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Abstract: The first 1000 days of life is a critical period that contributes significantly to the
programming of an individual’s future health. Among the many changes that occur during this
period, there is growing evidence that the establishment of a healthy gut microbiota early in life
plays an important role in the prevention of both short- and long-term health problems. Numerous
publications suggest that the quality of gut microbiota colonization depends on several dietary
factors, including breastfeeding. In this respect, a relationship between breastfeeding and the risk
of inflammatory bowel disease (IBD) has been suggested. IBD are chronic intestinal diseases in
which perinatal factors may be partly responsible for its onset. We propose to review the existence
of links between breastfeeding and IBD, based on experimental and clinical studies. Overall, despite
encouraging experimental data in rodents, the association between breastfeeding and the
development of IBD remains controversial in humans, partly due to considerable heterogeneity
between clinical studies. The duration of exclusive breastfeeding is probably decisive for its lasting
effect on IBD. Thus, specific improvements in our knowledge could support dietary interventions
targeting the gut microbiome, such as the early use of prebiotics, probiotics or postbiotics in order
to prevent the disease.

Keywords: early life; breastfeeding; milk; microbiota; immune system; inflammatory bowel
diseases

1. Introduction

The risk of chronic disease in adulthood is associated with environmental events during
perinatal life and early childhood in a period known as the first 1000 days of life, from conception to
age two. According to this paradigm, environmental factors and dietary habits early in life are
determinants of individual development and subsequent health, particularly for non-communicable
diseases. Since Barker’s first observations in the late 1980s, the early postnatal period has been shown
to be associated with the risk of long-term cardiovascular diseases [1]. Epidemiological studies have
subsequently confirmed Barker’s work, and suggested a role for the early environment in the
occurrence of neurological, metabolic or cardiovascular disorders later in life [2-6]. Moreover, the
food restrictions during the 1944 famine in the Netherlands led to an increase in chronic pathologies
including further obesity among the generations born at that time [7] with persistent effects for the
following generations [8]. Consequently, this work also highlights the fact that maternal nutrition
during gestation impedes the normal development of placentation, with subsequent consequences
for the risk of chronic degenerative disorders [9] or inflammatory bowel disease (IBD) [10].

All these prior observations were of growing interest to the scientific community and led to the
paradigm of the developmental origin of health and disease (DOHaD) [11,12]. Epigenetics, which
modulates the expression of genes without modifying their sequence, is one of the biological
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components of the calibration and perpetuation of early environmental events that influence an
individual’s health [13,14]. For instance, genetic inheritance and/or epigenetics can partly predict
risks of metabolic disorders [14]. On the other hand, the microbes that colonize the neonatal gut
immediately following birth and shape host immunity [15] are able to regulate the chemical
phenomena of histone acetylation and DNA methylation via the metabolites it produces, such as
short-chain fatty acids (SFCA) [16]. Breastfeeding by modulating the development of the child’s
microbiota could also participate in epigenetic modifications [17-19].

Early parent-child interactions, educational factors (sleep, exposure to screens), parental lifestyle
(diet, exposure to psycho-social stressors, physical activity), or exposure to toxic substances, are all
environmental factors with the likelihood to leave lasting imprints on a child’s health [5,20-22].
Environmental stressors including exposure to environmental xenobiotics and nutritional status, like
inadequate fat or carbohydrate intake, can have multiple consequences for placental functions with
consequences for future health [23,24]. Other epidemiological studies in humans have highlighted
the many perinatal factors, such as mode of delivery, type of infant feeding, antibiotic therapy, or
tobacco exposure during the first months of life, which can have a determining influence on the
subsequent risk of chronic intestinal diseases such as celiac disease or IBD, including ulcerative colitis
(UC) and Crohn'’s disease (CD) [25].

2. Breastfeeding

2.1. General

Exclusive breastfeeding for at least the first 6 months is the benchmark for optimal infant growth
[26]. This recommendation is based on evidence that the composition of breast milk and its energy
intake are perfectly suited to the child’s needs [27,28] with beneficial effects depending on the
duration of breastfeeding and the age of complementary feedings [29]. The most obvious benefits of
breastfeeding include neurodevelopment in preterm infants, prevention of respiratory and
gastrointestinal infections in children, or allergies [30,31]. It's also well-known that breastfed preterm
infants present a lower risk of necrotizing enterocolitis (NEC) [32]. As an example, the PROBIT
(Promotion of Breastfeeding Intervention Trial) interventional study, previously implemented in
Bielorussia, which was specifically aimed at promoting breastfeeding, showed a health benefit by
decreasing the risk of gastrointestinal tract infections and atopic eczema at one year of age, but with
no change in the prevalence of respiratory tract infection [33]. However, while the positive influence
of breastfeeding seems to be most evident in low-income countries, a more moderate effect is
observed in developed countries where health and social security are better developed [31].
Furthermore, a relationship between breastfeeding and the risk of long-term health outcomes has
also been widely emphasized, with findings sometimes contradictory, showing in particular a likely
effect of breastfeeding on reducing early adiposity rebound, obesity and type 2 diabetes [31,34]. These
observations are supported by several works that have suggested that early disruption of the gut
microbiota increases the propensity for later metabolic deregulation [35]. These vulnerabilities
manifest as long-lasting endocrine, metabolic, and inflammatory effects on the offspring [6].
Breastfeeding has then been involved in the protection against various immune-mediated diseases
[36], although this is still a matter of debate [31].

