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Abstract: Using the projection evolution (PEv) approach, time can be included in the quantum

mechanics as an observable. Having the time operator, it is possible to explore the temporal structure

of various quantum events. In the present paper we discuss the possibility of constructing a quantum

clock, which advances in time during its quantum evolution, in each step having some probability

to localize itself on the time axis in the new position. We propose a working two-state model as the

simplest example of such a clock.
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1. Introduction

Time is one of the most important feature of our physical world. Its measurement is a fundamental

procedure not only for physics. At every step of technical development there are projects of

investigation leading to construction of better and better clocks which are able to measure extremaly

small time intervals [1–4].

In the book [5] three types of time are discussed: time as a parameter, dynamical time and time

as a quantum observable. The most consistent with quantum mechanics is the last concept, i.e., time

as a quantum observable considered on the same footing as the other position operators. In physics,

especially in the quantum regime, one requires more and more precise measurements of time to better

understand and predict evolution of such systems. On the other hand, to measure very short time

intervals one needs to construct a clock which, in fact, is a specific quantum system working according

to quantum rules and, in addition, is often (weakly) coupled to the measured system.

For many years time was treated in physics as a universal parameter enumerating evolution of

physical systems. The special and general relativity change this notion substantially. In quantum

mechanics, however, especially after the publication of the Pauli theorem [6,7] time is still considered

as an evolution parameter.

An overview of the role of time in quantum mechanics can be found, among others, in [8–41].

In this paper we treat time to be a component of a composite quantum observable of the spacetime

position. To be consistent, we use the projection evolution model (PEv) which recent version can be

found in [42,43]. These references present also more extended introduction to the problem and the

corresponding bibliography.

According to the PEv approach quantum time and space positions should be considered on the

same footing. However, one needs to realize that we have direct access to the space position observable

but only indirect access to the time position observable on the time axis. The latter requires special

measuring devices called clocks. A proper clock definition is vital for investigating the structure of the

real spacetime.
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2. Projection Evolutsectionion

For readers’ convenience we summarize the main points of the PEv approach.

The main assumption of the PEv evolution model is the changes principle which states that:

The evolution of a system is a random process caused by spontaneous changes in the Universe. These

spontaneous changes are primary processes in the Universe.

In this approach the changes in the quantum state space happen according to a probability

distribution which is dictated by the properties of the Universe and its subsystems. A very important

attribute of our Universe is the spacetime itself, which should emerge from the quantum state space.

In this article we consider the flat spacetime.

Every single step of the evolution describes the state of a physical subsystem (possibly the

Universe as a whole) in this state space. It means that the evolution is not driven by time, which is a

part of the system’s description at a given evolution step, but it is driven by an extra parameter τ. This

parameter is not time; it belongs to a linearly ordered set with no aditional structure required.

In the following we are using τ which can be represented by integers Z. This allows to order

quantum events and to have the notion of the predecessor and the successor in any set of physical

events. As a consequence one may expect the existence of a kind of pseudo-causality based on the

ordering of the quantum events, which leads to the causality principle in the case of macroscopic

physical systems. An additional, very important feature of the PEv approach is that this idea does not

need the spacetime as the background, it is background free. The spacetime is “generated” by the

spacetime position observable.

In the projection evolution formalism we propose to use the generalized form of the Lüders [44]

type of the projection postulate as an evolution principle. It allows to reproduce, as a special case, the

standard unitary evolution represented by relativistic and non-relativistic evolution equations.

In the following we introduce the evolution operators which can characterize a given physical

system. They are formally responsible for quantum evolution of this object. In this paper we are using

the evolution operators represented by an orthogonal resolution of unity:

E|(τn; νn)
† = E|(τn; νn),

E|(τn; νn)E|(τn; ν′n) = δνnν′n
E|(τn; νn),

∑
νn∈Qn

E|(τn; νn) = 1̂1 , (1)

where 1̂1 denotes the unit operator and νn ∈ Qn represents a set of quantum numbers describing

quantum states. Different alternatives representing random choices of quantum states are described

by different sets of quantum numbers νn. Such type of operators are able to describe a wide class of

physical systems.

Assume now, that the vector |Φ(τn−1; νn−1)〉 represents a given quantum state at the evolution

step τn−1, where νn−1 ∈ Qn−1.

The changes principle implies that there exists in the Universe a physical mechanism, we call it

the chooser, which chooses randomly the next state of the system from the set of states determined by

the projection postulates,

|Φ(τn; νn)〉 = eiαn
E|(τn; νn)|Φ(τn−1; νn−1)〉

‖E|(τn; νn)Φ(τn−1; νn−1)‖
, (2)

where the global phase αn can be chosen arbitrarily and ‖v‖ denotes the norm of the vector v.

