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Abstract: Validation of the TROPOspheric Monitoring Instrument (TROPOMI) SIF product is a 

necessity to evaluate its feasibility in various applications. A few validation works have been 

conducted through direct comparison with in-situ SIF retrievals or cross-comparison with similar 

satellite-based SIF or vegetation index (VI) products. Nevertheless, the influence of the geolocation 

mismatch between the validation pixel and reference data on validation results was never 

considered. This study, for the first time, quantifies the geolocation shift of the TROPOMI validation 

pixel based on a geometric location matching method and then the uncertainty caused by the 

geolocation mismatch. The results indicate that the geolocation shift of the TROPOMI pixel shows 

large temporal variations, with a standard deviation of 2.45 km and 1.96 km in the across- and along-

track directions. The mean shifts are 0.07 km and 0.25 km in the across- and along-track directions 

respectively, indicating eastward shifts in the across-track direction and northward shifts in the 

along-track direction in general. More than half (42/54) of the time periods showed relative 

uncertainty larger than 5%, with the maximum even reaching 55.7%. Hence, the uncertainty caused 

by geolocation mismatch should be fully considered in the validation of satellite SIF products, 

especially over heterogeneous surfaces. 

Keywords: TROPOMI SIF; geometric error; uncertainty; heterogeneous surface; validation 

 

1. Introduction 

Solar-induced chlorophyll fluorescence (SIF) was considered to be an ideal proxy for gross 

primary production (GPP), because it is directly related to vegetation photosynthesis [1–3]. The recent 

progress in remote sensing techniques and retrieval algorithms has enabled different kinds of satellite 

SIF products such as GOSAT [4], OCO-2 [5], TanSat [6], and TROPOMI [7] SIF products, which 

provide an unprecedented opportunity for large-scale monitoring of SIF and diverse applications in 

climate, biogeochemical cycle, and Earth system science [8]. Nevertheless, due to the errors in 

processing raw data to radiance units and the limitations of the SIF retrieval algorithm, satellite SIF 

product inevitably suffers from errors. Hence, it is a necessity to validate the accuracy of satellite SIF 

products to tell end-users their feasibility in various applications [9]. 

In previous years, the accuracy of satellite SIF products was generally evaluated indirectly 

through the cross-comparison with similar satellite-based SIF or vegetation index (VI) or eddy 

covariance (EC) GPP products [1,10–12]. However, this kind of validation can merely identify the 
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consistency or disagreement between these products, which cannot reveal the true accuracy of 

satellite SIF products. Direct validation based on in-situ based SIF measurements is still a necessity 

to fully understand the performance of satellite SIF products. It has been well acknowledged that the 

direct validation of satellite SIF products based on in-situ SIF measurements is challenged by the 

uncertainties related to the in-situ measuring system, the spatial scale mismatch between in-situ and 

satellite-based SIF measurements, spectral difference, and retrieval algorithms. By addressing these 

challenges, Du et al. [13] conducted a direct validation of the TROPOMI SIF product based on a 

sufficient in-situ SIF database. However, the influence of the geolocation mismatch between the 

validation pixel and reference data on validation results has not been recognized. 

Within the direct validation framework, the validation pixel generally refers to the satellite pixel 

containing in-situ measurements. The reference data for validation is generally obtained within the 

nominal spatial extent of the validation pixel from in-situ observations through either upscaling or 

spatial representativeness assessment [14,15]. Nevertheless, the validation pixel may suffer from 

geometric errors and deviate from its nominal location. Then the signal of the validation pixel may 

come from a different area instead of its nominal location, resulting in inherent incompatibilities [16]. 

The geolocation mismatch between the validation pixel and reference data will introduce large 

uncertainty to the validation results, especially for validation pixels covering heterogeneous areas 

[17]. This kind of uncertainty obscures the true accuracy of satellite SIF products. Hence, it is 

necessary to quantify the uncertainty caused by the geolocation mismatch between the validation 

pixel and reference data. 

This study makes the first attempt to quantitatively identify the geolocation shift of satellite SIF 

products and quantify the magnitude of uncertainty caused by geolocation mismatch between 

validation pixel and reference data. Among the various kinds of spaceborne SIF products, the 

TROPOMI SIF product has been identified as the one with the highest potential due to its relatively 

high spatial resolution (3.5 km × 7.5/5.5 km at the nadir) and wide swath (~2600 km) [7]. Hence, it 

was selected to conduct the analysis. The findings in this study are expected to improve the strictness 

and reliability of validation results of satellite SIF products. 

