

Review

Not peer-reviewed version

The Perspectives of Sapphire Implants Use in Bone Reconstruction Surgery

Dmitry Melnikov , Semyon Ivanov , [Elizaveta Bondarenko](#) , [Elina Abdeeva](#) *

Posted Date: 24 November 2023

doi: [10.20944/preprints202311.1549.v1](https://doi.org/10.20944/preprints202311.1549.v1)

Keywords: bone implants; bioprinting; biocompatible material; bone replacement material; sapphire implants

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

The Perspectives of Sapphire Implants Use in Bone Reconstruction Surgery

Dmitry Melnikov ^{1,2}, Semyon Ivanov ^{1,2}, Elizaveta Bondarenko ¹ and Elina Abdeeva ^{1,*}

¹ I.M.Schenov First Moscow State Medical University, Department of Plastic Surgery, Moscow, Russia

² Lancet Clinic, Department of Reconstructive and Plastic Surgery, Moscow, Russia

* Correspondence: elina.abdeeva27@gmail.com; Tel.: +7(965)111-21-89

Abstract: Background: Despite the fact that bone reconstructive surgeries are widely practiced worldwide, the search for an ideal bone replacement material is still an open issue. We aimed to provide an overview of the current status of research and developments in this field with a focus on sapphire materials; Methods: A literature search and review was conducted using the PubMed, Scopus, and Embase databases. We searched for literature using the following keywords: bone implants; biocompatible materials; bone replacement material; sapphire implants; Results: Sapphire has a unique combination of mechanical, physical and chemical characteristics thanks to which it has an excellent biocompatibility and biointegrity. Unlike other materials it is incredibly strong and has a high endurance. The successful experience of using this material in medical instrument engineering, dentistry and cardiac surgery shows its benefits; Conclusions: We consider that sapphire is a perspective material for bone replacement implants and researchers should look in this direction.

Keywords: bone implants; bioprinting; biocompatible material; bone replacement material; sapphire implants

1. Introduction

According to the literature data, bone augmentation remains at the leading position among other reconstructive surgeries [1–3].

The following methods are currently represented in the reconstructive surgeons' armory: autografting, allografting, as well as the use of the artificial materials. At the same time, the use of bone autografts has a number of disadvantages such as traumatization of the donor area [4], technical complexity of the operation, significant increase in the duration of the operation and recovery period, and often the inability to achieve the desired aesthetic result [5,6] due to the lack of a personalized approach to the production of the graft. In relation to the aforesaid, the problem of choosing bone reconstructive materials requires to look for new solutions, and especially in terms of the additive technologies and tissue engineering progress. Nowadays, the issue of using of the artificial implants made by 3D bioprinting is being actively examined [7,8]. Metal, ceramic, or composite materials can be used for bone-replacement constructions [7].

This article aim is to provide an overview of the current status of biocompatible bone implants, their advantages and disadvantages, and the prospects for the use of innovative materials. By exploring the current state of research and developments in this field, the present review will show the current progress and the potential of these advanced bioinert materials in artificial bone implants such as sapphire implants.

2. Which materials are currently being used for bone replacement constructions?

2.1. Metal materials.

Titanium implants are the most frequently used nowadays - it is considered that this particular metal is classified as a bioinert metal [9,10] and is corrosion-proof [11,22]. However, many scientists agree that these features are variable and, like other metals, titanium can be exposed to

microcorrosion due to the influence of the biological fluids pH and deterioration of the superficial layer [12,14]. It is essential to note the fact that titanium is likely to cause hypersensitivity and inflammatory reactions of tissues in the peri-implant zone [14,28,29].

Numerous efforts have been made to improve the strength and osseointegrative parameters of titanium implants by adding a number of different metals to its alloy [15–18]. However, besides improving the mechanical parameters, these implants have demonstrated not only local reactogenicity [12], but also generalized citotoxic [15], carcinogenic [16], and neurotoxic effects as well [17].

Zheng Liu. et al. proposed to improve titanium structures and to use porous titanium alloy with VEGF/BMP-2 microspheres, which promoted osteogenic differentiation and osseointegration due to the consistent release of the microspheres [10]. Nevertheless, this project remains on the experimental model phase and requires further investigation.

