Pre prints.org

Article Not peer-reviewed version

Quantification of Uncertainty Caused by
Geometric Location Mismatch in the
Validation of TROPOMI Solar-Induced
Chlorophyll Fluorescence Product

Qicheng Zeng , Xiaodan Wu Rongqi Tang, Jingping Wang , Xingwen Lin, Jianguang Wen, Qing Xiao

Posted Date: 24 November 2023
doi: 10.20944/preprints202311.1610.v1

Keywords: TROPOMI SIF; geometric error; uncertainty; heterogeneous surface; validation

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/3261947
https://sciprofiles.com/profile/1456115
https://sciprofiles.com/profile/773237
https://sciprofiles.com/profile/353277

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 November 2023 doi:10.20944/preprints202311.1610.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Quantification of Uncertainty Caused by Geometric

Location Mismatch in the Validation of TROPOMI
Solar-Induced Chlorophyll Fluorescence Product

Qicheng Zeng ', Xiaodan Wu >*, Rongqi Tang !, Jingping Wang 3, Xingwen Lin ¢,
Jianguang Wen 5 and Qing Xiao 5
1 The College of Earth and Environment Science, Lanzhou University, Lanzhou 730000, China
2 The Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu
610031, China
3 The School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
4 College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
5 The State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese
Academy of Sciences, Beijing 100101, China
Correspondence: wuxd@lzu.edu.cn

Abstract: Validation of the TROPOspheric Monitoring Instrument (TROPOMI) SIF product is a
necessity to evaluate its feasibility in various applications. A few validation works have been
conducted through direct comparison with in-situ SIF retrievals or cross-comparison with similar
satellite-based SIF or vegetation index (VI) products. Nevertheless, the influence of the geolocation
mismatch between the validation pixel and reference data on validation results was never
considered. This study, for the first time, quantifies the geolocation shift of the TROPOMI validation
pixel based on a geometric location matching method and then the uncertainty caused by the
geolocation mismatch. The results indicate that the geolocation shift of the TROPOMI pixel shows
large temporal variations, with a standard deviation of 2.45 km and 1.96 km in the across- and along-
track directions. The mean shifts are 0.07 km and 0.25 km in the across- and along-track directions
respectively, indicating eastward shifts in the across-track direction and northward shifts in the
along-track direction in general. More than half (42/54) of the time periods showed relative
uncertainty larger than 5%, with the maximum even reaching 55.7%. Hence, the uncertainty caused
by geolocation mismatch should be fully considered in the validation of satellite SIF products,
especially over heterogeneous surfaces.

Keywords: TROPOMI SIF; geometric error; uncertainty; heterogeneous surface; validation

1. Introduction

Solar-induced chlorophyll fluorescence (SIF) was considered to be an ideal proxy for gross
primary production (GPP), because it is directly related to vegetation photosynthesis [1-3]. The recent
progress in remote sensing techniques and retrieval algorithms has enabled different kinds of satellite
SIF products such as GOSAT [4], OCO-2 [5], TanSat [6], and TROPOMI [7] SIF products, which
provide an unprecedented opportunity for large-scale monitoring of SIF and diverse applications in
climate, biogeochemical cycle, and Earth system science [8]. Nevertheless, due to the errors in
processing raw data to radiance units and the limitations of the SIF retrieval algorithm, satellite SIF
product inevitably suffers from errors. Hence, it is a necessity to validate the accuracy of satellite SIF
products to tell end-users their feasibility in various applications [9].

In previous years, the accuracy of satellite SIF products was generally evaluated indirectly
through the cross-comparison with similar satellite-based SIF or vegetation index (VI) or eddy
covariance (EC) GPP products [1,10-12]. However, this kind of validation can merely identify the
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consistency or disagreement between these products, which cannot reveal the true accuracy of
satellite SIF products. Direct validation based on in-situ based SIF measurements is still a necessity
to fully understand the performance of satellite SIF products. It has been well acknowledged that the
direct validation of satellite SIF products based on in-situ SIF measurements is challenged by the
uncertainties related to the in-situ measuring system, the spatial scale mismatch between in-situ and
satellite-based SIF measurements, spectral difference, and retrieval algorithms. By addressing these
challenges, Du et al. [13] conducted a direct validation of the TROPOMI SIF product based on a
sufficient in-situ SIF database. However, the influence of the geolocation mismatch between the
validation pixel and reference data on validation results has not been recognized.

