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Abstract: Lymphoma diagnoses in the U.S. are substantial, with an estimated 89,380 new cases in 2023, 

necessitating innovative treatment approaches. Phase 1 clinical trials play a pivotal role in this context. We 

developed a binary predictive model to assess trial adherence to expected average durations, analyzing 1,089 

completed Phase 1 lymphoma trials from clinicaltrials.gov. Using machine learning, the Random Forest model 

demonstrated high efficacy with an accuracy of 0.7248 and ROC-AUC of 0.7677 for lymphoma trials. 

Importantly, this model maintained an ROC-AUC of 0.7701 when applied to lung cancer trials, showcasing its 

versatility. A key insight is the correlation between higher predicted probabilities and extended trial durations, 

offering nuanced insights beyond binary predictions. Our research contributes to enhanced clinical research 

planning and potential improvements in patient outcomes in oncology. 

Keywords: trial duration; machine learning prediction; clinical research planning; lymphoma 

clinical trials  

 

1. Introduction 

In the U.S., lymphoma has a significant impact on public health. It's estimated that 89,380 new 

cases will be diagnosed in 2023, ranking it among the top ten most frequently diagnosed cancers 

worldwide [1]. Tragically, the 5-year mortality rate for lymphoma exceeds 25% [1], and the disease is 

anticipated to claim over 21,080 lives within 2023 [1], highlighting the urgent need for innovative 

treatments. Phase 1 clinical trials play a crucial role in this arena, representing the first phase of 

human testing for investigational agents and turning years of lab research into actionable clinical 

solutions [2]. These trials form the foundation for later stages that emphasize efficacy and wider 

patient benefits. Their significance is clear: without these initial insights, the progression of novel 

treatments would be halted. 

In this study, we aim to develop a binary predictive model to determine if trials will align with 

the average duration derived from our dataset sourced from clinicaltrials.gov. Recognizing this 

benchmark is pivotal for several reasons: 

� Resource and Strategic Planning: Predicting trial durations helps ensure optimal distribution 

of personnel and funds, minimizing inefficiencies. Furthermore, this foresight enables 

organizations to make informed decisions about trial prioritization, resource allocation, and 

initiation timelines [3,4]. 

� Patient Involvement & Safety: Estimating trial durations provides patients with clarity on their 

commitment, which safeguards their well-being and promotes informed participation [5]. 

� Transparent Relations with Regulators: Providing predictions on trial durations, whether 

below or above the average, fosters open communication with regulatory authorities. This 

strengthens compliance, builds trust, and establishes transparent relationships among all 

stakeholders [6]. 
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2. Background 

As lymphoma diagnoses increase, the precision in predicting Phase 1 lymphoma clinical trial 

durations has become crucial. Accurate predictions allow for efficient resource distribution, strategic 

foresight, enhanced patient participation and safety, and open dialogue with regulatory authorities. 

A report in Nature has shown that various factors, from strategic challenges and commercial barriers 

to operational setbacks, often lead to unanticipated delays in clinical trials [7]. Multiple industry 

studies further emphasize this, noting that nearly 85% of trials experience setbacks [8], highlighting 

the pressing need for reliable prediction tools. Given the unpredictable nature of continuous 

outcomes in clinical research [9-11], our technique leans towards binary prediction. Instead of 

estimating exact durations, our model evaluates whether a trial will be shorter or longer than the 

average duration derived from clinicaltrials.gov dataset. This approach aligns with recent trends in 

oncology predictions [12-14], presenting several benefits. Notably, the binary framework is less 

influenced by outliers, reducing distortions from extreme values [15-18]. By categorizing results into 

distinct, actionable groups, our model brings clarity and ensures a balance between practicality and 

prediction reliability. 

Machine learning has shown immense promise in clinical trials for aspects like trial design, 

patient recruitment, outcome predictions, and regulatory adherence. A deeper dive into existing 

literature, however, reveals a distinct lack of research on using machine learning to predict clinical 

trial durations, especially regarding Phase 1 lymphoma trials. There are noteworthy machine 

learning applications in various trial phases, such as using ML to optimize trial design for ARDS 

patients in ICUs [19], forecasting early trial terminations [20], and refining trial design to improve 

success rates [21]. In patient recruitment, ML combined with EHR data and NLP have been employed 

for patient eligibility [22] and participant identification [23]. A wealth of studies also exists on 

outcome predictions using ML, from predicting treatment responses [24] to forecasting outcomes 

based on patient profiles [25], to predicting negative outcomes, with an emphasis on mortality events 

[26]. In regulatory compliance, ML has been used to automate clinical research classification [27] and 

recommend regulatory strategies for ML-based trials [6]. 