2. Methods 

The purpose of this study is to quantify the uncertainty caused by the geolocation errors of the 

validation pixel. To achieve this goal, the geolocation shift of the validation pixel should be first 

identified. It is generally well known that satellite products have been geometrically corrected with 

errors less than 0.5 pixels [16,18]. However, the geometric correction was generally carried out on the 

satellite image level instead of pixel level. When it comes to a specific pixel, we do not know its exact 

geolocation error and how it shifts. In response to this challenge, a pixel-based geometric location 

matching method [17] was introduced here to identify the geolocation shift of the TROPOMI SIF 

validation pixel. The basic idea of this method is to simulate the shift in the along-track and across-

track directions on the basis of a geo-corrected high-resolution map. The flowchart of the 

methodology of this study is shown in Figure 1. The key steps to quantify the uncertainty caused by 

geolocation mismatch include: preprocessing of a high-resolution map, identification of geolocation 

shift of TROPOMI SIF validation pixel, and quantification of uncertainty caused by geolocation 

mismatch. 
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Figure 1. Workflow of quantifying the uncertainty caused by the geolocation errors of the TROPOMI 

pixel. 

2.1. The preprocessing of a high-resolution map 

The geo-corrected high-resolution map was extracted from level-2 Sentinel-2 Surface Reflectance 

(SR) data due to its high spatial resolution. Considering the surface reflectance anisotropy, the 

Sentinel-2 SR should be first normalized to the geometry of the TROPOMI SIF validation pixel. Here, 

we employed the MODIS MCD43A1 product to calculate the directional reflectance ratio (𝑐ఒ), which 

will be used to adjust Sentinel-2 SR (𝑝ఒ ) from original geometry (Ωௌ௘௡௧௜௡௘௟ ) to the geometry of 

TROPOMI validation pixel (Ω்ோை௉ைெூ) (Eqs. (1-3)) [19,20]. 𝑁𝐵𝐴𝑅ఒ(Ω்ோை௉ைெூ) = 𝑐ఒ × 𝑝ఒ(Ωௌ௘௡௧௜௡௘௟) (1) 

 𝑐ఒ =
௣ഊಾೀವ಺ೄ(ஐ೅ೃೀುೀಾ಺)௣ഊಾೀವ಺ೄ(ஐೄ೐೙೟೔೙೐೗)  (2) 𝑝ఒெை஽ூௌ(Ω) = 𝑓௜௦௢(𝜆) + 𝑓௩௢௟(𝜆)𝑘௩௢௟(Ω) + 𝑓௚௘௢(𝜆)𝑘௚௘௢(Ω) (3) 

where 𝑁𝐵𝐴𝑅ఒ  is Sentinel-2 adjusted SR, 𝑝ఒெை஽ூௌ was estimated using the kernel coefficients (𝑓௜௦௢ , 𝑓௩௢௟ , 𝑓௚௘௢) provided by MCD43A1. 𝑘௩௢௟  and 𝑘௚௘௢  are volumetric scattering and geometric-optical 

kernels [21,22], respectively. 

Considering the inconsistency in spectral bands between TROPOMI and Sentinel-2, Sentinel-2 

SR (Sentinel-2 Spectral Response Functions (S2-SRF) - Sentinel Online (copernicus.eu)) was also 

converted to the band of TROPOMI using the spectral response functions (TROPOMI Response 

Functions - Sentinel Online (copernicus.eu)). Near-infrared reflectance of vegetation (NIRv) (NIRv = 

NDVI × ρNIR, where NDVI is the normalized difference VI based on NIR and red spectral bands and 

ρNIR is the NIR reflectance) has been identified as the prominent indicator of SIF [23,24]. Hence, we 

generated the high-resolution NIRv maps based on angular-corrected and band consistent Sentinel-

2 SR data. 
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2.2. Geolocation shift identification 

The geolocation shift of the TROPOMI SIF validation pixel was identified based on the Sentinel-

2 NIRv data and the geolocation matching method. During the geolocation matching process, the 

nominal spatial extent of the validation pixels was extracted as the initial template. Then the template 

was shifted in the along- and across-track directions with a step of 10 m (i.e., the pixel size of the 

NIRv map). The maximum shift was set to 0.5 TROPOMI pixel, resulting in [(0.5 TROPOMI pixel /10) 

× 2 + 1]2 shift cases for each validation pixel. For each simulated shift case, the NIRv values on the 

