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Abstract: In this paper, we obtain the existence and uniqueness theorem for solutions of Caputo type
fractional stochastic delay differential systems (FSDDSs) with Poisson jumps by utilizing delayed
perturbation of Mittag-Leffler function. Moreover, by using Burkholder-Davis-Gundy’s inequality,
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1. Introduction

Fractional stochastic delay differential systems (FSDDs) are mathematical models that involve
fractional derivatives, stochastic noise, and time delays. The fractional derivatives represent the
memory effects and long-range dependence in the system, while the stochastic noise and delays
account for the random fluctuations and time delays, respectively. FSDDs find applications in many
fields, including physics, biology, finance, and engineering. They can be used to model systems with
memory and randomness, such as anomalous diffusion processes, fractional-order control systems
with stochastic disturbances, and biological systems with fractional-order kinetics and stochastic
effects. They provide a powerful framework for understanding and predicting the behavior of complex
systems with memory, randomness, and time delays. See for examples [1-6], and the references cited
therein.

The averaging principle is a mathematical tool used to simplify the analysis of dynamical systems
with fast and slow time scales. It provides an approximate description of the system’s behavior.
In 1968, Khasminskii [7] first used the average principle to prove that the solution of the average
equation can converge to the solution of the complex system. In [8], the authors presented an averaging
method for stochastic differential equations with non-Gaussian Lévy noise. With the development
of fractional calculus, many works have emerged that apply the averaging principle to fractional
stochastic differential equations (FSDEs). In [9], Xu, et.al. presents an averaging principle for Caputo
FSDEs driven by Brown motion. In [10], Luo, et.al. established an averaging principle for the solution
of the a class of FSDEs with time-delays. In [11], Ahmed and Zhu investigated the averaging principle
for the Hilfer fractional stochastic delay differential equation with Poisson jumps in the sense of mean
square. The periodic averaging method for impulsive conformable fractional stochastic differential
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equations with Poisson jumps are discussed in [12] by Ahmed. In [13], Wang and Lin extended the
averaging principle of the following FSDEs

{ CD[x(1) — h(t,x(1)] = F(tx(0) +g(t,x() %, te]=[0T) "
x(0) = xo,

in the sense of mean square (L? convergence) to L? convergence (p > 2), which generated some works
on the averaging principle for FSDES [9,10,14]. In [15], Yang, et.al. studied the averaging principle for
a class of -Capuo fractional stochastic delay differential equations with Poisson jumps.

Recently, Li and Wang in [16] studied the following Caputo type FSDDEs:

{(q%ma)—Aw0+3yu—m+fuyu»+dnwoﬁ%%teL @

Y(t) = ®(t), —h<t<0, h>0,

the existence, uniqueness and the averaging principle for (1.2) are established.
In the present paper, motivated by [11,13,16], we study the following Caputo FSDDEs with
Poisson jumps

(CD3x)(t) = Ax(t) + Bx(t — 7) + f(t,x(£), x(t — 7)) + o (t, x(t), x(t — 7)) Lt
+ [y 8(t, x(t),x(t — 7),0)N(dt,dv), te], 3)
x(t) =o(t), —T1<t<0,

where CDS‘ is the left Caputo fractional derivative with % <a <1 ]=][0T], A B € R are
two constant matrices, the state vector x € R" is a stochastic process, f : | x R" x R" — R",
c: ] xR"xR" - R"™and g : ] x R" x R" x V — R" are measurable continuous functions. Let
(Q), F, P) be a complete probability space equipped with some filtration (F;);>¢ satisfying the usual
condition, W(t) is an m-dimensional Brownian motion on the probability space (Q), F, P) adapted to
the filtration (F3)¢>0. Let (V, ®, A(dv)) be a o-finite measurable space. Given stationary Poisson point
process (p:)>0, which is defined on (Q), F, P) with values in V and with characteristic measure A. We
denote by N(t,dv) the counting measure of p; such that N(t,®) := E(N(t,®)) = tA(©) for ® € .
Define N(t,dv) := N(t,dv) — tA(dv), and the Poisson martingale measure generated by p;.

In this paper, we first prove the existence and uniqueness of solutions of Caputo type FSDDEs (1.3)
by using delayed perturbation of Mittag-Leffler function and Banach fixed point theorem; Secondly, we
prove the averaging principle for Caputo FSDDEs (1.3) in the sense of L, (pth moment) with inequality
techniques. The main contributions and advantages of this paper are as follows:

(1) The solution of the averaged FSDDEs converges to that of the standard FSDDEs in the sense of
Ly, which is a generalization of the existing result (p = 2) of the averaging principle for FSDDEs,

(2) The fractional calculus, stochastic inequality and Holder inequality are effectively used to
establish our result.

(3) our work in this paper is novel and more technical. Our result extends the main results of [17].

This paper will be organized as follows. In Section 2, we will briefly recall some definitions and
preliminaries. In Section 3, we prove the existence and uniqueness of solutions for Caputo FSDDEs
(1.3) with Poisson jumps. In Section 4, we prove that the solution of the FSDDEs (1.3) converges to
that of the standard one in L, sense. In Section 5, an example is presented to illustrate our theoretical
results. Finally, the paper is concluded in Section 6.

2. Preliminaries

In this section, we recall some basic definitions and lemmas which are used in the sequel.
Let Y = LP(Q), F,P) denote the space of all F(t) measurable, p squgre integrable functions

n 1/p n n
x 2 Q= R with [[x(8)[ps = (E E(Im(ﬂl")) cand ||x[| = ) [x;] and [|A[| = max Y |a;]| be
i=1 i=1 1<i<nj—1

doi:10.20944/preprints202311.1668.v1
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the vector norm and matrix norm, respectively. A process x : [—7,T] — LP(Q, F,P) is said to be
F(t)-adapted if x(t) € Y.