However, in this vast landscape, the specific application of machine learning for clinical trial 

duration prediction remains largely untapped. One pertinent study did use a gradient-boosted tree-

based model on Roche's dataset to gauge trial efficiency, albeit not concentrating on duration 

prediction [4]. Currently, a significant gap exists in applying ML models for clinical trial duration 

predictions—a void our research intends to fill. We are at the forefront of this domain, showcasing 

how machine learning can predict clinical trial timeframes. Our study not only addresses a significant 

gap in the literature but also stresses the importance of duration prediction in clinical trial planning 

and resource allocation. 

Key Contributions: 

� Pioneering Work in Duration Prediction: Our model stands as a trailblazing effort in the 

domain, bridging the existing gap in duration prediction applications and establishing 

benchmarks for future research. 

� Diverse Modeling: We extensively reviewed eight machine learning models, highlighting the 

Random Forest model for its unparalleled efficiency in predicting durations. 

� Comprehensive Variable Exploration: Our model incorporates varied variables, from 

enrollment metrics to study patterns, enhancing its predictive capabilities. 

� Insight into Data Volume: Beyond mere predictions, we delve into determining the optimal 

data volume required for precise forecasting. 

� In-Depth Model Probability: Apart from binary predictions, our model associates higher 

probabilities with longer average durations, along with a 95% CI. This precision offers a 

comprehensive range of potential trial durations, aiding informed decision-making and strategic 

planning. 

� Broad Applicability: With proven efficacy in lung cancer trials, our model showcases its 

potential use across various oncology areas. 
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3. Materials and Methods 

3.1. Dataset 

We sourced our dataset from clinicaltrials.gov [28], a prominent global registry for clinical 

research studies. Our research focused exclusively on Phase 1 trials related to 'Lymphoma' that had 

started before 2023 and were marked as 'Completed'. This approach resulted in a collection of 1,231 

studies. The decision to exclude trials conducted in 2023 was primarily driven by concerns related to 

seasonality. Given that we are only halfway through the year, data from 2023 may not provide a 

comprehensive understanding of the seasonal factors affecting trial durations. 

For external validation, we gathered data on 907 completed Phase 1 trials related to 'Lung 

Cancer' up to the same reference date. Table 1 provides an overview of the dataset's columns using 

an example trial. The 'Duration' variable was computed by calculating the time interval between the 

'Start Date' and the 'Completion Date'. The average duration of Phase 1 lymphoma trials was found 

to be 1,788 days, roughly equivalent to 5 years. 

Subsequently, we established a binary prediction target based on this 5-year benchmark. The 

remaining variables in our dataset were utilized as predictors for our model. In the dataset, 

approximately 40% of trials exceeded this benchmark, while around 60% fell below it. 

Table 1. Overview of Columns in the Phase 1 Lymphoma Trial Dataset using an Example Trial. 

Rank 47 

NCT Number NCT02220842 

Title 

A Safety and Pharmacology Study of Atezolizumab 

(MPDL3280A) Administered With Obinutuzumab or 

Tazemetostat in Participants With Relapsed/Refractory Follicular 

Lymphoma and Diffuse Large B-cell Lymphoma 

Acronym  

Status Completed 

Study Results No Results Available 

Conditions Lymphoma 

Interventions Drug: Atezolizumab|Drug: Obinutuzumab|Drug: Tazemetostat 

Outcome Measures 

Percentage of Participants With Dose Limiting Toxicities 

(DLTs)|Recommended Phase 2 Dose (RP2D) of 

Atezolizumab|Obinutuzumab Minimum Serum Concentration 

(Cmin)|Percentage of Participants With Adverse Events (AEs) 

Graded According to the National Cancer Institute (NCI) 

Common Terminology Criteria for Adverse Events version 4.0 

(CTCAE v4.0)... 