In other words, Eq.(2) determines the set of allowed states to which a physical system can

randomly evolve from the state |Φ(τn−1; νn−1)〉. To fully describe this stochastic process, one needs to

know the probability distribution for getting a given state in the next step of the evolution. It is given

by:

pev(νn−1 → νn) = 〈Φ(τn−1; νn−1)|E|(τn; νn)|Φ(τn−1; νn−1)〉 . (3)
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It is also useful to introduce a tool which facilitates the construction of the evolution operators in terms

of the projection operators. We have found that required evolution operators can be obtained from

some operators W− which we call generators of the projection evolution [42].

For a given evolution step τ the projection evolution generator W−(τ) is defined as a

self-adjoint operator which spectral decomposition gives the orthogonal resolution of unity

representing the required set of the evolution operators.

For example, assuming a discrete spectrum of an evolution generator W−(τn), the spectral theorem

gives the following relation between W− and the evolution operators E|: W−(τn) = ∑ν wνE|(τn; ν), where

wν are the eigenvalues of W−. In the case of a continuous spectrum one needs to use the integral form of

the spectral theorem.

The evolution generators allow to use the already known quantum operators to generate the

appropriate evolution operators E|(τn, ν).

3. Quantum Clock in the Structureless Flat Spacetime

In particle, atomic, molecular and some other branches of physics the clock can be considered

to be independent of the physical system under consideration. In this case one can treat time as the

so-called external time. However, it is only an approximation because the clock is, in fact, a part of

this system. In models in which time is a quantum observable, it should be considered as a part of an

observable describing position in spacetime. The position in the quantum spacetime is, in turn, one of

the attributes of physical matter.

In this paper we consider the simplest, approximate model which leads to the spacetime based

on the L2(R4, d4x) quantum state space, i.e., the Hilbert space of square integrable functions with the

scalar product (note the integration over time) 〈ψ2|ψ1〉 =
∫

R4 d4x ψ2(x)⋆ ψ1(x) [42,43].

In a fixed coordinate frame, a possible realization of the spacetime position operator can be given

by the four-vector operator x̂µ : x̂µ f (x) = xµ f (x), where µ = 0, 1, 2, 3.

We understand the term four-vector as a four-component object which transforms with respect

to a given group of the spacetime transformations. In our case we think about two groups: either

the Galilean or the Lorentz group. It means that using the same denotations we may consider either

a non-relativistic or relativistic four dimensional flat spacetime.

The canonically conjugated observable is the four-momentum operator p̂µ = i ∂
∂xµ . Because time

is a quantum observable t̂ ≡ x̂0, the temporal momentum p̂0 is the corresponding counterpart. By

analogy to the space components of the momentum operator one can think about p̂0 as an observable

representing the measure of motion in the temporal dimension. The sign of p̂0 describes the arrow of

time. The temporal momentum can be measured using different equations of motions which relate it to

the spatial and other properties of the system. For example, the Schrödinger equation( p̂0 − Ĥ)ψ(x, ζ) =

0, where the variables ζ represent some additional degrees of freedom of the quantum system, relates

p̂0 to the Hamiltonian Ĥ. One can say the same about the Klein-Gordon, Dirac and other equations of

motion.

In principle, we need some kind of “detectors” measuring positions in spacetime. They can be

represented by POV measures [45]. In the ideal case, this measure is represented by a sharp observable

given by the projection operators MX(x0, x1, x2, x3) = |x0, x1, x2, x3〉〈x0, x1, x2, x3|, where the vectors

|x0, x1, x2, x3〉 are eigenstates of the position operators x̂µ.

In such models we come across the (1+3)-D position measurement. There is no problem with

performing the 3D spatial measurement, however, we do not have devices which allow to see the

whole time axis, i.e., the past, present and the future. It seems that our material world is, in most cases,

rather well localized in time and that only a narrow temporal window moving along the time axis

is available for us in the experiments. From this perspective a clock has to be a part of the quantum

system, well localized in time, possibly coupled to other physical subsystems. Having a reference

clock, one can construct other types of clocks as devices synchronized with this clock. This procedure
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allows to introduce the notion of the “external time”, however only for the systems which are well

decoupled from the reference clock.

We define a quantum reference clock as a kind of device, localized on the time axis and

moving with a fixed sign of the average temporal momentum 〈 p̂0〉clock state in spacetime. The sign is

conventional but it defines the arrow of time. The clock localizing itself in a time interval (temporal

window) shows us, usually indirectly by some kind of an interface (measurement), its position in time.

It means that the clock consists of two subsystems: the proper clock, evolving from one localization on

the time axis to another, and the interface reading off the clock’s time position.