Within the direct validation framework, the validation pixel generally refers to the satellite pixel
containing in-situ measurements. The reference data for validation is generally obtained within the
nominal spatial extent of the validation pixel from in-situ observations through either upscaling or
spatial representativeness assessment [14,15]. Nevertheless, the validation pixel may suffer from
geometric errors and deviate from its nominal location. Then the signal of the validation pixel may
come from a different area instead of its nominal location, resulting in inherent incompatibilities [16].
The geolocation mismatch between the validation pixel and reference data will introduce large
uncertainty to the validation results, especially for validation pixels covering heterogeneous areas
[17]. This kind of uncertainty obscures the true accuracy of satellite SIF products. Hence, it is
necessary to quantify the uncertainty caused by the geolocation mismatch between the validation
pixel and reference data.

This study makes the first attempt to quantitatively identify the geolocation shift of satellite SIF
products and quantify the magnitude of uncertainty caused by geolocation mismatch between
validation pixel and reference data. Among the various kinds of spaceborne SIF products, the
TROPOMI SIF product has been identified as the one with the highest potential due to its relatively
high spatial resolution (3.5 km x 7.5/5.5 km at the nadir) and wide swath (~2600 km) [7]. Hence, it
was selected to conduct the analysis. The findings in this study are expected to improve the strictness
and reliability of validation results of satellite SIF products.

2. Methods

The purpose of this study is to quantify the uncertainty caused by the geolocation errors of the
validation pixel. To achieve this goal, the geolocation shift of the validation pixel should be first
identified. It is generally well known that satellite products have been geometrically corrected with
errors less than 0.5 pixels [16,18]. However, the geometric correction was generally carried out on the
satellite image level instead of pixel level. When it comes to a specific pixel, we do not know its exact
geolocation error and how it shifts. In response to this challenge, a pixel-based geometric location
matching method [17] was introduced here to identify the geolocation shift of the TROPOMI SIF
validation pixel. The basic idea of this method is to simulate the shift in the along-track and across-
track directions on the basis of a geo-corrected high-resolution map. The flowchart of the
methodology of this study is shown in Figure 1. The key steps to quantify the uncertainty caused by
geolocation mismatch include: preprocessing of a high-resolution map, identification of geolocation
shift of TROPOMI SIF validation pixel, and quantification of uncertainty caused by geolocation
mismatch.
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Figure 1. Workflow of quantifying the uncertainty caused by the geolocation errors of the TROPOMI
pixel.

2.1. The preprocessing of a high-resolution map

The geo-corrected high-resolution map was extracted from level-2 Sentinel-2 Surface Reflectance
(SR) data due to its high spatial resolution. Considering the surface reflectance anisotropy, the
Sentinel-2 SR should be first normalized to the geometry of the TROPOMI SIF validation pixel. Here,
we employed the MODIS MCD43A1 product to calculate the directional reflectance ratio (c;), which
will be used to adjust Sentinel-2 SR (p;) from original geometry (Qsentiner) to the geometry of
TROPOMI validation pixel (Qrropomr) (Egs. (1-3)) [19,20].

NBAR;(Qrropomr) = €1 X P2(Qsentiner) (1)

_ pﬁ'IODIS(QTROPOMI) )

L=
pﬂ/lODIS(QSentinel)

p/I\l/,ODIS (Q) = fiso (A) + fvol(l)kvol(ﬂ) + f;;eo (A)kgeo (-Q) (3)

where NBAR, is Sentinel-2 adjusted SR, py'°?'* was estimated using the kernel coefficients (fiso,
fvotr fgeo) provided by MCD43A1. k,, and kg, are volumetric scattering and geometric-optical
kernels [21,22], respectively.