Definition 2.1 [17]. Let « > 0, and f be an integrable function defined on [a,b]. The left
Riemann-Liouville fractional integral operator of order « of a function f is defined by

B0 = i [ =9 s, 1> @

Definition 2.2 [17]. Letn —1 < a < n, and f € C"([a,b]). The left Caputo fractional derivative of
order « of a function f is defined by

EDRF() = (L) (1) = ——— [t =5y A (e)ds, >4, )
I'(n—a) Ja

where n = [a] + 1.

Definition 2.3 [18]. The coefficient matrices Qx(s), k = 0,1,2, ..., satisfy the following multivariate
determining matrix equation

QO(S):Q}C(_T):@I Ql(o):I/ k:0/1/2/"'/ S:O,T,ZT,"‘,
Qk+1(s):AQk(S)+BQk(S_T)/ k:0/1/2/”‘/ SZO/T/2T/"'/
where [ is an identity matrix and © is a zero matrix.

Definition 2.4 [18]. Delayed perturbation of two parameter Mittag-Leffler type matrix function X s 5
generated by A, B is defined by

0, te[-1,0),
I, t=0,
A,B L ia+p—1 yintp-1
Xeap(t) = Z Qi+1(0)f ;rﬁ + Z Qi1 (T)tTmiw) (6)

— T)za+ﬁ 1

S ;O Qi+1(pr>(r”(Tﬁ), pT<t<(p+1)T.

From [17], we can easily obtain the following definition.

Definition 2.5. A R"-value stochastic process {x(t) : —t < t < T} is called a solution of (1.3) if x(t)
satisfies the integral equation of the following form:

XA (t+1)p(—7) + [0, XEE (£ —5)[CD* . 9)(s) — Ag(s))ds
XA (- f( x(s), x(s — 7))ds
x() =1+ fy Xedu(t—s)o(s,x(s), x(s — 7))dW(s) 7)
+ [y XaB L (t—s) [, g(s,x(s),x(s — T),0)N(ds,dv), te],
¢(1), tel-1,0,

where x(1) is F (t)-adapted and E( ["_|[|x(¢)||Pdt) < co.

Lemma 2.1 ([19]). Foranyt >0,0<a <1,0< B <1landa+ B > 1, we have

1X2:25() ) < P Eq g (I AN+ 1BIDEY), ®)

where E, g(z) = Y32 F(#:ﬁ)’ z € R is the Mittag-Leffler function.
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Lemma22Foranyp > 2,a € (1 — %, 1) and 7y > 0, one has
= st s < TP e, ©)
whereT () := O+°° s*~1e=%ds is the Gamma function.

Proof. Let v > 0 be arbitrary. Consifer the corresponding linear Caputo fractional differential equation
of the following form

D (1) = x(0). (10)

From [20], it is easy to know that the Mittag-Leffler function E,y 1,1 (7t/* 7 +1) is a solution of (2.7).
So, the following equality holds:

_ 04 f _ _
Eppp1a (vt P =1+ W/O (E= )P PEpq_pi1a(ysP* P H)ds,

which completes the proof.

Lemma 2.3 ([21, 22]). Let ¢ : R+ x V — R" and assume that

t
/ / §(s,0)|PA(dv)ds < 0o, p > 2.
0.Jv
Then there exists D > 0 such that

P
E ( sup >
0<t<u
<D, {]E (/O/V ]4>(s,v)|2)t(dv)ds>2 +1E/O”/V |¢(s,v)|PA(dv)ds}.

/Ot /V ¢(s,0)N(ds,dv)

(11)

Lemma 2.4 ([23]). Let u, v be two integrable functions and g be continuous defined on domain [a, b].
Moreover, assume that

(1) u and v are nonnegative, and v is nondecreasing;
(2) g is nonnegative and nondecreasing.

If
u(t) < o(t) +5(0) [ (1) u(oydr,

then
u(t) < o(DEa(@(DT(@)(t —a)%), VE€ [a,b],

where E,(+) is the Mittag-Leffler function.

To study the qualitative properties of solution for (1.3), we impose the following conditions on
data of the problem.

(H1) For any x1, x2,¥1,y¥2 € R" and t € ], there exist two constants C1,C; > 0 such that
1f(t x1,y1) — f(t 2, y2) 1PV [0t x1,91) — ot x2,2) ||

V/V g (t, x1,y1,0) = 8(t, %2, y2,0) [PA(dv) < CF (lx1 — x2llP + [ly1 — 2P),

doi:10.20944/preprints202311.1668.v1
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where || - || is the norm of R", x Vy = max{x,y}.

(H2) Let o(+,0,0) and g(+,0,0) are essentially bounded, i.e.

[lo(-,0,0)|lc0 :=ess sup |lo(t,0,0)|| < +oo, /g(-,0,0)|lc :=ess sup ||g(t,0,0)| < oo,
te[0,00) te[0,00)

and f(-,0,0) is L” integrable, i.e.

T
Ifll = /0 £ (£,0,0)|[Pdt < ~+oo.

3. Existence and uniqueness result

Let HP ([0, T]) be the space of all the processes x which are measurable, F(t)-adapted, and
satisfied that ||x||gr := sup [[x(t)||ps < co. Obviously, (HP ([0, T]), || - [|mr) is a Banach space. Set
0<t<T

i = ||A|l + ||B||. For any te[-7,T] and ¢ € C([—7,0],R"), we define an operator 7 : HF ([0, T]) —
HP ([0, T]) as follows :

(T)(0) = XEL (4 Dp() + [ XA 9)CD 1 9)(5) — Agls)lds

+/ XfaBa t—s)f(s,x(s),x(s—T))ds
(12)

+ [ XA =906, x(6),x(s — D)AW(S)
/ X&B (t—s / g(s,x(s), x(s — 1),v)N(ds,dv).
Lemma 3.1 Let1 — % < & < 1. Assume that (H1) and (H2) hold. Then the operator T is well-defined.
Proof. For any x € HP ([0, T]), by (3.1) and the following elementary inequality

m p

Y ai

i=1

5
<mP 'Y |a|F, a4 €R",i=1,2,.,m. (13)
i=1

we have

(T2 (D)1hs < 5" E(IX50 -+ D)e(=0)]17)

518 (| [ X880 - 9D 9)(5) ~ Ap(s)ds

)
)
(14)

+5P‘1E< /0 XAB (t— 5)o(s, x(s), x(s — 7)) AW (s)

+5”1E( / XTMt—s f(s,x(s),x(s — ))ds

+5P 1R ( /Ot XAB (t—s) /Vg(s,x(s),x(s —17),v)N(ds,dv)

=Lh+bLh+1I3+ 14+ Is.