Sponsor/Collaborators Hoffmann-La Roche 

Gender All 

Age 18 Years and older ¬† (Adult, Older Adult) 

Phases Phase 1 

Enrollment 96 

Funded Bys Industry 

Study Type Interventional 

Study Designs 

Allocation: Non-Randomized|Intervention Model: Parallel 

Assignment|Masking: None (Open Label)|Primary Purpose: 

Treatment 

Other IDs GO29383|2014-001812-21 

Start Date 18-Dec-14 
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Primary Completion Date 21-Jan-20 

Completion Date 21-Jan-20 

First Posted 20-Aug-14 

Results First Posted  

Last Update Posted 27-Jan-20 

Locations 

City of Hope National Medical Center, Duarte, California, United 

States|Fort Wayne Neurological Center, Fort Wayne, Indiana, 

United States|Hackensack University Medical Center, 

Hackensack, New Jersey, United States… 

Study Documents  

URL https://ClinicalTrials.gov/show/NCT02220842 

Note: column ‘Outcome Measures’ and ‘Locations’ shortened due to space constraints. 

3.2. Data Preprocessing 

To build an appropriate predictive model for Phase 1 lymphoma clinical trial durations, we 

conducted data preprocessing. We first removed trials with missing start or completion dates, 

reducing the lymphoma dataset from 1,231 to 1,089 studies. We split this data into 80% for training 

and 20% for testing and used 5-fold cross-validation for hyperparameter tuning and model selection. 

We addressed missing values by imputing the mean for numerical variables like enrollment in the 

lymphoma data. Categorical variables with missing values were treated as a separate category. For 

the lung cancer dataset, which served as external validation, we followed a similar process, reducing 

the dataset from 907 to 840 studies. We imputed missing values in the enrollment variable with the 

mean and treated missing values in categorical variables as a separate category. 

3.3. Data Exploration and Feature Engineering 

Upon analyzing the lymphoma clinical trials dataset, we pinpointed several columns 

significantly influencing the clinical trial duration. These include: 

• Trials with increased enrollment often exhibit longer durations, as illustrated in Figure 1. 

• Figure 2 highlights that industry-led trials tend to wrap up more swiftly than non-industry-led 

ones. 

• The number of conditions or interventions in a trial can affect its length, with a broader scope 

often correlating with extended durations; this is depicted in Figures 3 and 4. 

• As showcased in Figure 5, trials with a primary emphasis on 'Treatment' typically have longer 

durations than those aimed at 'Supportive Care,' 'Diagnostics,' 'Prevention,' or other areas. 

In columns with substantial textual data, such as 'Outcome Measures' and 

'Sponsor/Collaborators', we employed spaCy library [29] to determine semantic resemblance 

between terms. Words with a similarity score surpassing 0.8 were grouped using a Disjoint Set Union 

(DSU) approach [30], enhancing the categorization beyond mere string matching. For example, terms 

such as ‘adverse events’, ‘adverse reactions’, and ’aes’ all relate to the 'Outcome Measures' category 

for adverse events. Notable findings from this analysis segment include: 

• Figure 6 demonstrates that trials focusing on the measurement of adverse events within the 

'Outcome Measures' column tend to be completed faster. 

• Trials indicating 'National Cancer Institute (NCI)' in the 'Sponsor/Collaborators' column are 

observed to have lengthier durations, a trend captured in Figure 7. 

• The involvement of biological interventions in trials, represented in the ‘Interventions’ column, 

often results in extended durations, as seen in Figure 8. 
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Figure 1. Impact of Enrollment Numbers on Trial Duration. 

 

Figure 2. Impact of Industry Leadership on Trial Duration. 

 

Figure 3. Impact of Condition Count on Trial Duration. 

 

Figure 4. Impact of Intervention Count on Trial Duration 

 

Figure 5. Impact of Trial Focus on Trial Duration 
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Figure 6. Impact of Adverse Events Outcome Measure on Trial Duration. 

 

Figure 7. Impact of NCI Sponsorship on Trial Duration. 

 

Figure 8. Impact of Biological Intervention on Trial Duration. 

These insights from our exploratory data analysis informed our feature creation for modeling. 

Following iterative selection, we incorporated 30 features into our models. The Table 2 below 

enumerates these features, ranked by descending order of importance, as determined by Gini Gain 

[31]. 

Table 2. Features Ranked by Importance Based on Gini Gain. 