Considering the inconsistency in spectral bands between TROPOMI and Sentinel-2, Sentinel-2
SR (Sentinel-2 Spectral Response Functions (S2-SRF) - Sentinel Online (copernicus.eu)) was also
converted to the band of TROPOMI using the spectral response functions (TROPOMI Response
Functions - Sentinel Online (copernicus.eu)). Near-infrared reflectance of vegetation (NIRv) (NIRv =
NDVI x oNIR, where NDVI is the normalized difference VI based on NIR and red spectral bands and
oNIR is the NIR reflectance) has been identified as the prominent indicator of SIF [23,24]. Hence, we
generated the high-resolution NIRv maps based on angular-corrected and band consistent Sentinel-
2 SR data.
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2.2. Geolocation shift identification

The geolocation shift of the TROPOMI SIF validation pixel was identified based on the Sentinel-
2 NIRv data and the geolocation matching method. During the geolocation matching process, the
nominal spatial extent of the validation pixels was extracted as the initial template. Then the template
was shifted in the along- and across-track directions with a step of 10 m (i.e., the pixel size of the
NIRv map). The maximum shift was set to 0.5 TROPOMI pixel, resulting in [(0.5 TROPOMI pixel /10)
x 2 + 1]? shift cases for each validation pixel. For each simulated shift case, the NIRv values on the
TROPOMI pixel scale (denoted as NIRVgjy14teq) Was estimated using the aggregated 10 m Sentinel-
2 SR within the template. Afterward, the difference between the simulated TROPOMI pixel scale
NIRv (NIRVgmyiateq) and the TROPOMI validation pixel NIRv (denoted as NIRvrgropom;) Was
calculated. The shift and the exact location (denoted as PoSgy4.¢) of the validation pixel correspond
to the simulate case with the minimum absolute difference between NIRV;gropom; and NIRVimuiated
(Eq. (4)).

Posexqce = Pos(Min(abs(NIRVspmuiatea = NIRVTROPOMI))) (4)

where Min denotes the minimal function, and abs represents the absolute difference function.

2.3. Quantification of uncertainty caused by geolocation mismatch

To quantify the uncertainty caused by the geolocation mismatch in validation, the TROPOMI
pixel scale reference SIF in the nominal location (denoted as SIFgef_nominar) and exact location
(denoted as SIFgef_exqcr) should be calculated. Here, the TROPOMI pixel scale reference SIF was
determined based on tower-based SIF measurements (denoted as SIF;, gy, ) and an upscaling
function. The basic idea of the upscaling function is that the ratio of the NIRv with different spatial
scales can be regarded as the upscaling coefficients of SIF for the two spatial scales (Eq. (5)) [13].

NIRVpominalSentinel
SIFRef—nominal ~ NIR R SIFin situ (5)
VTower,Sentinel

NIRVexqct,Sentinel
NIR i SIFinsitu (6)
VTower,Sentinel

SIFRef—exact =

where NIRVyominaisentinet aNd NIRVgyqcr sentiner T€Presented the Sentinel-2 NIRv on the TROPOMI
pixel scale at the exact and nominal locations of validation pixel, which was calculated by aggregating
Sentinel-2 SR within the footprint of TROPOMI pixel as recommended by Du et al. [13].
NIRVrower sentiner 15 the Sentinel-2 pixel NIRv containing the tower-based location.

The uncertainty caused by the geolocation mismatch (denoted as Ungeomerric ) between
validation pixel and reference data can be calculated using Eq. (7).

Ungeometric = SIFRef—nominal - SIFRef—exact (7)

3. Study area and Materials

3.1. Tower-based measurements

The tower-based SIF validation datasets were collected from five ChinaSpec
(http://chinaspec.nju.edu.cn) network sites (i.e., XTS, DM, GC, HL, and AR) [25]. The main emphasis
of ChinaSpec is to gather ground-based SIF measurements from the flux sites that are part of the
ChinaFLUX network (http://www.chinaflux.org/) [26]. The locations of these five sites are graphically
illustrated in Figure 2.
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Figure 2. The locations and land-cover types of these five sites used in this study. The base land-cover
map was extracted from the 30m annual land-cover dataset (i.e., CLCD) of 2020 developed by Wuhan
University (https://zenodo.org/record/8176941).