In the PEv model [43] the average spacetime localization of a physical system can change only

with the change of the evolution parameter τn. In the following we denote by τn, n = 1, 2, 3, . . . the

evolution steps of the proper clock, and by τ′
n, where τn < τ′

n < τn+1, the evolution steps at which the

clock interface reads its temporal position. It implies that a given quantum clock at the evolution step

τn is represented by a set of clock states Φ(τn; νn). The label νn represents a set of quantum numbers

describing both the temporal and other properties of observables required for the construction of a

quantum clock. For a good clock, the variance of the time operator

t̂ =
∫

R

dx0MT(x0), (4)

where

MT(x0) =
∫

R3
dxMX(x0, x) (5)

projects onto the subspaces of simultaneous events, should be small. More precisely, the variance

should fulfill the following inequality:

var
(

t̂; Φ(τn; νn)
)

= 〈Φ(τn; νn)|(t̂ − 〈Φ(τn; νn)|t̂|Φ(τn; νn)〉)
2|Φ(τn; νn)〉 ≤ cr , (6)

where cr is a small number and denotes the clock resolution. The corresponding expectation value

of the time operator within the clock states, t = 〈Φ(τn; νn)|t̂|Φ(τn; νn)〉, gives the expected temporal

position of the proper clock, i.e., it gives a parameter t representing the classical time. In the ideal case

the clock states are eigenstates of the time operator with the variance (6) being equal to 0.

In the projection evolution model [43] an important element is the construction of the evolution

operators for the subsequent steps of the evolution τn−1 → τ′
n−1 → τn. It means that we have to

describe the following process: for the evolution step τn−1 the proper clock is localized at some time

tn−1, this position is read off by the interface at τ′
n−1 and the proper clock is moving to the next

temporal position at τn.

In this paper, we propose a set of unitary operations, driven by a random variable ξ ∈ R+,

transforming the evolution generators, not states, from the previous to the next step of the evolution

process:

U(ξ, γ) = exp(i(ξ p̂0 − γÂ)) , (7)

where γ is a coupling constant. The temporal momentum operator p̂0 and the self adjoint reconfiguring

operator Â commute, i.e., [ p̂0, Â] = 0. The temporal momentum operator p̂0 is responsible for the

motion along the time axis. The values of the random variable ξ are related to the internal processes of

the clock and to the influence of the environment on the clock. This leads effectively to a movement

of the clock along the time axis. Direction of the clock motion along the time axis is determined by

the expectation value of the temporal momentum operator p̂0, calculated in the clock states. The

reconfiguring operator Â changes some internal states of the clock and allows to define the required

clock interface.
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Let us denote by W−(τn) the evolution generator of the proper clock at the evolution step τn. The

unitary transformations (7) form a two-parameter group, U(ξ + ξ ′, (k + k′)γ) = U(ξ, kγ)U(ξ ′, k′γ),

where k, k′ ∈ Z. This feature allows to relate the evolution generator W−(τn) to its initial form W−(τ0):

W−(τn) = U(ξn, γ)W−(τn−1)U(ξn, γ)† = U(βn, nγ)W−(τ0)U(βn, nγ)† , (8)

where β0 = 0, βn = ∑
n
k=1 ξk and ξ1, ξ2, . . . ξn are subsequent values of the random variable ξ.

To construct the evolution operators E|(τn; νn) from the evolution generator W−(τn) one needs to

find its spectral decomposition. Assuming discrete spectrum of the generator W−(τn) one has to solve

the following eigenequation

W−(τn)|ψ
(n)
bc 〉 = w

(n)
b |ψ

(n)
bc 〉 , (9)

where c represents the possible degeneration of the spectrum. The transformation property (8) implies

that it is sufficient to solve the eigenequation (9) only for τ0 to get all solutions for every τn. If

|ψ
(0)
bc 〉 ≡ |ψbc〉 are eigenvectors of W−(τ0), the states

|ψ
(n)
bc 〉 = U(βn, nγ)|ψbc〉 (10)

are eigenstates of W−(τn). The eigenvalues w
(n)
b = w

(0)
b ≡ wb are independent of n.

The distribution of ξ should have a pronounced maximum very close to zero1. It implies, that

the next instant of classical time during the evolution should be very close to the previous one. The

probability distribution for ξ is a parameter of the clock. It seems that this distribution is strongly

related to both the construction of the clock, and the structure of spacetime.

The second component of the clock is an interface allowing to read the clock. The interface is

therefore a measuring device and its full evolution operator has to contain the appropriate projection

operators.

The projection evolution generators simplify the construction of the required evolution operators

for a quantum reference clock. This method will be used in the next section.

3.1. The Proper Clock

For a given observer the quantum spacetime splits into time and 3D position space. In the

following, to present the clock idea we choose a non-covariant description of a proper clock and its

interface.

Because we treat time on the same footing as the other coordinates one expects that every

interaction Vint(x − y), where x = (tx, x), y = (ty, y) are spacetime points, depends not only on the

positions in space but also on positions in time [42]. One can say the same about the effective potentials

V(t, x). According to observations, in a wide range of its density, the physical matter is well localized

in time. This supports the parametric time as a good approximation. On the other hand, what is even

more important, this feature also suggests that the interaction in the temporal dimension has a very

short range. In the normal density matter the temporal parts of interactions among many particles

lead to a temporal mean-field effective potential operator VT(t̂). One can find similar effect in nuclear

physics, where the mean-field approach to a short range nuclear interaction is a good approximation.