2.2. Immune and gut microbiota maturation

Numerous studies indicate that early feeding and in particular breast milk influences the
development of the gut barrier, microbiota colonization and enhances maturation of the immune
system [27,37]. Interestingly, studies have unravelled the immune development driven by gut
microbiota in newborns and its post-natal adaptation to environmental insults [38,39]. The role of
breastfeeding on the immunological status of the child is evident in the first months of life [40]: the
production of secretory immunoglobulin A (sIgA) detectable in the stool is increased early in life in
breastfed children compared to children receiving infant formula [41,42]. sIgA are involved in
intestinal homeostasis by regulating the expression of genes involved in inflammation, modulating
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the diversity of the gut microbiota and protecting against infections [43—45]. The gut microbiota in
early life undergoes a progresive increase in a-diversity and is shaped mainly by child’s diet as
shown in Figure 1 [46-52]. In fact, the composition of the gut microbiota differs significantly between
breastfed infants and those receiving infant formula (higher proportion of bifidobacteria and lactobacilli
which are overall beneficial for health in breastfed infants) [15,53,54]. The cessation of breastfeeding,
more than the introduction of solid foods, is the main driver in the dynamics of microbiota
development during the 1st year of life [50,55]. The impact of the weaning stage on microbiota
development has been poorly investigated but is thought to contribute to gut microbiota alpha-
diversity [15]. A growing body of literature points to changes in the gut microbiota as the source of
an early immune imprint that may influence long-term health [38,56].

Human milk is composed with diverse non-digestible oligosaccharides (human milk
oligosaccharides, HMOs) that enables the early growth of bifidobacteria which encode HMO-utilizing
genes and are predominant during the first months of life [57]. By metabolizing HMOs, bifidobacteria
promote the release of SFCA that improve epithelial barrier integrity or immune regulatory response
by reducing Th2 and Th17 cytokines [38]. Beyond that, recent studies using selected HMOs in adult
mice showed that these prebiotics are able to reduce fat mass development, insulin-resistance and
hepatic steatosis [58,59], suggesting a therapeutic application of HMOs against the metabolic
syndrome through the probable involvement of numerous specific microbial metabolites release.

Moreover, recent data have demonstrated that microbial metabolites largely mediate the impact
of the microbiome on host physiology [60,61]. Most of the metabolites generated by microbiota
metabolism (e.g SFCA such as acetate, propionate, butyrate, amino acids..
induction of immune tolerance, intestinal barrier function, signaling or epigenetic modulation that
can determine the increased likelihood of developing immune-mediated diseases and systemic
effects on health [27,62]. While research in this field is presently sparse, emerging evidence suggests

.) may play a role in the

that microbial-derived metabolites may strongly influence the developmental programming in the
breastfed infant [61]. More largely, it can also be postulated that these compounds may also have
potential impact on intestinal and metabolic health as new “postbiotic” therapeutics to treat
microbiome-related non-communicable diseases (NCDs) in infants and adults.
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Figure 1. Composition of the gut microbiota in early life in relation to the child’s diet. Bifidobacterium
predominates in exclusively breast-fed infants, while in formulae-fed infants the composition is less
uniform and notably enriched with Bacteroides, Streptococcus or Clostridium. The introduction of solid
foods leads to a wider range of microorganisms with greater microbial a-diversity and abundance.
The establishment of interactions between host immunity and the microbiota may result in
susceptibility or protection to the onset of IBD later in life. It is actually relevant to consider the first
months of life as a window of opportunity for preventive dietary intervention to promote early
protective effects.

3. Breastfeeding and risk of IBD

IBD are chronic intestinal diseases in which perinatal factors may be partly responsible for onset,
although there is little evidence to suggest this [63]. Given that human milk can shape gut immune
response and microbiota with long-term benefits against immune-related diseases [36], the role of
breastfeeding on subsequent risk of CD and UC has been extensively examined. We propose to
overview the existence of a link between breastfeeding and IBD from experimental and clinical
studies.

3.1. IBD presentation

CD and UC are the two main clinical forms of IBD. Defined empirically on the basis of clinical,
endoscopic and radiological criteria, they are characterized by chronic and recurrent inflammation
of the intestinal wall. Although the exact origin of IBD remains unknown, the current hypothesis is
that it is a complex, multifactorial disease, occurring in genetically predisposed individuals and
resulting in an abnormal mucosal immune response to intestinal microflora [64]. Over the past 20
years, more than 200 susceptibility genes associated with IBD have been identified [65-67]. To date,
only smoking and appendectomy are environmental factors recognized as being linked to IBD, even
if their mechanisms have not yet been clarified. The impact of current smoking on IBD course has
been studied extensively; smoking is deleterious in CD, and beneficial in UC [64,68].

Of note, incidence and prevalence of IBD, particulary in pediatric-onset, are increasing with a
key role of environmental risk factors [69,70]. In detail, the epidemiology of IBD is evolving steadily
worldwide: prevalence continues to rise in Western countries (Europe, North America), reaching
over 0.3%, while incidence is increasing rapidly in the newly industrialized countries of Africa, Asia
and South America [71]. Particular attention needs to be paid to the increase in IBD in children and
adolescents because of the impact these diseases can have on their quality of life, such as stunted
growth, school absenteeism and the psychological effect of a chronic disease on the patient and family
[69]. On the other hand, except for enteral nutrition, there are only limited data regarding the impact
of diet on disease course, either considering adults [72,73] or children [74]. It should be noted that
there is growing evidence of the role of the Western diet in the increasing prevalence of IBD
worldwide [64,71,75].

