
Citation: Ahmad, M.; Zhang,

L.;Chowdhury M. Title. Journal Not

Specified 2023, 1, 0. https://doi.org/

Received:

Revised:

Accepted:

Published:

Copyright: © 2023 by the authors.

Submitted to Journal Not Specified

for possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

FPGA implementation of Complex-valued Neural Network for
Polar-represented image classification
MARUF AHMAD 1, Lei Zhang 1* and Muhammad E. H. Chowdhury 2,

1 Faculty of Engineering and Applied Science, University of Regina, Regina, Canada; mah370@uregina.ca (MA),
Lei.Zhang@uregina.ca (LZ)

2 Department of Electrical Engineering, Qatar University, Doha 2713, Qatar; mchowdhury@qu.edu.qa (MEHC)
* Correspondence: Lei Zhang, Lei.Zhang@uregina.ca;

Abstract: This proposed research explores a novel approach to image classification by deploying a 1

complex-valued neural network (CVNN) on a field-programmable gate array (FPGA), specifically 2

for classifying 2D images transformed into polar form. The aim of this research is to address the 3

limitations of existing neural network models in terms of energy and resource efficiency, by exploring 4

the potential of FPGA-based hardware acceleration in conjunction with advanced neural network 5

architectures like CVNNs. The methodological innovation of this research lies in the Cartesian to 6

polar transformation of 2D images, effectively reducing the input data volume required for neural 7

network processing. Subsequent efforts focused on constructing a CVNN model optimized for FPGA 8

implementation, emphasizing the enhancement of computational efficiency and overall performance. 9

The experimental findings provide empirical evidence supporting the efficacy of the image classi- 10

fication system developed in this study. One of the developed models, CVNN_128, achieves an 11

accuracy of 88.3% with an inference time of just 1.6ms and a power consumption of 4.66mW for the 12

classification of the MNIST test dataset consists of 10,000 frames. While there is a slight concession in 13

accuracy compared to recent FPGA implementations that achieve 94.43%, our model significantly 14

excels in classification speed and power efficiency—surpassing existing models by more than a factor 15

of 100. In conclusion, the paper demonstrates the substantial advantages of FPGA-implementation of 16

CVNNs for image classification tasks, particularly in scenarios where speed, resource, and power 17

consumption are critical. The study’s reproducible results and corresponding code are available on 18

GitHub at the following link: https://github.com/mahmad2005/CVNNonFPGA 19

Keywords: Image Classification; Complex-valued Neural Network; FPGA Implementation; CVNN 20

on FPGA; keyword 3 (List three to ten pertinent keywords specific to the article; yet reasonably 21

common within the subject discipline.) 22

1. Introduction 23

Recently, Generative Artificial Intelligence (GAI) [?] technologies have surged to the 24

forefront, with tools like ChatGPT [?] and AI-powered image and video generators [?] 25

like MidJourney [?] dominating the conversation. At the core of these visual generators 26

lies in the image processing and classification, serving as the backbone of this AI-driven 27

revolution. These breakthroughs have been made possible by the remarkable progress 28

in artificial neural networks applied to image and video processing [?]. However, this 29

progress has come at the cost of increased computational complexity. The amount of layers 30

and neurons in each layer required for state-of-the-art deep models has grown significantly, 31

often involving millions of parameters and billions of operations to achieve human-level 32

accuracy. 33

Simultaneously, the growth of Internet of Things (IoT) and embedded systems has led 34

to an escalating demand for neural network models to perform various tasks. However, the 35

computational demands of deep neural networks present challenges when deploying them 36

on low-power embedded platforms with limited computational and power resources [? ?]. 37

Version November 16, 2023 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://doi.org/10.3390/1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://www.mdpi.com/journal/notspecified

Version November 16, 2023 submitted to Journal Not Specified 2 of 40

To address these challenges and enhance the efficiency of neural network algorithms, 38

particularly in terms of reducing computational costs, energy consumption, and resource 39

usage, multiple strategies have emerged. One approach focuses on reducing the theoretical 40

number of basic operations required in neural network computations through algorithmic 41

innovations. Simultaneously, another direction aims to improve neural network algorithms 42

using hardware accelerators, such as Application-Specific Integrated Circuit (ASIC) and 43