2.2. Ceramic and composite constructions.

Ceramic and biopolymer materials, despite having their benefits such as biocompatibility - stronger than titanium [19–22] and the possibility of creating bioactive constructions [20,21], are currently also flawed: their most important disadvantage is their insufficient toughness for bone tissue [11,18,20].

The ability to create an implant which is appropriate for sternum grafting is a matter of particular interest for reconstructive surgeons. The weak points of all titanium constructions have been described above - the main one is represented by reactogenicity, tendency to microcorrosion and insufficient wear resistance. The biopolymeric materials that are currently used for this task also require searching for an alternative, as they are prone to cardiorespiratory complications [23–25] due to their insufficient stiffness [11,20,23–25].

3. The criteria for bone implants.

The implant should follow the general requirements for all bioimplantable materials, the most essential of them is biocompatibility [26,28,34]. This feature, primarily, is characterized by the absence of toxic influence on the organism and the absence of chemical reactions with biological fluids, areactogenicity and corrosion stability [26,28,29,34].

Besides, this biomaterial should fulfill the requirements based on the anatomical field of application and possess the features of substituting structures [26,31]. Thus, the specific characteristics of bone substitutes are the adequate toughness, elasticity, the required porosity for osseointegration [27,30–32], and a specific surface topography [31,33].

Considering the aforesaid, we may conclude that not a single material that has been demonstrated so far has all the necessary qualities at the same time.

Thus, porous metal scaffolds meet the mechanical parameters [11,22] of bone tissue, but do not provide the required implant integration due to insufficient biocompatibility, tendency to microcorrosion [12,14,53] and reactogenicity [12,14,15].

Bioactive ceramic structures, especially the ones with hydroxyapatite, demonstrate an outstanding compatibility with bone tissue and provide the necessary osseointegration conditions, but they do not meet the requirements for bone implant rigidity. [20,23,25].

4. Sapphire implants.

4.1. The history of discovery and application.

The studies on the evaluation of sapphire materials biocompatibility in order to improve bone implants quality date back to the end of the last century [35–39].

For instance, in 1980 the scientists from Japan under the supervision of Kawahara H. And T. Shikita discovered the unique features of sapphire [35]. According to the results of their study, sapphire perfectly showed itself as an alternative material for dental implants: the consolidation was observed in all cases, there were no inflammatory changes in the peri-implant zone.

Later, T. Shikita has described a successful experience of peripheral osteosynthesis with sapphire pins [36]. The results of experimental use of the material on animals have demonstrated chemical areactogenicity and biomechanical stability of sapphire pins. Clinical observation and evaluation of radiologic parameters have also demonstrated complete consolidation and absence of reactogenicity of this material.

Based on the obtained results, the authors concluded that sapphire materials, with their corrosion resistance and better biocompatibility, are as resistant as metal implants in their resistance.

7 years later, in 1987 T. Iizuka et al. during the experimental use of the sapphire pins for the mandibular fixation confirmed the results of the previous studies testifying in favor of the excellent biocompatibility and mechanical characteristics of sapphire [37].

Thus, when X-rays were evaluated one year after the implantation, the consolidation was observed in all cases, and there was no need in pin replacement and removal.

Later, the biocompatibility of sapphire implants was evaluated at the histologic (M. Hashimoto et al., 1988) and ultrastructural (M. Hashimoto et al., 1989) levels. The authors, as well as the previous researchers, have described the absence of inflammatory changes in the peri-implant region [38,39].

In 1990, a team from Washington under the supervision of A. Sclaroff conducted a clinical evaluation of sapphire dental implants, which results also testify in favor of the areactogenicity of sapphire materials.

According to the obtained results, sufficient neovascularization and formation of a thin fibrous capsule in the peri-implant zone were registered, osteolysis, implant loosening and inflammatory changes were no more present, which demonstrates a high level of such features of sapphire materials as osteoconductivity, osteointegration and biocompatibility [40].

It is well known that biointegration requires the absence of perception of the biomaterial as foreign, while the degree of implant reactogenicity is defined by the thickness of the capsule formed around it [28,29,32,55].

K. Arvidson conducted a study to estimate the biocompatibility of sapphire materials *in vivo*: no inflammatory changes were observed during subcutaneous implantation, a thin fibrous capsule was found in the peri-implant zone, which confirms a high degree of biocompatibility of sapphire implants [41].