For I, from Lemma 2.1, one has

b = 5P (X0 (4 De(=D)1P) < SPTE(IXZ 4+ DI [9(=T)I17) 5)
<57 p(= )1 (Eaa ((T + 1))
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For I, by Lemma 2.1, Holder inequality and & > 1 — %, we obtain

=5 1B (| [ X0 9CD L)) - Aglo)lis

)
<51 [* et oras & ([ 1€0% 00 - apeinas) (16)

(T + 7)pe=r+l

<5 lg
- pa—p+1

(Eaa(u(T +7)%)))7,

= 0 p-1
where J+ 1 =1and &= ([°, €D .9)(s) — Ag(s)][1ds)” " < .
For I3, applying (H1), (H2), Holder inequality, Lemma 2.1 and Jensen inequality, one has

14
)
<5P1(/ |XAE Ws) - (/ 1(6x(5) (s =) = £(5,0,0) + £(5,0,0)s
<5p-1 (/O 1 DE, (u(t—s)® )qu>

2 ([ 16,9, 305 = 7)) = £(s,00)Pds + [ 1£5,0,0)17ds

107 B (4T)? (W) "B ([ L+t - s+ [ 1565.0,0))

— 51 (H/ XAB (F—5)f(s,x(s), x(s — 7))ds

(17)

ge —q+1
P
Tae—q+1 q
< 10r1 LAV P P q
<107 B (uT) (W_q“) (T @l + 1919) + £l )
since

sup Ellx(f - 7)[|f <maxq{ sup E[¢(t)[|?, sup E[x(£)]?
0<t<T

0<t<T —1<t<0
= max {9, % } < 1917+ vl

For 14, by using (H1), (H2), Cauchy-Schwarz inequality, Ito’s isometry, Lemma 2.1 and Jensen
inequality, we have
2) ’z’)

P

<57 1B [ KAL) Pl x(6), (s = o)) s )

—5r-1g ((H/ XAB (t =)o (s, x(s), x(s — T))dW(s)

P
2 2

<5 IR ((/Otlp”zds) v () 15 = ) Plots ), x5 = )17 ) (18)

<5 178 [ IR = 9P ot x(6), (s — o) P

<5 T2 U urE ([ (- 9P PP + s = DIP) + o(6,0,0)171ds )

- 10p-1Pe—%

| Eaa(T*)P(CF 2l1x ]I, + 16117) + (-, 0,0)[1%)-
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For I5, by using (H1), (H2), Lemmas 2.1, 2.3 and Jensen inequality, we obtain
_ P
=571 (H/ / XTM (t—s)g(s,x(s),x(s — 7),v)N(ds,dv) )
L
< SP—le]E (/ / |Xf/;ffa(t — s)|2g2(s,x(s),x(s — T),U)A(dv)ds>
+ 5P~ 1Dp </ / |X?NB,X t—s)|PgP (s, x(s), x(s — T),v)A(dv)ds)
<5/-1Dp, Tff1 +1)E (/ | XAB (t—s) |p/ P (s, x(s), x(s —T),U)/\(dv)ds> (19)

< 5PID, (T2 4 1)2P 1By o (TP
E (/Ot(t = )P PICT (x ()17 + [lx(s — ) [IP) + ||g(s,o,o,o)||r’]ds)

107" 1D, (T2~ + 1) TP P+
pa—p+1

Eao(nT*)P(CT 2]l xlIg + 19117) + 118 (-, 0,0,0)1%)-

Submitting (3.4)-(3.8) into (3.3), which implies that || 7 x||gr < oo. Thus, the operator 7 is well-defined.

Theorem 3.1 Let 1 — % < & < 1. Assume that (H1) and (H2) hold, then (1.3) has a unique solution
x € HP([0, T)).
Proof. For T > 0, we choosing and fix a constant y > 0 such that

> 2377 1C By (uT*)P(T' + (Dy + 1)TE 1+ 1)I(pa — p +1). (20)

On the space H? ([0, T]), we define a weighted norm || - ||, as below

llx[ly := sup( E“”‘(”“”Z )>p, vx € HP([0, T]).

t€[0,T] Epa—p-l-l,l('Ytpa P

Similar to the Theorem 1 in [18], It is easy to know that the norms || - ||g» and || - ||, are equivalent.
Hence, (H? ([0, T]), || - ||4) is a Banach space. We can easily prove that 7 : H” ([0, T|) — HP([0, T])
defined in (3.1) is uniformly bounded operator by Lemma 3.1. Next, we only check that 7 is a
contraction operator.

Firstly, by using Holder inequality, (H1) and Lemma 2.1, we obtain

p

H/ XTM (t—s)(f(s,x(s),x(s — 1)) — f(s,y(s),y(s — T)))ds

<([ 1qu) [ XA = P53, 5 = 1) = Fls,y(),y(s — D)
<8 [ (= )N Bt — )5, 2(5), (5 = ) = S, y(s), (s — ) s

< T (] [ (6= P (x() — y(OIP + (s = 1) — y(s = 7))

(21)
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Secondly, similar to the proof of (3.7), one has
A,B P
| X = 9)(015,5(9),x(5 = 1) = 05, y(5), (6 = )W)
< TTl/ IX2E (=) P llo(s, x(s), x(s — 7)) — (5, y(s), y(s — 7)) ||Pds -

P
2

T

IN

T Eqa(uT")? /0(t—S)"“’p[Cf(IIx(S)—y(S)II“rIIX(S—T)—J/(S—T)H”)dS
T3 1ClE, (#T“)”/Ot(f—S)”“”’(llx(S) —y©)I” + [lx(s = 7) —y(s = D)|7)ds.