Field-Programmable Gate Array (FPGA) designs [? ?]. 44

In our work, we explore both of these approaches. We present innovative image 45

preprocessing methods tailored for neural network models and introduce a hardware 46

accelerator model designed to reduce computational costs in neural networks and optimize 47

energy and resource utilization in hardware systems. This research endeavors to contribute 48

to the ongoing efforts aimed at making neural network applications more efficient and 49

sustainable, addressing the challenges posed by increasing computational demands. 50

The efficacy of image classification models hinges not only on the sophistication of 51

neural network architectures but also on the quality of the input data and the performance 52

of the processing pipeline. Traditionally, image classification processes have operated in 53

Cartesian coordinates (x, y), where 2D images are serialized for neural network input. How- 54

ever, this conventional approach poses challenges. Applying frequency analysis methods 55

like the Fourier Transform to serialize two-dimensional (2D) images can inadvertently lead 56

to the omission of significant spatial data. This pertains to the positional information of the 57

pixels and the contextual interactions between neighboring pixels, which can be diminished 58

in the serialization transition. 59

Recent research [?] has addressed this limitation by introducing a novel preprocessing 60

pipeline that transforms standard image datasets into a polar coordinate representation. 61

This transformation is inspired by the recognition that polar coordinates, defined by ra- 62

dial distance (r) and angular displacement (θ) from a reference point, provide a more 63

natural representation for circular and radial patterns. This transformation effectively 64

retains the spatial information inherent in the pixel arrangement of the original image. By 65

encoding images in polar coordinates, it aims to exploit these advantages and enhance 66

the classification accuracy of image datasets. However, the research has not yet ventured 67

into the practical application of this method in real-world image classification, despite its 68

initial focus on constructing a Spiking Neural Network (SNN) model. To overcome the 69

existing gap in research, our study focuses on replicating the process of converting 2D 70

images from Cartesian to polar coordinates. Subsequently, we apply this transformation 71

technique to the challenge of classifying the Modified National Institute of Standards and 72

Technology (MNIST) [?] handwritten digit dataset using artificial neural networks. 73

An essential aspect of the preprocessing pipeline involves the application of the 74

Discrete Fourier Transform (DFT) to the polar-transformed images. The DFT is a powerful 75

mathematical tool for decomposing signals into their constituent frequency components, 76

and it has found extensive use in image analysis. In our approach, we leverage the DFT 77

to extract both magnitude and phase information from the polar-represented images. The 78

utilization of complex exponentials within the DFT allows us to capture nuanced variations 79

in pixel values and relationships, thus preserving essential spatial data. 80

What sets our research apart is the integration of Complex-Valued Neural Networks 81

(CVNNs) into the image classification framework. Unlike traditional Real-Valued Neural 82

Networks (RVNNs), CVNNs are tailored to handle complex-valued data, such as the output 83

of the DFT. By treating the DFT outputs as complex numbers, we effectively harness the 84

rich information embedded in both the real and imaginary parts. This nuanced approach 85

promises to provide a more holistic understanding of the input data, potentially leading to 86

improved classification accuracy. 87

While the theoretical advantages of CVNNs in image classification have been explored 88

in the literature, there is a notable gap in the practical implementation of such networks, 89

particularly on resource-constrained platforms. Therefore, our research extends beyond 90

theoretical exploration to encompass practical deployment. We aim to implement the 91

Version November 16, 2023 submitted to Journal Not Specified 3 of 40

trained CVNN model on FPGA, capitalizing on the parallel processing capabilities intrinsic 92

to FPGA architecture. The FPGA implementation offers the potential for real-time classifica- 93

tion with significantly reduced computational resources and power requirement compared 94

to traditional CPU-based sequential computing and GPU-based parallel computing. 95

1.1. Related Workd 96

Within the domain of image classification, conventional neural network models like 97