Feature Name Explanation 

Enrollment Number of trial participants 

Industry-led Trial led by the industry (True/False) 

Location Count Number of trial locations 

Measures Count Number of outcome measures 

Condition Count Number of medical conditions 

Intervention Count Number of interventions 

NCI Sponsorship Sponsorship includes NCI (True/False) 

AES Outcome Measure Outcome measure includes adverse events (True/False) 

Open Masking Label Trial uses open masking label (True/False) 

Biological Intervention Intervention type includes biological (True/False) 

Efficacy Keywords Title includes efficacy-related keywords (True/False) 

Random Allocation Patient allocation is random (True/False) 

US-led Trial primarily in the US (True/False) 

Procedure Intervention Intervention type includes procedure (True/False) 
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Overall Survival Outcome Measure Outcome measure includes overall survival rate (True/False) 

Drug Intervention Intervention type includes drugs (True/False) 

MTD Outcome Measure 
Outcome measure includes maximally tolerated dose 

(True/False) 

US-included Trial location includes the US (True/False) 

DOR Outcome Measure Outcome measure includes duration of response (True/False) 

Prevention Purpose Primary purpose is prevention (True/False) 

AES Outcome Measure (Lead) Leading outcome measure is adverse events (True/False) 

DLT Outcome Measure Outcome measure includes dose-limiting toxicity (True/False) 

Treatment Purpose Primary purpose is treatment (True/False) 

DLT Outcome Measure (Lead) Leading outcome measure is dose-limiting toxicity (True/False) 

MTD Outcome Measure (Lead) 
Leading outcome measure is maximally tolerated dose 

(True/False) 

Radiation Intervention Intervention type includes radiation (True/False) 

Tmax Outcome Measure Outcome measure includes time of Cmax (True/False) 

Cmax Outcome Measure 
Outcome measure includes maximum measured concentration 

(True/False) 

Non-Open Masking Label Trial use non-open masking label (True/False) 

Crossover Assignment Patient assignment is crossover (True/False) 

3.4. Machine Learning Models and Evaluation Metrics 

Using Python 3.9.7, we selected eight distinct machine learning models/classifiers to predict the 

duration of Lymphoma clinical trials. Our choices were informed by previous research in oncology 

clinical trial predictions [4,6,19-27] and the inherent strengths of each model. These models are: 

Logistic Regression (LR), K-Nearest Neighbor (KNN), Decision Tree (DT), Random Forest (RF), 

XGBoost (XGB), Linear Discriminative Analysis (LDA), Gaussian Naïve Bayes (Gaussian NB), and 

Multi-Layer Perceptron Classifier (MLP). 

Each model underwent thorough evaluation on the Lymphoma dataset. To refine the models 

and achieve optimal results, we used the GridSearchCV (GSCV) technique from the Scikit-Learn 

library [32]. GSCV effectively helps in hyperparameter tuning by cross validating the classifier's 

predictions, pinpointing the best parameter combination for peak performance.  

3.4.1. Logistic Regression (LR) 

We started with Logistic Regression for its simplicity and clarity. We utilized the 

LogisticRegression() function from Scikit-Learn's linear_model library [32]. However, its linear 

decision boundary might fall short in capturing complex data relationships. 

3.4.2. K-Nearest Neighbors (KNN) 

To address the limitations of linearity, we next looked to KNN, an instance-based learning 

method that classifies based on data similarity. We implemented KNN using the 

KNeighborsClassifier() from Scikit-Learn's neighbors library [32]. Given its computational intensity, 

especially with a relatively higher number of features, we sought more computationally efficient 

models, leading us to tree-based options, starting with the Decision Tree (DT). 

3.4.3. Decision Tree (DT) 

Decision Trees offer a more expressive way of modeling. We implemented the model using the 

DecisionTreeClassifier() function from Scikit-Learn's tree library [32]. However, their susceptibility 

to overfitting led us to consider ensemble techniques such as Random Forest and XGBoost. 

3.4.4. Random Forest (RF) & 3.4.5. XGBoost (XGB) 
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Random Forests and XGBoost leverage the collective strength of multiple trees. Specifically, 

Random Forest aggregates trees using bagging, while XGBoost refines predictions sequentially 

through a boosting mechanism. We implemented Random Forest using the RandomForestClassifier() 

from Scikit-Learn's ensemble library [32] and XGBoost using the XGBClassifier() function from the 

xgboost library [33]. 