In 1991, M. Ishizuki published the experience of using sapphire pins in upper limb fractures. The study sample consisted of 22 patients and only one case showed delayed bone fusion, while osteolysis and inflammatory changes were not observed in all subjects, which allowed the author to conclude that sapphire constructions are very promising as a material for internal fixation in limb fractures [42].

Sapphire implants also showed some encouraging results in larger-scale long-term studies. In 1997, K. Arvidson published the results of a 10-year evaluation of the effectiveness and safety of sapphire implants in upper and lower jaw dentition. The authors evaluated the degree of biointegration and the presence of complications 3, 5 and 10 years after the implant placement. The absence of complications on the lower jaw side was found in the whole group of patients and in 92.6% of cases - on the upper jaw part [43].

In 2008, T. Takahashi et al. published the results of long-term follow-up of patients who had undergone the installation of dental sapphire implants and confirmed the results of previous studies [44].

4.2. Physicochemical features of sapphire. Medical application.

Sapphire is a single crystal form of the α -isomer of aluminum oxide [54] and has a unique combination of mechanical, physical and chemical characteristics. The latter are represented by absolute inertness, areactogenicity and resistance to changes in the pH [52–54,56].

As it was discovered later on, the aforementioned features are accounted by the unique crystallographic structure of sapphire and anisotropy [48,54]. The theory that the structure and functional features of sapphire are correlated is supported by the results of numerous applied studies [46,48–52].

The possibility of growing shaped sapphire crystals enables to set its porosity, surface topography and structure depending on the characteristics of the potential donor area [47,50,56,58].

The technology of crystal growth with an edge foil of EGF (epidermal growth factor) allows to create constructions of unique shape and structure [48,60], which is especially important for creating anatomically advanced bone structures of the maxillofacial region.

As of today, due to the advantages described above, sapphire is successfully used in medical instrument engineering [49–53,60].

Thus, due to its excellent optical properties and ability to transmit laser radiation, as well as its physicochemical neutrality, electrolytic passivity and high temperature resistance, sapphire is successfully used in medical instrument engineering for the manufacture of tips for laser scalpels, microsurgical instruments [49,50,52,60], neuroprobes and substrates for neurodetectors [51,53].

In 2020, scientists from Germany conducted the first research to evaluate the hemocompatibility of sapphire, the results of which led to the discovery of the unique atrombogenicity of this material [54]. V.Parlak et al. in their in vitro experiment paid a particular attention to the aspects of cell adhesion to sapphire and discovered an amazing "selectivity" of atrombogenic and anti-inflammatory factors in relation to the sapphire surface, which may explain the excellent stability of this material in the biological environments of the body.

The fact that polycrystalline aluminum oxide having the same chemical formula has not demonstrated similar results, testifies in favor of the theory that sapphire physical characteristics, peculiarities of its crystallographic structure and anisotropy correspond with its unique features, bio- and, especially, hemocompatibility.

The results of studies have shown the absence of generalized toxicity in sapphire materials [53,54,57], sapphire does not demonstrate chemical instability when the pH of the environment changes [54], it is corrosion proof and completely inert, which leads to the conclusion that this material meets the main requirement for all biomaterials - biocompatibility.

Besides excellent biocompatibility, sapphire implants also meet specific requirements for bone substitute constructions.

Thus, sapphire implants, unlike metal implants, do not lead to bone tissue demineralization [53,55,58], along with ceramic constructions they possess absolute corrosion stability, while sapphire has no ceramic disadvantage such as low durability [20,22].

As it was mentioned earlier, high durability of sapphire structures can be achieved by using the high-temperature processing. It allows to set the necessary porosity with no loss of mechanical features.

Meanwhile, according to fundamental sources [30,31], the bone-substitute construction should have a porosity of at least 100 microns in order to achieve sufficient osseointegration. Fulfillment of this requirement when manufacturing sapphire constructs, as opposed to ceramic ones, does not lead to a decrease in durability parameters [31].

Sufficient cell adhesion and connection of the biomaterial surface layer with integrins are also fundamental for the implant biointegration and overcoming the rejection reaction [28,30–32,59]. This characteristic significantly depends on the physicochemical characteristics of the implant surface, which include both topographic parameters, represented by different degrees of roughness and porosity, and also the charge, electrical conductivity and chemical properties. As it was mentioned above, sapphire exhibits "selective" adhesion and chemical stability under the influence of pH of biological fluids of the organism [54], and the possibility of profiled cultivation of sapphire crystals allows to manufacture implants with specified physico-mechanical parameters.

