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Abstract: Matter grows and self-assembles to produce complex structures such as virus capsids,

carbon fullerenes, proteins, glasses, etc. Due to its complexity, performing pen-and-paper calculations

to explain and describe such assemblies is cumbersome. Many years ago, Richard Kerner presented a

pen-and-paper path integral approach to understand self-organized matter. Although successfully

addressed many important problems including the yield of fullerene formation, the glass transition

temperature of doped chalcogenide glasses, the fraction of boroxol rings in B2O3 glasses, the first

theoretical explanation for the empirical recipe of window and Pyrex glass and the understanding of

virus capsid self-assembly, still is not the primary choice when tackling similar problems. The reason

lies in the fact that it diverges from mainstream approaches based on the energy landscape paradigm

and non-equilibrium thermodynamics. In this context, a critical review is presented, demonstrating

that the Richard Kerner method is, in fact, a clever way to identify relevant configurations. Its

equations are simplified, common physical sense versions to those found in the energy landscape

kinetic equations. Subsequently, the utilization of equilibrium Boltzmann factors in the transition

Markov chain probabilities is analyzed within the context of local two-level energy landscape models

kinetics. This analysis demonstrates that their use remains valid when the local energy barrier

between reaction coordinate states is small compared to the thermal energy. This finding places the

Richard Kerner model on par with other more sophisticated methods and, hopefully, will promote its

adoption as an initial and useful choice for describing the self-agglomeration of matter.

Keywords: self-assemble; matter agglomeration; glasses; quasicrystals; carbon fullerenes; graphene;

virus structures; nanotechnology; energy landscape; path Integrals

0. Introduction

Matter grows and self assemble to produce complex structures as virus capsids, carbon fullerenes,

proteins, glasses, crystals, quasicrystals, liquid crystals, nanotubes, two dimensional materials, etc.[1–3].

Atomic interactions and external thermodynamical constraints are responsible for such an amazing

behavior [4]. Our understanding of how it happens rest on few general principles. The catch here

is that in real systems the basic principles have limited prediction powers due to the complexity

involved [5–7], especially when doing back of the envelope, pen and paper calculations.

Let’s perform a simple exercise. Take any book on phase transitions or statistical mechanics and

attempt to understand why water becomes ice at T = 0 C and P = 1 atm. Try to predict the crystalline

structure of ice and the most important property that distinguishes water from ice—its flow. Although

the book will help you identify some properties of the phase diagram, the order parameter, analogies

with the Van der Waals equation, and more, from a practical standpoint, you’ll find that obtaining

concrete answers can be challenging. Numerical calculations are often necessary, but even at this

level, the phase diagram of water is still beyond the capabilities of current computers and interaction

models [8].
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Another example is the process of protein folding in which a protein chain transforms into its

native three dimensional form [9,10]. Any failure to do so is associated with many diseases [11]. A

simple statistical mechanics calculation in which all possible conformations are explored leads to

the well known Levinthal’s paradox, i.e., the time to fold would be much longer than the age of the

universe [12]. Most proteins fold in milliseconds. The solution to such paradox is that, folding follows

a sequence in which only a bunch of self assembled, prominent structures have a significant role. This

was revealed by a mathematical analysis of a simple model[13]. Later on, such scenario was confirmed

by using computers and the energy landscape paradigm [14]. Therein the energy E({qj}) is a function

of the configuration denoted by the set of all generalized coordinates {qj}. Thus all accessible states

are bounded by below in energy by the surface generated by E({qj}). As the temperature goes down,

the system can only explore lower basins of the landscape, and sometimes, jump from one basin to the

other. The coordinate which has the lower "mountain pass" between basins is known as the reaction

coordinate. Therefore, the problem of self assembly is somewhat similar to railway localization in a

given topography. When Levinthal’s paradox was solved the verdict was that the energy landscape

has the shape of a funnel [9,13] as was suggested before by the simple model. The precise shape of the

funnel or the most important configurations are in general tasks left for computers [15]. Nowadays,

artificial intelligence and collective computation has been used to determine folding paths [16]. Yet

and in a surprising turn of fate, history balances again toward simple models. Using single-molecule

magnetic tweezers, individual transitions during the folding process were recorded for a single talin

protein [10]. It turns out to be very well described in an uncomplicated two-state manner. Only after

many days the energy landscape shows gradually signatures of its complexity [10]. For the cosmologic

landscape predicted by string theory the verdict is still unknown [17].