3.4.6. Linear Discriminant Analysis (LDA) & 3.4.7. Gaussian Naïve Bayes (Gaussian NB) 

Transitioning from discriminative models like Logistic Regression, KNN, and tree-based 

methods, we integrated Linear Discriminant Analysis (LDA) and Gaussian Naïve Bayes (Gaussian 

NB) to explore a probabilistic approach. 

LDA seeks to maximize class separation by identifying the linear combination of features that 

best distinguish between classes. This method presupposes that features within each class are 

normally distributed with identical covariance matrices. On the other hand, Gaussian NB is grounded 

in Bayes' theorem, operating under the assumption of feature independence. 

We employed the LinearDiscriminantAnalysis() function for LDA and the GaussianNB() 

function for Gaussian NB, both sourced from Scikit-Learn [31]. Recognizing the stringent 

assumptions of these methods, we turned our attention to models renowned for their flexibility and 

potential for high accuracy, specifically neural networks. 

3.4.8. Multi-Layer Perceptron (MLP) 

Concluding our model selection, we turned to the Multi-Layer Perceptron, a neural network 

renowned for its ability to model complex relationships without being bound by strict data 

assumptions. However, MLP's "black box" nature makes it less transparent compared to models like 

Logistic Regression and Decision Trees. This can hinder its interpretability in critical scenarios. We 

implemented MLP using Scikit-Learn's MLPClassifier() from the neural_network library [32]. 

To assess the effectiveness of our classifiers, we employed established metrics, specifically 

accuracy, Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC), precision, 

recall and F1-score. These metrics are grounded in values of true positives (TP), false positives (FP), 

false negatives (FN), and true negatives (TN): 

• Accuracy measures the fraction of correct predictions (See Equation (1)). 

• ROC visually represents classifier performance by plotting recall against the false positive rate 

((See Equation (2)) across diverse thresholds. This visual representation is condensed into a 

metric via the AUC; a value between 0 and 1, where 1 signifies flawless classification 

• Precision gauges the reliability of positive classifications, shedding light on the inverse of the 

false positive rate (See Equation (3)). 

• Recall (or sensitivity) denotes the fraction of actual positives correctly identified, emphasizing 

the influence of false negatives (See Equation (4)). 

• F1-score provides a balance between precision and recall, acting as their harmonic mean (See 

Equation (5)). 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁  (1)

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 1 − 𝑇𝑁𝑇𝑁 + 𝐹𝑃 = 𝐹𝑃𝐹𝑃 + 𝑇𝑁  (2)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃𝑇𝑃 + 𝐹𝑃 (3)

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃𝑇𝑃 + 𝐹𝑁  (4)
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𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 = 2𝑇𝑃2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (5)

4. Results and Discussion 

4.1. Sample Characteristics 

In our model for predicting the duration of Phase I clinical trials for lymphoma, we partitioned 

our data such that 80% was used for training and validation, employing a 5-fold cross-validation 

technique. The remaining 20% was reserved for testing. Table 3 provides a detailed breakdown of the 

main attributes of our datasets, spotlighting the 12 most salient features identified in Section 3 – Data 

Exploration, for both the training/cross-validation and testing set. 

Table 3. Key Characteristics of Training/Cross-Validation and Testing Datasets for Lymphoma 

Clinical Trials. 

Characteristics 
Training/Cross-Validation Sets 

(n=871) 

Testing Set 

(n=218) 

Percentage of Trials Exceeding 5-Year 

Completion Time (Target) 
40% 40% 

Mean Trial Participant Enrollment 49 50 

Percentage of Industry-led Trials 46% 48% 

Average Number of Trial Locations 6 6 

Average Outcome Measures Count 6 6 

Average Medical Conditions Addressed 4 4 

Average Interventions per Trial 3 2 

Percentage of NCI-Sponsored Trials 23% 24% 

Percentage of Trials with AES Outcome 

Measure 
34% 34% 

Percentage of Trials with Open Label 

Masking 
91% 92% 

Percentage of Titles Suggesting Efficacy 50% 51% 

Percentage of Trials Involving Biological 

Interventions 
23% 20% 

Percentage of Randomly Allocated Patient 

Trials 
24% 27% 

The table illustrates the similarities between our training/cross-validation and testing datasets 

across various attributes. Notably, both sets have an equivalent distribution of the target variable, 

with 40% of trials taking over 5 years to complete. Metrics like Average Enrollment of Trial 

Participants and Percentage of Trials Led by Industry show only slight variations. This uniformity 

across key characteristics supports the appropriateness of the data split for model training and 

testing. 

