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Abstract: Lymphoma diagnoses in the U.S. are substantial, with an estimated 89,380 new cases in 2023,
necessitating innovative treatment approaches. Phase 1 clinical trials play a pivotal role in this context. We
developed a binary predictive model to assess trial adherence to expected average durations, analyzing 1,089
completed Phase 1 lymphoma trials from clinicaltrials.gov. Using machine learning, the Random Forest model
demonstrated high efficacy with an accuracy of 0.7248 and ROC-AUC of 0.7677 for lymphoma trials.
Importantly, this model maintained an ROC-AUC of 0.7701 when applied to lung cancer trials, showcasing its
versatility. A key insight is the correlation between higher predicted probabilities and extended trial durations,
offering nuanced insights beyond binary predictions. Our research contributes to enhanced clinical research
planning and potential improvements in patient outcomes in oncology.

Keywords: trial duration; machine learning prediction; clinical research planning; lymphoma
clinical trials

1. Introduction

In the U.S., lymphoma has a significant impact on public health. It's estimated that 89,380 new
cases will be diagnosed in 2023, ranking it among the top ten most frequently diagnosed cancers
worldwide [1]. Tragically, the 5-year mortality rate for lymphoma exceeds 25% [1], and the disease is
anticipated to claim over 21,080 lives within 2023 [1], highlighting the urgent need for innovative
treatments. Phase 1 clinical trials play a crucial role in this arena, representing the first phase of
human testing for investigational agents and turning years of lab research into actionable clinical
solutions [2]. These trials form the foundation for later stages that emphasize efficacy and wider
patient benefits. Their significance is clear: without these initial insights, the progression of novel
treatments would be halted.

In this study, we aim to develop a binary predictive model to determine if trials will align with
the average duration derived from our dataset sourced from clinicaltrials.gov. Recognizing this
benchmark is pivotal for several reasons:

* Resource and Strategic Planning: Predicting trial durations helps ensure optimal distribution
of personnel and funds, minimizing inefficiencies. Furthermore, this foresight enables
organizations to make informed decisions about trial prioritization, resource allocation, and
initiation timelines [3,4].

¢ Patient Involvement & Safety: Estimating trial durations provides patients with clarity on their
commitment, which safeguards their well-being and promotes informed participation [5].

e Transparent Relations with Regulators: Providing predictions on trial durations, whether
below or above the average, fosters open communication with regulatory authorities. This
strengthens compliance, builds trust, and establishes transparent relationships among all
stakeholders [6].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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2. Background

As lymphoma diagnoses increase, the precision in predicting Phase 1 lymphoma clinical trial
durations has become crucial. Accurate predictions allow for efficient resource distribution, strategic
foresight, enhanced patient participation and safety, and open dialogue with regulatory authorities.
A report in Nature has shown that various factors, from strategic challenges and commercial barriers
to operational setbacks, often lead to unanticipated delays in clinical trials [7]. Multiple industry
studies further emphasize this, noting that nearly 85% of trials experience setbacks [8], highlighting
the pressing need for reliable prediction tools. Given the unpredictable nature of continuous
outcomes in clinical research [9-11], our technique leans towards binary prediction. Instead of
estimating exact durations, our model evaluates whether a trial will be shorter or longer than the
average duration derived from clinicaltrials.gov dataset. This approach aligns with recent trends in
oncology predictions [12-14], presenting several benefits. Notably, the binary framework is less
influenced by outliers, reducing distortions from extreme values [15-18]. By categorizing results into
distinct, actionable groups, our model brings clarity and ensures a balance between practicality and
prediction reliability.

Machine learning has shown immense promise in clinical trials for aspects like trial design,
patient recruitment, outcome predictions, and regulatory adherence. A deeper dive into existing
literature, however, reveals a distinct lack of research on using machine learning to predict clinical
trial durations, especially regarding Phase 1 lymphoma trials. There are noteworthy machine
learning applications in various trial phases, such as using ML to optimize trial design for ARDS
patients in ICUs [19], forecasting early trial terminations [20], and refining trial design to improve
success rates [21]. In patient recruitment, ML combined with EHR data and NLP have been employed
for patient eligibility [22] and participant identification [23]. A wealth of studies also exists on
outcome predictions using ML, from predicting treatment responses [24] to forecasting outcomes
based on patient profiles [25], to predicting negative outcomes, with an emphasis on mortality events
[26]. In regulatory compliance, ML has been used to automate clinical research classification [27] and
recommend regulatory strategies for ML-based trials [6].