3.2. Milk components and gut inflammation: what do experimental model of colitis tell us?

Over the last 30 years, numerous experimental models of colitis have been developed in rodents
to decipher the underlying mechanisms of IBD pathophysiology, identify molecular targets and
evaluate new therapeutic strategies [76]. Among these different models of colitis, the most
widespread are those induced by chemical compounds such as dextran sulphate sodium (DSS) or
2,4,6-trinitrobenzene sulphonic acid (TNBS), which are reputed to have many similarities with
human UC and CD respectively [77,78]. Genetic models built on the basis of susceptibility genes
identified in IBD are also available, but are less frequently used [79]. The potentially beneficial effects
of breastmilk in these experimental models of gut inflammation were tested by various teams, with
a particular focus on milk-derived oligosaccharides and extracellular vesicles (EV). In an initial study
in 2002, Madsen et al used interleukin-10-deficient mice, which develop spontaneous colitis, to study
the role of breastfeeding on the progression of intestinal inflammation. They observed that
breastfeeding had a beneficial effect in reducing histological inflammation of the colon, as well as
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circulating levels of TNF and IFNy [80]. Subsequently, it was demonstrated that rodent diet enriched
with goat’s milk oligosaccharides (GMO), administered in a preventive manner seven days before
the induction of colitis, was able to reduce acute intestinal inflammation induced by DSS in rats [81].
In control animals which did not receive DSS, GMO diet caused a modification of colonic microbiota
with an enrichment in lactobacilli and bifidobacteria. In the same time, the preventive and anti-
inflammatory effect of GMO was also demonstrated in the TNBS rat model [82]. Fuhrer et al. used a
different and original approach to investigate the role of the sialylated milk oligosaccharides in
mucosal immunity [83]. In order to identify the respective roles of a2,3-sialyllactose (3'-SL) and a2,6-
sialyllactose (6’-SL) on gut immunity, these authors used 2,3- and 2,6-sialylltransferase deficient mice
(St3gal4- and St6gall- mice respectively) and applied a cross-breeding protocol in which wild-type
and knock-out neonates were exchanged at birth and fed either normal milk or milk deficient in 3'-
SL or 6'-SL. At seven weeks of age, animals were exposed to DSS for five days. Surprisingly, St3gal4-
deficient mice or wild-type mice fed with 3'-SL-deficient milk from St3gal4 knock-out mice, were
more resistant to DSS-induced colitis than wild-type mice and St3gal4 knock-out mice fed with
normal milk. Analysis of the gut microbiota showed different colonization profiles depending on the
presence or absence of 3'-SL in the milk. The presence of 3'-SL was associated with an enrichment of
a bacterial species belonging to the Ruminococcaceae family. Reconstitution of germ-free mice with gut
microbiota isolated from St3gal4 knock-out mice demonstrated that these reconstituted mice
exhibited the same sensitivity to DSS as their microbiota donor animals. Cross-breeding experiments
with normal and 6’-SL-deficient milk showed no impact on susceptibility to DSS-induced acute
colitis. This elegant study clearly demonstrates the role of breast milk oligosaccharides in shaping the
intestinal flora and promoting a healthy gut immune system in adulthood. It is particularly
interesting because of its experimental design, which respects the temporality and mode of
administration of breast milk and makes it possible to study the impact of breastfeeding in adult
individuals. However, sialylated oligosaccharides are not the major sugars found in human breast
milk, which contains mainly fucosylated oligosaccharides, of which 2’-fucosyl lactose (2’-FL) is the
most abundant [84]. 2’-FL is not detected in mouse milk [85]. Interestingly, almost 30 years ago, a
transgenic mouse model was constructed with the human gene encoding al,2-fucosyltransferase and
enabling the synthesis of 2’-FL. Expression of this gene in the mouse mammary gland promoted
significant production of 2’-FL in the milk of transgenic animals, up to a level representing 45% of
total oligosaccharides [85]. Unfortunately, to our knowledge, this model has not been used to study
the contribution of 2’-FL during breastfeeding on the physiology of intestinal mucosal immunity in
adulthood.

More recently, the respective role of HMOs containing fucosyl and sialyl residues on the
development of gut inflammation in rodent models has been studied in a more traditional way by
oral supplementation of these oligosaccharides after weaning or in adult animals. Different models
of acute or chronic colitis were used (DSS or IL-10-deficient mice), and different doses of HMOs, alone
or mixed, were administered, either preventively or curatively. It is therefore difficult to compare
these different data. Nevertheless, all these studies clearly suggest that the administration of specific
HMOs (mainly 2’-FL) after weaning can modify the composition of the gut microbiota in order to
reduce the acute or chronic inflammation observed in the various mouse models, supporting HMOs
intervention as a strategy against IBD [86-90].

Beside HMOs, milk also contains EV which are small lipid membrane vesicles that carry
bioactive factors such as proteins or RNA. Oral administration of purified EV from commercial cow’s
milk for 6 days after induction of acute colitis with DSS in C57BL/6 mice attenuated gut inflammation
and restored the gut barrier more rapidly compared to untreated animals [91]. Similar results were
obtained in Balb/c mice, with a more pronounced beneficial effect of EV purified from cow’s milk
compared with those from human milk [92]. In order to assess the influence of EVs derived from
cow’s milk on the composition of the gut microbiota, Zhou et al studied two groups of mice: one fed
with a diet supplemented with cow’s milk (exosome/RNA-sufficient diet) and the other one fed with
a diet supplemented with ultrasonicated cow’s milk (exosome/RNA-depleted diet) [93]. Feeding was
started at 3 weeks of age, and intestinal content (cecum) was collected at ages 7, 15, and 47 weeks. At
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ages 15 and 47 weeks, the gut bacterial communities between both groups of mice turned out to be
different and showed characteristics associated with certain pathologies such as IBD, as evidenced
by the decrease in relative abundance of the Lachnospiraceae family in mice fed the exosome/RNA-
sufficient diet. This alteration of gut microbiota by bovine milk-derived EV was confirmed by others
[94]. The same group has also recently shown and confirmed that bovine milk-derived EV,
administered preventively, displayed protective effect upon DSS-induced colitis (acute and chronic)
by suppressing intestinal inflammation and improving gut barrier integrity [95,96]. Altogether, these
results strongly suggest a beneficial immunomodulatory role for milk-derived EVs during intestinal
physiology and mucosal homeostasis. However, no early conclusions should be drawn, as there are
still major methodological differences between studies, particularly regarding the purification and
analysis of EVs, making it impossible to compare the available data rigorously. In addition, the
quantities of EVs administered are regularly supra-physiological and do not allow conclusions to be
drawn about the role played by EVs at the doses found in breast milk.