4.2 Machine Learning Classification 

Table 4 assesses the prediction capabilities of eight machine learning classifiers using a 5-fold 

cross-validation approach. Results were presented as average values within a standard deviation. 

While all these metrics hold significance in gauging a model's forecasting ability, we primarily 

focused on accuracy followed by the ROC-AUC metric. 

Both XGBoost (XGB) and Random Forest (RF) demonstrated strong performance metrics. XGB 

achieved an accuracy of 74.42%, a ROC-AUC score of 78.54% and a precision of 70.09%, and RF 

followed closely with an accuracy of 73.71% and an ROC-AUC of 77.55%, emphasizing its notable 

predictive prowess. Although their average metrics were similar, RF exhibited more variability in 
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parameters like recall (62.86%±9.69%). Logistic Regression (LR) and Linear Discriminant Analysis 

(LDA) provided comparable results, with accuracies of 71.18% and 70.72%, and respective ROC-AUC 

scores of 77.60% and 75.67%. Multi-Layer Perceptron (MLP) registered an accuracy of 67.17% and a 

ROC-AUC of 70.71%. However, its recall's higher standard deviation (49.14%±9.84%) hinted at 

potential inconsistencies across runs. Gaussian Naïve Bayes notably achieved a high recall of 90.86%, 

but its accuracy is compromised given its score of 52.93%. K-Nearest Neighbors (KNN) and Decision 

Tree (DT) lagged in performance, indicating potential areas for improvement. 

In the cross-validation sets, both XGBoost and Random Forest surpassed other models. Yet, on 

the testing set, RF held a discernible advantage. As detailed in Table 5, RF recorded an accuracy of 

0.7248, superior to XGBoost's 0.6881. Additionally, RF also outperformed in ROC-AUC, precision, 

recall, and F1-Score. 

Interestingly, XGBoost, while excelling consistently during cross-validation, did not mirror the 

same dominance on the testing set. This difference might be due to overfitting, with XGBoost possibly 

aligning too closely to the cross-validation data, affecting its generalization on new data. In contrast, 

Random Forest's stable performance across datasets might arise from its bagging ensemble strategy, 

which leverages multiple decision trees. 

In conclusion, the Random Forest model consistently outperformed in accuracy, ROC-AUC, and 

other key metrics on both cross-validation and out-of-sample testing datasets. Thus, we advocate for 

its adoption as the most reliable model to predict the duration of phase I lymphoma clinical trials. 

Table 6 delves into the parameter tuning for this model. In our grid search for RF, we experimented 

with tree counts ranging from 50 to 500, max depths of None, 10, 20, 30, min sample splits of 2, 5, 10, 

and explored both bootstrap options. The best-performing configuration utilized a max depth of 20, 

a min samples split of 10, 100 trees, and no bootstrap. 

Table 4. Performance Metrics of Machine Learning Classifiers Using 5-Fold Cross-Validation. 

Models/Classifier Accuracy ROC-AUC Precision Recall F1-Score 

XGBoost (XGB) 0.7442±0.0384 0.7854±0.0389 0.7009±0.0439 0.6286±0.0828 0.6614±0.0633 

Random Forest (RF) 0.7371±0.0389 0.7755±0.0418 0.6877±0.0403 0.6286±0.0969 0.6544±0.0667 

Logistic Regression 

(LR) 

0.7118±0.0324 0.7760±0.0282 0.6525±0.0487 0.6171±0.0506 0.6323±0.0367 

Linear Discriminant 

Analysis (LDA) 

0.7072±0.0393 0.7567±0.0365 0.6457±0.0545 0.6114±0.0388 0.6272±0.0412 

Multi-Layer Perceptron 

(MLP) 

0.6717±0.0302 0.7071±0.0593 0.6133±0.0423 0.4914±0.0984 0.5414±0.0684 

Gaussian Naïve Bayes 

(Gaussian NB) 

0.5293±0.0169 0.6980±0.0274 0.4571±0.0096 0.9086±0.0194 0.6081±0.0097 

K-Nearest Neighbors 

(KNN) 

0.6223±0.0475 0.6487±0.0445 0.5385±0.0762 0.4286±0.0619 0.4786±0.0661 

Decision Tree (DT) 0.6464±0.0252 0.6363±0.0317 0.5567±0.0295 0.5771±0.0780 0.5651±0.0502 

Table 5. Comparative Performance of Random Forest and XGBoost on Lymphoma Testing Data. 