In accordance with the results of fundamental researches the hardness index of sapphire is ~23 Gpa, which corresponds to the parameters of bone tissue [33], and the crystallographic orientation of this material is close to the structure of hydroxyapatite of bone structures, which also provides conditions for osteointegration [33,46,48].

Because of anisotropy, sapphire also has excellent tribological properties, and this is an undoubted advantage for the use of sapphire prostheses in orthopedics [55].

The fact that absolute inertness, especially magnetoresistance [51,52,54], allows sapphire materials to be used without interfering further dynamic MRI monitoring. This is an extra advantage, especially since a large number of oncological patients are the candidates for bone reconstructive surgeries.

5. Conclusion.

Due to the increasing demand for the bone tissue reconstruction surgeries and the existing disadvantages of autografts, the question of searching for a material for manufacturing bone-replacement structures that meets all the requirements to the "optimum" remains urgent.

Considering the results of fundamental research on the excellent biocompatibility and unique physical qualities of sapphire, as well as the successful experience of using this material in medical instrument engineering and the existing experience of implementation in clinical practice, we believe that consideration of sapphire as an alternative to the materials currently available for bone substitute materials is an up-to-date task standing at the crossroads of reconstructive surgery and tissue engineering.

Author Contributions: Con-ceptualization, D.M and E.A.; data analysis, E.A.; writing—original draft preparation, E.B; writing—review and editing, S.I.; supervision, D.M.; project administration, E.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bongiovanni A, Foca F, Fantini M, et al. First prospective data on breast cancer patients from the multicentre italian bone metastasis database. *Sci Rep.* 2021;11(1):4329. Published 2021 Feb 22. doi:10.1038/s41598-021-83749-1
2. Key Statistics for Bone Cancer. www.cancer.org. <https://www.cancer.org/cancer/bone-cancer/about/key-statistics.html>
3. World. <https://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf>
4. Mendes L, Thierry Sauvigné, J. Guiol. Morbidité des prélèvements osseux autogènes en implantologie : revue de littérature de 1990 à 2015. *Revue de Stomatologie, de Chirurgie Maxillo-faciale et de Chirurgie Orale.* 2016;117(6):388-402. doi:<https://doi.org/10.1016/j.revsto.2016.09.003>
5. Liang F, Wolfswinkel EM, Jedrzejewski B, et al. Alternatives to Autologous Bone Graft in Alveolar Cleft Reconstruction. *2018;29(3):584-593.* doi:<https://doi.org/10.1097/SCS.0000000000004300>
6. Vijfeijken SECM, Münker TJAG, Spijker R, et al. Autologous Bone Is Inferior to Alloplastic Cranioplasties: Safety of Autograft and Allograft Materials for Cranioplasties, a Systematic Review. *World Neurosurgery.* 2018;117:443-452.e8. doi:<https://doi.org/10.1016/j.wneu.2018.05.193>
7. Angelini A, Trovarelli G, Berizzi A, Pala E, Breda A, Ruggieri P. Three-dimension-printed custom-made prosthetic reconstructions: from revision surgery to oncologic reconstructions. *International Orthopaedics.* 2018;43(1):123-132. doi:<https://doi.org/10.1007/s00264-018-4232-0>
8. Xing Guo Cheng, Yoo JJ, Hale RG, Davis MR, Kang H, Sang Jin Lee. 3D Printed Biomaterials for Maxillofacial Tissue Engineering and Reconstruction – A Review. *Open journal of biomedical materials research.* 2014;1(3):34-34. doi:<https://doi.org/10.12966/ojbmr.07.02.2014>
9. Xu Z, Zhang Y, Wu Y, et al. In Vitro and In Vivo Analysis of the Effects of 3D-Printed Porous Titanium Alloy Scaffold Structure on Osteogenic Activity. *BioMed Research International.* 2022;2022:1-13. doi:<https://doi.org/10.1155/2022/8494431>