The five ChinaSpec sites encompasses four croplands and one grassland sites, which are spread
out throughout China. The main vegetation types of these cropland sites are different. At XTS and
GC sites, a rotation system of maize and wheat crops was implemented. However, at the DM site,
only maize was cultivated during the summer season for each year. By contrast, the HL site was
featured by a combination of grass and several crabapple trees [13]. These sites were installed with
the SIFSpec instrument, which consists of a QE 65Pro spectrometer, operating within a wavelength
range of approximately 650 nm to 840 nm. It offers a spectral resolution of around 0.31 nm.

In order to obtain tower-based SIF, a series of processes have been carried out, including raw
data preprocessing, quality control, atmospheric correction, and SIF retrieval. Detailed information
on the processing can be referred to Du et al. [27]. The in-situ tower-based SIF observations over these
sites are free to access at https://zenodo.org/record/7244183. In order to minimize the uncertainties
caused by temporal inconsistencies in SIF retrievals, the local time of the TROPOMI overpass was
used to extract in situ measurements. Furthermore, to reduce the effect of random errors associated
with tower-based measurements, the in-situ observations within a 30-minute window of TROPOMI
overpasses were employed, which were averaged to generate half-hourly SIF values to be matched
with TROPOMI instantaneous SIF measurements [13].

It is noteworthy that there are wavelength differences between TROPOMI SIF products (~740
nm) and tower-based SIF retrievals (~760 nm). To address this issue, a ratio of 1.48 was used to
convert tower-based SIF760 to SIF740 as recommended by Du et al. [13]. The experimental period
covers the whole year of 2020 with consideration of the temporal variations of geolocation errors of
TROPOMI SIF products. The data matching between tower-based, Sentinel-2, and TROPOMI SIF
products was made carefully with the consideration of data quality and weather conditions. As a
result, a total of 54 data pairs were retained.
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3.2. Satellite Data

3.2.1. TROPOMI SIF products

TROPOMI is a step forward of SIF measurements on the global scale due to its high spatial
resolution of 3.5 x 7.5 km2 at the nadir (adjusted to 3.5 x 5.5 km2 since August 2019) and high temporal
resolution of nearly daily. This improved spatial and temporal resolution significantly increases the
number of clear-sky measurements per day compared to previous missions. The TROPOMI SIF
product employed in this study was established by Guanter et al. [7], which includes two far-red SIF
datasets derived from the 743-758 nm window and the extended 735-758 nm window
(http://ttp.sron.nl/open-access-data-2/TROPOMI/tropomi/sif/v2.1/12b/). The former was the baseline
SIF product for the moment and recommended for use. Hence, only the 743-758 nm SIF product was
adopted in this paper. This product was retrieved from TROPOMI TOA radiance in the far-red
spectral region based on a data-driven forward model [28]. In addition to SIF data, this product also
provides top-of-atmosphere (TOA) reflectance for the bands ranging from red-edge to NIR
wavelengths, enabling the calculation of NIRv, which is considered to be a good proxy of SIF and
approximately equals to the multiplication of NIR reflectance and Normalized Difference Vegetation
Index (NDVI). To avoid the uncertainties caused by large view zenith angle (5ZA), the TROPOMI SIF
records with SZA greater than 60° were excluded from the analysis.

3.2.2. Sentinel-2 SR products

The Level-2A Sentinel-2 SR products were obtained from the Google Earth Engine (GEE)
platform (https://developers.google.com/earth-engine/datasets/catalog/ COPERNICUS_S2_SR). The
surface reflectance data along with the associated cloud probability product and default cloud
masking parameter (https://developers.google.com/earth engine/tutorials/community/sentinel-2-
s2cloudless) were extracted. The cloud masking parameter utilizes a machine-learning-based
Sentinel-2 cloud detection algorithm. The Sentinel-2 offers multispectral optical images with 13 bands
ranging from visible to shortwave infrared. Considering the inconsistency of observation geometry
and band specifications between Sentinel-2 and TROPOM], the viewing geometry for three visible
bands (blue, green, and red), NIR, and two short wave infrared (SWIR) spectral bands were also
extracted to carry out the angular normalization and band conversion. Detailed information on the
band conversion process can be found in Lin et al. [29]. To maintain consistency with other bands,
the two SWIR bands were resampled to a spatial resolution of 10 m. Since the Sentinel-2 data have a
repeat period of 10 days, the bottom-of-atmosphere reflectances from both Sentinel-2A and 2B were
used to calculate high-resolution NIRv maps in order to get more synchronized observations.
Meanwhile, to ensure the reliability of the analysis, a filtering process was conducted for the Sentinel-
2 observations. The data records with a cloud, snow, or ice coverage exceeding 30% were discarded.