Model/Classifier Accuracy ROC-AUC Precision Recall F1-Score 

Random Forest (RF) 0.7248 0.7677 0.675 0.6136 0.6429 

XGBoost (XGB) 0.6881 0.7574 0.6282 0.5568 0.5904 

      

Table 6. Parameter Tuning Results for the Optimal Random Forest Model. 

Model/Classifier Parameter Adjustment 

Random Forest (RF) 
maxDepth: 20; minSamplesSplit: 10; numTress: 100; 

bootstrap: False; seed: 42 
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With the final trained Random Forest model, we forecasted the probability of a phase 1 trial 

exceeding a duration of five years on the lymphoma testing set. Figure 9 displays the average 

duration of phase 1 lymphoma trials across 5-quantile probability groups, with associated 95% 

confidence intervals. The data shows an increasing trend: the average duration rises with higher 

predicted probabilities. Specifically, the average duration is around 3.12 years (or 1140 days) for the 

first quantile group and approximately 6.44 years (or 2352 days) for the fifth quantile group. 

Furthermore, for all probability groups, the upper bounds of the 95% CI correlate with higher 

predicted probabilities, while the lower bounds follow the inverse pattern. This enhanced 

representation provides more than just a binary outcome, offering stakeholders a detailed range of 

potential trial durations complete with confidence intervals. Such precision aids in better decision-

making and strategic planning, turning uncertainties into clear, actionable insights for efficient 

clinical trial management. Table 7 delineates the corresponding probability range by quantile groups 

based on the results from the lymphoma testing set. 

 

Figure 9. Average Duration of Phase 1 Lymphoma Trials by Probability Quantile Group. 

Table 7. Probability Quantile Groups with Corresponding Average Duration and 95% Confidence 

Intervals. 

Probability Quantile Group Probability 

Range 

Average Duration Lower Bound 

(95% CI) 

Upper Bound (95% 

CI) 

Q1 0 to 0.1624 1140 days 935 days 1345 days 

Q2 0.1624 to 

0.3039 

1541 days 1235 days 1847 days 

Q3 0.3039 to 

0.4697 

1799 days 1557 days 2041 days 

Q4 0.4697 to 

0.6291 

2150 days 1730 days 2569 days 

Q5 0.6291 to 1 2352 days 2005 days 2699 days 

4.3. Random Forest Model Validation 

4.3.1. Impact of Varying Training Data Sizes on Model Performance 

In Figure 10, we illustrate the performance trajectory of our random forest model on lymphoma 

testing data with increasing training sizes. An interesting trend emerges: while there is a positive 
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correlation between training size and accuracy, the incremental gains in accuracy diminish as the 

dataset size increases. For instance, the leap in accuracy from 20% to 60% training size is notable, but 

post the 60% mark, the growth rate tapers. By the time we reach our full set of 871 trials, the model 

achieves an accuracy peak of 0.7248. It's noteworthy that even though the highest ROC-AUC is 

recorded at 60% data usage, the difference in comparison to the full dataset is slim. This subtle 

increase in accuracy, coupled with the broadened data spectrum when using all 871 trials, assures us 

of a well-generalized model. The current analysis underscores our confidence in the 871-trial dataset; 

additional data from clinicaltrials.gov might refine the model further, but the likelihood of a 

significant boost in efficiency is marginal. 