Thirdly, similar to the proof of (3.8), we obtain

[ X886 [ (506,309,305 = ),0) = g(5,y(5) (s — ), 0)) N (ds, o)

14

<Dy (I (=9I [ gt (5), x5 = 7),0) = g(5,9(6), s = ), 0) PAdolds )
4Dy [ XA =91 [ 18(5,(5), (5 = ),2) ~ 8(5,5(5), yls — ),0) PAdo)ds

< Dp(TE41) [ IXAR(T )1 [ l18(5,(5), (5 = ),2) (5,36, y(s — ),0) P Ado)ds

< DyCY (T2 4 1) Ega (uT*)” /Ot(t = )PP ([lx(s) =y ()P + [Ix(s — 7) —y(s — [|V)ds.
(3.12)

For each x,y € HF ([0, T]), from (3.1), (3.2), and (3.10)-(3.12), we have
E(|Tx(t) = Ty®IP)
1 A,B p
=3E ("/ Xeaalt ,x(s),x(s = 1)) = f(5,4(s),y(s — T)))ds )

#3018 (| [/ X881 = 5) (016305, x(5 = 7)) = (s, y(5),yls = T))AWS)

)

8 (| [ Xt -9) /V (8(5,%(5), x(s — ),0) — £(5,(5), y(s — 7),0)) N (ds, do)

)

r t
< T Ena (TP [ (=)@ VE(x(s) — y(s) |7 + [1x(s = ) = (s — " )ds
t
BTSN B () [ (=) PE(x(s) — y(s) |7 + [lx(s = 1) = (s — " )ds

FPICLD(TE + DEW (T [ (6= 5P PE(I(6) — y()IP + 1x(s = 7) — yls — Tl

- w/ot(t — $)PPE(|[x(s) — y(s)|IP + |lx(s — T) — y(s — T||P)ds,
(3.13)

where ,
P r
W = 3P L C Ey o (uT)P(T7 + (D + )T 4+ D,).
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For t > 7, one has

[ = D (s =)~ yts =) ds = [+ [ (0P fats — 1) (s — )P
= [t =9 Dlx(s ~ 1) ~ y(s - 1) s

f—t
= [ =T =D x(w) - y() |, (3.14)
0
From Lemma 2.2, combining (3.13) and (3.14), for each t € [0, T|, we get

E(Tx(®) - Ty@®)|")
Epa—pr11 (PP )
w t B B
- Epa—pr11 (7P P ) /0 (t = )P P Epa_piaa (" P s x — 5
w

Epa—pi1a(y(t = T)P*PH)
< 2wl (pa—p+1)
a v

t—1
+ | =T B i (| x =y

lx =17,

which implies that
17> =Tylly < pllx = yll,

1
2wI (pa—p+1) ) P

where p = ( >

Based on (3.9), one can obtain p < 1 and the operator 7 is a contractive. Thus, there exists a
unique solution of (1.3) by using of the Banach fixed point theorem. The proof of this theorem is
complete.

4. An averaging principle

In this section, we shall investigate the averaging principle for Caputo type FSDDEs. For any
t € J, we consider the following standard form of (1.3)

xe(t) = XJ (4 D)p(-7) + / XA (t =)D p)(s) — Ag(s)]ds
b [ XA 3)5(s,x(5), (5 — )i
+VE [ XL (=)0, x(6),3(5 — T)aW(s)
+VE [ XA =35) [ g(s,x(5), (s~ 7),0)N (s o),

where € € (0, €] is a positive small parameter with € being a fixed number.

(23)

Consider the averaged form which corresponds to the standard form (4.1) as follows :
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elt) = XEB (14 2)p(0) + [ XA (-9 D 9)(5) — Agls)lds
e [ XA (= 9)f(s.y(),y(s — T)ds
+VE [ XER (= 5)005,y(5), (s — )W)
+VE [ XAB(E=3) [ 8(6,u(5)y(s — ), 0N s o),

where f :R*"xR" -+ R", 0 : R" x R" - R"™™, and ¢ : R" x R" x V — R" satisfying the following
averaging condition :

(24)

(H3) Forany t € ], x,y € R", and p > 2, there exists a positive bounded function ¢;(-),i =1,2,3
such that

£ [ W) = fe) s < pa(00+ 07 + 1P,
£ 1= 905, 39) — 0t IS < g1+ 5117 + 911P),

(=9 gt %0 — 8, 0D PAM0) ) ds < ga()(1+ 617 + 1),
where tILTO pi(t) =0,i=1,2,3.

Theorem 4.1. Assume that (H1)-(H3) are satisfied. Then for a given arbitrary small number § > 0,
p>2withl — % <a <1, thereexistL > 0,¢e; € (0,e0] and B € (0,1) such that

E ( sup  |xe(t) —ye(t)|”> <94, (25)
te[—1,Le P
foralle € (0,€1].