In the following, we present a nonrelativistic proper clock described by a modified Schrödinger

type of quantum motion in the structureless flat spacetime [42]. Relativistic versions of the clock can

be constructed in a similar way.

1 In this work we assume ξ > 0 but the general condition is, that ξ ∈ R has a distribution around zero, assymetric towards
ξ > 0 values. This will result in the net time flow in the positive direction of the time axis. We will discuss this problem in
a subsequent paper.
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Following the discussion about the evolution generators described in [42], the initial projection

evolution generator W−(τ0) for a proper clock is postulated in the following form:

W−(τ0) = p̂0 − Ĥ −
p̂2

0

2mT
− VT(t̂), (11)

where the temporal momentum operator is p̂0 = i ∂
∂t , the Hamiltonian Ĥ acts on functions of the

position variables x ∈ R
3 and potentially on some intrinsic variables, i.e., it does not depend on time.

The signs in front of the temporal part of the generator (11) are chosen to keep the coefficient mT

positive. By analogy to the spatial kinetic term in the Hamiltonian Ĥ the term mT can be called “the

temporal inertia”.

The proper clock is determined by the generator, which describes the physical system localized in

time, and the Hamiltonian Ĥ which allows to build an appropriate interface in its state space. The

proper clock is localized on the time axis by the effective temporal potential operator VT(t̂).

Using the unitary operator (7) one gets the evolution generator for any arbitrary evolution step τn:

W−(τn) = U(βn, nγ)W−(τ0)U(βn, nγ)† = p̂0 − Ĥ(n) −
p̂2

0

2mT
− V

(n)
T (t̂) , (12)

where the potential localizing the clock in time is given by

V
(n)
T (t̂) = VT

(

t̂ − βn1̂1
)

. (13)

The modified Hamiltonian has the following form:

Ĥ(n) = exp
(

−inγ Â
)

Ĥ exp
(

+inγ Â
)

. (14)

According to the definition of the projection evolution generators we have to construct the spectral

decomposition of W−(τn). For this purpose one needs to look for the eigenfunctions of W−(τ0). In our

case we can find them by separating the variables,

ψλκνµ(t, x) = χλκ(t)φνµ(x) , (15)

where χλκ(t) := e−imT t fλκ(t). The indices κ and µ indicate a possible degeneration of the solutions. In

the following we assume that the temporal functions χλκ(t) represent the states which, on average,

move in the positive direction of time. This means that the temporal functions χλκ(t) are the states for

which the expectation value of the temporal momentum operator,

〈χλκ | p̂0|χλκ〉 = mT +
∫

R
dt fλκ(t)

⋆ p̂0 fλκ(t), (16)

is a positive number.

The functions φνµ(x) denote the eigenvectors of the Hamiltonian Ĥ,

Ĥφνµ(x) = Eνφνµ(x) , (17)

where Eν are the eigenvalues of Ĥ.

The function fλκ(t) solves the equation

(

p̂2
0

2mT
+ VT(t̂)

)

fλκ(t) =
(mT

2
− ǫ

(T)
λ

)

fλκ(t), (18)
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while together with the exponential function it constitutes the full solution of the equation

(

p̂0 −
p̂2

0

2mT
− VT(t̂)

)

χλκ(t) = ǫ
(T)
λ χλκ(t) . (19)

This allows one to write the eigenequation for W−(τ0) as

W−(τ0)ψλκνµ(t, x) = wb(λ,ν)ψλκνµ(t, x), (20)

with ψλκνµ given by Equation (15) and

wb(λ,ν) = ǫ
(T)
λ − Eν , (21)

where the function labelling the eigenvalues of W−(τ0) fulfil the condition: b(λ′, ν′) = b(λ, ν) ⇔

wb(λ′ ,ν′) = wb(λ,ν).

Collecting the above partial solutions the eigenstates of W−(τn) for a given evolution step τn are

given by the vectors

ψ
(n)
λκνµ(t, x) = U(βn, nγ)ψλκνµ(t, x) = χ

(n)
λκ (t)φ

(n)
νµ (x) , (22)

where χ
(n)
λκ (t) := χλκ(t − βn) and φ

(n)
νµ (x) := exp(−inγÂ)φνµ(x).

The evolution operators generated by W−(τn) are the projections onto eigenspaces of the evolution

generator,

E|(τn; w) = ∑
λν

δ(w = ǫ
(T)
λ − Eν)∑

κµ

|ψ
(n)
λκνµ〉〈ψ

(n)
λκνµ| = U(βn, nγ)E|(τ0; w)U(βn, nγ)† . (23)

The Kronecker’s type function is defined as: δ(w = ǫ
(T)
λ − Eν) = 1 if w = ǫ

(T)
λ − Eν, otherwise it is

equal to 0. The sums will be substituted by some integrals in the case of a continuous spectrum.