10. Liu Z, Xu Z, Wang X, et al. Construction and osteogenic effects of 3D-printed porous titanium alloy loaded with VEGF/BMP-2 shell-core microspheres in a sustained-release system. *Frontiers in Bioengineering and Biotechnology*. 2022;10. doi:<https://doi.org/10.3389/fbioe.2022.1028278>
11. Alberto Maria Crovace, Luca Lacitignola, Donato Monopoli Forleo, et al. 3D Biomimetic Porous Titanium (Ti6Al4V ELI) Scaffolds for Large Bone Critical Defect Reconstruction: An Experimental Study in Sheep. *Animals*. 2020;10(8):1389-1389. doi:<https://doi.org/10.3390/ani10081389>
12. Jacobs JJ, Hallab NJ. Loosening and Osteolysis Associated with Metal-on-Metal Bearings. *The Journal of Bone & Joint Surgery*. 2006;88(6):1171-1172. doi:<https://doi.org/10.2106/jbjs.f.00453>
13. Müller K, Valentine-Thon E. Hypersensitivity to titanium: clinical and laboratory evidence [published correction appears in Neuro Endocrinol Lett. 2007 Oct;28(5):iii]. *Neuro Endocrinol Lett*. 2006;27 Suppl 1:31-35.
14. Jacobs JJ, Hallab NJ. Loosening and osteolysis associated with metal-on-metal bearings: A local effect of metal hypersensitivity?. *J Bone Joint Surg Am*. 2006;88(6):1171-1172. doi:10.2106/JBJS.F.00453
15. Brun P, Dickinson SC, Zavan B, Cortivo R, Hollander AP, Abatangelo G. Characteristics of repair tissue in second-look and third-look biopsies from patients treated with engineered cartilage: relationship to symptomatology and time after implantation. *Arthritis Res Ther*. 2008;10(6):R132. doi:10.1186/ar2549
16. He X, Reichl FX, Milz S, et al. Titanium and zirconium release from titanium- and zirconia implants in mini pig maxillae and their toxicity in vitro. *Dent Mater*. 2020;36(3):402-412. doi:10.1016/j.dental.2020.01.013
17. van der Voet GB, Marani E, Tio S, de Wolff FA. Aluminium neurotoxicity. *Prog Histochem Cytochem*. 1991;23(1-4):235-242. doi:10.1016/s0079-6336(11)80190-7
18. Osman RB, Swain MV, Atieh M, Ma S, Duncan W. Ceramic implants (Y-TZP): are they a viable alternative to titanium implants for the support of overdentures? A randomized clinical trial. *Clin Oral Implants Res*. 2014;25(12):1366-1377. doi:10.1111/clr.12272
19. Burke ZDC, Blumstein GW, Zoller SD, Park HY, Bernthal NM. Reconstructive Science in Orthopedic Oncology. *Tech Orthop*. 2018;33(3):175-182. doi:10.1097/BTO.0000000000000282
20. Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. *Journal of Materials Research*. 1998;13(1):94-117. doi:<https://doi.org/10.1557/jmr.1998.0015>
21. Hench LL, Wilson J. Bioceramics. *MRS Bulletin*. 1991;16(9):62-74. doi:<https://doi.org/10.1557/s0883769400056086>
22. Goldsmith I, Evans PL, Goodrum H, Warbrick-Smith J, Bragg T. Chest wall reconstruction with an anatomically designed 3-D printed titanium ribs and hemi-sternum implant. *3D Print Med*. 2020;6(1):26. Published 2020 Sep 25. doi:10.1186/s41205-020-00079-0
23. Drinnon KD, Sherali S, Cox CT, MacKay BJ. Sternal Tumor Resection and Reconstruction Using Iliac Crest Autograft. *Plast Reconstr Surg Glob Open*. 2020;8(8):e3002. Published 2020 Aug 18. doi:10.1097/GOX.0000000000003002
24. Norkhin A.V. et al. Features of surgical treatment of locally advanced thoracic wall tumors with sternum lesions. *Journal of St. Petersburg University* 2012;11(4) 140-151
25. Wang HF, Jiang G. [Discussion on hot topics of skeletal sternal reconstruction]. *PubMed*. 2018;56(9):661-664. doi:<https://doi.org/10.3760/cma.j.issn.0529-5815.2018.09.005>
26. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. *Trends Biotechnol*. 2012;30(10):546-554. doi:10.1016/j.tibtech.2012.07.005
27. Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. *J Biol Chem*. 2010;285(33):25103-25108. doi:10.1074/jbc.R109.041087
28. Thomas K. Monsees. Biocompatibility and Anti-Microbial Activity Characterization of Novel Coatings for Dental Implants: A Primer for Non-Biologists. *Frontiers in Materials*. 2016;3, 40
29. Williams DF. On the mechanisms of biocompatibility. *Biomaterials*. 2008;29(20):2941-2953. doi:10.1016/j.biomaterials.2008.04.023
30. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. *Biomaterials*. 2006;27(18):3413-3431. doi:10.1016/j.biomaterials.2006.01.039
31. Chen S, Guo Y, Liu R, et al. Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration. *Colloids Surf B Biointerfaces*. 2018;164:58-69. doi:10.1016/j.colsurfb.2018.01.022