TROPOMI pixel scale (denoted as 𝑁𝐼𝑅𝑣௦௜௠௨௟௔௧௘ௗ) was estimated using the aggregated 10 m Sentinel-

2 SR within the template. Afterward, the difference between the simulated TROPOMI pixel scale 

NIRv (𝑁𝐼𝑅𝑣௦௜௠௨௟௔௧௘ௗ ) and the TROPOMI validation pixel NIRv (denoted as 𝑁𝐼𝑅𝑣்ோை௉ைெூ ) was 

calculated. The shift and the exact location (denoted as 𝑃𝑜𝑠௘௫௔௖௧) of the validation pixel correspond 

to the simulate case with the minimum absolute difference between 𝑁𝐼𝑅𝑣்ோை௉ைெூ and 𝑁𝐼𝑅𝑣௦௜௠௨௟௔௧௘ௗ 

(Eq. (4)). 𝑃𝑜𝑠௘௫௔௖௧ = 𝑃𝑜𝑠(𝑀𝑖𝑛(𝑎𝑏𝑠(𝑁𝐼𝑅𝑣௦௜௠௨௟௔௧௘ௗ − 𝑁𝐼𝑅𝑣்ோை௉ைெூ))) (4) 

where 𝑀𝑖𝑛 denotes the minimal function, and abs represents the absolute difference function. 

2.3. Quantification of uncertainty caused by geolocation mismatch 

To quantify the uncertainty caused by the geolocation mismatch in validation, the TROPOMI 

pixel scale reference SIF in the nominal location (denoted as 𝑆𝐼𝐹ோ௘௙ି௡௢௠௜௡௔௟ ) and exact location 

(denoted as 𝑆𝐼𝐹ோ௘௙ି௘௫௔௖௧) should be calculated. Here, the TROPOMI pixel scale reference SIF was 

determined based on tower-based SIF measurements (denoted as  𝑆𝐼𝐹௜௡ ௦௜௧௨ ) and an upscaling 

function. The basic idea of the upscaling function is that the ratio of the NIRv with different spatial 

scales can be regarded as the upscaling coefficients of SIF for the two spatial scales (Eq. (5)) [13]. 

𝑆𝐼𝐹ோ௘௙ି௡௢௠௜௡௔௟ =
ேூோ௩೙೚೘೔೙ೌ೗,ೄ೐೙೟೔೙೐೗ேூோ௩೅೚ೢ೐ೝ,ೄ೐೙೟೔೙೐೗ 𝑆𝐼𝐹௜௡ ௦௜௧௨ (5) 

𝑆𝐼𝐹ோ௘௙ି௘௫௔௖௧ =
ேூோ௩೐ೣೌ೎೟,ೄ೐೙೟೔೙೐೗ேூோ௩೅೚ೢ೐ೝ,ೄ೐೙೟೔೙೐೗ 𝑆𝐼𝐹௜௡ ௦௜௧௨ (6) 

where 𝑁𝐼𝑅𝑣௡௢௠௜௡௔௟,ௌ௘௡௧௜௡௘௟ and 𝑁𝐼𝑅𝑣௘௫௔௖௧,ௌ௘௡௧௜௡௘௟ represented the Sentinel-2 NIRv on the TROPOMI 

pixel scale at the exact and nominal locations of validation pixel, which was calculated by aggregating 

Sentinel-2 SR within the footprint of TROPOMI pixel as recommended by Du et al. [13]. 𝑁𝐼𝑅𝑣்௢௪௘௥,ௌ௘௡௧௜௡௘௟ is the Sentinel-2 pixel NIRv containing the tower-based location. 

The uncertainty caused by the geolocation mismatch (denoted as 𝑈𝑛௚௘௢௠௘௧௥௜௖ ) between 

validation pixel and reference data can be calculated using Eq. (7). 𝑈𝑛௚௘௢௠௘௧௥௜௖ = 𝑆𝐼𝐹ோ௘௙ି௡௢௠௜௡௔௟ − 𝑆𝐼𝐹ோ௘௙ି௘௫௔௖௧ (7) 

3. Study area and Materials 

3.1. Tower-based measurements 

The tower-based SIF validation datasets were collected from five ChinaSpec 

(http://chinaspec.nju.edu.cn) network sites (i.e., XTS, DM, GC, HL, and AR) [25]. The main emphasis 

of ChinaSpec is to gather ground-based SIF measurements from the flux sites that are part of the 

ChinaFLUX network (http://www.chinaflux.org/) [26]. The locations of these five sites are graphically 

illustrated in Figure 2. 
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Figure 2. The locations and land-cover types of these five sites used in this study. The base land-cover 

map was extracted from the 30m annual land-cover dataset (i.e., CLCD) of 2020 developed by Wuhan 

University (https://zenodo.org/record/8176941). 