3.3. The role of breastfeeding in the development of human IBDs: clinical evidence

We herein propose a review of publications investigating an association between breastfeeding
and the risk of developing IBD in humans (summary of studies can be found on Tables 1 and 2). We
identified fifty-three publications between 1979 and 2023, the majority of which were relied on case-
control studies (n=40). Some of these studies included a broad range of predictor variables like
environmental, parental health, dietary, early antibiotic usage, smoking or life-type behaviours,
education, or mode of delivery that we will not be discussed in detail in this review. Most of case-
control studies analyzed a possible association between breastfeeding by using multivariate analysis
and the diagnosis of either CD or UC as the outcome (n=29), 7 only CD as the main outcome, 4 only
UC as the main outcome. Five prospective cohort studies [63,97-100], seven systemic review or meta-
analysis [101-106], and one recent mendelian randomization analysis [107] were also conducted.
Among the case-control studies, nine were carried out in Asia/Pacific or Iran [108-116], seven in
North America [117-123], one in Brazil [124], and twenty-two in Europe [125-144] including Israel
[145,146], while one international study has been done [147]. Thirteen case-control studies have found
that breastfeeding could have a marked protective effect on the development of IBD in adult
[110,116,129,132,133,138] or pediatric IBD [109,114,119,137,141]. It's worth mentioning that ever
breastfeeding has been considered to be associated with a differential relationship with CD or UC
with a separate preventive effect [108,117,118,125,126,134,143]. Conversely, it's also commonly
reported that there was no positive link between being breastfed and the occurrence of IBD
[63,99,111-113,115,120-124,127,130,131,139,140,142,144-147].  Noteworthy, breastfeeding was
suggested to be associated with a higher risk of developing CD [128,136] or UC [133]. Overall, the
literature remains inconsistent to support a clear association between breastfeeding and IBD. This
level of great heterogeneity across studies emerged in systematic reviews [102,104,105,148] and was
reported in diverse geographical areas and ethnic groups [104,148]. Concerning the later points, it
has been underlined that magnitude of protection in individuals who have been breastfed during
infancy appeared higher in Asian population as compared with Caucasian people [104].

Among case-control studies and prospective studies, 29 out of 45 analysis did consider
breastfeeding duration. In spite of considerable heterogeneity that remains in the literature about the
interval of receiving breastfeeding, numerous studies observed that a prolonged duration of
breastfeeding could reduce the odds of having UC or CD [108,110,114,116,119,129,137,138,141,144].
Others findings reported that a short duration of breastfeeding provided a substantial protection
against CD or UC [125,126,143]. Therefore, shortly after birth breastfeeding might reduce
subsequently the risk although it has been on contrast suggested that initiating breastfeeding was
actually not sufficient to confer a protective effect [122]. There were population-based studies that
contrast with these observations as they did not observe associations between the length of
breastfeeding and UC and/or CD diagnosis [99,113,117,118,121,125,130,131]. Few studies apart from
Lopez-Serrano and Lindoso [97,134] have shown a link between exclusive breastfeeding and a change
in the risk of IBD incidence [123,127,136,140] or severe illness [98]. It’s worth pointing out that
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Lindoso et al in their prospective study did not reveal any association between the duration of
exclusive breastfeeding and complicated disease at diagnosis [97].

Generally meta-analysis tended to conclude that breast-fed infants would be less susceptible to
develop adult and pediatric-onset IBD [105,106] and that longer duration of human milk exposure
increased the risk of developing IBD although the level of evidence is low [101,102]. However, the
authors acknowledged that numerous studies were of poor quality and were not strictly designed for
analysing breastfeeding effects with a lack of information on the quality and duration of
breastfeeding. A failure in a proper definition of breastfeeding, the absence of a well-documented
history of breastfeeding such as inaccurate reporting of weaning, and the biased recall of whether a
child was breastfed or for how long in cohort studies, can lead to misinterpretations and preclude a
clear conclusion of a direct link between breastfeeding and IBD. Therefore, it is still difficult to state
with certainty that well-established breastfeeding prevents the onset of IBD. In fact, a spectrum of
risk may cluster with breast milk to influence early programming including the timing of introducing
different types of foods. Key variants, include the use of bottle feeding versus exclusive, caesarean
delivery, exposure to antibiotic or tobacco, physical activity but also the type of IBD outcome
(incidence or severity), age at diagnosis or community control design [107,148]. By addition, the
paradigm that a Western lifestyle and diet [149,150] may play a key role in the development of IBD
and the possibility that a strongest effect of breastfeeding on subsequent risk of IBD was observed in
Asian studies [104] fit well with a major role of the exposome in the dependent early-life effect [151].
In that case, a changing diet, socio-economic conditions of life or even improved hygiene and
infections outcome all represented relevant confounders that could underpowered studies. Finally,
Decker et al pointed out in their publication that children born between 1995 and 2006 were breastfed
significantly longer than children born between 1992 and 1994 [137]. On the other hand, Piovani et
al. highlighted that the protective influence of being breastfed is higher before 2000 (OR, 0.58; 0.46—
0.74) than after 2000 (OR, 0.82; 0.71-0.94) [148]. These observations raise critical ambiguities in the
overall interpretation and comparison between analysis since the 1980s, in the sense that, over time,
studies can differ according to the quality of breastfeeding promotion in maternity wards where
mothers and children have been included, and the overall improvement in the duration of
breastfeeding, particularly exclusive breastfeeding.