Proof. If p = 2, it is easy to prove that (4.3) holds by using the similar method as in [20]. In the
following, we will only consider the case of p > 2. From Egs. (4.2), (4.3), and inequality (3.2), we obtain

xe(t) = ye()||P < 37~ 1e? / XAB (1 — ) f (s, xe(s), xels — 1)) — F(ye(s), vels — s
+3led / XAEB(t—5)[0(s, xe(s), Xe(s — 1)) — 0(ye(s), ye(s — T))]dAW(s) ' (26)
+3r1eh / XEE (1t =5) [ 8(s,xe(s), xels = 7),0)) = §(xe (), xels = ), ) IN (s o) '

doi:10.20944/preprints202311.1668.v1
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For any t € [0, u] C [0, T], taking the expectation on both sides Eq. (4.4), we have

)

/ Xeion (t =) [0 (s, xe(5), xe(s = 7)) = 0(ye(s), ve(s — T))JAW(s)

E < sup |[|xe(t) —ye(t)II”>

0<t<u

/O Xoion (£ =) [f (5, % (5), xe(s = 1)) = fye(s), ye (s — 7)]ds

< 3P~ 1lelR sup
0<t<u

+3P1leIR sup
0<t<u

)

+3r-1e5E ( sup / XT,XB,X t—s) / [g(s, xe(5), xe(s — T),0)) — §(xe(5), xe(s — T),0)) | N(ds, dv)

0<t<u

)

(27)

=L+DL+1.

Applying Jensen’s inequality, we get

/ Xaa(t = $)[f (5, %e(5), xe(s = 7)) = f(5,ye(s), ye(s — 7)) ]ds

L <6l le! . E sup
0<t<u

)
P) (28)

+6/1e? -E | sup
0<t<u

/ XEaba(t = $)[F(5,¥e(), ye(s — 7)) = f(ye(s), ye(s — 7))]ds

= 111 + L.

Thanks to Holder inequality and (H2), we obtain

y ?
q
Ij; < 6P le? (/ 1‘7ds>
0

(sup JE AR xe()xe(sr))f(s,ye(S),ye(sT))Ilpd5>

0<t<u

< 6P lePyub~ 1CpEaa(yu”‘)p
(Sup /(t*S * ]| xe(s )}/e(s)l”+|xe(ST))ye(ST))Hp}dS) (29)
0<t<u

< 6P LlePyb- 1CfEa,a(yu“)p

s ( sup (0 >—ye<e>||P) +E ( sup [xe(6—) —yew—r)v’)] ds

0<6<s 0<60<s

u
<2.6P 1ePuP=1CPE, o (uu®)P t—s)P@DE [ sup |lxe(8) —ye(8)||P | ds
1At 0 O<GE Y
SU<S

since

sup [[xe(0 —T) = ye(0 = 7)[[7 < sup [|lxe(6) —ye(0)[".

0<6<s 0<0<s
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Applying Holder inequality, we obtain
14
he <6 ter B sup ([ XA (=)l )
0<t<u
t ~
15 () vels = 1) = Flels)wels = )17 ) )
4
qr—q+1 N q (30)
< 6P leP ayp (M
< O e (qw—qﬂ)

“uflprlleo

1+E ( sup IIye(f)H”) +E ( sup Hye(f—f)II”ﬂ
0<t<u 0<t<u

— 6 gl (g — g+ 1)~ Vel B ()",

here [[¢1/le0 = supepo |91 ()], My =1+ E ( sup ||ye(t)||”> +E < sup ||ye(t — T)II”)-

0<t<u 0<t<u

For the second term I, we have

/X‘raa (t=8)[o(s, xe(s), xe(s = 7)) = (s, ye(s), ye(s — 7)) JdW(s)

L <6/ letE sup
0<t<u

)
P) (31)

In view of the Burkholder-Davis-Gundy’s inequality, Holder’s inequality and Doob’s martingale
inequality, and (H1), one has

+6P et E sup
0<t<u

/ Xiaa(t = 8)[0(s,ye(s), ye(s — 7)) = 0(ye(s), ye(s — 7)]dW(s)

= I + Ip.

N

t
Iy < 6/ 1€l ( sup /0 IXEa(t = $)[P (s, xe(s), xe(s = 7)) — o5, ye(s), ye (s — T))||2d5>

0<t<u

t p ijzg
< 6P letE ( sup ((/ 1P—2ds>
0<t<u 0
IR = 9P, we(5) el = 7)) = o5 el els = ) s ) )
< 6p71€7Cfu7*1Ea,,x(;m )

-/OM(M—S)”“*” E ( sup [|xe(6) —J/e(9)||”> +E ( sup [[xe(6 - 7) —ye(G—T)II”)] ds

0<6<s 0<6<s
u
<2. 6”71€§Cfu§*1Ea,a(yu"‘)/o (1 — )P PE ( sup |xe(6) —ye(e)nr’) ds

0<0<s

(32)
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Applying (H3) and an estimation method similar to Eq. (4.10), we get

I < 67 lebub IR ( sup. [" IXAR(E = )17 o6, ye(),vels — )~ o0e(6),yels - T))II”ds>

0<0<u
< 6P 15Ut T Eg o ()P ul| @afloo [1+E ( sup |ye<t>|f’> +E ( sup |ye(t — rw)]
0<t<u 0<t<u

. P /4
= 6" M| @2 looe? B (puus®)Puiz.

(33)
For the third term I3, we have
P _ 4
I <3712 | sup m o Q(s,xe(s), xe(s — 1), v) — g(s,ye(s), ye(s — T),v)|N(ds, dv)
0<t<u
v R 7\ (G4
+3 e E | sup o 8(5,ve(s), Ye(s = 1),0) = &(ye(s), ye(s — 7),0)|N(ds, dv)
0<t<u
= I31 + I3p.
From Lemma 2.3, similar to the proof of (3.8), one has
14
_1.2 A,B 2 ’
b <30 (sup [ [ XA )Pl xe(5) xe(s — 7),0) 805, wels) yels — 1),0) [PA(do)ds
0<t<u
+3P 15 < sup / S, I =) P55, xe (), xe s = 7),0) = (5, yels), yels = T),v)||”A(dv)ds>
0<t<u
<3P e%(D,,url +1)
X8 (¢ P — - — PA(dv)d
sup | | I Xeaa(t =) 7185, xe(s), Xe(s = 7),0) = 8(s, ¥e(s), Ye(s — 7),0) [PA(dv)ds
0<t<u