3.2.3. Land cover data

In this study, a land cover dataset, namely the 30m annual China Land Cover Dataset (CLCD),
was used to explore the relation between the spatial heterogeneity around the validation pixel and
the uncertainty caused by the geolocation errors of the validation pixel. This dataset was selected
partly because of its high spatial resolution and partly because of the availability in China. It was
generated from Landsat data on the Google Earth Engine (GEE) platform with the random forest (RF)
classifier based on the training samples which were collected by combing stable samples provided
by China’s land-use/cover datasets and visually interpreted samples from satellite time series data,
Google Earth, and Google Maps. Two post-processing procedures including spatial-temporal
filtering and logical reasoning were carried out to further improve the spatial-temporal consistency
of CLCD. The overall accuracy of CLCD is reasonable, with a value of 79.31% [30].

doi:10.20944/preprints202311.1610.v1
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4. Results and Discussion

4.1. The variation of NIRv for all simulated shift cases

Figure 3 shows the spatial distribution of the NIRvg;myiateq throughout the shifted cases within
the +1 TROPOMI pixels range at a step change of 10 m. For the sake of brevity, only the results for
the XTS site on November 10th, 2020 (Figure 3a) and December 8th, 2020 (Figure 3b) are displayed
here.

(a) 10 November 2020 (b) 8 December 2020
+Y i 4

NIRYSimutatea
0.044

NIRYVsimutatea

0.034
0.042 0.032
0.040 0.030

0.038 0.028

(c) 10 November 2020 @ 8 December 2020
0.181 0.294
Mean=0.04 Mean=0.03
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Figure 3. Variation of NIRVgimyqteq for each shift combination (a-b) and their histogram distribution
(c-d). The Y-axis and X-axis represent the along-track and across-track directions, respectively. +Y and
+ X indicate the shift to the north and east, respectively. The actual displacement of the validation
pixelis determined by the minimum absolute difference between NIRVgimyiateq and NIRvrgopoy; The
geolocation error can be converted to distance in kilometers by multiplying the grid location by 10 m.

Each grid in Figure 3a,b represents a shifted case, which is represented by the distance from the
center in the two directions. The center of each subfigure denotes the nominal location of the
validation pixel on the reference scene. It can be seen that NIRVgmyiareq show differences among the
different simulated cases. The NIRv corresponding to the exact location of the validation pixel may
be either larger or smaller than the NIRv at its nominal location. The maximum and minimum show
a difference of about 0.008 for the two dates (Figure 3c,d). It is important to note that the magnitude
of NIRv itself is small, with values less than 0.05. Hence, the influence of geometric mismatch cannot
be ignored since it may obscure the true accuracy of TROPOMI SIF products. It is important to note
that the spatial range of the TROPOMI pixel is irregular, and the location of one TROPOMI pixel
changes with time. Hence, the number of simulated cases for each period is not equal (Figure 3c,d).

4.2. The Shifts of the Validation Pixels of TROPOMI

Figures 4 and 5 show the geometric shift of the TROPOMI validation pixel in the across-track
(X) and along-track (Y) directions, respectively. As shown in Figures 4a and 5a, the geolocation shift
of the validation pixel is widely present over these five sites throughout the experimental period in
both across-track and along-track directions.
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Figure 4. The geometric shift of the validation pixels in the across-track directions. (a) display the
histogram distribution of the across-track directions shifts of the validation pixel during the
experimental period. (b-f) present the day-by-day shift of the validation pixel at each site in the across-
track directions.
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Figure 5. The geometric shift of the validation pixels in the along-track directions. (a) display the
histogram distribution of the across-track directions shifts of the validation pixel during the
experimental period. (b-f) present the day-by-day shift of the validation pixel at each site in the along-
track directions.