Feed-Forward Neural Networks [?], CVNNs , Recurrent Neural Networks (RNNs)[?], 98

and Deep Neural Networks [?] have primarily been designed to handle real-valued 99

data. However, the growing prevalence of complex-valued data sources [? ? ?] such 100

as Complex-Valued MRI Images, SAR (Synthetic Aperture Radar) Images, Sonar Images, 101

Optical Coherence Tomography (OCT) Images, as well as sound and wave signals, has 102

spurred the need for specialized neural network models capable of directly processing 103

complex-valued inputs. Consequently, researchers have responded by developing a range 104

of models tailored to meet this specific demand. 105

As the capabilities of neural network models continue to grow in complexity, and 106

the data they process becomes increasingly vast, the computational demands and time 107

required for tasks have surged [?]. Consequently, there is a pressing need to discover 108

solutions that can enhance the speed and throughput of neural networks while minimizing 109

energy consumption. This has led to the emergence of hardware accelerators as a pivotal 110

area of research focus [?]. Accelerators utilizing GPUs, FPGAs, and ASICs have garnered 111

attention for their potential to meet the performance requirements of deep learning tasks. 112

While GPU-based models have shown considerable performance, their applicability in 113

power-sensitive embedded devices remains a challenge, primarily due to their higher 114

energy consumption. In contrast, FPGAs have gained prominence for their remarkable 115

energy efficiency [? ?], flexibility, and shorter development periods compared to ASICs. 116

With robust parallel computing capabilities and reduced energy consumption, FPGAs 117

have risen to prominence in the field of hardware acceleration for deep learning. These 118

reconfigurable devices enable engineers to simulate digital circuits efficiently, paving 119

the way for enhanced neural network computation. Unlike CPUs, which face inherent 120

structural limitations when processing vast amounts of data, FPGAs offer a versatile 121

solution with virtually limitless reconfigurable logic, enabling the creation of tailored 122

accelerators for a multitude of applications. This inherent adaptability, combined with their 123

capacity for parallel processing and pipeline optimization, positions FPGAs as a compelling 124

choice for fast and energy-efficient neural network model implementations [?]. 125

A Recent research from our lab, Zahng et al. [?] presents an energy-efficient Spiking 126

Neural Network (SNN) designed and implemented on FPGA, emphasizing lower power 127

consumption and minimal accuracy loss. The approach utilizes rate coding to map ANN 128

parameters to SNNs efficiently, yielding power efficiency of 8841.7 frames/watt with 129

minimal accuracy degradation. The system sets a new performance standard, achieving an 130

impressive 90.39% accuracy rate, outperforming conventional SNN benchmarks. 131

Several studies [? ? ?] have investigated hardware accelerators for MNIST classifi- 132

cation using neural networks, primarily centered on CNNs. These studies also provide 133

comparisons of speed and resource utilization in contrast to CPUs or GPUs. 134

As of May 2023, we have identified just one instance of a CVNN model implemented 135

on FPGA [?]. The study introduces ComplexNet, a deep convolutional CVNN for channel 136

estimation (CE) in 5G OFDM communication systems. It demonstrates that ComplexNet en- 137

hances CE accuracy and offers a lightweight FPGA implementation, significantly reducing 138

power consumption compared to CPU and GPU platforms. 139

Notably, to best of our knowledge, no prior implementations of complex-valued neural 140

networks on FPGA for MNIST dataset classification have been found in our research. 141

Version November 16, 2023 submitted to Journal Not Specified 4 of 40

Figure 1. Graphical Abstract of this research

1.2. Research Objectives 142

The primary goal of this research is to explore the efficacy of polar coordinate repre- 143

sentation of 2D image data and its impact on Complex-Valued Neural Networks (CVNNs) 144

and Real-Valued Neural Networks (RVNNs) in image classification tasks. A key focus is 145

the comparative analysis of these neural networks in handling complex-valued inputs and 146

the subsequent implementation on Field-Programmable Gate Arrays (FPGAs) to assess 147

resource utilization, power efficiency, and inference speed. The goal is to demonstrate the 148

practical advantages of FPGA acceleration for real-time image classification, thus achieving 149

faster classification while consuming fewer resources and power. 150

By achieving these objectives, this research seeks to contribute to the fields of image 151

processing, neural networks, and hardware acceleration by offering a holistic approach 152