3.2. The Clock Interface

To read the change of the internal state of the proper clock, we introduce the interface evolution

operators denoted by E|I(τ
′
n, ν), where τn < τ′

n < τn+1 describes an intermediate event between τn and

τn+1. They form an orthogonal resolution of unity projecting onto eigenstates of the Hamiltonian Ĥ

showing in which eigenstate of Ĥ the clock actually is. Changes of the states of the Hamiltonian along

the time axis represent the clock ticks. The clock interface should disturb neither the proper clock

localization in time nor its movement along the time axis but it should show in which eigenstate of the

Hamiltonian the proper clock is.

Let us denote an orthonormal basis gsνµ(t, x) = es(t)φνµ(x) in the state space. We obtain the

required properties by assuming that

E|I(τ
′
n, ν) = ∑

µ

|φνµ〉

(

∑
s

|es〉〈es|

)

〈φνµ| ≡ E|I(ν) , (24)

where (∑s |es〉〈es|) = 1̂1T is the unit operator in the time domain. The projection operators (24) are

independent of τ′
n, i.e., we keep the same interface for every evolution step.

3.3. The Clock

The evolution operators described above allow to construct different reference clocks using

different forms of the operators: Â, Ĥ and VT(t̂).
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The clock starts from any arbitrary quantum state |Φ0〉. The evolution operator E|(τ0; u0) prepares

the initial state of the clock

Φ(τ0; u0; t, x) =
E|(τ0; u0)Φ0(t, x)

‖E|(τ0; u0)Φ0‖
, (25)

where u0 represents, according to the PEv formalism, a randomly chosen eigenvalue wb(λ,ν) of the

evolution generator W−(τ0).

The state (25) is read by the interface

Φ(τ′
0; σ0, u0; t, x) =

E|I(σ0)Φ(τ0; u0; t, x)

‖E|I(σ0)Φ(τ0; u0)‖
, (26)

where σ0 represents a randomly chosen eigenvalue Eσ0 of the Hamiltonian Ĥ. The simplest choice of

the initial state is any eigenstate of the evolution generator (15),

Φ0(t, x) = ψλ0κ0ν0µ0
(t, x) ≡ χλ0κ0

(t)φν0µ0(x) . (27)

Then Φ(τ′
0; σ0, u0; t, x) = Φ0(t, x), where σ0 = ν0 and u0 = ǫT

λ0
− Eν0 .

To simplify the notation let us denote by (σ, u)n the sequence of quantum numbers which gives a

possible evolution path

(σ, u)n = (σn, un, σn−1, un−1, . . . , σ0, u0) = (σn, un, (σ, u)n−1).

The subsequent cycles of the clock are described by the following recurrence relations

Φ(τn; un, (σ, u)n−1; t, x) =
E|(τn; un)Φ(τ′

n−1; (σ, u)n−1; t, x)
∥

∥E|(τn; un)Φ(τ′
n−1; (σ, u)n−1)

∥

∥

, (28)

and

Φ(τ′
n; (σ, u)n; t, x) =

E|I(σn)Φ(τn; un, (σ, u)n−1; t, x)

‖E|I(σn)Φ(τn; un, (σ, u)n−1)‖

=
E|I(σn)E|(τn; un)Φ(τ′

n−1; (σ, u)n−1; t, x)
∥

∥E|I(σn)E|(τn; un)Φ(τ′
n−1; (σ, u)n−1)

∥

∥

, (29)

where the probabilities of choosing next states are given by (3), i.e., by the denominators of (28) and

(29), respectively.

The action of the evolution operator E|I(σn)E|(τn; un) on any function Φ(τ′
n−1; (σ, u)n−1; t, x) can

be written as

E|I(σn)E|(τn; un)Φ(τ′
n−1; (σ, u)n−1; t, x) = G((σ, u)n; λκµ′)χ

(n)
λκ (t)φσnµ′(x) , (30)

where the expansion coefficients, taking into account (23) and (24), read

G((σ, u)n; λκµ′) = ∑
νµ

δ(un = ǫ
(T)
λ − Eν) 〈φσnµ′ |φ

(n)
νµ 〉 〈ψ

(n)
λκνµ|Φ(τ′

n−1; (σ, u)n−1)〉 . (31)

Because the functions χ
(n)
λκ (t)φσnµ′(x) and χ

(n)
λ′κ′(t)φσ′

nµ′′(x) are orthonormal, the coefficient

N(τn; (σ, u)n) which normalizes Equation (30) can be expressed by the coefficients (31)

N(τn; (σ, u)n)
2 =

∥

∥E|I(σn)E|(τn; un)Φ(τ′
n−1; (σ, u)n−1)