The five ChinaSpec sites encompasses four croplands and one grassland sites, which are spread 

out throughout China. The main vegetation types of these cropland sites are different. At XTS and 

GC sites, a rotation system of maize and wheat crops was implemented. However, at the DM site, 

only maize was cultivated during the summer season for each year. By contrast, the HL site was 

featured by a combination of grass and several crabapple trees [13]. These sites were installed with 

the SIFSpec instrument, which consists of a QE 65Pro spectrometer, operating within a wavelength 

range of approximately 650 nm to 840 nm. It offers a spectral resolution of around 0.31 nm. 

In order to obtain tower-based SIF, a series of processes have been carried out, including raw 

data preprocessing, quality control, atmospheric correction, and SIF retrieval. Detailed information 

on the processing can be referred to Du et al. [27]. The in-situ tower-based SIF observations over these 

sites are free to access at https://zenodo.org/record/7244183. In order to minimize the uncertainties 

caused by temporal inconsistencies in SIF retrievals, the local time of the TROPOMI overpass was 

used to extract in situ measurements. Furthermore, to reduce the effect of random errors associated 

with tower-based measurements, the in-situ observations within a 30-minute window of TROPOMI 

overpasses were employed, which were averaged to generate half-hourly SIF values to be matched 

with TROPOMI instantaneous SIF measurements [13]. 

It is noteworthy that there are wavelength differences between TROPOMI SIF products (~740 

nm) and tower-based SIF retrievals (~760 nm). To address this issue, a ratio of 1.48 was used to 

convert tower-based SIF760 to SIF740 as recommended by Du et al. [13]. The experimental period 

covers the whole year of 2020 with consideration of the temporal variations of geolocation errors of 

TROPOMI SIF products. The data matching between tower-based, Sentinel-2, and TROPOMI SIF 

products was made carefully with the consideration of data quality and weather conditions. As a 

result, a total of 54 data pairs were retained. 
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3.2. Satellite Data 

3.2.1. TROPOMI SIF products 

TROPOMI is a step forward of SIF measurements on the global scale due to its high spatial 

resolution of 3.5 × 7.5 km2 at the nadir (adjusted to 3.5 × 5.5 km2 since August 2019) and high temporal 

resolution of nearly daily. This improved spatial and temporal resolution significantly increases the 

number of clear-sky measurements per day compared to previous missions. The TROPOMI SIF 

product employed in this study was established by Guanter et al. [7], which includes two far-red SIF 

datasets derived from the 743–758 nm window and the extended 735–758 nm window 

(http://ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/sif/v2.1/l2b/). The former was the baseline 

SIF product for the moment and recommended for use. Hence, only the 743–758 nm SIF product was 

adopted in this paper. This product was retrieved from TROPOMI TOA radiance in the far-red 

spectral region based on a data-driven forward model [28]. In addition to SIF data, this product also 

provides top-of-atmosphere (TOA) reflectance for the bands ranging from red-edge to NIR 

wavelengths, enabling the calculation of NIRv, which is considered to be a good proxy of SIF and 

approximately equals to the multiplication of NIR reflectance and Normalized Difference Vegetation 

Index (NDVI). To avoid the uncertainties caused by large view zenith angle (SZA), the TROPOMI SIF 

records with SZA greater than 60° were excluded from the analysis. 

3.2.2. Sentinel-2 SR products 

The Level-2A Sentinel-2 SR products were obtained from the Google Earth Engine (GEE) 

platform (https://developers.google.com/earth-engine/datasets/catalog/ COPERNICUS_S2_SR). The 

surface reflectance data along with the associated cloud probability product and default cloud 

masking parameter (https://developers.google.com/earth engine/tutorials/community/sentinel-2-

s2cloudless) were extracted. The cloud masking parameter utilizes a machine-learning-based 

Sentinel-2 cloud detection algorithm. The Sentinel-2 offers multispectral optical images with 13 bands 

ranging from visible to shortwave infrared. Considering the inconsistency of observation geometry 

and band specifications between Sentinel-2 and TROPOMI, the viewing geometry for three visible 

bands (blue, green, and red), NIR, and two short wave infrared (SWIR) spectral bands were also 

extracted to carry out the angular normalization and band conversion. Detailed information on the 

band conversion process can be found in Lin et al. [29]. To maintain consistency with other bands, 

the two SWIR bands were resampled to a spatial resolution of 10 m. Since the Sentinel-2 data have a 

repeat period of 10 days, the bottom-of-atmosphere reflectances from both Sentinel-2A and 2B were 

used to calculate high-resolution NIRv maps in order to get more synchronized observations. 