In conclusion, despite heterogeneity across studies, there was a trend that suggesting
breastfeeding may imprint the risk of IBD. There are actually many biological plausibility such as
microbiota development and inflammatory priming that which under the influence of genetic
predisposition [64,149] including genetic predisposition to breastfed [107] or environmental
exposures make a complex interplay credible between breastfeeding and IBD.
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Table 1. Summary of case control/prospective study on the association between breastfeeding and IBD.

Design Place Sample size Breastfeeding was Specific comments Breastfeeding = Main outcome Publication Reference
associated with IBD duration date
Case control UK 57 CD and 114 controls, Yes/No Adults No association CD, UuC 1979 Whorwell et al. [143]
study 51 UC and 102 controls Never breast-fed was a risk factor for when
UC, not for CD breastfeeding
far at least 2
weeks
Case control Sweden 308 matched pairs Yes Adults Lenght of CD 1983 Bergstrand et al. [129]
study patients and controls There were more individuals with no breastfeeding
or very short periods of breast-feeding collected
among patients with Crohn’s disease
than among the controls. CD
overrepresented among those with no
or very short periods of breast-feeding.
The mean length of the breast-feeding
period was 4.59 months among
patients and 5.76 months among
controls.
302 CD, 197 UC, 998 sex- No Patients whose disease started before Not reported CD, UC 1987 Gilat et al. [147]

Case control

study

International (USA,
Canada, UK,
Sweden, Denmark,
The Netherland,
France, Italy,

Israel)

and age-matched (within
1 year) controls were

studied for each patient

20 years and under study < 25 years
olds
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9
Case control Canada 114 families included Yes Adolescent No effect of CD 1989 Koletzko et al. [118]
study with one child with CD, Lack of breastfeeding was a risk factor length of
180 unafected siblings as associated with development of CD breastfeeding
controls during childhood and adolescence
Case control Sweden 93 CD, 164 UC and 514 No Adults. Not reported CD, UC 1990 Ekbom et al. [127]
study controls Exclusive breastfeeding (Breast-fed

only) or not. The comparison between
cases and control could be somewhat

misleading in that study as subsequent
changes in breast feeding status after

leaving the maternity ward were not

recorded.
Case control Canada 93 families included with No Adolescent No influence of UucC 1991 Koletzko et al. [117]
study one child with UC and The lack of breastfeeding and formula breastfeeding
138 unaffected siblings feeding were not identified as risk duration

factors during childhood

Case control Sweden 167 UC and 167 controls No Adults Weaning < 14 ucC 1991 Samuelsson et al. [130]
study No difference as how soon the patients days

were weaned

Case control Sweden 152 CD, 135 UC, 305 No Adolescent and adults <2 months CD, UuC 1993 Persson et al. [131]
study controls Analysis did not support increased risk
of IBD among individuals with no or

only a short duration of breastfeeding

Case control USA 68 CD, 39 UC and 202 Yes Children and adolescents <5 months CD, UuC 1993 Rigas et al. [119]
study controls Breastfeeding has been negatively 6-11 months
associated with CD and UC with >12 months

evidence of duration-dependent trends
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Case control USA 54 CD and 90 controls No <22 years Not reported CD 1996 Gruber et al. [120]
study
Case control Italy 225 CD and 594 UC with Yes Adults <4 months CD, UuC 1998 Corrao et al. [132]
study age-sex matched paired Lack of breastfeeding was associated
controls with an increased risk of CD and UC
Case control Israel 33 CD and 55 UC No Adults Not reported CD, UuC 1998 Klein et al. [145]
study patients, in matched 76
population and 68 clinic
controls
Case control The Netherlands 290 CD, 398 UC and 616 No Adults Not reported CD, UC 1998 Russel et al. [135]
study controls Breastfeeding was not associated with
IBD in adults, however a positive
association was observed with
pancolitis
Case control Japan 42 CD with 126 controls Yes <15 years Not reported CD 1999 Urashima et al. [109]
study and 133 UC with 266 Comparison between the group fed
controls exclusively by breast milk or mixed,
and the group fed by artificial (bottle)
feeding alone for the development of
inflammatory bowel disease. Breast
feeding during infancy until postnatal
4 months might decrease the
development of chronic inflammatory
bowel disease
Case control UK 26 CD and 29 UC and Yes Adults Not reported CD, UC 2000 Thompson et al. [133]
study matched controls (8 A trend for breastfed infants to have a
controls for each case) lower risk of having developed CD but

a higher risk to develop UC
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Case control France 222 CD and 60 UC Yes Before 17 years of age Not reported CD, UC 2005 Baron et al. [136]
study patients matched with Increased risk of CD development
controls when exclusive or partial breastfeeding

during infancy. Data not reported for

UC in relation with breastfeeding

Case control Canada 194 CD patients and 194 No Less than 20 years Breasfeeding < CD 2006 Amre et al. [121]
study controls The proportion of case mothers who 6months

breastfed their children was similar to between 7 and

that of the control group 12 months,
>1 year
Case control China 177 UC and 177 age- No Adults Not reported ucC 2007 Jiang et al. [111]
study matched and sex-
matched controls
Case control Germany 444 CD, 304 UC and 1481 No Adolescents (median age: 11 years old) Exclusive CD, UC 2007 Radon et al. [140]
study controls Association between nutrition other breastfeeding
than breast milk at 5 m and reduced <5 months
risk of both CD and UC versus > 5
months
Case control Germany 1096 CD and 763 UC No Adults 1 month CD, UC 2007 Sonntag et al. [139]
study patients, 878 healthy 1-3 months
controls 3-6 months