∥

∥

2
= ∑

λκµ′

|G((σ, u)n; λκµ′)|2 . (32)
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Using the coefficients G the clock state (29) can be rewriten as

Φ(τ′
n; (σ, u)n; t, x) = N(τn; (σ, u)n)

−1 ∑
λκµ′

G((σ, u)n; λκµ′)χ
(n)
λκ (t)φσnµ′(x) . (33)

The definition (31) and Eqs. (32) and (33) lead to the recurrence relation for the G-coefficients

G((σ, u)n; λκµ′) = N(τn−1; (σ, u)n−1) ∑
ν1µ1

δ(un = ǫ
(T)
λ − Eν1

)〈φσnµ′ |φ
(n)
ν1µ1

〉

∑
λ2κ2µ′

2

G((σ, u)n−1; λ2κ2µ′
2)〈χ

(n)
λκ |χ

(n−1)
λ2κ2

〉〈φ
(n)
ν1µ1

|φσn−1µ′
2
〉. (34)

Having the G-coefficients, one can calculate the transition probability between the subsequent readings

off the interface. The square of the normalization factor represents this probability:

pev
(

τ′
n−1 → τn → τ′

n

)

= |〈Φ(τ′
n; (σ, u)n)|Φ(τn; un, (σ, u)n−1)〉〈Φ(τn; un, (σ, u)n−1)|Φ(τ′

n−1; (σ, u)n−1)〉|
2

=
∥

∥E|I(σn)E|(τn; un)Φ(τ′
n−1; (σ, u)n−1)

∥

∥

2
= N(τn; (σ, u)n)

2 . (35)

In our model, the clock shifts subsequently on the time axis about the random variable ξ. However,

our knowledge about this shift is supplied only by the clock interferface. It is important to calculate

the expectation value of the time operator within the states corresponding to reading off the interface.

For this purpose, let us denote by tn the average value of the time operator in the state (29), i.e.,

tn = 〈Φ(τ′
n; (σ, u)n)|t̂|Φ(τ′

n; (σ, u)n)〉. Using (29) and the following matrix elements:

〈χ
(n)
λ1κ1

|t̂|χ
(n)
λ2κ2

〉 =
∫

R

dt fλ1κ1
(t − βn)

⋆t fλ2κ2
(t − βn)

= δλ1λ2
δκ1κ2 βn +

∫

R

dt fλ1κ1
(t)⋆ t fλ2κ2

(t)

= δλ1λ2
δκ1κ2 βn + 〈χλ1κ1

|t̂|χλ2κ2
〉, (36)

the required expectation value reads

tn = βn +

(

1

N(τn; (σ, u)n)

)2
[

∑
λ1κ1

∑
λ2κ2

∑
µ′

G((σ, u)n; λ1κ1, µ′)⋆G((σ, u)n; λ2κ2, µ′)

]

〈χλ1κ1
|t̂|χλ2κ2

〉 . (37)

The ideal clock should show the value tn = βn, i.e., the place where the clock is localized on the time

axis. The interface, however, is also a quantum device and acts randomly. There is therefore a finite

probability that the proper clock moves to the next position on the time axis, but the interface does not

change its state, i.e., the “hand of the clock” does not advance forward. This implies that for a good

clock the second term in (37) should be always close to zero.

4. A Two-State Clock

As an example, we build a schematic clock for which there is no summation over λ, µ, κ and ν in

Equation (23).

This is often the case when both (17) and (18) have discrete nondegenerate spectra, which allows

to rewrite the evolution operators (23) in a simpler form:

E|(τn; λν) = |ψ
(n)
λν 〉〈ψ

(n)
λν |. (38)
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We express the clock Hamiltonian describing the clock interface by making use of the spectral theorem,

Ĥ =
∞

∑
ν=0

Eν|φν〉〈φν| . (39)

The reconfiguration operator is taken in the following form:

Â = |φ0〉〈φ1|+ |φ1〉〈φ0| . (40)

This means that our clock interface is oscillating between two states, |φ0〉 and |φ1〉, and the

corresponding evolution operators, reading the actual state of the interface, are given by

E|I(σ) = |φσ〉〈φσ|, σ = 0, 1. (41)

The state of the proper clock and its interface at the evolution step τ′
n−1 is |Φ(τ′

n−1; (σ, λ, ν)n−1)〉. To

get to the next step of the evolution one needs to calculate

E|(τn; λn, νn)|Φ(τ′
n−1; (σ, λ, ν)n−1)〉 = 〈ψ

(n)
λnνn

|Φ(τ′
n−1; (σ, λ, ν)n−1)〉|ψ

(n)
λnνn

〉 (42)

and

E|I(σn)E|(τn; λn, νn)|Φ(τ′
n−1; (σ, λ, ν)n−1)〉 =

〈φσn |φ
(n)
νn 〉〈ψ

(n)
λnνn

|Φ(τ′
n−1; (σ, λ, ν)n−1)〉|χ

(n)
λn

〉|φσn〉 . (43)

