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Energy Momentum Localization in Quantum Gravity
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Abstract: We introduce quantum spatio-temporal dynamics (QSD) as modeled by the Nexus Paradigm (NP)
of quantum gravity to resolve the problem of energy- momentum localization in a gravitational field.
Currently, the gravitational field as described using the language of geometry modeled under General
Relativity (GR) fails to provide a generally accepted definition of energy-momentum. Attempts at resolving
this problem using geometric methods have resulted in various energy-momentum complexes whose physical
meaning remain dubious since the resulting complexes are non-tensorial under a general coordinate
transformation. In QSD, the tangential manifold is the affine connection field in which energy-momentum
localization is readily defined. We also discover that the positive mass condition is a natural consequence of
quantization and that dark energy is a Higgs like field with negative energy density everywhere. Finally,
energy-momentum localization in quantum gravity shows that a free falling object will experience large
vacuum fluctuations (uncertainties in location) in strong gravity than in weak gravity and that the amplitudes
of these oscillations defines the energy of the free falling object.

Keywords: quantum gravity; energy-momentum localization; dark energy; dark matter;
gravitational waves; black holes

1. Introduction

Since the very inception of GR, Einstein was aware of the energy inherent in a gravitational field
and that this energy must also gravitate [1,2]. Thus in GR gravity must self-gravitate. Self-gravitation
of the gravitational field is also a problem in perturbative approaches to quantum gravity as it leads
to infinities in the strong gravity regime [3-5]. Einstein failed to find a symmetric tensor that would
properly localize the energy-momentum of the gravitational field but instead introduced a non-
covariant pseudo-tensor. Pseudo-tensors are non-tensorial under a coordinate transformation and
therefore the problem of energy localization remains unresolved. Solving energy-momentum
localization in gravity will provide answers to the enigmatic sources of dark energy (DE) and dark
matter (DM) as argued by Nash in Ref.[1]. A quantum gravity (QG) solution would provide deeper
understanding of these enigmas from a Quantum Field Theory (QFT) perspective.

The search for a solution to this problem has been an area of active research. A brief survey of
the literature shows notable attempts using super-energy tensors [6-8], quasi local expressions [9-12]
and energy momentum complexes of Einstein [13,14], Papapetrou [15], Meller [16], Bergman-
Thompson [17] Landau- Lifshitz [18] and Weinberg[19]. As highlighted by Randinschi et al [20]
pseudo-tensors have an inherent central problem which is their coordinate dependence. Further, their
construction involves two parts one for matter and one for the gravitational field and herein lies the
problem which is embedded in their very mathematical construction. From a physical perspective,
the equivalence principle makes no distinction between gravitational mass and inertial mass. The
gravitational mass is associated with the gravitational field and so it is imperative to find an
expression in which the energy of the gravitational field is expressed in terms of the gravitational
mass embedded within it and vice versa. That is, we seek an expression in which the stress-
momentum tensor in Einstein’s field equation is expressed in terms of the field momentum.

The paper is structured as follows: first we introduce a semi-classical derivation of quantum
gravity and the guiding principles for the quantization process. We then introduce Hamilton’s Ricci
flow which enables the derivation of a covariant canonical formulation of quantum gravity. This
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formulation then enables energy-momentum localization in quantum gravity. The final section is a
discussion of the energy-momentum localization.

2. A semi classical derivation of quantum gravity.

The search for quantum gravity begins with adopting an intrinsic geometry in which Einstein’s
field equations are interpreted as describing curved world lines in flat space-time. By adopting this
interpretation, one can start embarking on an alternative path to quantum gravity since QFT is a
theory built on flat space-time and has curved lines that appear as a sum over histories in the
Feynman interpretation of QFT. Moreover the Ricci curvature tensor in GR is the average of the
possible paths a test particle can take in a gravitational field. That is, given two vector fields X and
Z, Ric(X,Z) = X{R(X, e;)Z, e;) = —3ng;; This statistical view which is analogous to thermal diffusion
provides an intuitive glimpse in which Hamilton’s Ricci Flow 09,g,, = Ag,, [21] plays an important
role in the formulation of quantum gravity. In the subsequent section, we introduce the Ricci Flow
and its basic properties which will play a pivotal role in the formulation of a self-consistent model of

QG.