<31k (Dpuf*1 + 1) Eg o (uu®)PCY
'/Ou(ufs)’”‘_” E ( sup |[xe(0) ye(G)II”> +E ( sup |[xe(0 —7) ye(Gr)II”ﬂ ds

0<6<s 0<6<s
u
<2371t (Dput N+ D Eaapu®)? [ (¢ =5)TE ( sup [|xe(6) - yew)v’) ds
0 0<6<s

(35)
Moreover, by (H3), we also have

NI

t
132§3p_1€§DpE<SUP s ||X?,£a<ts>||2||g<s,ye<s>,ye<sr>,v>g(ye<s>,ye<sr>,v>||2A<dv)ds>

0<t<u /0

+3P1e3E<sup / [, I t—s>||r’||g<s,ye<s>,y€<s—r>,v>—g<ye<s>,ye<s—r>,v>||m<dv>ds>

0<t<u

<37 1es (Dyut 1 41)

(sup [ ] It - ||P||g<s,ye<s>,ye<s—r>,v>—gwe(s),ye(s—r»v)ﬂWv)ds)
0<t<u

1+E ( sup Iye(t)||p> +E ( sup IIye(t—T)II"’ﬂ
0<t<u 0<t<u

< 37 M || @3] oo€ ? En o (u®)P (Dpus 2 + ). (4.14)

_1 P P_
<3 le2(Dyuz !+ 1) Eg(p*)Pu| 93| co
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From (4.5)-(4.14), for u € (0, T], we obtain

E ( sup |[xe(t) —ye(t)l”> < A(u) + B(u) /Ou(u —s)P"PE < sup |[xe(6) —ye(9)1|p> ds,

0<t<u 0<6<s
(4.15)
where
A(u) = 6" @1]lMi (qa — g+ 1)~ P VP Ey o (uuu® )P ub™
+ 6" My || pal| oo ® Eqa(pu® )P
_ P P
+3F 1M1||§03||oo€2Ea,a(ﬂ“a)p(Dp“Z +u),
and

B(1) = 26771 CYeP By () Pul ™! 426771 Cle? By o (pu® )Pt ™!
423771k By ()P (Dput 1 4 1),
By using of Lemma 2.4, we get
¢ ( o Ielt) = ye“)””) < AW)Eyu-1y1 (BT (pla—1) + Dur®-141)
0<t<u

Choose L > 0 and B € (0,1) such that for all t € (0, Le #] C (0, T] satisfies the following

E ( sup |[xe(t) —ye(t)ll”> < A(€)Epa-1)11 (BT (pla = 1) +1))e' P,

0<t<Le P
where
A(€) = 6" En o (T*)? || @1 || oo M1 (g — g + 1)~ (P~ D LPreP(1=2F)
+ 67" M || @2l oo Ena (0 T*)PLE€2(17F)
+37 My |93 o Eun () (DpLEE (P + L F),
and

B(e) =2- 6P—1ci’Ea'a(VT“)PLP—lep—(P—l)ﬁ
+2. 6”_1CfE,X,,X(‘uT"‘)"’Lg_leg_(g_l)ﬁ
4237 1P By (uT*)P (D, L2 12~ (37 10F 163,

are two constants. Thus, for any given number § > 0, there exists €; € (0, €g] such that for each
€€ (0,e;]and t € [0,Le P] C ],

te[0,LeF]

E ( sup xe(t —ye<t>||*’) <.

Remark 4.1. If p = 2 and g = 0, then FSDDEs (1.3) reduces to FSDEs (1.1) in [14]. Therefore, Theorem
3.1 generalizes the main result of [14].

By using Theorem 4.1 and Chebyshev-Markov inequality, we can obtain the following Corollary.

Corollary 4.1. Assume that (H1)-(H3) are satisfied. Then for a given arbitrary small number § > 0,
p>2withl— % < a < 1, then for arbitrarily number § > 0 such that for L > 0, €; € (0,¢€p] and
B € (0,1) satisfying for all e € (0, €1]

€20\ tefo,Le#]

limP ( sup ||xe(t) —yellP > 5) =0.
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5. An Example
Example 5.1. Consider the following Caputo fractional stochastic delay differential equation (FSDDEs)

with Poisson jumps :

(CDY7x)t) = Ax(t) + Bx(t — 0.4) + f(£, x(£), x(t — 0.4)) + o (t, x(£), x(t — 0.4)) 20
+ [y &(t,x(t),x(t — 0.4),v)N(dt,dv), te], (36)
x(t)=¢(t), —04<t<Q,

where « = 0.9, T =04, ] = [0,4], x(¢ ()T, and

(t) =
03 0.1 02 01
A_<015 oz) _<015 oz5> W):(

1
l ’
2
and
L2t si t)) + le~tsind tarctan(x (t — 0.4)) + 1
04 ze~ " sin(xq ( 3 1 L
fltx(t), x(t ) = ( Te 2 cos(xy(t)) + te~! cos® tarctan(xp(t — 0.4)) +
and
1,-t 1 - 1
I tan(xq (f)) + ze~ COS 2 tsin(xq(t —0.4)) + 1
_04)) — [ 3¢ 'arc 3 3 )
ol x(t), x(t ) ( Te7tsin(xp (1)) + %e‘t sin® tarctan(xo (t — 0.4)) + 1
and

g(t,x(t),x(t —04),0) = (

For each x(t),y(t) € Yand t € [0, T], we have

) |

QI=N—=

Lt (1), x(t = 04)) — £ (1, y(8), y(t — 04))|
< b (t) =y (] + gl (= 04) — ya(t = 0.4) |+ 5 xa(t) — ya(H)] + Zlxalt — 0.4) — yalt — 0.4)]

< %(llx(f) —y ()] + [[x(t = 0.4) —y(t - 0.4)]).