Because in the formulas (28) and (29) the common multiplication factors in the nominators and

denominators can be simplified, and overall phases are unimportant, the resulting clock states, after

simplification of notation, are represented by the vectors

|Φ(τn; (σ, λ, ν)n)〉 = |Φ(τn; λnνn)〉 ≡ |ψ
(n)
λnνn

〉, (44)

|Φ(τ′
n; (σ, λ, ν)n)〉 = |Φ(τ′

n; σn, λn)〉 ≡ |χ
(n)
λn

〉|φσn〉 . (45)

The clock states (44) and (45) allow to calculate the transition probability between the states

representing two subsequent readings from the clock interface. The probability of passing the evolution

path

(τ′, σ, λ, ν)n−1 → (τn, λn, νn, (τ, σ, λ, ν)n−1) → (τ′, σ, λ, ν)n

according to the expression (35) reads

pev′ = |〈Φ(τ′
n; σn, λn)|Φ(τn; λn, νn)〉〈Φ(τn; λn, νn)|Φ(τ′

n−1; σn−1, λn−1)〉|
2 . (46)

Using relations (42) and (43), one can cast (46) in the form

pev′ = |〈χ
(n)
λn

|χ
(n−1)
λn−1

〉|2|〈φσn |φ
(n)
νn 〉〈φ

(n)
νn |φσn−1

〉|2. (47)

For the reconfiguration operator (40), the Â-dependent part of the U(ξ, γ) operator (7) is given by

exp(−iγÂ) = 1̂ − i sin γÂ + (cos γ − 1) Â2, (48)

where 1̂ is the unit operator in the full state space, while Â acts in its two-dimensional subspace only.

It follows that the scalar product reads

〈φσn |φ
(n)
νn 〉 = 〈φσn | exp(−iγÂ)|φνn〉 = δσnνn cos γ − i(δσn1δνn0 + δσn0δνn1) sin γ, (49)
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which allows to calculate the transition amplitudes:

〈φ1|φ
(n)
1 〉〈φ

(n)
1 |φ0〉 =

i

2
sin(2γ), (50)

〈φ1|φ
(n)
0 〉〈φ

(n)
0 |φ0〉 = −

i

2
sin(2γ), (51)

〈φ0|φ
(n)
1 〉〈φ

(n)
1 |φ0〉 = sin2 γ, (52)

〈φ0|φ
(n)
0 〉〈φ

(n)
0 |φ0〉 = cos2 γ, (53)

〈φ0|φ
(n)
1 〉〈φ

(n)
1 |φ1〉 = −

i

2
sin(2γ), (54)

〈φ0|φ
(n)
0 〉〈φ

(n)
0 |φ1〉 =

i

2
sin(2γ), (55)

〈φ1|φ
(n)
1 〉〈φ

(n)
1 |φ1〉 = cos2 γ, (56)

〈φ1|φ
(n)
0 〉〈φ

(n)
0 |φ1〉 = sin2 γ. (57)

To register the time passing is equivalent for the clock to change the state from σn = 1 to σn = 0 or

from 0 to 1, i.e., the clock “clicks”. Using Eq. (47) and the appropriate amplitudes (50)–(57) gives the

probabilities that the clock “clicks” in the form

p(λn) := Prob(σn−1 = 1 → σn = 0) = Prob(σn−1 = 0 → σn = 1)

=
1

2
sin2(2γ)|〈χ

(n)
λn

|χ
(n−1)
λn−1

〉|2 ≤
1

2
. (58)

The probability of the opposite event, i.e., that the clock changes its state without the “click” is

1 − p(λn).

The probability that the clock “clicks” exactly in the ℓ-th step is given by

p(λℓ)
ℓ−1

∏
k=1

(1 − p(λk)) . (59)

The probability amplitude 〈χ
(n)
λn

|χ
(n−1)
λn−1

〉 can be expressed as

〈χ
(n)
λn

|χ
(n−1)
λn−1

〉 = e−imTξn

∫

R
dt fλn

(t − ξn)
⋆ fλn−1

(t) . (60)

The elementary step of movement along the time axis should be extremely small, i.e., the expectation

value of 〈ξk〉 ≈ 0, for every step k of the clock evolution. This implies that |〈χ
(n)
λn

|χ
(n−1)
λn−1

〉|2 = 1 with a

very good approximation and one can write p(λℓ) ≈ p = 1
2 sin2(2γ).