 

Figure 10. Random Forest Model Performance by Training Data Size 

4.3.2. External Validation using Phase 1 Lung Cancer Trial Data 

In the external validation process, we evaluated the efficacy of eight machine learning models 

on Phase 1 lung cancer trial data. Figure 11 illustrates the performance metrics for each model. The 

Random Forest (RF) classifier demonstrated the highest performance, with an accuracy of 0.7405 and 

a ROC-AUC of 0.7701. Logistic Regression (LR) and Linear Discriminant Analysis (LDA) followed, 

registering accuracy rates of 0.7321 and 0.7310, and ROC-AUC values of 0.7671 and 0.7647, 

respectively. Despite its recognized robustness in a variety of healthcare applications [34,35,36,37], 

XGBoost (XGB) was ranked fourth, with an accuracy of 0.725 and a ROC-AUC of 0.7632. The other 

models displayed relatively lower performance metrics. 

Utilizing the final trained Random Forest model, similarly to our approach with the lymphoma 

dataset, we predicted the probability of a Phase 1 lung cancer trial extending beyond five years. 

Figure 12 presents the average duration of Phase 1 lymphoma trials, grouped by 5-quantile 

probability, accompanied by 95% confidence intervals. There was a clear trend: trials with higher 

predicted probabilities tended to have longer average durations. This trend, observed in both 

lymphoma and lung cancer trials, not only supplements the simple binary output regarding whether 

the trial is likely to be below or beyond 5 years but also provides essential insights for stakeholders 

in planning and resource allocation for clinical trial research. 

Considering the cross-validation and testing results from the lymphoma dataset, the consistent 

performance of the Random Forest model was evident. These outcomes further justify our selection 

of RF as the optimal model for forecasting Phase 1 lymphoma clinical trials. The RF classifier's 

consistency across both datasets suggests its potential general applicability for Phase 1 clinical trial 

predictions. 
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Figure 11. Comparative Performance of Machine Learning Models on Phase 1 Lung Cancer Trial 

Data. 

 

Figure 12. Average Duration of Phase 1 Lung Cancer Trials by Probability Quantile Group. 

Limitations: 

This study, while providing valuable insights, comes with certain limitations that merit 

consideration. Primarily, our dataset was exclusively extracted from clinicaltrials.gov, which, 

although a comprehensive platform, doesn't cover all Phase 1 lymphoma trials worldwide. This may 

introduce biases or omit nuances evident in trials recorded in other databases or those from different 

regions. Furthermore, the decision to eliminate trials with missing start or completion dates, while 

methodologically sound, could inadvertently exclude particular patterns or outliers that are relevant 

[38]. Employing mean imputation as a method to address missing values, while a common practice, 
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has its limitations as it can reduce the variance and might influence the predictive power of our 

models [39]. The external validation with the lung cancer data strengthens our findings, but it also 

emphasizes the need for further validations across various cancer types to understand the 

comprehensive applicability of our model. Finally, while the Random Forest model demonstrated 

consistency across the datasets, the inherent variability and intricacies of clinical trials, even within 

the same phase or disease type, could impact its generalizability. Enhancing the model's general 

applicability might be achieved by incorporating more diverse datasets, adding domain-specific 

features, or refining preprocessing strategies to account for these complexities. 

5. Conclusion 

In our analysis of Phase 1 lymphoma clinical trials from clinicaltrials.gov, we pinpointed 30 

significant factors affecting trial durations. For instance, trials with larger enrollments usually had 

extended durations, while industry-led efforts concluded more promptly. Trials linked to the 

'National Cancer Institute (NCI)' or those examining a more extensive range of conditions or 

interventions generally took longer. Conversely, trials concentrating on adverse event measurements 

ended more rapidly. 

Of the 8 machine learning models we evaluated, the Random Forest classifier stood out as the 

most effective. It achieved an accuracy of 0.7248 and a ROC-AUC score of 0.7677 on the lymphoma 

trials testing dataset. Adjusting the training data size revealed that accuracy gains began to level off 

after using 60% of the data. This indicates that our chosen dataset size is close to optimal for this 

analysis. Notably, when tested on Phase 1 lung cancer trial data, the classifier achieved an accuracy 

of 0.7405 and a ROC-AUC of 0.7701, underscoring its adaptability beyond just lymphoma trials. This 

points to its potential in predicting durations for a broader set of Phase 1 clinical trials. 

Going deeper, we carried out a thorough analysis of average durations by predicted probability 

groups. This additional exploration provided stakeholders with more precise duration estimates, 

accompanied by a 95% confidence interval for each group. This information is invaluable for strategic 

planning, resource allocation, and risk mitigation. 

Together, these insights pave the way for refining clinical research methods and enhancing 

patient outcomes. 
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