2.1. Hamilton’s Ricci Flow

In 1982 Richard Hamilton introduced the concept of Ricci flow [22]. In a Riemannian manifold
(M, g), the Ricci Flow is partial differential equation that evolves the metric tensor

atguv = _ZRiC(guv(t)) (1)

where Ric(gw (t)) denotes the Ricci curvature of the metric g, (t). The time evolution of the metric
under the Ricci flow spreads the curvature evenly through space. It should be noted that the Ricci
Flow also includes a quadratic reaction term which will be included later in the work.

In compact Einstein manifolds the Ricci Flow is expressed as follows:

0y = = Gy (2)

where G, = Ry, — %Rguv is the Einstein tensor, ¢ the speed of light and r; the Hubble radius.

Compact Einstein manifolds have the form

Guv = kguv 3)

In GR with the cosmological constant 4, the compact Einstein manifold assumes the form

Gyv = Ag,uv 4)

Therefore, vacuum solutions of Einstein’s field equations are compact Einstein manifolds with
k proportional to the cosmological constant. The above equation describes a Ricci soliton of De Sitter
topology and is divergenceless. That is VG, = AV, g,, = KppgV, g,y = 0 where k, is the Einstein
constant and ppr is the dark energy density. Here we have a packet of localized vacuum energy in
the form of a Ricci soliton in which the energy conservation holds. In other words, the Ricci soliton is
a self-gravitating gravitational field.

2.2. Space-time Quantization

In the Nexus Paradigm of quantum gravity, we begin the quantization process by considering a
large but finite patch of Minkowski space equipped with a non-degenerate symmetric bilinear form
on the tangent space. We adopt a local coordinate system to avoid the need of an origin as well as


https://doi.org/10.20944/preprints202311.1535.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 November 2023 doi:10.20944/preprints202311.1535.v2

point like events which are the sources of divergences in QFT. The local coordinate system makes the
Minkowski space a displacement vector space. The inner product is therefore

As? = Ax*Ax, = Ax? 4+ Ay? + Az® — c*At?

= (AAx + BAy + CAz + icDAt)(AAx + BAy + CAz + icDAt) (5)

Upon multiplying the right side we note that to get all the cross terms such as AxAy to vanish
we must assume

AB+BA =0,

and A? =B? =-=1 (6)
The above conditions generate a Clifford Algebra which implies that the coefficients (4, B, C,D)
must be matrices, specifically the Dirac gamma matrices. These matrices are square roots of the
Minkowski metric

vy =0t (7)

Thus the displacement vectors Ax* = ay# reside in Clifford space Cl;3(R). implying an
intrinsic quantized spin and can be perceived as Dirac 4-vector matrices analogous to the Pauli
vector matrices. They are also quantized wave packets of space-time and can be expressed as
Fourier integrals as follows

Axt = %y” 2 sinc(kx)e**dk

=y [7 an®miydk (8)
Where

2r k=
n_:S = k=t£ ank (9)

Here ryg is the Hubble radius, @iy = sinc (kx)e™> are Bloch energy eigenstate functions in which
the four wave vectors assume the following quantized values

nm
kH :rT n
HS

+1,42...10% (10)

We set a high energy cut off limit at the Planck 4-length since no measurement can be obtained
below this length without the creation of a black hole and the low energy cut off limit being the
Hubble 4-radius since no information can be obtained beyond the cosmic horizon. The 10%°states
arise from the ratio of Hubble four radius to the Planck four length.The Bloch functions in each
eigenstate of space-time generate an infinite Bravais four lattice.The conjugate momentum for the
displacement vectors is

2npt r
Apy, = : Lyk f @ (Ax,)dxH

= yF 7 cpp(Dxy)dx* (11)

Where p}' is the four momentum of the ground state

The wave packet is essentially a particle of four-space and can be envisioned as enveloping a
spherically symmetric lump of energy from the quantum vacuum. This vacuum energy can be in any
form of the fields described by the Standard Model of particle physics.
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We seek to find the relationship between these wave packets of spacetime and the Ricci soltions
of Eqn.(4). First we determine the norm squared of the four momentum of the n -th state wave
packet . We compute this norm by multiplying the inner product of Eqn. (10) by the square of the
reduced Planck constant