Based on all the previous discussions, it appears cumbersome to predict in a straightforward

manner the temperature and yield of fullerene formation, comprehend the impact of doping on

the glass transition temperature, or propose a viable approach to cure viral diseases by inhibiting

the self-assembly of virus capsids. In this context, years ago Richard Kerner proposed a simplified

approach[2,18–21]. It entails incorporating common-sense inputs and integrating them with a path

integral-like approach to identify the most significant clusters, determine the state of their surfaces,

and explore agglomeration paths, all in a manner akin to a saddle-point approximation [2,18–21].

This unique combination yielded impressive results through pen-and-paper calculations. It

led to successful predictions, including the yield of fullerene formation [20,22], the glass transition

temperature, viscosity, and specific heat of doped chalcogenide glasses [19,21,23–25], the fraction

of boroxol rings in B2O3 glasses [26,27], all of which matched experimental data. Remarkably, the

method provided the first theoretical explanation for the empirical recipe of window and Pyrex glass,

a milestone in the understanding of glassy materials [2,28]. Later on, the method was applied to

understand the self-assembly of virus capsids [29].

Considering the method’s potency and intuitiveness, one might wonder why it isn’t the primary

choice when tackling such problems. In this paper, I will provide some reflections on this matter, but

let me foreshadow the answer: self-organization often necessitate non-equilibrium conditions, and at

first glance, it appears that Kerner’s method assumes equilibrium. As I will demonstrate here, this is

not the case. Kerner’s path approach can be translated into energy landscape kinetic equations without

assuming thermodynamical equilibrium. The only condition is to assume contact with a thermal bath

with a well defined temperature.

The method has been described by Richard Kerner himself in an excellent book [2]. Another book

that provides a description of the method was published quite some time ago by R. Aldrovandi. [30].

My intention here is not to repeat the method but instead, make a short summary of how it works and

then its interpretation in terms of the energy landscape paradigm.
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1. Richard Kerner agglomeration model

The method is based in finding the probability of forming certain structural motifs at a certain

time from those of the previous step of agglomeration [2]. The method is almost self-explained by

giving a simple example. Here we will consider the case of a chalcogen element, say Se, doped with a

concentration x of another element with well defined coordination, say As. Chalcogen atoms belong

to the group VI of the periodic table and tend to form large chains, i.e., the coordination of Se atoms

is zSe = 2. The coordination of As is zAs = 3. Experimentally, at the time that RK was working on

this compound, it was known that the glass transition temperature (Tg), viscosity (η) and specific heat

jump (∆cp) were a function of x. Only phenomenological theories were available and it was recognized

as an important problem because Tg changes dramatically with small x. In fact, before RK applied his

method [28], the explanation of the thousand years old phoenicians recipe for doping sand with certain

concentrations of impurities to obtain window glasses remained elusive. It was also clear that network

topology played an important role as the bonding energies between impurities and chalcogens were

not able to explain the experimental data [18,21,23,31]. At that time, other scientists that arrived to the

same conclusion [32–35]. Eventually, this leads to other advancements like a universal topological law

for glass relaxation [36,37] or in the description of liquid glassy melts [38,39] and Boson peak [40–42].

These advances eventually proved crucial in describing, designing, and producing over 400 different

types of glasses, including those used in tablets, smartphones, and other devices [43].

u

u
v

w

w

Figure 1. Agglomeration model of Se1−xAsx glass. A cluster made of Se atoms, with coordination

zSe = 2 and As atoms, with coordination zAs = 3 is indicated by the curve. The unsatisfied bonds at

the rim of the cluster are indicated by dotted edges bonds. The three kinds of surface sites u,v,w are

indicated. Free atoms in the melt are indicated with arrows that indicate the velocity vector.