However, in this vast landscape, the specific application of machine learning for clinical trial
duration prediction remains largely untapped. One pertinent study did use a gradient-boosted tree-
based model on Roche's dataset to gauge trial efficiency, albeit not concentrating on duration
prediction [4]. Currently, a significant gap exists in applying ML models for clinical trial duration
predictions—a void our research intends to fill. We are at the forefront of this domain, showcasing
how machine learning can predict clinical trial timeframes. Our study not only addresses a significant
gap in the literature but also stresses the importance of duration prediction in clinical trial planning
and resource allocation.

Key Contributions:

* Pioneering Work in Duration Prediction: Our model stands as a trailblazing effort in the
domain, bridging the existing gap in duration prediction applications and establishing
benchmarks for future research.

* Diverse Modeling: We extensively reviewed eight machine learning models, highlighting the
Random Forest model for its unparalleled efficiency in predicting durations.

e  Comprehensive Variable Exploration: Our model incorporates varied variables, from
enrollment metrics to study patterns, enhancing its predictive capabilities.

* Insight into Data Volume: Beyond mere predictions, we delve into determining the optimal
data volume required for precise forecasting.

e In-Depth Model Probability: Apart from binary predictions, our model associates higher
probabilities with longer average durations, along with a 95% CI. This precision offers a
comprehensive range of potential trial durations, aiding informed decision-making and strategic
planning.

* Broad Applicability: With proven efficacy in lung cancer trials, our model showcases its
potential use across various oncology areas.
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3. Materials and Methods

3.1. Dataset

We sourced our dataset from clinicaltrials.gov [28], a prominent global registry for clinical
research studies. Our research focused exclusively on Phase 1 trials related to 'Lymphoma’ that had
started before 2023 and were marked as 'Completed'. This approach resulted in a collection of 1,231
studies. The decision to exclude trials conducted in 2023 was primarily driven by concerns related to
seasonality. Given that we are only halfway through the year, data from 2023 may not provide a
comprehensive understanding of the seasonal factors affecting trial durations.

For external validation, we gathered data on 907 completed Phase 1 trials related to Lung
Cancer' up to the same reference date. Table 1 provides an overview of the dataset's columns using
an example trial. The 'Duration’ variable was computed by calculating the time interval between the
'Start Date’ and the 'Completion Date'. The average duration of Phase 1 lymphoma trials was found

to be 1,788 days, roughly equivalent to 5 years.

Subsequently, we established a binary prediction target based on this 5-year benchmark. The
remaining variables in our dataset were utilized as predictors for our model. In the dataset,
approximately 40% of trials exceeded this benchmark, while around 60% fell below it.

Table 1. Overview of Columns in the Phase 1 Lymphoma Trial Dataset using an Example Trial.

Rank 47
NCT Number NCT02220842
A Safety and Pharmacology Study of Atezolizumab
Title (MPDL3280A) Administered With Obinutuzumab or
Tazemetostat in Participants With Relapsed/Refractory Follicular
Lymphoma and Diffuse Large B-cell Lymphoma
Acronym
Status Completed
Study Results No Results Available
Conditions Lymphoma
Interventions Drug: Atezolizumab | Drug: Obinutuzumab | Drug: Tazemetostat

Outcome Measures

Percentage of Participants With Dose Limiting Toxicities
(DLTs) | Recommended Phase 2 Dose (RP2D) of
Atezolizumab | Obinutuzumab Minimum Serum Concentration
(Cmin) | Percentage of Participants With Adverse Events (AEs)
Graded According to the National Cancer Institute (NCI)
Common Terminology Criteria for Adverse Events version 4.0

(CTCAE v4.0)...
Sponsor/Collaborators Hoffmann-La Roche
Gender All
Age 18 Years and older =t (Adult, Older Adult)
Phases Phase 1
Enrollment 96
Funded Bys Industry
Study Type Interventional
Allocation: Non-Randomized | Intervention Model: Parallel
Study Designs Assignment | Masking: None (Open Label) | Primary Purpose:
Treatment
Other IDs G0O2938312014-001812-21
Start Date 18-Dec-14



https://doi.org/10.20944/preprints202311.1578.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 November 2023 doi:10.20944/preprints202311.1578.v1