The shift in the across-track direction ranges from -3.92 km to 6.48 km, with a mean value of 0.07
km, indicating eastward shifts in the across-track direction in general. While in the along-track
direction, the shift of the validation pixel shows directions are comparable, indicated by the similar
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mean and a range from -2.81 km to 2.80 km, with a mean value of 0.25 km, indicating a northward
shift in the along-track direction in general. It is noteworthy that the temporal variations of shifts in
the across- and along-track directions are both significant, with a standard deviation of 2.45 km and
1.96 km, respectively. The magnitude of the shift of the TROPOMI validation pixel is generally
reasonable, with a mean value of 2.09 km and 1.73 km in two directions (Figures 4a and 5a).
Moreover, both the magnitude and the temporal variation degree of the shifts in two directions are
comparable, indicated by the similar mean and standard deviation values.

Figures 4b—f and 5b—f display the day-by-day variation of geometric shifts of the validation
pixels at these 5 sites in both the cross-track and along-track directions, respectively. It is obvious that
the geometric shift of the validation pixels corresponding to the 5 in-situ sites all show significant
temporal variations. But the magnitude of geolocation shift and its variation degree show certain
dependence on in situ sites (Figures 4 and 5). In the cross-track direction (Figure 4), the XTS site shows
the largest range of geolocation shift, with a minimum of -3.92 km and a maximum of 6.48 km. Its
mean geolocation error is 0.59 km, indicating an eastward shift on average. Similarly, AR also present
a westward shift, with a mean geolocation error of 1.57 km. Nevertheless, it is important to note that
the number of data pairs is so small at AR that the results may be not statistically significant.
Compared to the eastward shift at XTS and AR, the opposite phenomenon occurs at GC, DM, and
HL, which in general show a westward shift, indicated by the mean shifts of -0.4 km, -0.49 km, and -
0.25 km, respectively. Among these three in-situ sites, DM shows the largest variation range as well
as variation degree (i.e., 2.43 km). By contrast, GC presents the smallest variation range as well as
variation degree (i.e., 2.14 km).

When it comes to along-track direction (Figure 5), XTS, GC, and AR sites generally show a
northward shift, indicated by the mean shift of 0.49 km, 0.29 km, and 1.69 km, respectively. The
temporal variation range and variation degree of geolocation shift were the largest at the XTS site,
with values ranging from -2.81 km to 2.80 km and a standard deviation of 2.04 km. This is followed
by GC with comparable variation ranges and variation degrees, indicated by the standard deviations
of 2.16 km. The smallest variation degree of the geolocation shift of AR (i.e., 0.92 km) can be partly
attributed to the small number of data pairs at this site. Compared to the northward shift of these
four sites, a different phenomenon can be observed at the DM and HL sites, which show a southward
shift in the along-track direction, indicated by the mean shift of -0.19 km and -0.25km, respectively.
The temporal variation degree of geolocation shift is also significant at both sites, with a standard
deviation of 1.85 km and 2.58km, respectively.

To show the geolocation shift of TROPOMI validation pixel corresponding to in situ sites more
intuitively, we present the nominal location and the exact location of validation pixels in Figure 6. To
show the temporal variation characteristics of TROPOMI validation pixel geolocation shift at a
specific area, the results at XTS site on October 16, October 19, and October 21, 2020 were shown
(Figure 6a—c). To display the geolocation shift of validation pixels at different locations on the same
day, the results at XTS, HL, and GC sites on October 4, 2020, were presented (Figure 6d-f).
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Figure 6. The nominal (black square) and exact (red square) location of the validation pixel
corresponding to the in-situ site. (a), (b) and (c) represent the nominal and actual positions of the
validation pixels at the XTS sites on October 16, 2020, October 19, 2020, and October 21, 2020,
respectively. (c), (d) and (f) represent the nominal and actual positions of the validation pixels at the
XTS, HL, and GC sites on October 4, 2020, respectively.