Assuming that the system is melted at high temperatures, to form a glass the system is cooled

down with a certain protocol, i.e., the temeprature T is a function of time t. Usually, T(t) = T0 − Rt
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where T0 is the initially temperature and R the cooling rate. At a certain time, the atoms will begin to

interact with a nucleation center and form bonds. Each bond has a definite energy, ǫ for Se-Se bonds, η

for Se-As bonds and α for As-As bonds. However, the probability of forming bonds, according to RK

depends on,

1. The number of ways in which a bond can be made.
2. The Bond Energy;
3. The concentration of atomic species
4. The temperature

These are clearly very common sense physical inputs. Now consider a nucleation center. It will

contain unsaturated Se bonds with one free bond, call them sites of type u, and As atoms with two and

one available free bonds, called v and w sites respectively. The different possible terminations of the

rim can be considered as possible states of a vector |p(t)〉 which encodes the probability of states on

the rim. The probabilities after a new step of agglomeration are then obtained as in a Markov process,

i..e, by applying a transition matrix to the rim state vector that contains the probability of making a

new bond, i.e., we have,

|p(t + dt)〉 = M(t)|p(t)〉 (1)

where,

|p(t)〉 = (pu, pv, pw)
T (2)

and M(t) is an stochastic matrix as each column must be normalized to one in order to ensure

probability normalization at each step. The elements of M(t) are called the transition probabilities and

as we will discuss later on, are the source of the debate. I will leave its discussion to a separate section.

RK proposed that such transition probabilities of attaching Se or As into sites of type u,v or w on the

cluster surface were given by taking into account in its simplest way all the four entries of the physical

input list, i.e., the elements of M(t) are,

• u+Se; M11(t) =
zSe(1−x)e−ǫ/T

Q1(t)

• u+As; M21(t) =
zAsxe−η/T

Q1(t)

• v+Se; M31(t) =
zSe(1−x)e−ǫ/T

Q2(t)

• v+As; M22(t) =
2zAsxe−ǫ/T

Q2(t)

• w+Se; M31(t) =
zSe(1−x)e−ǫ/T

Q3(t)

• w+As; M32(t) =
zAsxe−ǫ/T

Q3(t)
.

and all others elements are zero. Here Q1(T), Q2(T), Q3(T) are the normalization factors that

ensure column normalization of M(t). Note that here we used the most powerful version of

the method [24,27] that was made after RK made several works in which the calculations were

made for several systems by hand, i.e., by performing the agglomeration steps, computing

probabilities and sometime discarding some low probability configurations [20,22]. At a certain point,

a self-consistent equation was found that defined the temperature at which the cluster was able to grow.

In terms of Markov chains, the solution is easy. As M(t) is stochastic, it has an eigenvector

with eigenvalue one which will dominate others after successive applications of M(t) onto any given

state vector [44]. Therefore, we compute the eigenvector with eigenvalue one and from it, obtain the

stationary state of the rim. The glass transition temperature can be found for example by looking for a

jump in the specific heat [27]. The method is well documented in many papers. It was able to find

the concentration of boroxol rings, viscosity, specific heat [27] of B2O3 glass and even the modified

empirically observed Gibbs-DiMarzio equation for chalcogenide glasses [24]. In the following section,

we will discuss some controversial issues and their relationship in terms of the energy landscape

kinetics picture and path integrals.
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2. Translation to the energy landscape paradigm and path integrals

Some objections have been raised against the RK and the stochastic matrix method. The main

criticism are,

1. The method is too simple to work.
2. Topology is taken into account in a very simplistic way, just by counting the number of bonding

possibilities.
3. The transition elements of the stochastic matrix use Boltzmann factors, but agglomeration is

usually a non-equilibrium processes.

Point 1 of the previous list is not a problem per se and in fact, according to the Occam’s razor, is a

benefit. Point 2 has huge experimental support, as for example, the boiling temperature of isomers

depend upon such number [45]. Point 3 is the most difficult to answer, but to be fair, it turns out to be

controversial also for the energy landscape paradigm.

