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Abstract: In this paper, we delve into the realm of aspect-level sentiment analysis, a sophisticated

analytical task focused on pinpointing and interpreting the sentiment directed towards specific

elements within a sentence. Traditional methods in this domain, primarily based on neural networks,

have often overlooked the critical role of syntactic structures in sentences. To bridge this gap, we

have developed the Syntax-Enhanced Sentiment Graph Network (SentiSyn). This pioneering model

represents a significant step forward in aspect-level sentiment analysis, bringing to the forefront the

utilization of word dependency relationships to enrich sentiment analysis. SentiSyn stands out by

its innovative use of a dependency graph, a tool that meticulously maps out the intricate web of

syntactic relationships surrounding a target aspect in a sentence. This approach allows SentiSyn

to effectively capture and channel sentiment-related characteristics that are deeply rooted in the

syntactic context of the aspect target. By doing so, SentiSyn unlocks a deeper understanding of

sentiment dynamics in textual content, enabling a more nuanced and accurate sentiment analysis.

Our comprehensive experimental evaluation of SentiSyn showcases its remarkable capabilities. When

combined with advanced embedding techniques like GloVe and BERT, SentiSyn demonstrates a

superior performance edge over several existing sentiment analysis methods. This performance leap

is not just incremental; it represents a significant enhancement in the field of sentiment analysis,

underscoring the importance of syntactic context in understanding sentiments. Furthermore, our

analysis delves into how SentiSyn effectively leverages these embeddings to gain a more profound

and contextually rich insight into sentiment dynamics. The results from our tests indicate that

SentiSyn, with its unique approach to integrating syntactic structures and advanced embeddings, sets

a new benchmark in aspect-level sentiment analysis, offering both enhanced accuracy and deeper

sentiment understanding.

Keywords: aspect-level sentiment analysis; syntax-enhanced graph networks; dependency-based

sentiment modeling

1. Introduction

Aspect-based sentiment analysis is an intricate process that involves discerning specific sentiments

– positive, negative, or neutral – associated with distinct aspects within a textual context. This nuanced

analysis stands in contrast to the more general sentence-level sentiment analysis, which broadly

categorizes the entire sentence’s sentiment. Aspect-level analysis excels in situations where sentences

contain mixed sentiments about different elements [1–4]. For example, a statement like "The pasta

was excellent, but the service left much to be desired" showcases this complexity by simultaneously

expressing positive sentiments towards the food and negative sentiments towards the service.

In the early stages of aspect-level sentiment analysis, the primary approach involved the utilization

of manually designed features, such as sentiment lexicons and various linguistic indicators. These

tools were pivotal in identifying and classifying sentiments related to specific aspects. However, the

emergence of advanced neural network techniques, especially those built upon Long Short-Term

Memory (LSTM) and Convolutional Neural Network (CNN) architectures, marked a significant shift

in the field [24]. These modern approaches largely focus on processing sentences as sequences of
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words, embedding critical aspect-related information into sentence representations through innovative

methods like attention mechanisms and gating techniques. Despite their advancements, a common

shortfall of these models is their tendency to overlook the syntactic structure of sentences [25–28].

This oversight is notable as syntactic nuances play a vital role in accurately identifying and linking

sentiment features directly to their respective aspects [29,30].

To address this gap, our research introduces a groundbreaking framework, the Syntax-Enhanced

Sentiment Graph Network (SentiSyn). This model is a significant departure from traditional methods

as it conceptualizes sentences as dependency graphs [24,31]. This representation forms direct

connections between aspect targets and the words relevant to them, thus preserving the natural

syntactic relationships within the sentence [4,9,32–34]. In SentiSyn, a graph attention network,

augmented with an LSTM unit, is employed to dynamically and effectively propagate sentiment

attributes from syntactically significant neighboring words to the targeted aspect. This method ensures

that the inherent syntactic order and connections within the sentence are maintained, providing

a distinct advantage over previous models that necessitated alterations to the sentence’s syntactic

structure.

To empirically validate the effectiveness of SentiSyn, we conducted extensive experiments using

datasets from SemEval 2014 [49], focusing on laptop and restaurant reviews. These tests were

designed to compare the performance of SentiSyn against several established baselines, particularly

in scenarios involving GloVe embeddings [50]. Furthermore, we explored the impact of integrating

BERT representations [51] into our model, which resulted in a notable enhancement of SentiSyn’s

performance. Our comprehensive analysis reveals that SentiSyn is not only highly effective in its

sentiment analysis capabilities but also exhibits efficiency in terms of computational resource utilization

and processing speed. This efficiency makes SentiSyn a compelling alternative to the direct fine-tuning

of large models like BERT, especially in resource-constrained environments.