6 months
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Case control Germany 374 CD and 169 UC, 743 Yes Children and young adolescent The duration CD, UC 2010 Decker et al. [137]
study controls Time of breastfeeding was not of
associated with CD or UC. Significantly ~ breastfeeding
shorter time of breastfeeding as was recorded.
compared with the control group was Average
found in patients with UC and CD duration was
4.8 months
Case control New Zealand 638 CD and 653 UC, 600 Yes Adults 0-2 months CD, UC 2010 Gearry et al. [110]
study matched controls Breastfeeding was protecting when >3 3-6 months
months 6-12 months
More than 12
months
Case control New Zealand 197 CD patients and 290 No Age range between 5 and 86 years for Not reported CD 2010 Han et al. [112]
study controls (Informed for the complete
breastfed during infancy) cohort
Breastfed in infancy was not associated
with an increased or a decreased risk of
having CD
Case control Spain 124 CD and 235 matched Yes/no Adults Not reported CD, UC 2010 Lopez-Serrano et al.
study controls, 146 UC and 278 Breastfeeding, either partial or [134]
matched controls exclusive, was protective factor for CD,

but not for UC in the univariate

analysis
Case control Denmark 123 CD and 144 UC, 267 Yes Adults Ever breastfed CD, UC 2011 Hansen et al. [138]
study controls Breastfeeding more than 6 months or > 6 months

decreased the odds for IBD whereas no

effect of ever breastfed was observed
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Prospective UK 114 CD and 66 UC, 248 No Children and early adulthood. Not reported UC, CDb 2011 Roberts et al. [63]
cohort 479 controls Artificial versus breastfed
Case control Iran 95 CD and 163 UC No Adults Mean duration CD, UuC 2011 Vahedi et al. [113]
study patients, 285 and 489 age No difference bewtten breastfed infants of
(and sex)-matched and not-breasfed breastfeeding
controls, respectively No difference in mean duration of reported

breasfeeding between IBD patiens eand

controls (children were breasfed almost

18 months in all groups)
Case control Ttaly 567 CD and 428 UC No Adults Not reported CD, UC 2012 Castiglione et al. [142]
study patients, 562 healthy
controls
Case control USA 89 IBD cases and 3,080 No Pediatric (< 18 exclusive CD, UC 2012 Hutfless et al. [123]
study age-and membership- years) breast-feeding,
matched control Neither exposure was associated with formula
pediatric-onset IBD in the fully feeding with or
adjusted model (formula versus without breast
exclusive breast feeding or missing) feeding or
missing
recorded
Case control Slovakia 129 CD, 96 UC, 293 No Adults 0 -5 months CD, UC 2013 Hlavaty et al. [144]
study controls Risk of CD and UC associated with 6 — 12 months
breastfeeding < 6 months More than 12
months
Case control Denmark 59 CD and 56 UC Yes Children<15 years >3 months as a CD, UuC 2013 Jakobsen et al. [141]
study patients, 477 healthy Breastfeeding more than 3 months was variable in a
controls associated with a reduced risk of IBD multivariate

analysis
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Prospective USA 146 No Adult <3 UcC, CD 2013 Khalili et al. [99]
cohort 681 women months
248 incident cases of CD No association with breastfeeding 4-8 months
and 304 incident cases of duration >9 months
ucC
Case control China 1308 UC and matched No Adults Not reported ucC 2013 Wang et al. [115]
study controls
Prospective USA 333 CD and 270 UC Yes/No Adult patients Not reported UC, CD (IBD- 2014 Guo et al. [98]
cohort patients Breastfeeding was statistically related
significant in its inverse relationships surgery)
with CD-related surgery, no
association with UC-related surgery
Case control Australia 154 MEM (middle Yes Adults Breastfeeding CD, UC 2015 Ko et al. [116]
study Eastern Migrants in Declined risk of CD if breastfeeding >3 duration
Australia) cases (75 CD; months and decreased risk of UC if effects
79 UC), 153 MEM breastfeeding >6 months investigated
controls, 162Caucasian
cases (85 CD; 77 UC), 173
Caucasian controls, 153
controls in Lebanon
Case control Asia-Pacific 442 cases and 940 Yes Childhood. 0-6 months CD, UC 2015 Ngetal. [114]
study (China, HongKong, controls Breastfeeding > 12 months reduced the 7-12 months
Indonesia, Sri risk of IBD More than 12
Lanka, Macau, months

Malaysia,
Singapore, Thailand

and Australia)
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Case control Canada 973 CD and 698 UC, 10 No Childhood and adolescence between 0 Not reported CD, UuC 2016 Bernstein et al. [122]
study 488 controls and 20 years
old
No association between initiating
breastfeeding at the time of birth or,
alternatively, not initiating
breastfeeding and being diagnosed
with IBD later in life. The authors could
not know how long breastfeeding was
maintained after discharge.
Prospective Australia 81 CD and 51 UC No Adults Not reported CD, UC 2016 Niewiadomski et al.
cohort patients, 103 controls [100]
Case control Brazil 145 CD patients and 163 No Adults Not reported CD 2017 Salgado et al. [124]
study controls
Case control Italy 102 CD and 162 UC, 103 Yes/No From early childhood to adolescence Breastfeeding CD, UC 2017 Strisciuglio et al. [128]

study

controls

(between 1 and 18 years)