Meanwhile, to ensure the reliability of the analysis, a filtering process was conducted for the Sentinel-

2 observations. The data records with a cloud, snow, or ice coverage exceeding 30% were discarded. 

3.2.3. Land cover data 

In this study, a land cover dataset, namely the 30m annual China Land Cover Dataset (CLCD), 

was used to explore the relation between the spatial heterogeneity around the validation pixel and 

the uncertainty caused by the geolocation errors of the validation pixel. This dataset was selected 

partly because of its high spatial resolution and partly because of the availability in China. It was 

generated from Landsat data on the Google Earth Engine (GEE) platform with the random forest (RF) 

classifier based on the training samples which were collected by combing stable samples provided 

by China’s land-use/cover datasets and visually interpreted samples from satellite time series data, 

Google Earth, and Google Maps. Two post-processing procedures including spatial-temporal 

filtering and logical reasoning were carried out to further improve the spatial-temporal consistency 

of CLCD. The overall accuracy of CLCD is reasonable, with a value of 79.31% [30]. 
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4. Results and Discussion 

4.1. The variation of NIRv for all simulated shift cases 

Figure 3 shows the spatial distribution of the 𝑁𝐼𝑅𝑣௦௜௠௨௟௔௧௘ௗ throughout the shifted cases within 

the ±1 TROPOMI pixels range at a step change of 10 m. For the sake of brevity, only the results for 

the XTS site on November 10th, 2020 (Figure 3a) and December 8th, 2020 (Figure 3b) are displayed 

here. 

 

Figure 3. Variation of 𝑁𝐼𝑅𝑣௦௜௠௨௟௔௧௘ௗ for each shift combination (a-b) and their histogram distribution 

(c-d). The Y-axis and X-axis represent the along-track and across-track directions, respectively. +Y and 

+ X indicate the shift to the north and east, respectively. The actual displacement of the validation 

pixel is determined by the minimum absolute difference between 𝑁𝐼𝑅𝑣௦௜௠௨௟௔௧௘ௗ and 𝑁𝐼𝑅𝑣்ோை௉ைெூ The 

geolocation error can be converted to distance in kilometers by multiplying the grid location by 10 m. 

Each grid in Figure 3a,b represents a shifted case, which is represented by the distance from the 

center in the two directions. The center of each subfigure denotes the nominal location of the 

validation pixel on the reference scene. It can be seen that 𝑁𝐼𝑅𝑣௦௜௠௨௟௔௧௘ௗ show differences among the 

different simulated cases. The NIRv corresponding to the exact location of the validation pixel may 

be either larger or smaller than the NIRv at its nominal location. The maximum and minimum show 

a difference of about 0.008 for the two dates (Figure 3c,d). It is important to note that the magnitude 

of NIRv itself is small, with values less than 0.05. Hence, the influence of geometric mismatch cannot 

be ignored since it may obscure the true accuracy of TROPOMI SIF products. It is important to note 

that the spatial range of the TROPOMI pixel is irregular, and the location of one TROPOMI pixel 

changes with time. Hence, the number of simulated cases for each period is not equal (Figure 3c,d). 

4.2. The Shifts of the Validation Pixels of TROPOMI 

Figures 4 and 5 show the geometric shift of the TROPOMI validation pixel in the across-track 

(X) and along-track (Y) directions, respectively. As shown in Figures 4a and 5a, the geolocation shift 

of the validation pixel is widely present over these five sites throughout the experimental period in 

both across-track and along-track directions. 
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Figure 4. The geometric shift of the validation pixels in the across-track directions. (a) display the 

histogram distribution of the across-track directions shifts of the validation pixel during the 

experimental period. (b-f) present the day-by-day shift of the validation pixel at each site in the across-

track directions. 

 

Figure 5. The geometric shift of the validation pixels in the along-track directions. (a) display the 

histogram distribution of the across-track directions shifts of the validation pixel during the 

experimental period. (b-f) present the day-by-day shift of the validation pixel at each site in the along-

track directions. 

