
Article

Not peer-reviewed version

Energy -Momentum Localization in

Quantum Gravity

Stuart Marongwe 

*

Posted Date: 28 November 2023

doi: 10.20944/preprints202311.1535.v2

Keywords: Quantum Gravity; Energy-Momentum Localization; Dark Energy; Dark Matter; Gravitational

Waves; Black Holes

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/295426


 

Article 

Energy Momentum Localization in Quantum Gravity  

Stuart Marongwe  

University of Botswana; stuartmarongwe@gmail.com 

Abstract: We introduce quantum spatio-temporal dynamics (QSD) as modeled by the Nexus Paradigm (NP) 

of quantum gravity to resolve the problem of energy- momentum localization in a gravitational field. 

Currently, the gravitational field as described using the language of geometry modeled under General 

Relativity (GR) fails to provide a generally accepted definition of energy-momentum. Attempts at resolving 

this problem using geometric methods have resulted in various energy-momentum complexes whose physical 

meaning remain dubious since the resulting complexes are non-tensorial under a general coordinate 

transformation. In QSD, the tangential manifold is the affine connection field in which energy-momentum 

localization is readily defined. We also discover that the positive mass condition is a natural consequence of 

quantization and that dark energy is a Higgs like field with negative energy density everywhere. Finally, 

energy-momentum localization in quantum gravity shows that a free falling object will experience large 

vacuum fluctuations (uncertainties in location) in strong gravity than in weak gravity and that the amplitudes 

of these oscillations defines the energy of the free falling object. 

Keywords: quantum gravity; energy-momentum localization; dark energy; dark matter; 

gravitational waves; black holes 

 

1. Introduction 

Since the very inception of GR, Einstein was aware of the energy inherent in a gravitational field 

and that this energy must also gravitate [1,2]. Thus in GR gravity must self-gravitate. Self-gravitation 

of the gravitational field is also a problem in perturbative approaches to quantum gravity as it leads 

to infinities in the strong gravity regime [3–5]. Einstein failed to find a symmetric tensor that would 

properly localize the energy-momentum of the gravitational field but instead introduced a non-

covariant pseudo-tensor. Pseudo-tensors are non-tensorial under a coordinate transformation and 

therefore the problem of energy localization remains unresolved. Solving energy-momentum 

localization in gravity will provide answers to the enigmatic sources of dark energy (DE) and dark 

matter (DM) as argued by Nash in Ref.[1]. A quantum gravity (QG) solution would provide deeper 

understanding of these enigmas from a Quantum Field Theory (QFT) perspective. 

The search for a solution to this problem has been an area of active research. A brief survey of 

the literature shows notable attempts using super-energy tensors [6–8], quasi local expressions [9–12] 

and energy momentum complexes of Einstein [13,14], Papapetrou [15], Møller [16], Bergman-

Thompson [17] Landau- Lifshitz [18] and Weinberg[19]. As highlighted by Randinschi et al [20] 

pseudo-tensors have an inherent central problem which is their coordinate dependence. Further, their 

construction involves two parts one for matter and one for the gravitational field and herein lies the 

problem which is embedded in their very mathematical construction. From a physical perspective, 

the equivalence principle makes no distinction between gravitational mass and inertial mass. The 

gravitational mass is associated with the gravitational field and so it is imperative to find an 

expression in which the energy of the gravitational field is expressed in terms of the gravitational 

mass embedded within it and vice versa. That is, we seek an expression in which the stress-

momentum tensor in Einstein’s field equation is expressed in terms of the field momentum. 

The paper is structured as follows: first we introduce a semi-classical derivation of quantum 

gravity and the guiding principles for the quantization process. We then introduce Hamilton’s Ricci 

flow which enables the derivation of a covariant canonical formulation of quantum gravity. This 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1535.v2

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202311.1535.v2
http://creativecommons.org/licenses/by/4.0/


 2 

 

formulation then enables energy-momentum localization in quantum gravity. The final section is a 

discussion of the energy-momentum localization. 

