)(s)− Aφ(s)]ds

+ǫ
∫ t

0 XA,B
0.4,0.9,0.9(t − s) f̂ (yǫ(s), yǫ(s − 0.4))ds

+
√

ǫ
∫ t

0 XA,B
0.4,0.9,0.9(t − s)σ̂(yǫ(s), yǫ(s − 0.4))dW(s)

+
√

ǫ
∫ t

0 XA,B
0.4,0.9,0.9(t − s)

∫

V ĝ(yǫ(s), yǫ(s − 0.4), v)N̄(ds, dv).

(39)

6. Conclusion

In this article, we established and proved the existence and uniqueness theorem for solutions of

Caputo type fractional stochastic delay differential systems (FSDDSs) with Poisson jumps. By utilizing

Hölders inequality, Jensen’s inequality, Burkholder-Davis-Gundys inequality, Doobs martingale

inequality and fractional Gronwall’s inequality, we proved the averaging principle for FSDDEs in the

sense of Lp. Our results generalize the cases of p = 2 and enriched the field of fractional stochastic

delay differential equations. Finally, we provided an example to show the usefulness of our results.
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