to image classification that incorporates innovative preprocessing techniques, advanced 153

neural network architectures, and efficient hardware deployment strategies. The main 154

objective is to achieve image classification while also minimizing the need, for resources 155

and power which helps tackle issues, in real time image processing applications as shown 156

in Fig.1. 157

Version November 16, 2023 submitted to Journal Not Specified 5 of 40

Figure 2. MNIST digits and its polar transformed and serialized view (A) 0-9 original MNIST hand-
written digits images, (B) Illustration of Polar transformed MNIST 0-9 images, (C) Polar transformed
0-9 MNIST image where N=128, ρ=[0,1], (D) Polar transformed 0-9 MNIST image where N=64, ρ=[0,1],
(E) DFT coefficient (magnitude) - N=128, and (F) DFT coefficient (Phase) - N=128

1.3. Outline 158

The remaining sections of the paper are organized in the way; 159

Section 2: In this section we provide an overview of the cartesian to polar coordinate 160

representation for 2d images.. 161

Section 3 and 4 : In this section we provide an account of how the CVNN’s imple- 162

mented for preprocessed image data. We also compare its performance with real valued 163

neural network counterparts. 164

Section 5 and 6: This section offers an explanation of how the hardware accelerator’s 165

implemented for CVNN using FPGA. We present an analysis of its performance compared 166

to running the model on environmental setups like CPU and GPU. We also compare it 167

against existing research. 168

Section 7: The final section serves as a summary of this research. It outlines discus- 169

sions highlights any limitations encountered during research suggests areas, for work and 170

provides concluding remarks. 171

2. Cartesian to Polar coordinate representation 172

In the present study, the MNIST database of handwritten digit images was employed. 173

Recognized as a benchmark dataset for neural network modeling and computer vision, 174

the MNIST dataset consists of handwritten digits from 0 to 9. This dataset is commonly 175

utilized for the training and assessment of classification algorithms. As depicted in Fig. 176

2(A), the dataset offers representative samples of each numeral from 0 through 9. It has 177

60,000 training and 10,000 testing samples. It is noteworthy that the pixel values within 178

these images span from 0 to 255, indicating the grayscale intensity. 179

In our study, we explored a methodology from a published paper[?] that transitions 180

MNIST images from the traditional cartesian coordinate system (x and y) to the polar 181

Version November 16, 2023 submitted to Journal Not Specified 6 of 40

coordinate system, defined by magnitude (ρ) and angle (θ), using complex number repre- 182

sentation. This technique effectively captures the spatial characteristics of pixel locations 183

and their relationships during serialization. Figure 2 shows the a sample of 0-9 original 184

MNIST digits, polar-coordinate representation, and serialized view after Discrete Fourier 185

Transformation. 186

To convert from Cartesian to polar coordinates, a series of steps is undertaken, includ- 187

ing a Logarithmic transformation, contour highlighting, down-sampling, and the actual 188

Cartesian to Polar coordinate transformation. The resulting polar-represented MNIST 189

digits can be seen in Figure 2(B). Following this, Zero-Padding and Decimation techniques 190

are employed to select a specific number of data points. Figure 2(C) displays the polar- 191

represented images with 128 data points, while Figure 2(D) illustrates the images with 192

64 data points. Finally, the polar-represented images undergo serialization through Dis- 193

crete Fourier Transform (DFT), which captures both the amplitude and phase of specific 194

frequency components within the original sequence, as depicted in Figures 2(E and F). The 195

detailed process for these steps is discussed in Appendix A. 196

3. Complex-valued Neural Network (CVNN) implementation 197

CVNNs represent a specialized class of neural networks that operate on complex 198

numbers, encompassing both real and imaginary components [?]. While conventional 199

neural networks primarily deal with real-valued data, CVNNs have gained prominence 200

in applications where data inherently exhibits both magnitude and phase information, 201

especially those involving signals, waves, or data with phase information. 202

In the context of this study, the relevance of CVNNs stems from their intrinsic capabil- 203

ity to effectively process complex-valued data. The research is focused on the preprocessed 204