2. A semi classical derivation of quantum gravity. 

The search for quantum gravity begins with adopting an intrinsic geometry in which Einstein’s 

field equations are interpreted as describing curved world lines in flat space-time. By adopting this 

interpretation, one can start embarking on an alternative path to quantum gravity since QFT is a 

theory built on flat space-time and has curved lines that appear as a sum over histories in the 

Feynman interpretation of QFT. Moreover the Ricci curvature tensor in GR is the average of the 

possible paths a test particle can take in a gravitational field. That is, given two vector fields 𝑋 and 𝑍, 𝑅𝑖𝑐(𝑋, 𝑍) = ∑ 〈𝑅(𝑋, 𝑒௜)𝑍, 𝑒௜〉௡௜ = −భమ∆௚೔ೕ This statistical view which is analogous to thermal diffusion 

provides an intuitive glimpse in which Hamilton’s Ricci Flow 𝜕௧𝑔ఓఔ = ∆𝑔ఓఔ [21] plays an important 

role in the formulation of quantum gravity. In the subsequent section, we introduce the Ricci Flow 

and its basic properties which will play a pivotal role in the formulation of a self-consistent model of 

QG. 

2.1. Hamilton’s Ricci Flow 

In 1982 Richard Hamilton introduced the concept of Ricci flow [22]. In a Riemannian manifold (𝑀, 𝑔), the Ricci Flow is partial differential equation that evolves the metric tensor 

𝜕௧𝑔ఓఔ = −2𝑅𝑖𝑐൫𝑔ఓఔ(𝑡)൯ (1) 

where 𝑅𝑖𝑐൫𝑔ఓఔ(𝑡)൯ denotes the Ricci curvature of the metric 𝑔ఓఔ(𝑡). The time evolution of the metric 

under the Ricci flow spreads the curvature evenly through space. It should be noted that the Ricci 

Flow also includes a quadratic reaction term which will be included later in the work. 

In compact Einstein manifolds the Ricci Flow is expressed as follows:  

𝜕௧𝑔ఓఔ = − ௖௥ಹଷ 𝐺ఓఔ (2) 

where 𝐺ఓఔ = 𝑅ఓఔ − ଵଶ 𝑅𝑔ఓఔ  is the Einstein tensor, 𝑐 the speed of light and 𝑟ு  the Hubble radius. 

Compact Einstein manifolds have the form 

𝐺ఓఔ = 𝑘𝑔ఓఔ (3) 

In GR with the cosmological constant 𝛬, the compact Einstein manifold assumes the form 

𝐺ఓఔ = 𝛬𝑔ఓఔ (4) 

Therefore, vacuum solutions of Einstein’s field equations are compact Einstein manifolds with 𝑘 proportional to the cosmological constant. The above equation describes a Ricci soliton of De Sitter 

topology and is divergenceless. That is ∇ఓ𝐺ఓఔ = 𝛬∇ఓ𝑔ఓఔ = ĸ𝜌஽ா∇ఓ𝑔ఓఔ = 0 where ĸ, is the Einstein 

constant and 𝜌஽ா is the dark energy density. Here we have a packet of localized vacuum energy in 

the form of a Ricci soliton in which the energy conservation holds. In other words, the Ricci soliton is 

a self-gravitating gravitational field. 

2.2. Space-time Quantization 

In the Nexus Paradigm of quantum gravity, we begin the quantization process by considering a 

large but finite patch of Minkowski space equipped with a non-degenerate symmetric bilinear form 

on the tangent space. We adopt a local coordinate system to avoid the need of an origin as well as 
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point like events which are the sources of divergences in QFT. The local coordinate system makes the 

Minkowski space a displacement vector space. The inner product is therefore ∆𝑠ଶ = ∆𝑥ఓ∆𝑥ఓ =  ∆𝑥ଶ + ∆𝑦ଶ + ∆𝑧ଶ − 𝑐ଶ∆𝑡ଶ = (𝐴∆𝑥 + 𝐵∆𝑦 + 𝐶∆𝑧 + 𝑖𝑐𝐷∆𝑡)(𝐴∆𝑥 + 𝐵∆𝑦 + 𝐶∆𝑧 + 𝑖𝑐𝐷∆𝑡) (5) 
Upon multiplying the right side we note that to get all the cross terms such as ∆𝑥∆𝑦 to vanish 

we must assume  𝐴𝐵 + 𝐵𝐴 = 0,∙ 
and 𝐴ଶ = 𝐵ଶ =∙∙∙= 1 (6) 

The above conditions generate a Clifford Algebra which implies that the coefficients (𝐴, 𝐵, 𝐶, 𝐷) 

must be matrices, specifically the Dirac gamma matrices. These matrices are square roots of the 