4
Primary Completion Date 21-Jan-20
Completion Date 21-Jan-20
First Posted 20-Aug-14
Results First Posted
Last Update Posted 27-Jan-20

City of Hope National Medical Center, Duarte, California, United
States | Fort Wayne Neurological Center, Fort Wayne, Indiana,
United States | Hackensack University Medical Center,
Hackensack, New Jersey, United States...

Locations

Study Documents
URL https://ClinicalTrials.gov/show/NCT02220842

Note: column ‘Outcome Measures” and ‘Locations” shortened due to space constraints.

3.2. Data Preprocessing

To build an appropriate predictive model for Phase 1 lymphoma clinical trial durations, we
conducted data preprocessing. We first removed trials with missing start or completion dates,
reducing the lymphoma dataset from 1,231 to 1,089 studies. We split this data into 80% for training
and 20% for testing and used 5-fold cross-validation for hyperparameter tuning and model selection.
We addressed missing values by imputing the mean for numerical variables like enrollment in the
lymphoma data. Categorical variables with missing values were treated as a separate category. For
the lung cancer dataset, which served as external validation, we followed a similar process, reducing
the dataset from 907 to 840 studies. We imputed missing values in the enrollment variable with the
mean and treated missing values in categorical variables as a separate category.

3.3. Data Exploration and Feature Engineering

Upon analyzing the lymphoma clinical trials dataset, we pinpointed several columns
significantly influencing the clinical trial duration. These include:

e  Trials with increased enrollment often exhibit longer durations, as illustrated in Figure 1.

e  TFigure 2 highlights that industry-led trials tend to wrap up more swiftly than non-industry-led
ones.

e The number of conditions or interventions in a trial can affect its length, with a broader scope
often correlating with extended durations; this is depicted in Figures 3 and 4.

e  Asshowcased in Figure 5, trials with a primary emphasis on 'Treatment' typically have longer
durations than those aimed at 'Supportive Care,' 'Diagnostics,' 'Prevention,’ or other areas.

In columns with substantial textual data, such as 'Outcome Measures' and
'Sponsor/Collaborators', we employed spaCy library [29] to determine semantic resemblance
between terms. Words with a similarity score surpassing 0.8 were grouped using a Disjoint Set Union
(DSU) approach [30], enhancing the categorization beyond mere string matching. For example, terms
such as ‘adverse events’, ‘adverse reactions’, and “aes’ all relate to the 'Outcome Measures' category
for adverse events. Notable findings from this analysis segment include:

e TFigure 6 demonstrates that trials focusing on the measurement of adverse events within the
'‘Outcome Measures' column tend to be completed faster.

e  Trials indicating 'National Cancer Institute (NCI)' in the 'Sponsor/Collaborators’ column are
observed to have lengthier durations, a trend captured in Figure 7.

e  The involvement of biological interventions in trials, represented in the ‘Interventions’ column,
often results in extended durations, as seen in Figure 8.
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Figure 1. Impact of Enrollment Numbers on Trial Duration.
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Figure 2. Impact of Industry Leadership on Trial Duration.
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Figure 3. Impact of Condition Count on Trial Duration.
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Figure 4. Impact of Intervention Count on Trial Duration
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Figure 5. Impact of Trial Focus on Trial Duration
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Figure 6. Impact of Adverse Events Outcome Measure on Trial Duration.
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Figure 7. Impact of NCI Sponsorship on Trial Duration.
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Figure 8. Impact of Biological Intervention on Trial Duration.

These insights from our exploratory data analysis informed our feature creation for modeling.
Following iterative selection, we incorporated 30 features into our models. The Table 2 below
enumerates these features, ranked by descending order of importance, as determined by Gini Gain
[31].

Table 2. Features Ranked by Importance Based on Gini Gain.