EZ 3(nhHp)? _
c? c2

(h)2kik,, = 0 (12)

where H, is the Hubble constant. We then express Eqn.(12) in terms of the cosmological constant, A
as

_ EZ _ 3k3
T (ho? T (2m?
From Eqn. (13), the wave packet can be considered as a compact Einstein manifold or a trivial
Ricci soliton of positive Ricci curvature expressed in the form

=n2A (13)

G(nk)uv = nzAg(n,k);w = nZKpAg(n,k)uv (14)

Clearly Eqn. (14) depicts a self-gravitating Ricci soliton and as explained in Refs: [23-26] this is
DM which is a localized packet of vacuum energy n?p, in the n-th quantum state. Thus DM is a
Ricci soliton and should exhibit the following soliton characteristics

It is a localized lump of (vacuum) energy

It preserves its form while growing or diminishing in size

It preserves its speed and form after collision with another soliton

The lowest quantum state from Eqn.(10) occurs when n = 1 suggesting that for Eqn.(14) to

become Ricci flat in this state, a Ricci soliton in the ground state must be removed from the right side
yielding Einstein’s vacuum field equations in the quantized spacetime as

G(nk)uv = (nz - 1)Ag(n,k)uv = (nz - 1)kp/lg(n,k)uv (15)

The above equation depicts a decay mechanism in which a high energy graviton emits a ground
state graviton to assume a low energy quantum state. The force exerted by the emission process can
be computed via the Uncertainty Principle. We consider the ground state graviton as having a
temporal interval At equal to the Hubble time and a spatial interval Ax equal to the Hubble radius

Thus
cF h
AtAE = AtAx.F = —~—
Hy 2m
Therefore
hHg Hgc
F~C—z°-%=m6 ~a (16)

This implies that the mass of the ground state graviton is mg; = % which in 3D space is m; =

3;0 and the graviton induced acceleration is a = % Thus a spherical volume of space containing a
dark energy mass M,(r) within a radius r will always generate a constant outward acceleration of
GMA(r) _ _ Hoc

3~ = — This acceleration was first empirically observed by Milgrom from data on galaxy
rotation curves [27]. As noted by Milgrom, non-Newtonian dynamics begins to manifest at this
critical acceleration. This critical acceleration therefore marks a transition from the classical to the
quantum gravity regime.

If the graviton field is perturbed by the presence of baryonic matter then Eqn. (15) becomes
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G(nk)uv = kTuv + (nz - 1)A.g(nk)uv 17)

From Ref.[23] the solution to Eqn. (14) is computed as

-1
ds? = — (1 - (%»czdtz + (1 - (i)) dr? +12(d6? + sin?0d¢?) (18)

n2

The above metric equation describes curved worldlines in flat spacetime and has no singularities
nor divergencies. At high energies which are characterized by microcosmic scale wavelengths of the
graviton and high values of n, the worldline is rectilinear and the local coordinates are highly
compact or localized. This aspect also reveals asymptotic freedom in quantum gravity since for high
values of n, gravity (world line curvature) vanishes asymptotically. Thus at high energies, graviton-
graviton interactions are non-existent due to the absence of curvature. The worldline begin to deviate
substantially from a rectilinear trajectory at low energies where the uncertainties in its location are
large and the associated graviton wavelengths are at macrocosmic scales. In the ground state of
spacetime (n = £1) we notice that the metric signature of Eqn. (18) becomes negative and that the
worldline is rectilinear.

If we compare the quantized metric of Eqn. (18) with the Schwarzschild metric we notice that

2 2GM(r)

n2 c2r

(19)

This yields a relationship between the quantum state of space-time and the amount of baryonic
matter embedded within it as follows

2 C?r
GM(1)

n (20)

Equation (20) shows a family of concentric black hole like spherical surfaces of radii 7, =
n?GM/c* with corresponding orbital speeds v,, = c¢/n. The innermost stable circular orbit occurs at
n =1 or at half the Schwarzschild radius implying that in the Nexus Paradigm the event horizon is
half the size predicted in GR. The square term on the left makes it imperative that the mass term on
the right remains positive regardless of the positive or negative vibrational modes of space-time
explicit in Eqn.(10). This resonates well with the positive mass theorems [28,29]. However, the
argument presented here is more direct and is a consequence of the quantization of the gravitational
field.