Minkowski metric 𝛾ఓ𝛾ఔ = 𝜂ఓఔ (7) 
Thus the displacement vectors ∆𝑥ఓ = 𝑎𝛾ఓ reside in Clifford space 𝐶𝑙ଵ,ଷ(𝑅)஼ implying an 

intrinsic quantized spin and can be perceived as Dirac 4-vector matrices analogous to the Pauli 

vector matrices. They are also quantized wave packets of space-time and can be expressed as 

Fourier integrals as follows 

 ∆𝑥௡ఓ = ଶ௥ಹೄ௡గ 𝛾ఓ ׬ 𝑠𝑖𝑛𝑐(𝑘𝑥)𝑒௜௞௫𝑑𝑘ஶିஶ    = 𝛾ఓ ׬ 𝑎௡௞𝜑(௡௞)𝑑𝑘ஶିஶ  (8) 

Where 

ଶ௥ಹೄ௡గ = ∑ 𝑎௡௞௞ୀାஶ௞ୀିஶ  (9) 

Here 𝑟ுௌ is the Hubble radius, 𝜑(௡௞) = 𝑠𝑖𝑛𝑐(𝑘𝑥)𝑒௜௞௫ are Bloch energy eigenstate functions in which 

the four wave vectors assume the following quantized values 

  𝑘ఓ = ௡గ௥ಹೄഋ  𝑛 =  ±1, ±2 … 10଺଴
 (10) 

We set a high energy cut off limit at the Planck 4-length since no measurement can be obtained 

below this length without the creation of a black hole and the low energy cut off limit being the 

Hubble 4-radius since no information can be obtained beyond the cosmic horizon. The 10଺଴states 

arise from the ratio of Hubble four radius to the Planck four length.The Bloch functions in each 

eigenstate of space-time generate an infinite Bravais four lattice.The conjugate momentum for the 

displacement vectors is 

∆𝑝௡ఓ = 2𝑛𝑝ଵఓ𝜋 𝛾ఓ න 𝜑(∆𝑥௡)𝑑𝑥ఓஶ
ିஶ  

= 𝛾ఓ ׬ 𝑐௡𝜑(∆𝑥௡)𝑑𝑥ఓஶିஶ  (11) 

Where 𝑝ଵఓ is the four momentum of the ground state  

The wave packet is essentially a particle of four-space and can be envisioned as enveloping a 

spherically symmetric lump of energy from the quantum vacuum. This vacuum energy can be in any 

form of the fields described by the Standard Model of particle physics.  
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We seek to find the relationship between these wave packets of spacetime and the Ricci soltions 

of Eqn.(4). First we determine the norm squared of the four momentum of the 𝑛 -th state wave 

packet . We compute this norm by multiplying the inner product of Eqn. (10) by the square of the 

reduced Planck constant 

(ℏ)ଶ𝑘ఓ𝑘ఓ = ா೙మ௖మ − ଷ(௡௛ுబ)మ௖మ = 0 (12) 

where 𝐻଴ is the Hubble constant. We then express Eqn.(12) in terms of the cosmological constant, 𝛬 

as  

 𝛬௡ = ா೙మ(௛௖)మ = ଷ௞೙మ(ଶగ)మ = 𝑛ଶ𝛬 (13) 

From Eqn. (13), the wave packet can be considered as a compact Einstein manifold or a trivial 

Ricci soliton of positive Ricci curvature expressed in the form  

 𝐺(௡௞)ఓజ = 𝑛ଶ𝛬𝑔(௡,௞)ఓజ = 𝑛ଶĸ𝜌௸𝑔(௡,௞)ఓజ (14) 

Clearly Eqn. (14) depicts a self-gravitating Ricci soliton and as explained in Refs: [23–26] this is 

DM which is a localized packet of vacuum energy 𝑛ଶ𝜌௸ in the 𝑛-th quantum state. Thus DM is a 

Ricci soliton and should exhibit the following soliton characteristics 

1. It is a localized lump of (vacuum) energy 

2. It preserves its form while growing or diminishing in size 

3. It preserves its speed and form after collision with another soliton 

The lowest quantum state from Eqn.(10) occurs when 𝑛 = 1 suggesting that for Eqn.(14) to 

become Ricci flat in this state, a Ricci soliton in the ground state must be removed from the right side 

yielding Einstein’s vacuum field equations in the quantized spacetime as 

 𝐺(௡௞)ఓజ = (𝑛ଶ − 1)𝛬𝑔(௡,௞)ఓజ = (𝑛ଶ − 1)𝑘𝜌௸𝑔(௡,௞)ఓజ (15) 