Feature Name Explanation
Enrollment Number of trial participants
Industry-led Trial led by the industry (True/False)
Location Count Number of trial locations
Measures Count Number of outcome measures
Condition Count Number of medical conditions
Intervention Count Number of interventions
NCI Sponsorship Sponsorship includes NCI (True/False)
AES Outcome Measure Outcome measure includes adverse events (True/False)
Open Masking Label Trial uses open masking label (True/False)
Biological Intervention Intervention type includes biological (True/False)
Efficacy Keywords Title includes efficacy-related keywords (True/False)
Random Allocation Patient allocation is random (True/False)
US-led Trial primarily in the US (True/False)

Procedure Intervention Intervention type includes procedure (True/False)
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Overall Survival Outcome Measure Outcome measure includes overall survival rate (True/False)
Drug Intervention Intervention type includes drugs (True/False)
MTD Outcome Measure Outcome measure includes maximally tolerated dose
(True/False)
US-included Trial location includes the US (True/False)
DOR Outcome Measure Outcome measure includes duration of response (True/False)
Prevention Purpose Primary purpose is prevention (True/False)
AES Outcome Measure (Lead) Leading outcome measure is adverse events (True/False)
DLT Outcome Measure Outcome measure includes dose-limiting toxicity (True/False)
Treatment Purpose Primary purpose is treatment (True/False)

DLT Outcome Measure (Lead) Leading outcome measure is dose-limiting toxicity (True/False)

MTD Outcome Measure (Lead) Leading outcome measure is maximally tolerated dose

(True/False)
Radiation Intervention Intervention type includes radiation (True/False)
Tmax Outcome Measure Outcome measure includes time of Cmax (True/False)

Outcome measure includes maximum measured concentration
Cmax Outcome Measure

(True/False)
Non-Open Masking Label Trial use non-open masking label (True/False)
Crossover Assignment Patient assignment is crossover (True/False)

3.4. Machine Learning Models and Evaluation Metrics

Using Python 3.9.7, we selected eight distinct machine learning models/classifiers to predict the
duration of Lymphoma clinical trials. Our choices were informed by previous research in oncology
clinical trial predictions [4,6,19-27] and the inherent strengths of each model. These models are:
Logistic Regression (LR), K-Nearest Neighbor (KNN), Decision Tree (DT), Random Forest (RF),
XGBoost (XGB), Linear Discriminative Analysis (LDA), Gaussian Naive Bayes (Gaussian NB), and
Multi-Layer Perceptron Classifier (MLP).

Each model underwent thorough evaluation on the Lymphoma dataset. To refine the models
and achieve optimal results, we used the GridSearchCV (GSCV) technique from the Scikit-Learn
library [32]. GSCV effectively helps in hyperparameter tuning by cross validating the classifier's
predictions, pinpointing the best parameter combination for peak performance.

3.4.1. Logistic Regression (LR)

We started with Logistic Regression for its simplicity and clarity. We utilized the
LogisticRegression() function from Scikit-Learn's linear_model library [32]. However, its linear
decision boundary might fall short in capturing complex data relationships.

3.4.2. K-Nearest Neighbors (KNN)

To address the limitations of linearity, we next looked to KNN, an instance-based learning
method that classifies based on data similarity. We implemented KNN using the
KNeighborsClassifier() from Scikit-Learn's neighbors library [32]. Given its computational intensity,
especially with a relatively higher number of features, we sought more computationally efficient
models, leading us to tree-based options, starting with the Decision Tree (DT).

3.4.3. Decision Tree (DT)

Decision Trees offer a more expressive way of modeling. We implemented the model using the
DecisionTreeClassifier() function from Scikit-Learn's tree library [32]. However, their susceptibility
to overfitting led us to consider ensemble techniques such as Random Forest and XGBoost.

3.4.4. Random Forest (RF) & 3.4.5. XGBoost (XGB)
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Random Forests and XGBoost leverage the collective strength of multiple trees. Specifically,
Random Forest aggregates trees using bagging, while XGBoost refines predictions sequentially
through a boosting mechanism. We implemented Random Forest using the RandomForestClassifier()
from Scikit-Learn's ensemble library [32] and XGBoost using the XGBClassifier() function from the
xgboost library [33].