From Figure 6, it can be seen that the nominal spatial extent of the TROPOMI validation pixel
and its exact spatial extent are always not totally overlapped. At the XTS site, the TROPOMI
validation pixel exhibits different degrees of geolocation shift in the southeast, northeast, and
southwest directions at three different but adjacent time points. This indicates that even for the same
site, the magnitude and direction of geolocation shift are inconsistent and even opposite within
adjacent periods. As shown in Figure 6d—f, it can be found that the validation pixels at XTS, HL, and
GC sites on October 4, 2020, exhibit different degrees of shifts in the northwest, southwest, and
southeast directions, respectively. This indicates that even at the same time, the shift of TROPOMI
validation pixels over different areas is not consistent and even the opposite.

Based on these results, it can be concluded that the geolocation shifts of TROPOMI vary
irregularly with time and space. It is hard to correct such a kind of geolocation errors through general
methods such as the coastline crossing method, the land-sea fraction method, and the coregistration
method, because the correction models were generally established on the image level. Instead, the
geolocation shift of TROPOMI data should be identified pixel by pixel. It is important to point out
that in general validation work, the reference value for validation is generally obtained within the
nominal spatial extent of the validation pixel (i.e., black square), but the signal of the satellite
validation pixel corresponds to the exact spatial extent (i.e., red square). This geolocation mismatch
may artificially expand the difference between the reference value and satellite validation pixel.
Therefore, the geographical shift of TROPOMI SIF pixels should be taken seriously when validating
TROPOMI SIF products.

4.3. The uncertainty caused by geometric errors of validation pixel

To illustrate the effect of geolocation mismatch on the validation of TROPOMI SIF products,
Figure 7a—f shows the SIFgef_nominar and SIFgef_exace for TXS, DM, and GC sites at each time point.
It can be seen that SIFr.r_nominai and SIFges_exqce Show similar temporal variation characteristics
throughout the experimental period. Hence, the geolocation shift of the validation pixel is not a main
influencing factor on the temporal change trend of SIF. However, it is obvious that the magnitude of
SIFgef—nominar is Not always equal to SIFgef_exqer in the time series. Therefore, the effect of the
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geolocation shift of the validation pixel cannot be ignored when the magnitude of SIF is focused.
Because it will lead to different interpretations of TROPOMI SIF product errors.
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Figure 7. The value of TROPOMI pixel scale reference SIF at the nominal (SIFgef-nominar)(up) and
real (SIFgef-exace) (down) locations, respectively. The first to third columns present the results for
XTS, DM, and GC sites, respectively.

To show the influence of the geolocation shift of validation pixel on reference value more
intuitively, we present the distribution of uncertainty and the relative uncertainty of the TROPOMI
pixel scale SIF reference caused by geolocation shift in Figure 8 and Figure 9, respectively. Figure 8a
shows the frequency histogram of the uncertainty of pixel scale reference values by combining all the
results of these five sites throughout the experimental period. Figure 8b—f shows the day-by-day
variation of the uncertainty of pixel scale reference for each site.
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Figure 8. The uncertainty caused by the geolocation shift of the TROPOMI validation pixel. (a) display
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validation pixels at these five sites throughout the experimental period. (b-f) present the day-by-day
variation of the errors of reference values caused by the geolocation shift of the validation pixels for

each site.
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Figure 9. The relative uncertainty (%) caused by the geolocation shift of the TROPOMI validation
pixel. (a) display the histogram distribution of relative uncertainty (%) caused by the geolocation shift
of validation pixels at these five sites throughout the experimental period (b-f) present the day-by-

day variation of the relative uncertainty (%) caused by the geolocation shift of validation pixels for
each site.

From Figure 8a, it can be seen that the uncertainty caused by the geolocation shift of the
TROPOMI validation pixel presents significant spatial and temporal variations, with values ranging
from -0.38 to 0.09. Furthermore, negative values occur more frequently and have higher magnitudes
compared to positive values, resulting in a mean uncertainty of -0.03 overall. When it comes to each
specific site (Figure 8b—f), it can be seen that all these sites show significant temporal variations
regarding the uncertainty of pixel scale reference. This is partly due to the fact that the geolocation
shift varies with time, and partly due to the temporal variation of spatial heterogeneity around the
validation pixel. For instance, if the land surface around the validation pixel is absolutely
homogeneous, then the geolocation mismatch would not cause errors regardless of the shift
magnitude of the validation pixel. Nevertheless, it is noteworthy that the distribution characteristics
of the uncertainty of pixel scale reference with time are not consistent between these sites. The
uncertainties at GC, DM, HL, and AR sites are basically negative. By contrast, positive and negative
values occur with almost equal frequency at XTS sites.