The above equation depicts a decay mechanism in which a high energy graviton emits a ground 

state graviton to assume a low energy quantum state. The force exerted by the emission process can 

be computed via the Uncertainty Principle. We consider the ground state graviton as having a 

temporal interval ∆𝑡 equal to the Hubble time and a spatial interval ∆𝑥 equal to the Hubble radius 

Thus ∆𝑡∆𝐸 = ∆𝑡∆𝑥. 𝐹 = 𝑐𝐹𝐻଴ଶ ~ ℎ2𝜋 

Therefore 𝐹~ ௛ுబ௖మ ∙ ுబ௖ଶగ = 𝑚ீ ∙ 𝑎 (16) 

This implies that the mass of the ground state graviton is 𝑚ீ = ௛ுబ௖మ  which in 3D space is 𝑚ீ =ଷ௛ுబ௖మ  and the graviton induced acceleration is 𝑎 = ுబ௖ଶగ . Thus a spherical volume of space containing a 

dark energy mass 𝑀௸(𝑟) within a radius 𝑟 will always generate a constant outward acceleration of ீெ೰(௥)௥మ = − ுబ௖ଶగ . This acceleration was first empirically observed by Milgrom from data on galaxy 

rotation curves [27]. As noted by Milgrom, non-Newtonian dynamics begins to manifest at this 

critical acceleration. This critical acceleration therefore marks a transition from the classical to the 

quantum gravity regime. 

If the graviton field is perturbed by the presence of baryonic matter then Eqn. (15) becomes 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2023                   doi:10.20944/preprints202311.1535.v2

https://doi.org/10.20944/preprints202311.1535.v2


 5 

 

 𝐺(௡௞)ఓజ = 𝑘𝑇ఓఔ + (𝑛ଶ − 1)𝛬𝑔(௡௞)ఓజ (17) 

From Ref.[23] the solution to Eqn. (14) is computed as 

𝑑𝑠ଶ = − ൬1 − ቀ ଶ௡మቁ൰ 𝑐ଶ𝑑𝑡ଶ + ൬1 − ቀ ଶ௡మቁ൰ିଵ 𝑑𝑟ଶ + 𝑟ଶ(𝑑𝜃ଶ + 𝑠𝑖𝑛ଶ𝜃𝑑𝜑ଶ) (18) 

The above metric equation describes curved worldlines in flat spacetime and has no singularities 

nor divergencies. At high energies which are characterized by microcosmic scale wavelengths of the 

graviton and high values of 𝑛 , the worldline is rectilinear and the local coordinates are highly 

compact or localized. This aspect also reveals asymptotic freedom in quantum gravity since for high 

values of 𝑛, gravity (world line curvature) vanishes asymptotically. Thus at high energies, graviton-

graviton interactions are non-existent due to the absence of curvature. The worldline begin to deviate 

substantially from a rectilinear trajectory at low energies where the uncertainties in its location are 

large and the associated graviton wavelengths are at macrocosmic scales. In the ground state of 

spacetime ( 𝑛 = ±1) we notice that the metric signature of Eqn. (18) becomes negative and that the 

worldline is rectilinear.  

If we compare the quantized metric of Eqn. (18) with the Schwarzschild metric we notice that 

ଶ௡మ = ଶீெ(௥)௖మ௥  (19) 

This yields a relationship between the quantum state of space-time and the amount of baryonic 

matter embedded within it as follows 

𝑛ଶ = ௖మ௥ீெ(௥) (20) 

Equation (20) shows a family of concentric black hole like spherical surfaces of radii 𝑟௡ =𝑛ଶ𝐺𝑀/𝑐ଶ with corresponding orbital speeds 𝑣௡ = 𝑐/𝑛. The innermost stable circular orbit occurs at 𝑛 = 1 or at half the Schwarzschild radius implying that in the Nexus Paradigm the event horizon is 

half the size predicted in GR. The square term on the left makes it imperative that the mass term on 

the right remains positive regardless of the positive or negative vibrational modes of space-time 

explicit in Eqn.(10). This resonates well with the positive mass theorems [28,29]. However, the 

argument presented here is more direct and is a consequence of the quantization of the gravitational 

field. 