3.4.6. Linear Discriminant Analysis (LDA) & 3.4.7. Gaussian Naive Bayes (Gaussian NB)

Transitioning from discriminative models like Logistic Regression, KNN, and tree-based
methods, we integrated Linear Discriminant Analysis (LDA) and Gaussian Naive Bayes (Gaussian
NB) to explore a probabilistic approach.

LDA seeks to maximize class separation by identifying the linear combination of features that
best distinguish between classes. This method presupposes that features within each class are
normally distributed with identical covariance matrices. On the other hand, Gaussian NB is grounded
in Bayes' theorem, operating under the assumption of feature independence.

We employed the LinearDiscriminantAnalysis() function for LDA and the GaussianNB()
function for Gaussian NB, both sourced from Scikit-Learn [31]. Recognizing the stringent
assumptions of these methods, we turned our attention to models renowned for their flexibility and
potential for high accuracy, specifically neural networks.

3.4.8. Multi-Layer Perceptron (MLP)

Concluding our model selection, we turned to the Multi-Layer Perceptron, a neural network
renowned for its ability to model complex relationships without being bound by strict data
assumptions. However, MLP's "black box" nature makes it less transparent compared to models like
Logistic Regression and Decision Trees. This can hinder its interpretability in critical scenarios. We
implemented MLP using Scikit-Learn's MLPClassifier() from the neural_network library [32].

To assess the effectiveness of our classifiers, we employed established metrics, specifically
accuracy, Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC), precision,
recall and F1-score. These metrics are grounded in values of true positives (TP), false positives (FP),
false negatives (FN), and true negatives (TN):

e  Accuracy measures the fraction of correct predictions (See Equation (1)).

e  ROC visually represents classifier performance by plotting recall against the false positive rate
((See Equation (2)) across diverse thresholds. This visual representation is condensed into a
metric via the AUGC; a value between 0 and 1, where 1 signifies flawless classification

e  DPrecision gauges the reliability of positive classifications, shedding light on the inverse of the
false positive rate (See Equation (3)).

e Recall (or sensitivity) denotes the fraction of actual positives correctly identified, emphasizing
the influence of false negatives (See Equation (4)).

e  Fl-score provides a balance between precision and recall, acting as their harmonic mean (See

Equation (5)).
| ~ TP + TN "
CoUracY = b Y FP+ FN + TN
False Positive Rate = 1 — — = P @)
aiLse rositive rnate = TN+FP_FP+TN

Precision = TP 3)

recision = TP n FP

TP

Recall = ——— (4)

TP+ FN
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4. Results and Discussion

4.1. Sample Characteristics

In our model for predicting the duration of Phase I clinical trials for lymphoma, we partitioned
our data such that 80% was used for training and validation, employing a 5-fold cross-validation
technique. The remaining 20% was reserved for testing. Table 3 provides a detailed breakdown of the
main attributes of our datasets, spotlighting the 12 most salient features identified in Section 3 — Data
Exploration, for both the training/cross-validation and testing set.

Table 3. Key Characteristics of Training/Cross-Validation and Testing Datasets for Lymphoma
Clinical Trials.

Characteristi Training/Cross-Validation Sets Testing Set
aracteristics (n=871) (n=218)
Percentage of Trlals.Exceedmg 5-Year 409% 40%
Completion Time (Target)
Mean Trial Participant Enrollment 49 50
Percentage of Industry-led Trials 46% 48%
Average Number of Trial Locations 6 6
Average Outcome Measures Count 6 6
Average Medical Conditions Addressed 4 4
Average Interventions per Trial 3 2
Percentage of NCI-Sponsored Trials 23% 24%
Percentage of Trials with AES Outcome 349, 349,
Measure
Percentage of Trlals'wuh Open Label 919% 929
Masking
Percentage of Titles Suggesting Efficacy 50% 51%
Percentage of Trials In\./olvmg Biological 239% 20%
Interventions
Percentage of Ran(rtlr(;irzllz Allocated Patient 249, 279

The table illustrates the similarities between our training/cross-validation and testing datasets
across various attributes. Notably, both sets have an equivalent distribution of the target variable,
with 40% of trials taking over 5 years to complete. Metrics like Average Enrollment of Trial
Participants and Percentage of Trials Led by Industry show only slight variations. This uniformity
across key characteristics supports the appropriateness of the data split for model training and
testing.