The shift in the across-track direction ranges from -3.92 km to 6.48 km, with a mean value of 0.07 

km, indicating eastward shifts in the across-track direction in general. While in the along-track 

direction, the shift of the validation pixel shows directions are comparable, indicated by the similar 
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mean and a range from -2.81 km to 2.80 km, with a mean value of 0.25 km, indicating a northward 

shift in the along-track direction in general. It is noteworthy that the temporal variations of shifts in 

the across- and along-track directions are both significant, with a standard deviation of 2.45 km and 

1.96 km, respectively. The magnitude of the shift of the TROPOMI validation pixel is generally 

reasonable, with a mean value of 2.09 km and 1.73 km in two directions (Figures 4a and 5a). 

Moreover, both the magnitude and the temporal variation degree of the shifts in two directions are 

comparable, indicated by the similar mean and standard deviation values. 

Figures 4b–f and 5b–f display the day-by-day variation of geometric shifts of the validation 

pixels at these 5 sites in both the cross-track and along-track directions, respectively. It is obvious that 

the geometric shift of the validation pixels corresponding to the 5 in-situ sites all show significant 

temporal variations. But the magnitude of geolocation shift and its variation degree show certain 

dependence on in situ sites (Figures 4 and 5). In the cross-track direction (Figure 4), the XTS site shows 

the largest range of geolocation shift, with a minimum of -3.92 km and a maximum of 6.48 km. Its 

mean geolocation error is 0.59 km, indicating an eastward shift on average. Similarly, AR also present 

a westward shift, with a mean geolocation error of 1.57 km. Nevertheless, it is important to note that 

the number of data pairs is so small at AR that the results may be not statistically significant. 

Compared to the eastward shift at XTS and AR, the opposite phenomenon occurs at GC, DM, and 

HL, which in general show a westward shift, indicated by the mean shifts of -0.4 km, -0.49 km, and -

0.25 km, respectively. Among these three in-situ sites, DM shows the largest variation range as well 

as variation degree (i.e., 2.43 km). By contrast, GC presents the smallest variation range as well as 

variation degree (i.e., 2.14 km).  

When it comes to along-track direction (Figure 5), XTS, GC, and AR sites generally show a 

northward shift, indicated by the mean shift of 0.49 km, 0.29 km, and 1.69 km, respectively. The 

temporal variation range and variation degree of geolocation shift were the largest at the XTS site, 

with values ranging from -2.81 km to 2.80 km and a standard deviation of 2.04 km. This is followed 

by GC with comparable variation ranges and variation degrees, indicated by the standard deviations 

of 2.16 km. The smallest variation degree of the geolocation shift of AR (i.e., 0.92 km) can be partly 

attributed to the small number of data pairs at this site. Compared to the northward shift of these 

four sites, a different phenomenon can be observed at the DM and HL sites, which show a southward 

shift in the along-track direction, indicated by the mean shift of -0.19 km and -0.25km, respectively. 

The temporal variation degree of geolocation shift is also significant at both sites, with a standard 

deviation of 1.85 km and 2.58km, respectively. 

To show the geolocation shift of TROPOMI validation pixel corresponding to in situ sites more 

intuitively, we present the nominal location and the exact location of validation pixels in Figure 6. To 

show the temporal variation characteristics of TROPOMI validation pixel geolocation shift at a 

specific area, the results at XTS site on October 16, October 19, and October 21, 2020 were shown 

(Figure 6a–c). To display the geolocation shift of validation pixels at different locations on the same 

day, the results at XTS, HL, and GC sites on October 4, 2020, were presented (Figure 6d–f). 
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Figure 6. The nominal (black square) and exact (red square) location of the validation pixel 

corresponding to the in-situ site. (a), (b) and (c) represent the nominal and actual positions of the 

validation pixels at the XTS sites on October 16, 2020, October 19, 2020, and October 21, 2020, 

respectively. (c), (d) and (f) represent the nominal and actual positions of the validation pixels at the 

XTS, HL, and GC sites on October 4, 2020, respectively. 

From Figure 6, it can be seen that the nominal spatial extent of the TROPOMI validation pixel 

and its exact spatial extent are always not totally overlapped. At the XTS site, the TROPOMI 

validation pixel exhibits different degrees of geolocation shift in the southeast, northeast, and 

southwest directions at three different but adjacent time points. This indicates that even for the same 

site, the magnitude and direction of geolocation shift are inconsistent and even opposite within 

adjacent periods. As shown in Figure 6d–f, it can be found that the validation pixels at XTS, HL, and 

GC sites on October 4, 2020, exhibit different degrees of shifts in the northwest, southwest, and 

southeast directions, respectively. This indicates that even at the same time, the shift of TROPOMI 

validation pixels over different areas is not consistent and even the opposite. 