MNIST dataset, which undergoes a transformation from Cartesian to polar coordinates, 205

followed by serialization using the discrete Fourier transform (DFT). This transformation 206

equips the dataset with complex numbers, enabling a more compact representation while 207

retaining critical phase information, which is essential for character recognition tasks [?]. 208

3.1. Complex Numbers in Neural Networks 209

A complex number is represented as 210

z = a + bi

where a is the real part, b is the imaginary part, and i is the imaginary unit with the property 211

i2 = −1. 212

When dealing with CVNNs, both the weights and the activations can be complex 213

numbers. This means that when computing the weighted sum in a neuron, both the real 214

and imaginary parts of the weights and inputs need to be considered. 215

3.2. Architectural Choices for CVNN: 216

1. Layers: Just like real-valued neural networks, CVNNs can have input layers, hidden 217

layers, and output layers. The number of layers and the number of neurons in each layer 218

will depend on the specific problem and the complexity of the data. 219

a. Input Layer: The input layer of the CVNN corresponds to the serialized complex- 220

valued representation of MNIST images in this work. For each input data point, the CVNN 221

processes both real and imaginary components as a single complex number, thus requiring 222

an input layer with a size corresponding to the dimensionality of the complex input. 223

b. Hidden Layers: The hidden layers of the CVNN typically consist of multiple 224

complex-valued neurons. The number of hidden layers and the number of neurons in each 225

layer are architectural hyperparameters optimized during the network’s training process. 226

Version November 16, 2023 submitted to Journal Not Specified 7 of 40

2. Neurons: In CVNNs, each neuron can accept complex-valued inputs and produce 227

a complex-valued output. The computation within a neuron involves both the real and 228

imaginary parts of the weights and inputs. The weighted sum for a neuron is given by: 229

z = ∑
j

wjxj + b (1)

where wj and xj are complex numbers, and b is a complex bias term. The weighted sum is 230

then passed through a complex activation function. 231

3. Activation Functions: Activation functions introduce non-linearity into the network, 232

enabling it to model complex relationships. 233

• CReLU: The complex rectified linear unit (CReLU) [?] activation function extends the 234

real-valued ReLU to complex numbers while preserving the phase information. It is 235

defined as: 236

f (z) = max(0, Re(z)) + i max(0, Im(z)) (2)

4. Output Layer: 237

The output layer of the CVNN is responsible for producing predictions. For classifica- 238

tion tasks, the softmax function can be extended to handle complex numbers, ensuring the 239

outputs can be interpreted as probabilities. The complex-valued softmax [?] is given by: 240

σ(z)j =
ezj

∑K
k=1 ezk

(3)

where K is the number of classes. 241

3.3. CVNN Model 242

1. Forward Pass: During the forward pass, input data propagates through the net- 243

work’s layers, undergoing linear transformations and activations. The result of the forward 244

pass is the network’s prediction. The weighted sum of its inputs is calculated by 1. 245

2. Backward Pass: The backward pass is where gradients are computed with respect 246

to the network’s parameters. Gradients are essential for optimizing the model during 247

training. The backpropagation algorithm’s primary goal is to compute the gradient of 248

the loss function with respect to the weights. With complex numbers, this involves the 249

Wirtinger derivatives [?]. 250

Given a loss function L that is a function of a complex output z, the gradient with 251

respect to a complex weight w is: 252

∂L
∂w

=
∂L
∂z

∂z
∂w∗

+
∂L
∂z∗

∂z
∂w

(4)

Here, ∂z
∂w∗ is the conjugate of the input associated with the weight w. 253

3. Update Rule: The update rule specifies how the network’s parameters are ad- 254

justed based on the computed gradients. We use optimization algorithms like Adam and 255

Stochastic Gradient Descent (SGD) to update weights during training. 256

• Gradient Descent [?] 257

Given a function f (w), where w is a vector of parameters, the goal of gradient descent 258

is to find the value of w that minimizes f . 259

The update rule for gradient descent is: 260

wnew = wold − α∇ f (wold) (5)