Evidently, the Ricci soliton arising from Eqn.(20) has an anti-De Sitter topology and to 

differentiate it from a Ricci soliton of De Sitter topology we label its quantum state as ñ. We can now 

replace the stress –momentum tensor in Eqn.(17) and express the equation as 

 𝐺(௡௞)ఓజ = ñଶ𝛬𝑔(௡௞)ఓజ + (𝑛ଶ − 1)𝛬𝑔(௡௞)ఓజ 

= (ñଶ + 𝑛ଶ − 1)𝛬𝑔(௡௞)ఓజ (21) 

Here are the complete Einstein’s field equations expressed in purely geometric terms as a 

compact Einstein manifold. For any quantum state 𝑛 in which a Ricci soliton has constant curvature , 

energy is conserved. The right side is a symetric tensor expressing the quantum/energy state of 

spacetime. The left side is a form of a laplacian that averages the paths taken by a test particle in a 

gravitational field of quantum state 𝑛. 

The linearized Eqn.(21) is solved by expressing it as another Ricci soliton in the 𝑁-th quantum 

state yielding the equation 

 𝐺(ே௞)ఓజ = 𝑁ଶ𝛬𝑔(ே௞)ఓజ (22) 

The above equation has a solution 
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𝑑𝑠ଶ = − ቆ1 − ൬ 2𝑁ଶ൰ቇ 𝑐ଶ𝑑𝑡ଶ + ቆ1 − ൬ 2𝑁ଶ൰ቇିଵ 𝑑𝑟ଶ + 𝑟ଶ(𝑑𝜃ଶ + 𝑠𝑖𝑛ଶ𝜃𝑑𝜑ଶ) 

= − ൬1 − ቀଶீெಿ௥௖మ ቁ൰ 𝑐ଶ𝑑𝑡ଶ + ൬1 − ቀଶீெಿ௥௖మ ቁ൰ିଵ 𝑑𝑟ଶ + 𝑟ଶ(𝑑𝜃ଶ + 𝑠𝑖𝑛ଶ𝜃𝑑𝜑ଶ) (23) 

Here 𝑀ே(𝑟) = 𝑀஻(𝑟) + 𝑀஽ெ(𝑟) + 𝑀௸(𝑟) where the terms on right represent the baryonic mass, 

the DM mass and the DE mass enclosed inside a sphere of radius 𝑟. This yields a metric equation of 

the form 

𝑑𝑠ଶ = − ൬1 − 2 ቀீெಳ௥௖మ + ுబ௩௥௖మ − ுబ௖௥ଶగ௖మቁ൰ 𝑐ଶ𝑑𝑡ଶ + ൬1 − 2 ቀீெಳ௥௖మ + ுబ௩௥௖మ − ுబ௖௥ଶగ௖మቁ൰ିଵ 𝑑𝑟ଶ + 𝑟ଶ(𝑑𝜃ଶ +𝑠𝑖𝑛ଶ𝜃𝑑𝜑ଶ) (24) 

where 
ீெವಾ(௥)௥ = 𝑣ଶ = (𝐻଴𝑟)ଶ = 𝐻଴𝑣𝑟 and 

ீெ೰(௥)௥ = − ுబ௖௥ଶగ   

The above metric equation leads to the following equation for gravity 

ௗమ௥ௗ௧మ = ீெಳ௥మ + 𝐻଴𝑣 − ுబ௖ଶగ  (25) 

The dynamics become non-Newtonian when ீெಳ(௥)௥మ = ுబଶగ 𝑐 = ௩೙మ௥  (26) 

Under such conditions 𝑟 = ଶగ௩೙మுబ௖  (27) 

Substituting for 𝑟 in Eqn. (26) yields 𝑣௡ସ = 𝐺𝑀஻(𝑟) ுబଶగ 𝑐 (28) 

This is the Baryonic Tully – Fisher relation. Condition (26) reduces Eqn. (25) to  ௗమ௥ௗ௧మ = ௗ௩೙ௗ௧ = 𝐻଴𝑣௡ (29) 

From which we obtain the following equations of galactic and cosmic evolution 𝑟௡ = ଵுబ 𝑒(ுబ௧)(𝐺𝑀஻(𝑟) ுబଶగ 𝑐)భర = ௩೙ுబ (30) 

𝑣௡ = 𝑒(ுబ௧)(𝐺𝑀஻(𝑟) ுబଶగ 𝑐)భర  = 𝐻଴𝑟௡ (31) 

𝑎௡ = 𝐻଴𝑒(ுబ௧)(𝐺𝑀஻ ுబଶగ 𝑐)భర  = 𝐻଴𝑣௡ (32) 
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3. Quantum Spatio-temporal Dynamics  

We proceed to find the complete covariant canonical quantization of Eqn.(21). To this end we 

express the unit displacement vectors 𝒆 in terms of the Bloch energy functions 𝜑. The unit vectors 

are Dirac 4 vector functions. 