No association reported between
breastfeeding and UC
Breastfeeding >3 months was
associated with higher risk of

developing CD

>3 months (as a
variable in the
multivariate

analysis)
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Prospective North American 1119 Yes Pediatric cohort Breastfeeding Complicated 2018 Lindoso et al. [97]
cohort (USA and Canada) Exclusive breastfeeding inversely exposure was CD, need for
correlated with complicated pediatric initially CD-related
CD. No difference according to analyzed as hospitalization,
exclusive breastfeeding duration any duration and surgery
(dichotomized <3 months to >3 of exclusive
months) breastfeeding
(of these
breastfed

patients, 104
(13.4%) were
exclusively
breastfed for
less than 1
month, 170
(21.8%) for 1-3
months, 170
(21.8%) for 3-6
months, and
302 (38.8%)).
Subsquent
analysis
stratified by
duration of
breastfeeding
and compared
never, those

with 1-3
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months of
exclusive
breastfeeding,

and children

with >3
months of
exclusive
breastfeeding
Case control Swiss 617 CD, 494 UC and 352 Yes/No Adults <6 months vs 6 CD, UC 2020 Lautenschlager et al.
study controls Neither association with the risk of IBD months [125]
or CD. A shorter duration (<6 months)
was protective for UC
Case control The Netherlands 323 CD and 321 UC, 1348 Yes/no Adults. <3 months vs > CD, uC 2020 Van der Sloot et al. [151]
study controls A protective effect was described when 3 months
breastfeeding <3 months for CD, not
for UC.
Case control Southeast Asian 38 CD and 32 UC Yes/No Children/Adolescents (<18 years) Duration of CD, UuC 2022 Lee et al. [108]
study (Malaysia) patients, 140 healthy Breastfed > 6 months was protective for ~ breastfeeding
controls matched by UC but not CD considered
gender, age and ethnicity
Case control Israel 405 CD and 341 UC, 2043 No Adults in a population with a follow- Not reported CD, UC 2022 Velosa et al. [146]
study controls up of 50 years
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Table 2. Summary of published reviews and meta-analysis on the association between breastfeeding and IBD.
Design Place Sample size Breastfeeding Specific comments Breastfeeding Main Publication Reference
was duration outcome date
associated
with IBD
Meta-analysis International 17 published-studies, five were graded to Yes This meta-analysis demonstrates that Duration of breast- ~ UC, CD 2004 Klement et al.
be of high quality breastfeeding has a statistically feeding was sought [106]
significant protective role against UC and documented
and an even greater role against CD.
Systematic International Seven studies that included patients with Yes Breast milk exposure had a significant Not reported IBD 2009 Barclay et al. [105]
review early onset IBD protective effect developing early-onset
IBD. A non-significant difference was
demonstrated for ulcerative colitis and
Crohn’s disease individually
Meta-analysis International 35 studies including 7536 patients with Yes Magnitude of protection higher in Stronger decreased UG, CD 2017 Xu et al. [104]
CD, 7353 patients with UC, 330 222 Asian population. risk when
controls Similar magnitude of lower breastfeeding > 12
susceptibility in pediatric and adult- months as compared
onset disease with 3 or 6 months
Systematic China Eight full-text with epidemiological data, Yes Two references underlined a protective Not reported IBD 2018 Cui et al. [103]
review 25 with risk factor data in Chinese and 7 effect in China for UC. Not reported for
full-text with epidemiological data, 12 CD.

with risk factor data in English were

included for analysis
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Systematic International Two of the 17 articles included for the Yes/No The relationship between never versus Shorter versus IBD 2019 Giingor et al.
review infant milk-feeding practices and IBD ever feeding human milk and IBD risk longer duration of [102]
examined shorter versus longer durations was inconclusive. This review includes any human milk
of exclusive human milk feeding and 2 articles, which provided insufficient feeding are
none examined the intensity, proportion, evidence to draw any conclusions about associated with
or amount of human milk fed to mixed- the relationship between the duration of higher risk of IBD
fed infants. Thirteen articles examined the exclusive breastfeeding and IBD.
relationship between never versus ever Feeding human milk for short durations
feeding human milk and IBD. Nine or not at all associates with higher risk
articles examined the relationship of diagnosed IBD
between shorter versus longer durations
of any human milk feeding and IBD
Umbrella International 53 eligible publication included with 71 Yes Longer exposures were associated with Discussed UC, CDh 2019 Piovani et al.
review of reported trisk factors for IBD decreased risk. The protective effect [148]
Meta-analysis was greater in Asian than white
individuals (and in studies conducted
before 2000)
Meta-analysis International Two cohort studies and 40 case-control Yes Breastfeeding, especially of longer Discussed UC, CD 2021 Agrawal et al.
studies duration, was protective against IBD [101]
development
Mendelian European 418 109 Yes Relationships between colitis, and both Not reported UG, CD 2023 Saadh et al. [107]
Randomization physical activity and breastfeeding;
analysis breastfeeding decreased the risk of CD

(in the univariate models) and UC (in
the multivariate model). Genetically
predicted breastfeeding was associated

with lower risk of UC and CD
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4. Early determinants of microbiota and colitis trajectories

4.1. General

It is now well established that gut microbiota is a major contributor in the pathogenesis of IBD
in adults [152]. However, beside the genetic determinants of IBD, the exact environmental causes of
microbial dysbiosis and the timeframe of a pre-dysbiotic state acquisition early in life to further
predispose to IBD is far not elucidated. Whether the pathogens identified in adults were inherited
directly from vertical transfer from the mother or secondarily is still unclear. Consequently, the
question of maternal transmission of beneficial bacteria likely to colonize the infant’s gut on a long-
term basis and prevent the resilience of adult intestinal homeostasis is still being debated [153]. Lastly,
the inflammatory context, possibly induced by C-section compared with vaginal delivery [154],
inappropriate diet(s) or subsequent environmental factors may both favor pathobiont colonization
and expansion and limit abundance of symbionts.