In summary, the Syntax-Enhanced Sentiment Graph Network represents a significant

advancement in the field of aspect-based sentiment analysis. By seamlessly integrating syntactic

structures into the sentiment analysis process, SentiSyn opens up new possibilities for more accurate

and nuanced sentiment analysis, particularly in complex textual scenarios where multiple sentiments

coexist.

2. Related Work

Aspect-level sentiment classification, a specialized subfield of sentiment analysis, aims to discern

the sentiment polarity associated with specific aspect targets within contextual sentences [52]. This

task necessitates a nuanced understanding of the interplay between language elements and sentiment

expressions [9,13,53–59]. Initial approaches in this field heavily relied on transforming a broad array of

features, such as sentiment lexicons and parsing contexts, into feature vectors. These vectors were then

utilized to train classifiers, typically Support Vector Machines (SVMs). Pioneering works like those of

Wagner et al. [31] integrated sentiment lexicons with aspect proximity and dependency path distances

to enhance SVM classifier training. Kiritchenko et al. [60] extended this approach, demonstrating that

incorporating parsing context features could significantly increase predictive accuracy.

The advent of neural network methodologies marked a paradigm shift in aspect-level sentiment

analysis. LSTM neural networks became prevalent, modeling word sequences within sentences to

capture the nuanced sentiment dynamics. Tang et al. [9] innovatively employed dual LSTMs to process

the context surrounding an aspect target, leveraging the final hidden states as features for classification.

Building on this, Wang et al. [30] introduced an attention mechanism, inspired by [61], to prioritize

aspect-relevant words in sentences. This methodology was further refined by Huang et al. [62], who

used dual LSTM networks to jointly model sentence and aspect interactions, extracting critical words

from the resulting sentence-aspect correlation matrix. Li et al. [58] advanced these attention-based

models by integrating positional information, enhancing the precision of sentiment analysis.
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Beyond LSTM-based models, the literature also records the use of deep memory networks, as

proposed by Tang et al. [29]. These networks feature multiple computational layers, each generating

an attention vector over an external memory, showcasing an alternative neural approach. Additionally,

some researchers have explored using Convolutional Neural Networks (CNN) for this task [63,64]. In

these models, features from the aspect influence the information flow within the CNN processing the

sentence [62]. The integration of BERT representations, benefiting from extensive linguistic knowledge

obtained through large-scale language modeling [51], has shown considerable progress in this domain

[65]. Xu et al. [66] achieved notable results by post-training BERT on domain-specific datasets and

fine-tuning it, although this required substantial computational resources and time.

Our approach diverges from these neural network-based methods by explicitly leveraging the

syntactic structure within sentences. This method propagates sentiment features towards the aspect

target along a dependency graph, rather than following the original word sequence. Previous attempts,

such as those by Dong et al. [4] and Nguyen and Shirai [67], also focused on syntax but required

transforming the dependency tree into a binary format and positioning the aspect target at the

root. This often led to the displacement of sentiment-modifying words away from the aspect target.

In contrast, our methodology retains the original syntactic order, ensuring a more accurate and

contextually relevant sentiment analysis.

3. Method

3.1. Text Representation

In our approach, a sentence s = [w1, w2, ..., wi, ..., wn] of length n, containing an aspect target wi, is

transformed into a vector representation. Each word wi in the sentence is mapped to a vector xi ∈ R
d,

where d denotes the dimensionality of the embedding space. We employ a standard dependency parser

[68] to convert the sentence into a dependency graph, where nodes correspond to words linked by

syntactic dependencies. This graph structure enables us to propagate features from the neighborhood

of an aspect target. For instance, the sentence “delivery was early too” is depicted as a dependency

graph, highlighting the connectivity and feature propagation pathways around the aspect “delivery”.

In cases where an aspect target comprises multiple words, we substitute the entire sequence with a

placeholder “__target__” before parsing. This process results in a single node in the dependency graph,

representing the entire aspect target. The feature vector for this node is computed as the average of the

embedding vectors of the constituent words of the aspect target.