Based on these results, it can be concluded that the geolocation shifts of TROPOMI vary 

irregularly with time and space. It is hard to correct such a kind of geolocation errors through general 

methods such as the coastline crossing method, the land-sea fraction method, and the coregistration 

method, because the correction models were generally established on the image level. Instead, the 

geolocation shift of TROPOMI data should be identified pixel by pixel. It is important to point out 

that in general validation work, the reference value for validation is generally obtained within the 

nominal spatial extent of the validation pixel (i.e., black square), but the signal of the satellite 

validation pixel corresponds to the exact spatial extent (i.e., red square). This geolocation mismatch 

may artificially expand the difference between the reference value and satellite validation pixel. 

Therefore, the geographical shift of TROPOMI SIF pixels should be taken seriously when validating 

TROPOMI SIF products. 

4.3. The uncertainty caused by geometric errors of validation pixel 

To illustrate the effect of geolocation mismatch on the validation of TROPOMI SIF products, 

Figure 7a–f shows the 𝑆𝐼𝐹ோ௘௙ି௡௢௠௜௡௔௟ and 𝑆𝐼𝐹ோ௘௙ି௘௫௔௖௧ for TXS, DM, and GC sites at each time point. 

It can be seen that 𝑆𝐼𝐹ோ௘௙ି௡௢௠௜௡௔௟ and 𝑆𝐼𝐹ோ௘௙ି௘௫௔௖௧ show similar temporal variation characteristics 

throughout the experimental period. Hence, the geolocation shift of the validation pixel is not a main 

influencing factor on the temporal change trend of SIF. However, it is obvious that the magnitude of 𝑆𝐼𝐹ோ௘௙ି௡௢௠௜௡௔௟  is not always equal to 𝑆𝐼𝐹ோ௘௙ି௘௫௔௖௧  in the time series. Therefore, the effect of the 
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geolocation shift of the validation pixel cannot be ignored when the magnitude of SIF is focused. 

Because it will lead to different interpretations of TROPOMI SIF product errors. 

 

Figure 7. The value of TROPOMI pixel scale reference SIF at the nominal (𝑆𝐼𝐹ோ௘௙ି௡௢௠௜௡௔௟)(up) and 

real (𝑆𝐼𝐹ோ௘௙ି௘௫௔௖௧) (down) locations, respectively. The first to third columns present the results for 

XTS, DM, and GC sites, respectively. 

To show the influence of the geolocation shift of validation pixel on reference value more 

intuitively, we present the distribution of uncertainty and the relative uncertainty of the TROPOMI 

pixel scale SIF reference caused by geolocation shift in Figure 8 and Figure 9, respectively. Figure 8a 

shows the frequency histogram of the uncertainty of pixel scale reference values by combining all the 

results of these five sites throughout the experimental period. Figure 8b–f shows the day-by-day 

variation of the uncertainty of pixel scale reference for each site. 

 

Figure 8. The uncertainty caused by the geolocation shift of the TROPOMI validation pixel. (a) display 

the histogram distribution of the uncertainty (𝑈𝑛௚௘௢௠௘௧௥௜௖ ) caused by the geolocation shift of the 
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validation pixels at these five sites throughout the experimental period. (b-f) present the day-by-day 

variation of the errors of reference values caused by the geolocation shift of the validation pixels for 

each site. 

 

Figure 9. The relative uncertainty (%) caused by the geolocation shift of the TROPOMI validation 

pixel. (a) display the histogram distribution of relative uncertainty (%) caused by the geolocation shift 

of validation pixels at these five sites throughout the experimental period (b-f) present the day-by-

day variation of the relative uncertainty (%) caused by the geolocation shift of validation pixels for 

each site. 