2
£ (8 x(8), (¢ = 0.4)) = f(t,y(t), y(t = 04))|° < %(Hx(t) =y + x(t — 0.4) — y(t - 04)]),

which implies that the function f satisfy the assumption (H1) and (H2). Similarly, we can obtain that
the functions ¢ and g satisfy the assumption (H1) and (H2).
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Let p = 3. By calculation, we have u = ||A[| + || B|| = 0.8, ||f||lLr = f04 | £(t,0,0)|3dt = 0.0651,
lo(+,0,0)[leo = 3, [1g(+,0,0) [l = 2, C1 = 2 and

[11

= ([, Ien% ) - A</><s>||%ds)2
(‘[/ (1CD% 4 ) (s)I13 + ||A4>(s)||%)ds)2

Lt (5= )70
(f/cm (H( ? s (st)) 0'9iitt )
<2( [, (i)

Hence, we may choose a suitable value v > 0 such that

)

0.35
0.25

2
(s +04)%15 4 0.61-5> ds> = 1.5722.

NI N

2-32C3E09,09(0.8-4%%)3(4% + (D3 +1)2 + )T(0.7) < 1.
By Theorem 3.1, FSDDEs (5.1) has a unique solution x € H>([0,4]).

In the following, we consider the standard form (4.1) as follows

(CDR7xe)) = Axe(t) + Bre(t — 04) + ef (1, xe(1), xelt — 0.4)) + vVEw(t,xe(t) xe (£ — 0.4) 4l
+Ve [y, gt xe(t), xe(t — 0.4),0)N(dt,dv), te€],
xe(t) = ¢(t), —04<t<0,
(37)
where x¢(t) = (x1¢(t), x2¢(t))T, and

1,2t 1,3 1
ze “sin(xy ¢ (t)) + e 'sin’ tarctan(xq . (t — 0.4)) + »
txe(t), xe(t—04)) = | 3 . i ’ 1
Fltxe(t), xe( ) ( Te 2 cos(xpe(t)) + et cos® tarctan(xpe (f — 0.4)) + &
and
1,—t 1,2 0o fsi 1
ge 'arctan(xy¢(t)) + 3e7 % cos tsin(xy¢(t —0.4)) + 3
t t t—04)) = 4 / , 3 )
o(t xe(t), xe(t = 04)) ( re tsin(xoe(t)) + %e’Zt sin® t arctan(xp¢(f — 0.4)) + &
and

g(t/ xe(t)/ xe(t — 0.4),0) = (

Under conditions (H1) and (H2), by Theorem 3.1, FSDDEs

WI—=N—=

) |

5.2) has a unique solution x. given by

—~

xe(t) = X(?4Bo 91(t +0.4)p(—04) + f804 X§41,30,9,0‘9( s)[€D%% 04+ 9)(5) — Ap(s)]ds
+e fo X§4l,;0.9,0.9(t 8)f (s, xe(s), xe(s — 0.4))ds
+v/e€ fo X34 0,00 (t = 8)0 (s, Xe(s), xe (s — 0.4))dW(s)
+ve [y Xé4?0.9,0.9 s) [y 8(s,xe(s), xe(s — 0.4), ) N(ds, dv).

By calculation, one has

(38)

t—oo t

Fxe(t), xe(t — 7)) = lim — /fsxe ,Xe(s —7))ds = (

N=NII=
SN——
~
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B 1 ft 1
T(xe(t), xe(t — 7)) = tlgglot ; o (s, xe(s), xe(s — 7T))ds = z ,
1 t 1
F(xe(t), xe(t —7),0) = Iim = [ g(s,xe(s), xe(s — 1), 0)ds = % |.
t—o0 0 3
We now check that the condition (H3) is satisfied. In fact, one has
1 rt _
7 ) 1l mels = 7)) = Flxe(s), s = ) s
Te 2 sin(xy¢(s)) + e S sin’ sarctan(xy ¢ (s — 0.4)) pds
1672 cos(xpe(s)) + e cos® sarctan(xp ¢ (s — 0.4))
3Pt/ “(r1e(5)] + [r2e(E)]) + e (a5 —04)| + [x2e(s —04))))Vs
- —ps — P
1 | P Uxelo)] + s — 04) s
L2 p 04)|7) [ e ra
< S (re@)? + llxe(s —0.4) ) [ e ras
2P=1(1 — ¢ Pt
= - 7 p — P
T (1 ()17 + (s =01
1/t a—1 g
= | (t=5)""(0(s, xe(s), xe(s — 7)) = T(xe(s), xe(s — 7)) [|Pds
t Jo
_ 1t T(t—s)*Te~sarctan(xy¢(s)) + 2 (t —5)* le™2 cos? ssin(xy (s — 0.4)) pds
t Jo $(t—s5)le~ssin(xp¢(s)) + 5 (t —5)*le " sin® sarctan(xp,e (s — 0.4))
2r-1 "
< —pp Ulxe( )||”+||xe(s—04)||p)/ (t—s)P"Pds
2- pa—p(q p 0.4)|P
a—pT1) (1 + [xe(s)[I” + [lxe(s — 0-4)[7)
1 ot
?/0 (/V 1(t = 5)*1(g(5, xe(5), e (s — 0.4), 0) —g(xe(s),xe(s—O.4),v)||p}\(alv)> ds
1 a1\ ||”
2(t=s) A(dv)ds
( %(t—s)“_l > ( )
1 /5\7 t
= (= —g)pla=1)
; (6> )\(V)/O (t—s) ds
SP)L(V) pa—p p — P
> mt (1 + ||XE(S)|| + HXe(S 0.4)” )
Thus, (H3) is satisfied with
2P=1(1 —e7Pt) 2r—1 5710 pa—p

_ pa—p - >R
91 () 3Ppt o o) = (pa —p+1)3PF Pt and ¢s(t) (pa —p+1)6P
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It is easy to check that the conditions of Theorem 4.1 and Corollary 4.1 are satisfied. So, as € — 0, the
original solution x¢(-) — y¢(+) in the sense of p square (p = 3) and in the probability, where

ve(t) = X(1)44B()9 1(t+0.4)p(—04) + f004 X(I)L‘430909(tL - 5)[CD934+4’) (s) — Ag(s)]ds
+€fo X(1)44B0909( S)f( e(5),ye(s —0.4))ds
+\ffo X(f4l,3o.9,0.9 —s)o(y ( ) ye(s —0.4))dW(s)
+ve [y X(f4l,30.9,0.9 —s) Jy & ) Ye(s —04),v)N(ds, dv).