Let us now build the connection between the RK method and the energy landscape. Consider

that any thermodynamical system evolves in the energy landscape exactly as given by eq. (1). The

differences are in the details. |p(t)〉 represents a probability vector in which each component gives

the probability of the system to be in a state, say j, with energy Ej and mechanical coordinates

{q1, q2, ..., q3N , Π1, Π2, ..., Π3N}. ql are the generalized space coordinates and Πl the generalized

momenta of N atoms [5,9,14,15]. The interaction is given by a potential V(q1, q2, ..., q3N). When

compared with the entries of the RK method, the situation looks hopeless. However in most physical

cases the states are grouped in basins which evolve around inherent, dominant configurations. As

an example, we already cited the case of proteins which although very complex are described by two

level systems [10]. In molecular simulations, the phase space is partitioned in parcels and the size of

|p(t)〉 is dramatically reduced to a bunch of configurations as in the RK method [46].

Now the connection between RK method, the energy landscape and a path integral approach is

much clear. By writing eq. (1) as,
d

dt
|p(t)〉 = W(t)|p(t)〉 (3)

where M(t) ≡ W(t)dt + 1 and dt is the time interval, the evolution after time t can be obtained from a

recursive application of W(t) and the formal solution of eq. (3) is,

|p(t)〉 = T e
∫ t

t0
W(t)dt

|p(t0)〉 (4)

Notice that a "time order operator" T was introduced. It takes into account the non-conmmutative

nature of the operator W(t) at different times. This path integral is akin to the time evolution of a

quantum mechanical system [47]. If the linear cooling protocol T(t) is used where T(t0) = T0, we can

define the path integral in temperature,

|p(T)〉 = T e
− 1

R

∫ T
T0

W(T)dT
|p(T0)〉 (5)

Notice that here R plays the role of the Planck constant h̄ when compared with the quantum case. Thus

we see that the RK method relies on a clever way of identifying the states that play a prominent role.

Agglomeration centers represent states in which a certain subset of generalized coordinates, denoted as

q1, q2, . . . , q3N , are held fixed or frozen. This intuitive idea has been confirmed by using an automated

approach, based on self-organizing neural nets [48]. The result: "the conformational information from

30,000 samples from the full trajectories was retained in relatively few resultant clusters" [48].

3. Transition probabilities of the agglomeration process

As we observed in the previous section, there are no major issues or problems with the RK

method when compared to the energy landscape model. The primary distinction lies in the manual
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identification of relevant states, a process that is often facilitated by the computational power available

in more complex studies [9,14,15]. As mentioned earlier, the main concern revolves around computing

the elements of the matrix M(t), which has been addressed here in the context of Se − As glasses.

However, it’s important to note that this is not a unique problem specific to the RK method. Markov

state modeling has often been considered more of an art than a science [49].

To understand the Boltzmann factors of the RK method, we consider that locally in a certain

energy range, the energy landscape can be seen as a typical two level energy landscape model [46,50,51].

Figure 2 presents a sketch of such idea. The system is not at equilibrium but is in thermal contact with

a bath at a temperature T(t) that varies with time. The energy landscape kinetic equation Eq. (3) can

be locally written as,

d

dt

(

−p(t)

p(t)

)

=

(

−Γ↑↓(t) Γ↓↑(t)

Γ↑↓(t) −Γ↓↑(t)

)(

1 − p(t)

p(t)

)

(6)

where 1 − p(t) is the low energy, set to E0 = 0 for conviencience, state probability occupation, and

p(t) is the same quantity but for the high energy state with energy E1 ( see Figure 2). These states are

separated by a potential barrier of height V.

E

q

E

Figure 2. A funnel energy landscape E as a function of the reaction coordinate q. The circle indicates

that in a certain energy range, locally the system can be seen as the two level model depicted below the

landscape. In this reduced two-level model, we indicate the barrier height V and the energy E1 of the

high-energy states and E0 = 0 of the local ground state.