32. Feller L, Chandran R, Khammissa RA, et al. Osseointegration: biological events in relation to characteristics of the implant surface. *SADJ*. 2014;69(3):112-117.
33. Olszta MJ, Cheng X, Jee SS, et al. Bone structure and formation: A new perspective. *Materials Science and Engineering: R: Reports*. 2007;58(3-5):77-116. doi:<https://doi.org/10.1016/j.mser.2007.05.001>
34. Shahi S, Özcan M, Maleki Dizaj S, et al. A review on potential toxicity of dental material and screening their biocompatibility. *Toxicol Mech Methods*. 2019;29(5):368-377. doi:10.1080/15376516.2019.1566424
35. Kawahara H, Hirabayashi M, Shikita T. Single crystal alumina for dental implants and bone screws. *J Biomed Mater Res*. 1980;14(5):597-605. doi:10.1002/jbm.820140506
36. Shikita T, Inoue A, Hamaguchi T, Oonishi H. Erfahrungen bei peripheren Osteosynthesen mit monokristallinen Alumina-Keramik-Schrauben [Experience of peripheral osteosynthesis using single crystal alumina ceramics screws (author's transl)]. *Z Orthop Ihre Grenzgeb*. 1980;118(6):975-983. doi:10.1055/s-2008-1053357
37. Iizuka T, Fujimoto H, Ono T. A new material (single crystal sapphire screw) for internal fixation of the mandibular ramus. *J Craniomaxillofac Surg*. 1987;15(1):24-27. doi:10.1016/s0101-5182(87)80009-4
38. Hashimoto M, Akagawa Y, Nikai H, Tsuru H. Single-crystal sapphire endosseous dental implant loaded with functional stress--clinical and histological evaluation of peri-implant tissues. *J Oral Rehabil*. 1988;15(1):65-76. doi:10.1111/j.1365-2842.1988.tb00147.x
39. Hashimoto M, Akagawa Y, Nikai H, Tsuru H. Ultrastructure of the peri-implant junctional epithelium on single-crystal sapphire endosseous dental implant loaded with functional stress. *J Oral Rehabil*. 1989;16(3):261-270. doi:10.1111/j.1365-2842.1989.tb01341.x
40. Sclaroff A, el-Mofty S, Guyer SE. Clinical evaluation of a single crystal sapphire tooth implant in human beings. *Oral Surg Oral Med Oral Pathol*. 1990;70(2):141-146. doi:10.1016/0030-4220(90)90106-3
41. Arvidson K, Fartash B, Moberg LE, Grafström R, Ericsson I. In vitro and in vivo experimental studies on single crystal sapphire dental implants. *Clin Oral Implants Res*. 1991;2(2):47-55. doi:10.1034/j.1600-0501.1991.020201.x
42. Ishizuki M, Furuya K. Clinical application of sapphire pins as an internal fixation device for the upper extremity. *J Hand Surg Am*. 1991;16(5):922-928. doi:10.1016/s0363-5023(10)80161-3
43. Fartash B, Arvidson K. Long-term evaluation of single crystal sapphire implants as abutments in fixed prosthodontics. *Clin Oral Implants Res*. 1997;8(1):58-67. doi:10.1111/j.1600-0501.1997.tb00008.x
44. Takahashi T, Sato T, Hisanaga R, et al. Long-term observation of porous sapphire dental implants. *Bull Tokyo Dent Coll*. 2008;49(1):23-27. doi:10.2209/tdcpublication.49.23
45. Kosyakov A.N. et al. Biocompatibility of new generation endoprosthesis materials in total hip arthroplasty. *Orthopedics, Traumatology and Prosthetics*. 2010;4(581), 105-115
46. Zhou Y, Gong H, Shi X, Zou C. Characterization of sapphire chemical mechanical polishing performances using silica with different sizes and their removal mechanisms. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*. 2017;513:153-159. doi:<https://doi.org/10.1016/j.colsurfa.2016.09.049>
47. Lee S, Lee S, Kim H, Park C, Keun Yong Sohn. Effect of Crystal Orientation on Material Removal Characteristics in Sapphire Chemical Mechanical Polishing. *Journal of the Korean Society of Tribologists and Lubrication Engineers*. 2017;33(3):106-111. doi:<https://doi.org/10.9725/kstle.2017.33.3.106>
48. Budnikov A, Vovk E, Krivonogov SI, Ya A, Lukiyenko O A. Anisotropy of sapphire properties associated with chemical-mechanical polishing with silica. *Functional Materials*. 2010;17(4): 488-494
49. Katyba GM, Zaytsev KI, Dolganova IN, et al. Sapphire shaped crystals for waveguiding, sensing and exposure applications. *Progress in Crystal Growth and Characterization of Materials*. 2018;64(4):133-151. doi:<https://doi.org/10.1016/j.pcrysgrow.2018.10.002>
50. Kurlov V N, Dolganova I N, Shikunova I A, et al. Development of novel medical instruments based on sapphire shaped crystals. Published online November 2, 2020. doi:<https://doi.org/10.1109/iclo48556.2020.9285447>
51. Shikunova IA, Dolganova IN, Katyba GM, Zaitsev KI, Kurlov VN. Sapphire Neurosurgical Probe for Aspiration of Brain Tumors with Boundary Demarcation by Use of Spectroscopy. *Optics and Spectroscopy*. 2019;126(5):545-553. doi:<https://doi.org/10.1134/s0030400x19050254>
52. Dolganova IN, Katyba GM, Shikunova IA, et al. Sapphire-based medical instruments for diagnosis, surgery and therapy. Published online April 2, 2020. doi:<https://doi.org/10.1117/12.2555320>