𝒆 = 𝛾ఓ𝒆ఓ𝜑 (33) 

The metric coefficents can then be expressed as  𝑔ఓఔ = 𝛾ఓ𝛾ఔ𝒆ఓ ∙ 𝒆ఔ𝜑𝜑 = 𝜂ఓఔ𝜑𝜑𝐼ସ = 𝜂ఓఔ𝜑𝜑 (34) 
The fluctuating Minkowski metric arises form the uncertainity in the locality of the unit vectors . 

The Ricci flow for the vacuum equations is then expressed in following form 𝜕௧𝑔(௡௞)µఔ = − ଵଷ 𝑐𝑟ுௌ𝐺(௡௞)ఓజ = − ଵଷ 𝑐𝑟ுௌ(𝑛ଶ − 1)𝛬𝑔(௡௞)ఓజ = − ଵଷ 𝑐𝑟ுௌ(𝑛 − 1)(𝑛 + 1)𝛬𝑔(௡௞)ఓజ (35) 

The term on the right suggests a covariant and contravariant derivative operating on the metric 

coefficient such that the Ricci flow when expressed in terms of the Bloch functions becomes −𝑖𝜕௧𝛾ఓ𝜑௡௞𝛾ఔ𝜑௡௞ = − 𝑐𝑟ுௌ3𝜋ଶ 𝑖𝛾ఓ𝛻(௡ିଵ)ఓ𝜑௡௞𝑖𝛾ఔ𝛻(௡ାଵ)ఔ𝜑௡௞ = ௖௥ಹೄଵଶగమ 𝛾ఓ𝛻(௡ିଵ)ఓ𝜑௡௞𝛾ఔ𝛻(௡ାଵ)ఔ𝜑௡௞ (36) 

Where 𝛻(௡ିଵ)ఓ = 𝜕௡ఓ − 𝑖𝑘ଵఓ and 𝛻(௡ାଵ)ఔ = 𝜕(௡ఔ) + 𝑖𝑘ଵఔ 

The derivative operators on the right are entangled, and the coupling coefficient, 
௖௥ಹೄଵଶగమ is an areal 

speed which is the speed of entanglement with a numerical value of approximately 5.2 square parsecs 

per second. 

The Ricci flow in the presence of baryonic matter is expressed as  −𝑖𝜕௧𝛾ఓ𝜑௡௞𝛾ఔ𝜑௡௞ = ௖௥ಹೄଵଶగమ 𝛾ఓ𝛻(௡ିଵ)ఓ𝜑௡௞𝛾ఔ𝛻(௡ାଵ)ఔ𝜑(௡௞) − ñଶ𝐻଴𝛾ఓ𝜑௡௞𝛾ఔ𝜑(௡௞) (37) 

Where  ñଶ = ௖మ௥೙ீெ = ௖మ௩మ and 
ଵଷ 𝑐𝑟ுௌ𝛬 = 𝐻଴ 

Thus baryonic matter behaves as a heat sink and the vacuum state of space time as a heat source. 

Gravitational attraction therefore occurs as a flow of space-time in much the same way as heat flows 

from a heat source to a heat sink. A test particle of baryonic matter flows along with the space-time 

to the gravitating mass. 

Multiplying both sides of Eqn.(37) by the reduced Planck constant ℏ , while expressing 𝜑𝜑 =𝑔 and factoring out the Minkowski metric yields  ℏ𝑖𝜕௧𝑔 = − ℏమ௠ಸ (𝜕௡ఓ − 𝑖𝑘ଵఓ)(𝜕(௡ఔ) + 𝑖𝑘ଵఔ)𝑔 + ñଶℏ𝐻଴𝑔 (39) 

Here  ௖௥ಹೄଷ = ௖௥ಹೄଷ ℏℏ = ௖మℏଷுబℏ = ℏ௠ಸ (40) 
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In the reference frame of the flowing space-time the covariant and contravariant derivatives are 

null yielding 

□𝑔 + 𝑘ଵఓ𝑘ଵఓ𝑔 = ℏଶ□𝑔 + 𝑝ଵఓ𝑝ଵఓ𝑔 = ℏଶ□𝑔 + 𝑚ଶீ 𝑐ଶ𝑔 = 0 (41) 