4.2 Machine Learning Classification

Table 4 assesses the prediction capabilities of eight machine learning classifiers using a 5-fold
cross-validation approach. Results were presented as average values within a standard deviation.
While all these metrics hold significance in gauging a model's forecasting ability, we primarily
focused on accuracy followed by the ROC-AUC metric.

Both XGBoost (XGB) and Random Forest (RF) demonstrated strong performance metrics. XGB
achieved an accuracy of 74.42%, a ROC-AUC score of 78.54% and a precision of 70.09%, and RF
followed closely with an accuracy of 73.71% and an ROC-AUC of 77.55%, emphasizing its notable
predictive prowess. Although their average metrics were similar, RF exhibited more variability in
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parameters like recall (62.86%+9.69%). Logistic Regression (LR) and Linear Discriminant Analysis
(LDA) provided comparable results, with accuracies of 71.18% and 70.72%, and respective ROC-AUC
scores of 77.60% and 75.67%. Multi-Layer Perceptron (MLP) registered an accuracy of 67.17% and a
ROC-AUC of 70.71%. However, its recall's higher standard deviation (49.14%%9.84%) hinted at
potential inconsistencies across runs. Gaussian Naive Bayes notably achieved a high recall of 90.86%,
but its accuracy is compromised given its score of 52.93%. K-Nearest Neighbors (KNN) and Decision
Tree (DT) lagged in performance, indicating potential areas for improvement.

In the cross-validation sets, both XGBoost and Random Forest surpassed other models. Yet, on
the testing set, RF held a discernible advantage. As detailed in Table 5, RF recorded an accuracy of
0.7248, superior to XGBoost's 0.6881. Additionally, RF also outperformed in ROC-AUC, precision,
recall, and F1-Score.

Interestingly, XGBoost, while excelling consistently during cross-validation, did not mirror the
same dominance on the testing set. This difference might be due to overfitting, with XGBoost possibly
aligning too closely to the cross-validation data, affecting its generalization on new data. In contrast,
Random Forest's stable performance across datasets might arise from its bagging ensemble strategy,
which leverages multiple decision trees.

In conclusion, the Random Forest model consistently outperformed in accuracy, ROC-AUC, and
other key metrics on both cross-validation and out-of-sample testing datasets. Thus, we advocate for
its adoption as the most reliable model to predict the duration of phase I lymphoma clinical trials.
Table 6 delves into the parameter tuning for this model. In our grid search for RF, we experimented
with tree counts ranging from 50 to 500, max depths of None, 10, 20, 30, min sample splits of 2, 5, 10,
and explored both bootstrap options. The best-performing configuration utilized a max depth of 20,
a min samples split of 10, 100 trees, and no bootstrap.

Table 4. Performance Metrics of Machine Learning Classifiers Using 5-Fold Cross-Validation.

Models/Classifier Accuracy ROC-AUC Precision Recall F1-Score
XGBoost (XGB)  0.7442+0.0384 0.7854+0.0389 0.7009+0.0439 0.6286+0.0828 0.6614+0.0633

Random Forest (RF) 0.7371+0.0389 0.7755+0.0418 0.6877+0.0403 0.6286+0.0969 0.6544+0.0667

Logistic Regression 0.7118+0.0324 0.7760+0.0282 0.6525+0.0487 0.6171+0.0506 0.6323+0.0367

(LR)
Linear Discriminant 0.7072+0.0393 0.7567+0.0365 0.6457+0.0545 0.6114+0.0388 0.6272+0.0412
Analysis (LDA)
Multi-Layer Perceptron0.6717+0.0302 0.7071+0.0593 0.6133+0.0423 0.4914+0.0984 0.5414+0.0684
(MLP)

Gaussian Naive Bayes 0.5293+0.0169 0.6980+0.0274 0.4571+0.0096 0.9086+0.0194 0.6081+0.0097
(Gaussian NB)
K-Nearest Neighbors 0.6223+0.0475 0.6487+0.0445 0.5385+0.0762 0.4286+0.0619 0.4786x0.0661
(KNN)
Decision Tree (DT) 0.6464+0.0252 0.6363+0.0317 0.5567+0.0295 0.5771+0.0780 0.5651+0.0502

Table 5. Comparative Performance of Random Forest and XGBoost on Lymphoma Testing Data.