53. Wang A, McAllister JP, Finlayson P, et al. Short-and long-term neural biocompatibility of heparin coated sapphire implants. *Materials Science and Engineering: C*. 2007;27(2):237-243. doi:<https://doi.org/10.1016/j.msec.2006.05.011>
54. V Parlak Z, Labude N, Rütten S, et al. Toward Innovative Hemocompatible Surfaces: Crystallographic Plane Impact on Platelet Activation. *ACS Biomater Sci Eng*. 2020;6(12):6726-6736. doi:10.1021/acsbiomaterials.0c00609
55. Turmanidze R et al. Improving the performance characteristics of human hip-joint implants by increasing the quality of processing and geometric accuracy of their spherical surfaces. *Cutting & Tools in Technological System* 2020; 93(1), 103-113
56. Кийко В.М., Курлов В.Н. Прочность монокристаллических волокон сапфира, полученных методом Степанова и внутренней кристаллизации. Тезисы доклада конференции «Фазовые превращения и прочность кристаллов» 2019; 109 DOI: 10.26201/ISSP.2020/FPPK.104
57. Murphy CM, Haugh MG, O'Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. *Biomaterials*. 2010;31(3):461-466. doi:10.1016/j.biomaterials.2009.09.063
58. Rosenberg O.A., Shulzhenko A.A., et al. Effect of sapphire anisotropy on immunological, tribological and strength characteristics of the material. *New materials and technologies in metallurgy and mechanical engineering*. 2007;2, 32-39
59. Barfeie A, Wilson J, Rees J. Implant surface characteristics and their effect on osseointegration. *Br Dent J*. 2015;218(5):E9. doi:10.1038/sj.bdj.2015.171
60. Dolganova IN, Shikunova IA, Zotov AK, et al. Microfocusing sapphire capillary needle for laser surgery and therapy: Fabrication and characterization. *Journal of Biophotonics*. 2020;13(10). doi:<https://doi.org/10.1002/jbio.202000164>

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.