3.2. Graph Attention Network

We leverage a Graph Attention Network (GAT) [69], a variant of the graph neural network [70],

as a core component of our model, SentiSyn. This network propagates features from a node’s syntactic

context to the node representing the aspect target in the dependency graph. For a graph with N nodes,

each associated with an embedding vector x, a GAT layer aggregates information from the hidden

states of neighboring nodes. An L-layer GAT enables the propagation of features from nodes up to L

hops away to the aspect target node.

The GAT updates the hidden state of node i at layer l + 1 using multi-head attentions [71],

formulated as follows:

hi
l+1 =

K

‖
k=1

σ



 ∑
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ij
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Here, ‖ is the vector concatenation operation, α
ij
lk denotes the attention coefficient from node i to

its neighbor j in the k-th attention head at layer l, and Wlk ∈ R
D
K ×D is a linear transformation matrix

for input states. D represents the dimension of hidden states, σ is the sigmoid function, and f (·) is the

LeakyReLU activation function [72]. The attention context vector alk ∈ R
2D
K is learned during training.

We simplify this feature propagation as:

Hl+1 = GAT(Hl , A; Θl) (3)

where Hl ∈ R
N×D is the stacked states for all nodes at layer l, A ∈ R

N×N is the adjacency matrix of

the graph, and Θl is the parameter set of the GAT at layer l.

3.3. Target-Dependent Graph Attention Network (SentiSyn)

Our model, SentiSyn, incorporates an LSTM to model the target-specific dependencies across

layers, which is essential for filtering out noise in the graph [73? ]. The approach ensures that at layer

0, the hidden state of a target node ht
0 solely depends on its local features, and at each subsequent layer

l, information from the l-hop neighborhood relevant to the target is incrementally integrated into the

hidden state via the LSTM unit. The hidden and cell states of the LSTM for a target node t are updated

as follows, starting from the temporary hidden state ĥt
l :

il = σ(Wi ĥ
t
l + Uihl−1 + bi) (4)

fl = σ(W f ĥt
l + U f hl−1 + b f ) (5)

ol = σ(Wo ĥt
l + Uohl−1 + bo) (6)

ĉl = tanh(Wc ĥt
l + Uchl−1 + bc) (7)

cl = fl ◦ cl−1 + il ◦ ĉl (8)

hl = ol ◦ tanh(cl) (9)

where σ(·) is the sigmoid function, tanh(·) is the hyperbolic tangent function, and

Wi, Ui, W f , U f , Wo, Uo, Wc, Uc are parameter matrices, with bi, b f , bo, bc as bias vectors. ◦ represents

element-wise multiplication, and il , fl , ol are the input, forget, and output gates, respectively.

The feed-forward process of SentiSyn is summarized as:

Hl+1, Cl+1 = LSTM(GAT(Hl , A; Θl), (Hl , Cl))

H0, C0 = LSTM(XWp + [bp]N , (0, 0))

where Cl are the stacked cell states of the LSTM at layer l. The initial hidden state and cell state of

the LSTM are set to 0. Wp ∈ R
d×D projects the stacked embedding vectors X into the hidden state

dimension, and [bp]N denotes the stacking of the bias vector bp N times.

3.4. Final Classification

After processing through L layers of SentiSyn, we extract the final representation ht
L for the

aspect target from the node representations HL. This representation is then linearly transformed for

classification:

P(y = c) =
exp(Wht

L + b)c

∑i∈C exp(Wht
L + b)i

(10)
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Here, W and b are the weight matrix and bias for the linear transformation, and C is the set of

sentiment classes. The model predicts the sentiment polarity of the aspect target as the class with the

highest probability.

We optimize our model using cross-entropy loss with L2 regularization:

loss = − ∑
c∈C

I(y = c) · log(P(y = c)) + λ‖Θ‖2

where I(·) is an indicator function, λ is the L2 regularization coefficient, and Θ represents all

model parameters.

4. Experiments

4.1. Datasets

For evaluating the performance of SentiSyn, our novel approach, we utilized two domain-specific

datasets from SemEval 2014 Task 4 [49]. These datasets encompass reviews from laptops and

restaurants, with each data point comprising a sentence and an associated aspect term labeled with

sentiment polarity by expert annotators. Following the methodology of [63,74], we initially allocated

500 training instances as a development set1 for model optimization, subsequently merging this with

the training dataset for final model training. The composition of these datasets is detailed in Table 1.

Table 1. Dataset distribution across sentiment categories.