(39)

6. Conclusion

In this article, we established and proved the existence and uniqueness theorem for solutions of
Caputo type fractional stochastic delay differential systems (FSDDSs) with Poisson jumps. By utilizing
Holders inequality, Jensen’s inequality, Burkholder-Davis-Gundys inequality, Doobs martingale
inequality and fractional Gronwall’s inequality, we proved the averaging principle for FSDDEs in the
sense of LP. Our results generalize the cases of p = 2 and enriched the field of fractional stochastic
delay differential equations. Finally, we provided an example to show the usefulness of our results.

Author Contributions: Conceptualization, Z.B. and C.B.; formal analysis, Z.B.; investigation, Z.B., C.B.; and
writing—review and editing, Z.B. and C.B. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was supported by Natural Science Foundation of China (11571136).
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that there are no conflicts of interest.

References

1.  Zhu, Q. Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the
event-triggered feedback control. IEEE T. Automat. Contr. 2019, 64, 3764-3771.

2. Zhu, Q.; Huang, T. Stability analysis for a class of stochastic delay nonlinear systems driven by G-Brownian
motion. Systems Control Lett. 2020, 140, 104699.

3. Arthi, G.; Suganya, K. Controllability of higher order stochastic fractional control delay systems involving
damping behavior. Appl. Math. Comput. 2021, 410, 126439.

4. Chen, Z,; Wang, B. Existence, exponential mixing and convergence of periodic measures of fractional
stochastic delay reaction-diffusion equations on R". J. Differ. Equations 2022, 336, 505-564.

5. Xu, L.; Li, Z. Stochastic fractional evolution equations with fractional brownian motion and infinite delay.
Appl. Math. Comput. 2018, 336, 36-46.

6. Li, M,; Niu, Y.; Zou, J. A result regarding finite-time stability for Hilfer fractional stochastic differential
equations with delay. Fractal Fract. 2023, 7, 622.

7. Khasminskii, R.Z. On the principle of averaging the It6 stochastic differential equations. Kibernetika 1968, 4,
260-279.

8.  Xu, Y; Duan, ].Q.; Xu, W. An averaging principle for stochastic dynamical systems with Lévy noise. Physica
D. 2011, 240, 1395-1401.

9.  Xu, W; Xu, W.; Zhang, S. The averaging principle for stochastic differential equations with Caputo fractional
derivative. Appl. Math. Lett. 2019, 93, 79-84.

10. Luo, D.; Zhu, Q.; Luo, Z. An averaging principle for stochastic fractional differential equations with
time-delays. Appl. Math. Lett. 2020, 105, 106290.

11.  Ahmed, H.M.; Zhu, Q. The averaging principle of Hilfer fractional stochastic delay differential equations
with Poisson jumps. Appl. Math. Lett. 2021, 112, 106755.

12.  Ahmed, H.M. Impulsive conformable fractional stochastic differential equations with poisson jumps.
Evolution Equations and Control Theory 2022, 11, 2073-2080.

13.  Wang, Z,; Lin, P. Averaging principle for fractional stochastic differential equations with L¥ convergence.
Appl. Math. Lett. 2022, 130, 108024.


https://doi.org/10.20944/preprints202311.1668.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2023 doi:10.20944/preprints202311.1668.v1

19 of 19

14. Xu, W,; Xu, W,; Lu, K. An averaging principle for stochastic differential equations of fractional order
0 < & < 1. Fract. Calc. Appl. Anal. 2020, 23, 908-919.

15.  Yang, D.; Wang, ].; Bai, C. Averaging principle for ¢-Capuo fractional stochastic delay differential equations
with Poisson jumps. Symmetry 2023, 15, 1346.

16. Li, M.; Wang, ]. The existence and averaging principle for Caputo fractional stochastic delay differential
systems. Fract. Calc. Appl. Anal. 2023, 26, 893-912.

17. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations;
Elsevier, Amsterdam, 2006.

18.  Mahmudov, N.I. Delayed perturbation of Mittag-Leffler functions and their applications to fractional linear
delay differential equations. Math. Meth. Appl. Sci. 2019, 42, 5489-5497.

19. You, Z.; Fetkan, M.; Wang, J. Relative controllability of fractional delay differential equations via delayed
perturbation of Mittag-Leffler functions. J. Comput. Appl. Math. 2020, 378, 112939.

20. Son, D.; Huong, P; Kloeden, P.; Tuan, H. Asymptotic separation between solutions of Caputo fractional
stochastic differential equations. Stoch. Anal. Appl. 2018, 36, 654-664.

21. Applebaum, D. Lévy Process and Stochastic Calculus; Cambridge University Press : Cambridge, UK, 2009.
22.  Kunita, H. Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms.
In Real and Stochastic Analysis, New Perspectives, Birkhauser: Basel, Switzerland, 2004, pp. 305-373.

23. Ye, H.; Gao, J.; Ding, Y. A generalized Gronwall inequality and its application to a fractional differential

equation. J. Math. Anal. Appl. 2007, 328, 1075-1081.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202311.1668.v1

	Introduction
	Preliminaries 
	 Existence and uniqueness result
	 An averaging principle
	An Example
	 Conclusion 
	References