Evidently, the Ricci soliton arising from Eqn.(20) has an anti-De Sitter topology and to
differentiate it from a Ricci soliton of De Sitter topology we label its quantum state as fi. We can now
replace the stress -momentum tensor in Eqn.(17) and express the equation as

G(nk)uv = l712‘/19(nk)/w + (nz - 1)Ag(nk)/w

= (ﬁz +n? — 1)Ag(nk)uv (21)

Here are the complete Einstein’s field equations expressed in purely geometric terms as a
compact Einstein manifold. For any quantum state n in which a Ricci soliton has constant curvature,
energy is conserved. The right side is a symetric tensor expressing the quantum/energy state of
spacetime. The left side is a form of a laplacian that averages the paths taken by a test particle in a
gravitational field of quantum state n.

The linearized Eqn.(21) is solved by expressing it as another Ricci soliton in the N-th quantum
state yielding the equation

G(Nk)uv = NZAg(Nk),uv (22)
The above equation has a solution
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-1
2 2
ds? = — <1 - (F)) c?dt? + (1 - (ﬁ)) dr? + r2(d6? + sin?6dg?)

26My

-1
2GM .
_ (1 - (TZN)) c2de? + (1 ~ (2 )) dr? + r?(d6? + sin?0dg?) (23)

Here My (r) = Mg(r) + Mpy () + M,(r) where the terms on right represent the baryonic mass,
the DM mass and the DE mass enclosed inside a sphere of radius r. This yields a metric equation of
the form

-1
ds? = — (1 — 2 (e 4 B M)) c2de? + (1 — 2 (Ge 4 Burr ”0")) dr? +r2(d6? +

rc2 c2 2mc? rc2 c? 2mc?
i 2 2
sin“0dp*) (24)
GM T GM (T Hgpcr
where Dr—M() =v? = (Hyr)? = Hyvr and # =—=-

The above metric equation leads to the following equation for gravity

d?r _ GMp Hyc
acz = 2 T Hov =50 (29)
The dynamics become non-Newtonian when
GMp(r) _ Hy . _ v}
rz 27rC T r (26)
Under such conditions
__2mv}
r= T (27)

Substituting for r in Eqn. (26) yields
vt = GMp(r) e (28)

This is the Baryonic Tully — Fisher relation. Condition (26) reduces Eqn. (25) to

d?r
dt?

dvp
= e = HO Un (29)
From which we obtain the following equations of galactic and cosmic evolution

1 H 1 n
= et (GMp(r) 2 )i = ‘;—0 (30)
1
v, = e®oD (GMp(r) 22 )% = Hor, (31)

1
a, = Hoe™D (GMp 22 c)s = Hyv, (32)
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3. Quantum Spatio-temporal Dynamics

We proceed to find the complete covariant canonical quantization of Eqn.(21). To this end we
express the unit displacement vectors e in terms of the Bloch energy functions ¢. The unit vectors
are Dirac 4 vector functions.

e=vy"e,p (33)

The metric coefficents can then be expressed as
g =vtr'e. e,p9
=n"ool,

=n"o¢ (34)
The fluctuating Minkowski metric arises form the uncertainity in the locality of the unit vectors .
The Ricci flow for the vacuum equations is then expressed in following form

1 1
atg(nk)pv = _EcrHSG(nk)uv = —ECTHS(TLZ - 1)Ag(nk);w

1
= —ECTHS(TI - D(n+ 1)Ag(nk)uv (35)

The term on the right suggests a covariant and contravariant derivative operating on the metric

coefficient such that the Ricci flow when expressed in terms of the Bloch functions becomes
CTys

312

_iatyu(pnkyv(pnk = iVuV(n_l)u(pnk vy V(n+1)v(pnk

_ CTHS
1272

Vyv(n_l)”(pnkyvv(n+1)v§0nk (36)
Where
V(n_l)u =" — iklﬂ and V(n+1)-v = a(m,) + iklv
CTHS