Dataset Positive Neutral Negative

Laptop-Training 767 373 673
Laptop-Development 220 87 193
Laptop-Testing 341 169 128

Restaurant-Training 1886 531 685
Restaurant-Development 278 102 120
Restaurant-Testing 728 196 196

4.2. Implementation Details

Our dependency graphs are generated using the Stanford neural parser [68]. We explore two

embedding methods: 300-dimensional GloVe embeddings [50] and BERT representations [51], using

the large uncased English model implemented in PyTorch2. BERT’s input format consists of a

sentence-aspect pair, and we extract sentence representations for aspect-level sentiment analysis.

Due to differences in tokenization between the parser and BERT, we average BERT’s sub-word unit

representations to obtain embeddings for dependency graph tokens.

For hidden state dimensions, we use 300, and BERT representations are mapped to this

dimensionality through linear projection. SentiSyn employs 6 attention heads and is trained with a

batch size of 32, applying l2 regularization (term λ 10−4) and dropout [75] at a rate of 0.7 on input

embeddings. We initially utilize the Adam [76] optimizer with a learning rate of 10−3, followed by

stochastic gradient descent for fine-tuning and model stabilization.

SentiSyn is implemented using PyTorch Geometric [77] on a Linux setup with Titan XP GPUs.

1 Development set splits available at https://github.com/vanzytay/ABSA_DevSplits.
2 PyTorch BERT implementation: https://github.com/huggingface/pytorch-pretrained-BERT
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4.3. Baseline Comparisons

SentiSyn’s performance is compared against various established methods:

SVM with Feature Engineering employs n-gram, parsing, and lexicon features for aspect-level

sentiment analysis [60].

Context-LSTM (TD-LSTM) models context around the aspect using two LSTM networks. In

contrast, SentiSyn uses GAT to incorporate syntax context. The sentiment prediction leverages the

concatenated final hidden states of the LSTMs [9].

Attention-LSTM (AT-LSTM) employs a LSTM model for sentence representation and combines

this with aspect embeddings to generate an attention vector, using the weighted sum of hidden states

for the final representation [30].

Memory Network (MemNet) applies repeated attention to word embeddings, with the last

attention output used for prediction [29].

Interactive Attention Network (IAN) models both sentence and aspect using LSTM networks,

generating mutual attention vectors for target and sentence representations [11].

Parse-Gated CNN (PG-CNN) uses aspect features as gates in a CNN for sentence feature

extraction [63].

AOA-LSTM introduces an attention-over-attention network for joint modeling of aspects and

sentences [62].

BERT-AVG and BERT-CLS respectively use average sentence representations and the

“[CLS]” token representation from BERT for training and fine-tuning.

Table 2 illustrates that SentiSyn, with both GloVe and BERT embeddings, outperforms existing

methods. Feature-based SVM’s strong performance underscores the significance of feature engineering

and syntax understanding. SentiSyn’s superior performance compared to Context-LSTM validates

the importance of syntactic context. BERT-AVG and BERT-CLS, particularly after fine-tuning, show

remarkable results, though the fine-tuning process can be unstable. SentiSyn enhances the predictive

power of BERT representations, achieving accuracy rates around 80% and 83% for laptops and

restaurants, respectively.

Table 2. Performance comparison of SentiSyn and other methods on laptop and restaurant datasets.

Layer numbers in parentheses indicate SentiSyn’s configuration.

Laptop Restaurant

Feature+SVM 70.5 80.2
Context-LSTM 68.1 75.6
Attention-LSTM 68.9 76.2
MemNet 72.4 80.3
IAN 72.1 78.6
PG-CNN 69.1 78.9
AOA-LSTM 72.6 79.7

SentiSyn-GloVe (3) 73.7 81.1
SentiSyn-GloVe (4) 74.0 80.6
SentiSyn-GloVe (5) 73.4 81.2

BERT-AVG 76.5 78.7
BERT-CLS 77.1 81.2

SentiSyn-BERT (3) 79.3 82.9
SentiSyn-BERT (4) 79.8 83.0
SentiSyn-BERT (5) 80.1 82.8

4.4. Target Information Impact

Our ablation study evaluates the influence of explicitly capturing target information in SentiSyn.

Removing the LSTM unit in SentiSyn, denoted as GAT here, disables explicit target information
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utilization. Results in Table 3 demonstrate that explicit target capturing consistently boosts SentiSyn’s

performance over the GAT model. On average, accuracy improvements of 1.2 and 0.95 percentage

points are observed for GloVe and BERT variants, respectively.