Considering that the magnitude of SIF values may have an influence on the uncertainty, we also
calculated the relative uncertainty caused by the geolocation shift of the validation pixel (Figure 9).
Here, the absolute value was shown because only the magnitude of uncertainty was focused. It can
be seen that most of the relative uncertainties are lower than 30%. But more than half (i.e., 42/54) of
the time periods showed relative uncertainty larger than 5%. It is noteworthy that the maximum
uncertainty caused by geolocation shift can be even larger than 50% (Figure 9a).

The magnitude of the relative uncertainty caused by geolocation errors shows different temporal
variation characteristics among these five sites. For instance, at the XTS site (Figure 9b), the relative
uncertainty is generally small in the growing season, with the values distributed around 5%, but
becomes to be larger in the dormant season, with the values consistently larger than 10%. By contrast,
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at the DM sites, the relative uncertainty is large in the growing season occasionally. In particular, the
relative uncertainty in the growing season is even larger than that in the dormant season (Figure 9d).
It is noteworthy that although the relative uncertainty at HL is generally distributed around 10%,
there is a significantly large value of 55.7%. Hence, it is difficult to give a common conclusion about
the magnitude of relative uncertainty caused by geolocation shift. Instead, such a kind of uncertainty
should be quantified pixel-by-pixel for each time period in the validation of satellite SIF products,
especially over heterogeneous surfaces.

5. Conclusions

The validation of TROPOMI SIF is an essential process to judge whether its accuracy is adequate
for the intended use. Although some validation studies have been conducted through direct
comparison with in-situ SIF retrievals or cross-comparison with similar satellite-based SIF or VI
products, the impact of geolocation mismatch between validation pixel and reference data on
validation results has not been taken into account. In fact, the geolocation mismatch is a big
contributor to the uncertainty of validation results. This is particularly true over heterogeneous
surfaces where the objects at the nominal and real locations may differ. Hence, it is necessary to
quantify such a kind of uncertainty in order to determine whether the direct comparison between
TROPOMI SIF and reference SIF is feasible and whether the validation results are rigorous and
reliable.

This study, for the first time, quantifies the geolocation shift of the TROPOMI validation pixel
and then the uncertainty caused by the geolocation mismatch between the TROPOMI SIF and
reference SIF. It was found that the shift ranges from -3.92 km to 6.48 km and from -2.81 km to -2.80
km in the across- and along-track directions, respectively. The mean shifts are 0.07 km and 0.25 km
in the across- and along-track directions respectively, indicating eastward shifts in the across-track
direction in general and northward shifts in the along-track direction. The shift shows significant
temporal variations with a standard deviation of 2.45 km and 1.96 km in the across- and along-track
directions. In particular, the shifts are even opposite between adjacent times in two directions. When
the magnitude of the shift is focused, the geolocation shift of the TROPOMI validation pixel are 2.09
km and 1.73 km in the across-track and along-track directions, respectively.

Regarding the influence of the geolocation shift of the validation pixel, it is not a main
influencing factor on the temporal change trend of SIF, but it cannot be ignored when the magnitude
of SIF is focused. More than half (42/54) of the time periods showed relative uncertainty larger than
5%, with the maximum even reaching 55.7%. Hence, the uncertainty caused by the geolocation shift
of the validation pixel cannot be ignored, because it will lead to different interpretations of TROPOMI
SIF product errors. However, it is important to note that this study is only limited to validation pixels
from a specific period at five in-situ sites. Hence, whether the findings of this study can be applied to
other regions is still an open question. More analyses will be made when more data are available in
the future. But anyway, this study is the first step towards a more rigorous and reliable validation of
the TROPOMI SIF products.
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