Let us calculate the average value of the time operator t̂. It is given by

〈Φ(τ′
n; σn, λn)|t̂|Φ(τ′

n; σn, λn)〉 = βn + 〈χλ|t̂|χλ〉. (61)

Since χλ = e−i mT t fλ(t), we have

〈χλ|t̂|χλ〉 =
∫

R

dt t| fλ(t)|
2. (62)

A good clock is characterized by the term (62) being as small as possible. If fλ(−t) = eiα fλ(t) this term

vanishes. It follows, that after n steps of evolution, the localization of the clock on the time axis is close

to βn.
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In a similar way one may obtain the average value of the temporal momentum operator,

〈Φ(τ′
n; σn, λn)| p̂0|Φ(τ′

n; σn, λn)〉 = mT +
∫

R

dt fλ(t)
⋆ p̂0 fλ(t). (63)

Since p̂0 = i ∂
∂t , the condition fλ(−t) = eiα fλ(t) implies that the second term in Equation (63) vanishes,

which results in a constant arrow of time:

〈Φ(τ′
n; σn, λn)| p̂0|Φ(τ′

n; σn, λn)〉 = mT > 0. (64)

To estimate how long, on average, do we have to wait until a “click” appears, we calculate the

variance of ℓ. The normalized probability that a single “click” takes place at any of the steps, during an

ℓ-step evolution, is given by

Prob(click, ℓ) =
ℓp(1 − p)ℓ−1

∑
∞
ℓ=1 ℓp(1 − p)ℓ−1

= ℓp2(1 − p)ℓ−1. (65)

This results in the average ℓ,

〈ℓ〉 =
∞

∑
ℓ=1

ℓ Prob(click, ℓ) =
∞

∑
ℓ=1

ℓp2(1 − p)ℓ−1 =
2 − p

p
, (66)

and the average ℓ2,

〈ℓ2〉 =
∞

∑
ℓ=1

ℓ
2 Prob(click, ℓ) =

∞

∑
ℓ=1

ℓ
2 p2(1 − p)ℓ−1 =

p2 − 6p + 6

p2
. (67)

Thus the variance var(ℓ) is given by

var(ℓ) = 〈ℓ2〉 − 〈ℓ〉2 =
2 − 2p

p2
. (68)

The probability Equation (65) is presented on Figure 1 as a function of the number of steps ℓ. We

notice that for higher probabilities p the number of required evolution steps ℓ decreases. The exact

position of the maxima is given by the relation

ℓmax = −
1

ln(1 − p)
, (69)

which for p = 0.1 gives ℓmax = 9.49, for p = 0.25 is ℓmax = 3.48, and for p = 0.5 drops to ℓmax = 1.44.

The variance of ℓ is presented on Figure 2. For the ideal case of p = 0.5, the average ℓ from

Equation (66) is 〈ℓ〉 = 3 while the standard deviation reads σ =
√

var(ℓ) = 2. This gives the average

number of the required evolution steps 3 ± 2.
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Figure 1. The probability (65) of a single click during ℓ steps of the clock’s evolution. The values of p

are 0.1, 0.25, and 0.5.
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Figure 2. The variance (68) of the number of steps ℓ as a function of p.

5. Final Remarks

One may ask, how to compare the discussed quantum clock with the currently used atomic

clocks? The time unit measured by an atomic clock is derived from the frequency of the photon emitted

by an atom during its de-excitation. From the perspective of our model, the stochastic process of the

atomic de-excitation plays the role of the proper clock, while the interface can be found in the clock’s

system which detects the photon.

The stability of the chosen atomic transitions is so high, that modern atomic clocks [1–4] achieve

systematic uncertainty on the level of 10−18s, where this number is measured with respect to an

external laboratory clock. Since each evolution step advances the quantum clock on the time axis by ξ
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and we are required to wait between 1 and 5 steps to register the click, the value of ξ must be small

enough to assure the already achieved precission. If we allow ξ to be a random variable, with different

values in each step of the clock’s evolution, the average 〈ξ〉 should be small. In that case one may

take the statistics from as many as needed evolution steps, which will lower the value of var(ℓ) and

increase the clock’s accuracy to the required level.

We notice also that every clock, even theoreticaly considered as a quantum system, is influenced

by spacetime and physical fields. Observed changes in the clock can give information about the

temporal structure of these objects. This is an open problem for future investigations.
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43. Góźdź, A.; Góźdź, M.; Pędrak, A. Projection evolution of quantum states. arXiv:1910.11198v3 [quant-ph] 10

Mar.

44. Lüders, G. Concerning the state-change due to the measurement process. Ann. Phys. (Leipzig) 1951, 8, 322.

reprinted in: Ann. Phys. (Leipzig) 15, 663 (2006).

45. Busch, P.; Lahti, P.; Mittelstaedt, P. The Quantum Theory of Measurement (2 ed.); Springer, 1996.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 November 2023                   doi:10.20944/preprints202311.1655.v1

https://doi.org/10.1038/s41567-023-01993-w
https://doi.org/10.3390/universe9060256
https://doi.org/10.20944/preprints202311.1655.v1

	Introduction
	Projection Evolutsectionion
	Quantum Clock in the Structureless Flat Spacetime
	The Proper Clock
	The Clock Interface
	The Clock

	A Two-State Clock
	Final Remarks
	References