Eqn.(41) is a 4D Helmholtz equation in which the source of gravitational waves is the 𝑛 = ±1 

quantum state or ground state of space-time The equation also implies the existence of a minimum 

energy/frequency 
௠ಸ௖మℏ  in nature. Gravitational waves therefore are carriers of the ground state 4-

momentum 𝑝ଵఓ𝑝ଵఓ , a result that contradicts that of Cooperstock [30]. Their frequency is 𝑓 =ቆቀ௖మఒమ + 𝐻଴ଶቁቇଵ/ଶ
. Since Eqn.(41) is an expression for Einstein’s vacuum equations 𝐺ఓఔ + 𝛬𝑔ఓఔ = 0 for 

extremely weak metric perturbations, it therefore localizes the source of DE to the ground state 4-

momentum. A similar conclusion was also obtained in Ref.[24].  

The 4D Helmholtz equation on a discretized tangential manifold in which the tangential space 

is discretized into units of 𝑘ଵఓ becomes a random walk equation. This aspect is of importance in 

describing entropy on the black hole like surfaces of AdS Ricci solitons of radii 𝑟ñ = ñଶ𝑟௚. Here 𝑟௚ is 

the gravitational radius. In [31], it is demonstrated that the black hole like surfaces are marginally 

stable or zero energy orbitals and that their expectation values are computed as ⟨𝑟௡⟩ = ௥೒ଶ [3𝑛ଶ −𝑙(𝑙 + 1)]. These expectation values are found to be the stable circular orbitals. For black holes, the 

innermost marginally stable orbit occurs at 𝑛 = 2 𝑙 = 0 since the 𝑛 = 1 orbital is the actual black 

hole surface. That is, at radius 𝑟ଶ = 4𝑟௚ = 2𝑟௦. Here 𝑟௦ is the Schwarzschild radius. The expectation 

value which is the innermost stable circular orbital is therefore ⟨𝑟௡⟩ = 6𝑟௚ = 3𝑟௦. These results are the 

same as those computed using geometric means in GR, the difference being that the geometric 

calculations are not only abstract but also protracted. 

Along the geodesic, the total energy of the gravitational field or the Hamiltonian of Eqn.(39) is 

reduced to 

𝑖ℏ𝜕௧𝑔 = ñଶℏ𝐻଴𝑔 (42) 

The above equation describes quantum harmonic oscillations of the metric with positive energy 

levels 𝐸௡ = ñଶℏ𝐻଴ which from Eqn.(10) we find 𝐸௠௔௫ = 10ଵଶ଴𝐸௠௜௡ . Thus the gravitational field can 

be described as a system of nested harmonic oscillators in the form of Ricci solitons. More 

importantly, Eqn.(42) helps to define the equation of continuity for the Klein-Gordon equation 

expressed in Eqn.(41) as follows: 1𝑐ଶ 𝜕𝜕𝑡 ൬𝑔 𝜕𝑔∗𝜕𝑡 − 𝑔∗ 𝜕𝑔𝜕𝑡 ൰ − ∇(𝑔∇𝑔∗ − 𝑔∗∇𝑔)  =  − ñ2𝐻଴𝑐ଶ 𝑖𝜕𝜕𝑡 (𝑔𝑔∗ − 𝑔∗𝑔) − ∇(𝑔∇𝑔∗ − 𝑔∗∇𝑔) 

=  డడ௧ (𝑔𝑔∗ − 𝑔∗𝑔) − ଷ௜ℏñమ௠ಸ ∇(𝑔∇𝑔∗ − 𝑔∗∇𝑔) = 0 (43) 

The above continuity equation expresses the conservation of information along a geodesic. The 

information contained in the metric coefficients describes all the possible forms of the geodesic in the 

quantum state ñ  which is determined by the gravitating mass 𝑀 . At high energy states the 

divergence from a rectilinear trajectory is low and increases with decreasing quantum state. Likewise, 

the information density increases with increase in quantum state. In other words a test particle is 

highly localized at high quantum states of space-time and becomes delocalized at low quantum 

states. 