1212
speed which is the speed of entanglement with a numerical value of approximately 5.2 square parsecs

is an areal

The derivative operators on the right are entangled, and the coupling coefficient,

per second.
The Ricci flow in the presence of baryonic matter is expressed as

, cr _ ~
_latyugonkyv(pnk = 12:; Vuv(n 1)H¢nkyv7(n+1)v(p(nk) - nzHOYu¢nRYV§0(nk) (37)
Where fi2 = % = ;—2 and %crHSA =H,

Thus baryonic matter behaves as a heat sink and the vacuum state of space time as a heat source.
Gravitational attraction therefore occurs as a flow of space-time in much the same way as heat flows
from a heat source to a heat sink. A test particle of baryonic matter flows along with the space-time
to the gravitating mass.

Multiplying both sides of Eqn.(37) by the reduced Planck constant # , while expressing @@ =
g and factoring out the Minkowski metric yields

hid,g = _:1_26 (0™ — ik™)(O(nyy + ik1y)g + Ti2hHog (39)

Here
crys _ crush _ c¢?h _ h (40)
3 3 h 3Hoh mg
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In the reference frame of the flowing space-time the covariant and contravariant derivatives are
null yielding

og + k' k,,g9 = h*0g + p'*py,9 = h*0g + méc?g = 0 (41)

Eqn.(41) is a 4D Helmholtz equation in which the source of gravitational waves is the n = +1
quantum state or ground state of space-time The equation also implies the existence of a minimum
mgc?

h
momentum p'#p;,, a result that contradicts that of Cooperstock [30]. Their frequency is f =

energy/frequency in nature. Gravitational waves therefore are carriers of the ground state 4-

1/2
2
((;—z + H02)> . Since Eqn.(41) is an expression for Einstein’s vacuum equations G, + 4g,, = 0 for

extremely weak metric perturbations, it therefore localizes the source of DE to the ground state 4-
momentum. A similar conclusion was also obtained in Ref.[24].

The 4D Helmholtz equation on a discretized tangential manifold in which the tangential space
is discretized into units of k'* becomes a random walk equation. This aspect is of importance in
describing entropy on the black hole like surfaces of AdS Ricci solitons of radii r; = fi*ry. Here 7, is
the gravitational radius. In [31], it is demonstrated that the black hole like surfaces are marginally
stable or zero energy orbitals and that their expectation values are computed as (1) = %g [3n% —

I(1 + 1)]. These expectation values are found to be the stable circular orbitals. For black holes, the
innermost marginally stable orbit occurs at n = 21 =0 since the n = 1 orbital is the actual black
hole surface. That is, at radius r, = 47; = 27;. Here 7; is the Schwarzschild radius. The expectation
value which is the innermost stable circular orbital is therefore (r,) = 61y = 37;. These results are the
same as those computed using geometric means in GR, the difference being that the geometric
calculations are not only abstract but also protracted.

Along the geodesic, the total energy of the gravitational field or the Hamiltonian of Eqn.(39) is
reduced to

ihd,g = A%hH,g (42)

The above equation describes quantum harmonic oscillations of the metric with positive energy
levels E, = i*hH, which from Eqn.(10) we find Ep,q, = 10*2°E,,;, . Thus the gravitational field can
be described as a system of nested harmonic oscillators in the form of Ricci solitons. More
importantly, Eqn.(42) helps to define the equation of continuity for the Klein-Gordon equation
expressed in Eqn.(41) as follows:

10 29" .09 . i
;a(g Fra E)—Va(ng - g'vg)
=0 %(99 g7 g9) —V(gVg* —g'Vg)
= 2 (99" — g*g) — 2L v(gVg* — g*Vg) = 0 (43
=599 —9°9) — 5, -V(gVg" —g'Vg) =0 (43)

The above continuity equation expresses the conservation of information along a geodesic. The
information contained in the metric coefficients describes all the possible forms of the geodesic in the
quantum state fi which is determined by the gravitating mass M. At high energy states the
divergence from a rectilinear trajectory is low and increases with decreasing quantum state. Likewise,
the information density increases with increase in quantum state. In other words a test particle is
highly localized at high quantum states of space-time and becomes delocalized at low quantum
states.