Model/Classifier Accuracy ROC-AUC Precision Recall F1-Score
Random Forest (RF) 0.7248 0.7677 0.675 0.6136 0.6429
XGBoost (XGB) 0.6881 0.7574 0.6282 0.5568 0.5904

Table 6. Parameter Tuning Results for the Optimal Random Forest Model.

Model/Classifier Parameter Adjustment

maxDepth: 20; minSamplesSplit: 10; numTress: 100;

Random Forest (RF
andom Forest (RF) bootstrap: False; seed: 42

doi:10.20944/preprints202311.1578.v1
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With the final trained Random Forest model, we forecasted the probability of a phase 1 trial
exceeding a duration of five years on the lymphoma testing set. Figure 9 displays the average
duration of phase 1 lymphoma trials across 5-quantile probability groups, with associated 95%
confidence intervals. The data shows an increasing trend: the average duration rises with higher
predicted probabilities. Specifically, the average duration is around 3.12 years (or 1140 days) for the
first quantile group and approximately 6.44 years (or 2352 days) for the fifth quantile group.
Furthermore, for all probability groups, the upper bounds of the 95% CI correlate with higher
predicted probabilities, while the lower bounds follow the inverse pattern. This enhanced
representation provides more than just a binary outcome, offering stakeholders a detailed range of
potential trial durations complete with confidence intervals. Such precision aids in better decision-
making and strategic planning, turning uncertainties into clear, actionable insights for efficient
clinical trial management. Table 7 delineates the corresponding probability range by quantile groups
based on the results from the lymphoma testing set.

Average Trial Duration by Quantile Group with 95% ClI (Testing Set)

2699 days
2569 days

2500
2352 days

2150 days
2041 days
2000

1847 days L

1799 days
1730 days
1541 days

1500 1557 days
1345 days

1140 days 1235 days

1000

Average Duration (days)

935 days

500

o 2 03 o4 s
Probability Quantile Group

Figure 9. Average Duration of Phase 1 Lymphoma Trials by Probability Quantile Group.

Table 7. Probability Quantile Groups with Corresponding Average Duration and 95% Confidence
Intervals.

Probability Quantile Group Probability Average Duration Lower Bound Upper Bound (95%

Range (95% CI) CI)

Q1 0to 0.1624 1140 days 935 days 1345 days

Q2 0.1624 to 1541 days 1235 days 1847 days
0.3039

Q3 0.3039 to 1799 days 1557 days 2041 days
0.4697

Q4 0.4697 to 2150 days 1730 days 2569 days
0.6291

Q5 0.6291to 1 2352 days 2005 days 2699 days

4.3. Random Forest Model Validation

4.3.1. Impact of Varying Training Data Sizes on Model Performance

In Figure 10, we illustrate the performance trajectory of our random forest model on lymphoma
testing data with increasing training sizes. An interesting trend emerges: while there is a positive
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correlation between training size and accuracy, the incremental gains in accuracy diminish as the
dataset size increases. For instance, the leap in accuracy from 20% to 60% training size is notable, but
post the 60% mark, the growth rate tapers. By the time we reach our full set of 871 trials, the model
achieves an accuracy peak of 0.7248. It's noteworthy that even though the highest ROC-AUC is
recorded at 60% data usage, the difference in comparison to the full dataset is slim. This subtle
increase in accuracy, coupled with the broadened data spectrum when using all 871 trials, assures us
of a well-generalized model. The current analysis underscores our confidence in the 871-trial dataset;
additional data from clinicaltrials.gov might refine the model further, but the likelihood of a
significant boost in efficiency is marginal.

a6 Random Forest Model Performance by Training Data Size
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Figure 10. Random Forest Model Performance by Training Data Size

4.3.2. External Validation using Phase 1 Lung Cancer Trial Data

In the external validation process, we evaluated the efficacy of eight machine learning models
on Phase 1 lung cancer trial data. Figure 11 illustrates the performance metrics for each model. The
Random Forest (RF) classifier demonstrated the highest performance, with an accuracy of 0.7405 and
a ROC-AUC of 0.7701. Logistic Regression (LR) and Linear Discriminant Analysis (LDA) followed,
registering accuracy rates of 0.7321 and 0.7310, and ROC-AUC values of 0.7671 and 0.7647,
respectively. Despite its recognized robustness in a variety of healthcare applications [34,35,36,37],
XGBoost (XGB) was ranked fourth, with an accuracy of 0.725 and a ROC-AUC of 0.7632. The other
models displayed relatively lower performance metrics.