Where: 261

– α is the learning rate. 262

– ∇ f is the gradient of f with respect to w. 263

Version November 16, 2023 submitted to Journal Not Specified 8 of 40

• Complex Gradient Descent [?] 264

When dealing with functions of complex variables, the gradient descent update rule 265

can be extended to handle complex numbers. Let’s say our function is f (z), where z 266

is a complex variable. The gradient in the complex domain is often referred to as the 267

Wirtinger derivative. 268

The Wirtinger calculus provides us with two partial derivatives: 269

∂

∂z
and

∂

∂z∗
(6)

Where z∗ is the complex conjugate of z. 270

The gradient of f with respect to z and z∗ is given by: 271

∇ f =

(
∂ f
∂z

,
∂ f
∂z∗

)
(7)

The update rule for complex gradient descent can then be written as: 272

znew = zold − α
∂ f
∂z∗

(8)

Note: The choice of using ∂ f
∂z∗ in the update rule is a convention. Depending on the 273

specific problem or context, the other derivative ∂ f
∂z might be used. 274

4. Weight Initialization: The weights in CVNNs are complex. Therefore, both the real 275

and imaginary parts of the weights need to be initialized. 276

5. Complex Batch Normalization [?] 277

Batch normalization is a technique to improve the training of deep neural networks 278

by normalizing the activations of each layer. For CVNNs, this normalization should be 279

applied separately to the real and imaginary parts. Given a complex activation z, the 280

batch-normalized output ẑ is: 281

ẑ =
z− µ√
σ2 + ϵ

(9)

Where: 282

• µ is the mean of the activations (computed separately for real and imaginary parts). 283

• σ2 is the variance (also computed separately). 284

• ϵ is a small constant to prevent division by zero. 285

3.4. Training Procedure and Hyperparameters 286

We have developed a CVNN using the cvnn library, which is open-source and acces- 287

sible on GitHub [https://github.com/NEGU93/cvnn]. Detailed documentation can be 288

found on Read the Docs [https://complex-valued-neural-networks.readthedocs.io/en/ 289

latest/index.html]. This library is distributed under the MIT License, promoting flexibility 290

and ease of use for the community. 291

Our CVNN architecture is designed as a feedforward model, constructed using Ten- 292

sorFlow’s renowned Sequential API. The network structure consists of an initial input 293

layer, followed by two dense layers, carefully crafted to efficiently process and manage 294

complex-valued data. 295

Table 1. The programming language and libraries used for build- ing the model are as follows

Item Description
Language Python
Main Libraries TensorFlow and Keras

Custom Library cvnn, which provides specialized layers and functions for complex-valued
neural networks.

https://github.com/NEGU93/cvnn
https://complex-valued-neural-networks.readthedocs.io/en/latest/index.html
https://complex-valued-neural-networks.readthedocs.io/en/latest/index.html
https://complex-valued-neural-networks.readthedocs.io/en/latest/index.html

Version November 16, 2023 submitted to Journal Not Specified 9 of 40

3.4.1. The parameters for the feedforward model are configured as follows: 296

• The model begins with a ’ComplexInput’ layer with an input shape of 128 or 64. 297

• Subsequently, a "ComplexDense" layer is added with a varying number of neurons, 298

depending on the specific model. The "crelu" [equation 2] activation function is chosen, 299

and the layer is initialized with the ’ComplexGlorotUniform’ initializer. 300

• The final layer in our model is another "ComplexDense" layer with 10 neurons for the 301

classification of ten different MNIST handwritten digits. It utilizes the "cart_softmax" 302

activation function and is initialized with the ’ComplexGlorotUniform’ initializer. 303

3.4.2. The training parameters for the CVNN are configured as follows: 304

• Optimizer: We have used the ’Adam’ optimizer, a well-known optimization algorithm 305

that adapts the learning rate during training. 306

• Loss Function: Our model employs the ’ComplexAverageCrossEntropy’ loss func- 307

tion, which applies Categorical Cross Entropy to both the real and imaginary parts 308

separately and then averages the results. 309

• Metrics: Model performance is evaluated using the ’ComplexCategoricalAccuracy’ 310

metric, which measures how often predictions match one-hot labels. 311

• Training: The model is trained using the ’fit’ method with a batch size of 32 and a 312

specified number of epochs (in our case, 50). Both training data (’train_images’ and 313