The complete Ricci Flow equation includes a reaction term g? such that Eqn.(42) can be
expressed as
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3ihd,g = 3R2hHyg + imgc?g? (44)
The Lagrangian of the harmonic system then takes the form

mge? \?
£(g) = —2hHy(g? + (2E—) g*) (45)

3i2hH,
The potential assumes a Mexican hat morphology under the Wick rotation g — ig

— _ 2 2 mgc? 2 4
L(g) = —fi*hH, (—g +(m) 9" ) (46)

Assuming a spring constant k = 2fi’hH, the Lagrangian then expresses the difficulty to
generate excitations of the field at large fi, but can however be readily generated at i=1 .
Gravitational wave energy therefore depends mostly on the amplitude of the wave and not on the
frequency. The harmonic vibrational modes are a square number series of the fundamental frequency
and can be represented as a sequence of binary bits. The n-th harmonic is the sum of the n —
1 harmonics.

DE is the ground state of the gravitational field and therefore from Eqn.(46) must behave like
the Higgs field but with negative potential energy minima everywhere. Given that mgc? = 3hH,

therefore when n =1 the vacuum expectation value for g is + \/g implying that the measured

2
value of the cosmological constant A’ = A(g)~0.707107A4 where A =3 (HCLZ) is the cosmological

constant in a De Sitter vacuum. This yields a theoretical value of A’ = 1.140903 x 107°?m™2 using

the Planck 2013 [32] value of the Hubble constant of H, = 2.1927664 + 0.0136 x 1071851, The
theoretical result agrees very well with the measured value by the Planck Collaboration [33] for
Q,~0.7. It is worth mentioning that at high energies the second term on the right side of Eqn.(46)
becomes negligible and the vacuum expectation value at these energies is zero. Thus only the ground
state vacuum expectation value contributes to the vacuum energy density. This aspect resolves the
cosmological constant problem.

The values of g can only assume positive values because of the constraint g = ¢¢. This
scenario favors a slow roll of g down the potential hill and depicts a half Mexican hat potential.

The Hamiltonian of Eqn.(44) breaks discrete time translation symmetry and generates quantum
state reduction in a gravitational field as discussed by Wenzel in Ref.[34]. Here the reaction term is
increasing the density of information by driving the system towards low quantum states and
therefore confining information to fewer quantum states. The reduction in quantum states applies to
quantum matter resulting in baryonic matter transforming into a Bose-Einstein condensate (BEC) at
low gravitational quantum states. This result suggests that neutron star matter could be a BEC. The
ordered BEC state is the final result of discrete time translation symmetry breaking. Quantum state
reduction in low gravitational states could shed some light on the black hole information paradox.
Also, recall that the Higgs mechanism was engineered and not derived from first principles but here
we show how this mechanism could arise from first principles.

Concluding remarks and future directions

Energy-momentum localization in classical GR is a difficult problem, primarily because GR does
not include an important aspect of space-time which is the quantum vacuum. Thus only a quantum
theory of gravity that provides a link between space-time, gravity and the quantum vacuum can
provide a more acceptable description of energy in a gravitational field. In this work, we have
translated the geometric language of GR into the wave language of QFT following a slightly different
procedure as in Ref.[25]. This quantization procedure enables a complete description of the
gravitational field in which DE and DM are a natural aspect of the field equations. The covariant
derivatives of the quantum theory describe the affine connection field in which the ground state
graviton is the messenger particle with the smallest possible mass-energy in nature. Gravity appears
to be a massive Higgs like scalar field that couples to the Minkowski metric causing it to warp or
bend its rectilinear world lines. The coupled state is the graviton. In synthesis, energy-momentum
localization in quantum gravity shows that a free falling object will experience large vacuum
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fluctuations (uncertainties in location) in strong gravity than in weak gravity and that the amplitudes
of these oscillations defines the energy of the free falling object.

Future studies will be centered on studying random walk phenomena and entropy on the
tangential manifold using tools such as the Quantum Monte Carlo Method.
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