Table 3. Ablation study highlighting the benefits of explicit target information in SentiSyn.

Dataset Laptop Restaurant

layer 3 4 5 3 4 5

GAT-GloVe 73.0 72.1 72.4 79.6 80.0 79.7
SentiSyn-GloVe 73.7 74.0 73.4 81.1 80.6 81.2

GAT-BERT 78.1 78.5 78.5 82.6 82.2 82.3
SentiSyn-BERT 79.3 79.8 80.1 82.9 83.0 82.8

4.5. Exploring Model Layer Impact

This section delves into the influence of the number of layers in our SentiSyn model, experimenting

with depths ranging from 1 to 6 layers. And we observe that a single-layer SentiSyn model, when

integrated with GloVe embeddings, underperforms. This suggests that the crucial sentiment words

related to the aspect targets are typically more than one hop away. Enhancing the model depth

to three layers markedly ameliorates SentiSyn’s performance with GloVe embeddings. In contrast,

SentiSyn augmented with BERT representations displays greater depth robustness. Even a solitary

layer in SentiSyn, when combined with BERT, yields satisfactory outcomes on both datasets. This

can be attributed to BERT’s inherent ability to embed contextual information into its representations.

Nevertheless, further depth augmentation continues to refine performance, with optimal results

achieved when the model depth exceeds three layers.

4.6. Comparative Analysis of Model Sizes

In Table 4, we compare the model size of our SentiSyn framework with several baseline models

and the BERT model. For baselines, we utilize a publicly available PyTorch implementation for size

assessment. Our SentiSyn model, when integrated with GloVe embeddings, demonstrates a smaller

footprint compared to the LSTM-based counterparts. MemNet (3) exhibits the smallest model size.

The incorporation of BERT representations in SentiSyn leads to a marginal size increase, primarily

due to the additional linear projection layer for input word representation adaptation. Notably, the

shift from GloVe to BERT embeddings only slightly increases the training duration per epoch for a

three-layer SentiSyn model on the restaurant dataset, from 1.12 seconds to 1.15 seconds per epoch. In

stark contrast, fine-tuning the full BERT model necessitates substantially more time, approximately

226.50 seconds per epoch, underscoring the efficiency of the SentiSyn model in computational resource

utilization and training time.
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Table 4. Model size comparison of SentiSyn with various configurations and baseline models.

Models Model size (×106)

TD-LSTM 1.45
MemNet (3) 0.36
IAN 2.17
AOA-LSTM 2.89

SentiSyn-GloVe (3) 1.00
SentiSyn-GloVe (4) 1.09
SentiSyn-GloVe (5) 1.18

BERT-CLS 335.14

SentiSyn-BERT (3) 1.30
SentiSyn-BERT (4) 1.39
SentiSyn-BERT (5) 1.49

5. Conclusion

In our research, we introduced a pioneering graph attention network, SentiSyn, specifically

tailored for aspect-level sentiment analysis. This innovative approach harnesses the intricate syntactic

dependencies within sentences, focusing on the contextual syntax around aspect targets for more

precise sentiment classification. Unlike conventional models that process word sequences linearly,

SentiSyn brings sentiment-modifying words into closer association with their relevant aspect targets,

adeptly navigating through possible syntactic complexities. Our extensive evaluations, conducted

on laptop and restaurant review datasets from SemEval 2014, have showcased SentiSyn’s superior

capabilities. When integrating GloVe embeddings, SentiSyn notably surpassed various existing models

in performance. Upon adopting BERT representations, SentiSyn’s efficiency was further amplified,

delivering enhanced outcomes. Remarkably, SentiSyn achieves these results with a leaner architecture,

demanding less computational power and training time compared to the extensive fine-tuning required

for the original BERT model.

This work is arguably the first to directly utilize an unaltered dependency graph in aspect-level

sentiment analysis, opening new avenues in this research area. However, there is ample scope for

refinement. Future iterations could explore the incorporation of an attention mechanism specifically

to weigh the significance of individual words within an aspect. Additionally, this study’s focus on

dependency graphs alone leaves room for integrating various relation types present in these graphs.

Incorporating elements such as part-of-speech tags could provide a more nuanced analysis. Finally,

amalgamating our graph-based approach with sequence-based models could offer a comprehensive

solution, potentially mitigating inaccuracies originating from dependency parsing errors, thereby

further enhancing the robustness and accuracy of sentiment analysis.
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