Utilizing the final trained Random Forest model, similarly to our approach with the lymphoma
dataset, we predicted the probability of a Phase 1 lung cancer trial extending beyond five years.
Figure 12 presents the average duration of Phase 1 lymphoma trials, grouped by 5-quantile
probability, accompanied by 95% confidence intervals. There was a clear trend: trials with higher
predicted probabilities tended to have longer average durations. This trend, observed in both
lymphoma and lung cancer trials, not only supplements the simple binary output regarding whether
the trial is likely to be below or beyond 5 years but also provides essential insights for stakeholders
in planning and resource allocation for clinical trial research.

Considering the cross-validation and testing results from the lymphoma dataset, the consistent
performance of the Random Forest model was evident. These outcomes further justify our selection
of RF as the optimal model for forecasting Phase 1 lymphoma clinical trials. The RF classifier's
consistency across both datasets suggests its potential general applicability for Phase 1 clinical trial
predictions.
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Comparative Performance of Machine Learning Models on Phase 1 Lung Cancer Trial Data
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Figure 11. Comparative Performance of Machine Learning Models on Phase 1 Lung Cancer Trial
Data.

Average Trial Duration by Quantile Group with 95% CI (Lung Cancer Set)
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Figure 12. Average Duration of Phase 1 Lung Cancer Trials by Probability Quantile Group.

Limitations:

This study, while providing valuable insights, comes with certain limitations that merit
consideration. Primarily, our dataset was exclusively extracted from clinicaltrials.gov, which,
although a comprehensive platform, doesn't cover all Phase 1 lymphoma trials worldwide. This may
introduce biases or omit nuances evident in trials recorded in other databases or those from different
regions. Furthermore, the decision to eliminate trials with missing start or completion dates, while
methodologically sound, could inadvertently exclude particular patterns or outliers that are relevant
[38]. Employing mean imputation as a method to address missing values, while a common practice,
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has its limitations as it can reduce the variance and might influence the predictive power of our
models [39]. The external validation with the lung cancer data strengthens our findings, but it also
emphasizes the need for further validations across various cancer types to understand the
comprehensive applicability of our model. Finally, while the Random Forest model demonstrated
consistency across the datasets, the inherent variability and intricacies of clinical trials, even within
the same phase or disease type, could impact its generalizability. Enhancing the model's general
applicability might be achieved by incorporating more diverse datasets, adding domain-specific
features, or refining preprocessing strategies to account for these complexities.

5. Conclusion

In our analysis of Phase 1 lymphoma clinical trials from clinicaltrials.gov, we pinpointed 30
significant factors affecting trial durations. For instance, trials with larger enrollments usually had
extended durations, while industry-led efforts concluded more promptly. Trials linked to the
'National Cancer Institute (NCI)' or those examining a more extensive range of conditions or
interventions generally took longer. Conversely, trials concentrating on adverse event measurements
ended more rapidly.

Of the 8 machine learning models we evaluated, the Random Forest classifier stood out as the
most effective. It achieved an accuracy of 0.7248 and a ROC-AUC score of 0.7677 on the lymphoma
trials testing dataset. Adjusting the training data size revealed that accuracy gains began to level off
after using 60% of the data. This indicates that our chosen dataset size is close to optimal for this
analysis. Notably, when tested on Phase 1 lung cancer trial data, the classifier achieved an accuracy
of 0.7405 and a ROC-AUC of 0.7701, underscoring its adaptability beyond just lymphoma trials. This
points to its potential in predicting durations for a broader set of Phase 1 clinical trials.

Going deeper, we carried out a thorough analysis of average durations by predicted probability
groups. This additional exploration provided stakeholders with more precise duration estimates,
accompanied by a 95% confidence interval for each group. This information is invaluable for strategic
planning, resource allocation, and risk mitigation.

Together, these insights pave the way for refining clinical research methods and enhancing
patient outcomes.
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