The complete Ricci Flow equation includes a reaction term 𝑔ଶ  such that Eqn.(42) can be 

expressed as 
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3𝑖ℏ𝜕௧𝑔 = 3ñଶℏ𝐻଴𝑔 + 𝑖𝑚ீ𝑐ଶ𝑔ଶ (44) 

The Lagrangian of the harmonic system then takes the form ℒ(𝑔) = −ñଶℏ𝐻଴(𝑔ଶ + ቀ ௠ಸ௖మଷñమℏுబቁଶ 𝑔ସ) (45) 

The potential assumes a Mexican hat morphology under the Wick rotation 𝑔 → 𝑖𝑔  

ℒ(𝑔) = −ñଶℏ𝐻଴ ൬−𝑔ଶ + ቀ ௠ಸ௖మଷñమℏுబቁଶ 𝑔ସ൰ (46) 

Assuming a spring constant 𝑘 = 2ñଶℏ𝐻଴  the Lagrangian then expresses the difficulty to 

generate excitations of the field at large ñ , but can however be readily generated at ñ = 1  . 

Gravitational wave energy therefore depends mostly on the amplitude of the wave and not on the 

frequency. The harmonic vibrational modes are a square number series of the fundamental frequency 

and can be represented as a sequence of binary bits. The 𝑛-th harmonic is the sum of the 𝑛 −1 harmonics. 

DE is the ground state of the gravitational field and therefore from Eqn.(46) must behave like 

the Higgs field but with negative potential energy minima everywhere. Given that 𝑚ீ𝑐ଶ = 3ℏ𝐻଴ 

therefore when 𝑛 = 1 the vacuum expectation value for 𝑔  is ±ටଵଶ implying that the measured 

value of the cosmological constant 𝛬ᇱ = 𝛬〈𝑔〉~0.707107𝛬  where 𝛬 = 3 ቀுబమ௖మ ቁ is the cosmological 

constant in a De Sitter vacuum. This yields a theoretical value of 𝛬ᇱ = 1.140903 × 10ିହଶ𝑚ିଶ using 

the Planck 2013 [32] value of the Hubble constant of 𝐻଴ = 2.1927664 ± 0.0136 × 10ିଵ଼𝑠ିଵ . The 

theoretical result agrees very well with the measured value by the Planck Collaboration [33] for Ω௸~0.7. It is worth mentioning that at high energies the second term on the right side of Eqn.(46) 

becomes negligible and the vacuum expectation value at these energies is zero. Thus only the ground 

state vacuum expectation value contributes to the vacuum energy density. This aspect resolves the 

cosmological constant problem. 

The values of 𝑔  can only assume positive values because of the constraint 𝑔 = 𝜑𝜑 . This 

scenario favors a slow roll of 𝑔 down the potential hill and depicts a half Mexican hat potential. 

The Hamiltonian of Eqn.(44) breaks discrete time translation symmetry and generates quantum 

state reduction in a gravitational field as discussed by Wenzel in Ref.[34]. Here the reaction term is 

increasing the density of information by driving the system towards low quantum states and 

therefore confining information to fewer quantum states. The reduction in quantum states applies to 

quantum matter resulting in baryonic matter transforming into a Bose-Einstein condensate (BEC) at 

low gravitational quantum states. This result suggests that neutron star matter could be a BEC. The 

ordered BEC state is the final result of discrete time translation symmetry breaking. Quantum state 

reduction in low gravitational states could shed some light on the black hole information paradox. 

Also, recall that the Higgs mechanism was engineered and not derived from first principles but here 

we show how this mechanism could arise from first principles. 

Concluding remarks and future directions 

Energy-momentum localization in classical GR is a difficult problem, primarily because GR does 

not include an important aspect of space-time which is the quantum vacuum. Thus only a quantum 

theory of gravity that provides a link between space-time, gravity and the quantum vacuum can 

provide a more acceptable description of energy in a gravitational field. In this work, we have 

translated the geometric language of GR into the wave language of QFT following a slightly different 

procedure as in Ref.[25]. This quantization procedure enables a complete description of the 

gravitational field in which DE and DM are a natural aspect of the field equations. The covariant 

derivatives of the quantum theory describe the affine connection field in which the ground state 

graviton is the messenger particle with the smallest possible mass-energy in nature. Gravity appears 

to be a massive Higgs like scalar field that couples to the Minkowski metric causing it to warp or 

bend its rectilinear world lines. The coupled state is the graviton. In synthesis, energy-momentum 

localization in quantum gravity shows that a free falling object will experience large vacuum 
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fluctuations (uncertainties in location) in strong gravity than in weak gravity and that the amplitudes 

of these oscillations defines the energy of the free falling object.  

Future studies will be centered on studying random walk phenomena and entropy on the 

tangential manifold using tools such as the Quantum Monte Carlo Method. 
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