From Figure 8a, it can be seen that the uncertainty caused by the geolocation shift of the 

TROPOMI validation pixel presents significant spatial and temporal variations, with values ranging 

from -0.38 to 0.09. Furthermore, negative values occur more frequently and have higher magnitudes 

compared to positive values, resulting in a mean uncertainty of -0.03 overall. When it comes to each 

specific site (Figure 8b–f), it can be seen that all these sites show significant temporal variations 

regarding the uncertainty of pixel scale reference. This is partly due to the fact that the geolocation 

shift varies with time, and partly due to the temporal variation of spatial heterogeneity around the 

validation pixel. For instance, if the land surface around the validation pixel is absolutely 

homogeneous, then the geolocation mismatch would not cause errors regardless of the shift 

magnitude of the validation pixel. Nevertheless, it is noteworthy that the distribution characteristics 

of the uncertainty of pixel scale reference with time are not consistent between these sites. The 

uncertainties at GC, DM, HL, and AR sites are basically negative. By contrast, positive and negative 

values occur with almost equal frequency at XTS sites. 

Considering that the magnitude of SIF values may have an influence on the uncertainty, we also 

calculated the relative uncertainty caused by the geolocation shift of the validation pixel (Figure 9). 

Here, the absolute value was shown because only the magnitude of uncertainty was focused. It can 

be seen that most of the relative uncertainties are lower than 30%. But more than half (i.e., 42/54) of 

the time periods showed relative uncertainty larger than 5%. It is noteworthy that the maximum 

uncertainty caused by geolocation shift can be even larger than 50% (Figure 9a). 

The magnitude of the relative uncertainty caused by geolocation errors shows different temporal 

variation characteristics among these five sites. For instance, at the XTS site (Figure 9b), the relative 

uncertainty is generally small in the growing season, with the values distributed around 5%, but 

becomes to be larger in the dormant season, with the values consistently larger than 10%. By contrast, 
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at the DM sites, the relative uncertainty is large in the growing season occasionally. In particular, the 

relative uncertainty in the growing season is even larger than that in the dormant season (Figure 9d). 

It is noteworthy that although the relative uncertainty at HL is generally distributed around 10%, 

there is a significantly large value of 55.7%. Hence, it is difficult to give a common conclusion about 

the magnitude of relative uncertainty caused by geolocation shift. Instead, such a kind of uncertainty 

should be quantified pixel-by-pixel for each time period in the validation of satellite SIF products, 

especially over heterogeneous surfaces. 

5. Conclusions 

The validation of TROPOMI SIF is an essential process to judge whether its accuracy is adequate 

for the intended use. Although some validation studies have been conducted through direct 

comparison with in-situ SIF retrievals or cross-comparison with similar satellite-based SIF or VI 

products, the impact of geolocation mismatch between validation pixel and reference data on 

validation results has not been taken into account. In fact, the geolocation mismatch is a big 

contributor to the uncertainty of validation results. This is particularly true over heterogeneous 

surfaces where the objects at the nominal and real locations may differ. Hence, it is necessary to 

quantify such a kind of uncertainty in order to determine whether the direct comparison between 

TROPOMI SIF and reference SIF is feasible and whether the validation results are rigorous and 

reliable. 

This study, for the first time, quantifies the geolocation shift of the TROPOMI validation pixel 

and then the uncertainty caused by the geolocation mismatch between the TROPOMI SIF and 

reference SIF. It was found that the shift ranges from -3.92 km to 6.48 km and from -2.81 km to -2.80 

km in the across- and along-track directions, respectively. The mean shifts are 0.07 km and 0.25 km 

in the across- and along-track directions respectively, indicating eastward shifts in the across-track 

direction in general and northward shifts in the along-track direction. The shift shows significant 

temporal variations with a standard deviation of 2.45 km and 1.96 km in the across- and along-track 

directions. In particular, the shifts are even opposite between adjacent times in two directions. When 

the magnitude of the shift is focused, the geolocation shift of the TROPOMI validation pixel are 2.09 

km and 1.73 km in the across-track and along-track directions, respectively. 

Regarding the influence of the geolocation shift of the validation pixel, it is not a main 

influencing factor on the temporal change trend of SIF, but it cannot be ignored when the magnitude 

of SIF is focused. More than half (42/54) of the time periods showed relative uncertainty larger than 

5%, with the maximum even reaching 55.7%. Hence, the uncertainty caused by the geolocation shift 

of the validation pixel cannot be ignored, because it will lead to different interpretations of TROPOMI 

SIF product errors. However, it is important to note that this study is only limited to validation pixels 

from a specific period at five in-situ sites. Hence, whether the findings of this study can be applied to 

other regions is still an open question. More analyses will be made when more data are available in 

the future. But anyway, this study is the first step towards a more rigorous and reliable validation of 

the TROPOMI SIF products. 
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