4.2. Maternal IBD and gut microbiota

While women with IBD maintain an intestinal dysbiosis during pregnancy, characterized by an
increase in gamma-proteobacteria and a decrease in bacteroidetes, babies born to these mothers with
IBD show reduced diversity and lower counts of bifidobacteria. [155]. Of note, the biomarker of gut
inflammation, fecal calprotectin, assessed in IBD-mother during pregnancy and babies was correlated
to their respective gut microbiome composition [156]. In addition, the IBD status of mothers is a
predictor of higher calprotectin levels in babies. This highly suggests an influence of early
inflammation and the role of both maternal diseases as well as maternal microbiota on the
development of further dysbiotic infant gut microbiota, regardless of genetic factors. However,
obviously all babies from IBD-mothers will not develop IBD and the functional redundancy among
microbes may compensate the possible lacks.

4.3. Gut microbiota and IBD: a possible intervention?

Defining the microbial markers of dysbiosis and what constitutes a healthy microbiota in adults
is already a challenge, although many bacterial genera and even species have been clearly identified
as symbionts or pathobionts. Thus, attributing specific anti-inflammatory roles and functionality of
bacteria in the early life “unstable” microbiota is quite tricky [157]. The development of the human
gut microbiome, along with distinct diets, corresponds to complex and individual dynamics
comprising early and late colonizers [15,158,159]. Among these species, dominant and less abundant
taxa have shown overall anti-inflammatory potentials such as species from the Bifidobacterium and
Bacteroidetes genus, and to a lesser extent, Lactobacillus spp. In line, other anaerobic bacteria like
Akkermansia and Faecalibacterium prausnitzii have also demonstrated regulatory functions that
contribute to homeostasis and lower inflammation. In contrast, colitogenic properties have been
attributed to taxa such Enterococcus and Clostridium spp representatives together with abundance of
the Gamma-Proteobacteria like E. coli [153]. A higher occurrence of adherent-invasive E. coli (AIEC) is
fully demonstrated in adult IBD patients [160] as well as in paediatric CD patients [161] but, to our
knowledge, there is no evidence on an early asymptomatic carriage of AIEC in neonates that could
influence the onset of colitis and inflammatory symptoms. The vertical transmission of AIEC was
reported in mice [162] but more consistent and reliable clinical studies are actively needed. Lastly,
the breast-milk route of such possible mother-to-infant transmission as reported for intestinal
obligate anaerobic species alike Bifidobacteria, Bacteroides and Clostridia should be deeply addressed
[163,164].

Experimental studies have clearly demonstrated that specific dietary habits have an impact on
the development of the intestinal barrier and the composition of the neonatal microbiota, with a
possible influence on the overall health [165] as well as on long-term susceptibility to chronic diseases,
including inflammatory colitis [166-168]. During the last decades, preclinical and clinical nutritional
interventions have shown great potentials to address IBD by targeting adult’s microbiota with either
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prebiotics, pro-biotics, synbiotics or post-biotics, based on key microbial-derived metabolites [169].
For example, a promising effect of a symbiotic preparation has been shown in reducing symptoms of
paediatric IBD with mean 12.6 years old [170]. Only few trials on children have reported changes of
microbiota that normalize or lower some dysbiotic-associated bacterial species [171]. However, clear
data in humans are scarce as quite no longitudinal clinical studies could have even address early
microbiota composition, nutritional- and microbiota-targeting interventions with further follow up
of onset and development of IBD.

Recently, Guo and colleagues [172] have nicely reviewed the early microbial imprinting of
neonates that could define and possibly modulate either resilience or susceptibility to IBD (see also
Figure 1). They finally propose to design “tailored interventions” based on prebiotics or probiotics,
depending on distinct mother influence types. Of note, the timing of such interventions will have to
be clearly defined. Indeed, introduction of solid foods at 3-month of age for instance, increased short-
chain fatty acids but appeared detrimental for the gut microbiota [49]. Dosing has also to be taken
into account: Barone and colleagues, in attempts to decipher the role of C-section-induced dysbiosis
in gut barrier dysfunction and associated inflammation in mice, found that an excessive exposure to
a very diverse microbiota too early in life was harmful, sustaining the too much too early principle
[154]. In line, mechanisms involved the “weaning reaction” occurring in a specific time window to
prevent susceptibility to inflammatory diseases in the adult and to promote regulatory T-cells
mediated protection [173].

5. Conclusions

Most current recommendations for pregnant women and young children do not always consider
the long-term health consequences of nutrition. Implementing optimal nutrition programs from the
very beginning of life is crucial to improving child development and the well-being of populations
for sustainable health. In a context where the promotion of breastfeeding is a global priority, the focus
on the benefits of breastfeeding in modifying the risk of chronic non-communicable diseases is a
priority for the development of preventive strategies to promote long-term health. In this review, we
summarize the evidence concerning the link between breastfeeding and reduced risk of IBD. Overall,
the data remain uncertain, partly due to considerable heterogeneity and a lack of standardization
between studies. The duration of exclusive breast-feeding is probably decisive for its lasting effect on
inflammatory-mediated diseases. The microbial development origin of diseases suggests that
colonization of the microbiota regulate immune development and may program susceptibility to
hyperinflammation later in life [174]. Indeed, even an early transient dysbiosis could determine a
health outcome. The composition of breast milk (i.e. the maternal microbiome or HMOs, for
example), the quality of complementary feedings, the use of antibiotics or the place of residence area
are all variable factors that can promote or disrupt the process of child’s gut microbiota colonization
and pathological imprinting [173,175-178]. It is therefore difficult to identify the exact role of
breastfeeding and the gut microbiome in the onset of IBD. A more holistic approach is needed to
examine the impact of breastfeeding on later life events. A key question is how to translate nutritional
factors into biomarkers of interest, with systemic biology as a strategic tool to characterize the
molecular/biological alterations leading to IBD. As such, specific improvements in our knowledge
could support interventions targeting the gut microbiome, such as prebiotics, probiotics or
postbiotics that could be used to treat or prevent diseases in a precision medicine framework.
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