The element Γ↑↓(t) is the transition rate from the lower to high energy state, and the inverse

process has rate Γ↓↑(t). According to non-equilibrium thermodynamics and neglecting quantum

tunelling [50,52], Γ↑↓(t) = e
−

E1
T(t) Γ↓↑ and Γ↓↑(t) = Γ0e

− V
T(t) . Γ0 is the oscillation frequency on each

energy well and gives a natural time-scale for the problem τ0 ≡ Γ
−1
0 . Now we see that the Boltzmann

factor appear not due to thermal equilibrium, instead, is a property derived from the contact with a

bath which has a well defined temperature [52]. The price paid is the factor that contains V, which is

the potential barrier separating both states. To see this, we show how for the system in equilibrium, V

disappears from the picture.
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Assuming thermal equilibrium means here a quasistatic cooling, obtained by setting d|p(t)〉/dt ≈

0. As the temperature can be considered fixed, from the eigenvector with eigenvalue one of M(t) we

obtain the equilibrium population pe(T) = pe(T(t)),

pe(T) =
Γ↑↓(T(t))

(Γ↑↓(T(t)) + Γ↓↑)(T(t))
=

e−
E1
T

1 + e−
E1
T

, (7)

which reproduces the result obtained from an equilibrium partition function, without any final

reference to V. Let us now discuss the non-equilibrium cooling. Eq. (6) reduces to one equation,

dp(t)

dt
= f (t, p) (8)

where,

f (t, p) = Γ0e
− V

T(t) [(1 − p(t))e
− E

T(t) − 1]. (9)

The equilibrium population pe(T) is recovered from the roots of f (p, T). For a fixed time, the nature of

the stability around the equilibrium solution is given by the sign of the derivative with respect to p

evaluated at equilibrium,
∂ f (t, p)

∂p

∣

∣

∣

∣

p=pe(t)

= −Γ0e
−

(V+E1)
T(t) < 0 (10)

showing that indeed the solutions are stable and converge to pe(T). By looking at f (t, p), we see that

the term in square brackets is the equilibrium condition while the term Γ0e
− V

T(t) plays the role of an

inverse relaxation time τ. For V << T(t) = T0 − Rt, the relaxation time is constant τ ≈ τ0 = Γ
−1
0

and we can use the local equilibrium Boltzmann factors. In a funnel landscape along the coordinate

reaction direction, the barriers V are expected to be V << T during the agglomeration process. This

is specially true for chalcogenide glasses, as the topology in real space is related with the energy

barriers via constraint, rigidity theory [39,53–56]. So the lack of atomic constraints means that there is a

thermodynamic finite amount of V ≈ 0 channels in configurational space where the present approach

can be used [39,57]. Therefore, the use of Boltzmann factors by the RK theory appears to be well

justified, explaining the striking agreement when compared with experimental data. Once the solid is

formed, the approximation breaks down as the relaxation time can no longer be supposed constant.

This can be seen by writing Eq. (6) as,

δ
dp(x)

dx
=

1

(ln x)2
[−xµ + (1 + xµ)p(x)] (11)

using the definitions,

x = exp(−V/T), µ = E1/V (12)

where δ = RV/Γ0T0 is an adimensional cooling rate. For δ = 0 it is easy to see that the equilibrium

case is recovered. A power series expansion in powers δ reveals a divergence in the first order in a

region of size determined by xb = δ(ln xb)
2 associated with temperatures in which the system is frozen

in the upper state, indicating a glassy, solid, behavior. The evolution can also be written in terms of the

path integral,

|p(x)〉 = T e
− 1

δ

∫ x
x0

W(x)dx
|p(x0)〉 (13)

with initial condition x0 = exp(−V/T0) and W(x) given by,

W(x) =
1

(ln x)2

(

−x1+µ x

x1+µ −x

)

. (14)
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For x >> xb, x ≈ 1 and W(x) becomes a constant matrix. What we observe here is that the departure

from the equilibrium case results in a renormalization of the weights, due to the presence of a barrier

V, with respect to the Boltzmann factor.

4. Conclusions

In this work I made a short review of the Richard Kerner’s path integral approach aims to

understand the self-organized matter agglomeration. It was shown how it can be translated into the

energy landscape kinetics paradigm as the RK method identifies most probable clusters and the state

of its surface. Then a revision was made concerning the transition matrix elements of the associated

stochastic matrix. As it was discussed, the most controversial issue is the use of Boltzmann factors.

However, such issue disappears if the transition barriers along the reaction coordinate of the energy

landscape are not very high when compared with the thermal energy as happens in funnel-like energy

landscapes.
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