’train_labels’) and validation data (’val_images’ and ’val_labels’) are provided to this 314

method. 315

• Learning Rate: Our implementation does not specify any learning rate schedules, so 316

the learning rate defaults to the value set by the ’Adam’ optimizer, which is ’0.001’. 317

3.5. Experimental Setup 318

In this section, we outline the comprehensive experimental setup for our study, con- 319

ducted on Google Colab, utilizing the Ubuntu 22.04.2 LTS environment with abundant 320

system resources. We detail the hardware and software configurations, as well as the 321

dataset and model variations considered. 322

3.5.1. Hardware and Software Environment 323

Our experiments were conducted on Google Colab, specifically version 1.0.0, which 324

offers a robust cloud-based environment for machine learning tasks. The underlying 325

specifications of the environment are as follows: 326

Hardware and Software Environment
Operating System Ubuntu 22.04.2 LTS
System RAM 51.0 GB
CPU Intel(R) Xeon(R) CPU @ 2.00GHz
Python Version 3.10.12
TensorFlow Version TensorFlow 2.13.0

Table 2. Hardware and Software Environment Details

3.5.2. Dataset and Model Variations 327

Our research investigates the impact of varying the number of data points for input 328

within the context of polar-represented serialized MNIST digit datasets. In order to conduct 329

a comprehensive analysis of the performance of our models, we have developed two 330

independent models with varying input configurations: 331

The deliberate manipulation of the quantity of data points enables us to thoroughly 332

assess the effectiveness of our models across various input configurations. 333

Version November 16, 2023 submitted to Journal Not Specified 10 of 40

Table 3. Model Configurations

Model 1: 128 Data Points Model 2: 64 Data Points
Input Layer Neurons: 128 Input Layer Neurons: 64
Hidden Layers Neurons: 10, 15, 20, 25, 30, 50,
100

Hidden Layers Neurons: 10, 15, 20, 25, 30, 50,
100

Output Layer Neurons: 10 Output Layer Neurons: 10
Batch Size = 32 Batch Size = 32
Number of Epoch: 50 Number of Epoch: 50

3.5.3. Dataset Details 334

The dataset utilized in this study consists of serialized MNIST digit pictures rendered 335

in polar coordinates. This representation offers the benefit of reducing the number of data 336

points required for input. The dataset encompasses a range of key statistical measures, 337

which are as follows: 338

Table 4. Dataset Details

Dataset Details
Training Samples 60,000
Testing Samples 10,000
Validation Split 0.02% of the training data was set aside for validation

The dataset at our disposal is highly suitable for evaluating the efficacy of our models, 339

hence facilitating the derivation of significant comparisons and insights. 340

In brief, the experimental configuration for our study is established within a reliable 341

Google Colab environment that offers substantial computational capabilities. In this study, 342

we examine the influence of various input configurations on the performance of a model. 343

Our analysis is based on a dataset consisting of serialized MNIST digit pictures stored in 344

polar form. The purpose of this configuration is to enable thorough examinations and offer 345

significant observations regarding the performance of our models. 346

4. Results and Performance Evaluation 347

This section provides an overview of the experimental results and performance evalu- 348

ation of the CVNNs when trained on the preprocessed MNIST dataset. Our team offers 349

complete insights into our model’s behaviour through the provision of thorough visualiza- 350

tions, encompassing accuracy trends, training curves, and loss plots. 351

In the present study, we utilize two separate models of CVNNs. The initial model, 352

referred to as CVNN_Polar_128, is specifically designed to handle a dataset that is serialized 353

in the Polar representation and consists of 128 datapoints. On the other hand, the second 354

model is designed to accommodate a comparable dataset, albeit with a diminished count 355

of 64 datapoints, and is appropriately denoted as CVNN_Polar_64. 356

4.1. Accuracy Metrics 357

To assess the model’s performance comprehensively, we analyze the accuracy trends 358

for both of the models with the Serialized Polar-represented testing datasets. 359

4.1.1. Graph Interpretation 360

The graph in the Fig. 3 visualizes the testing accuracy of two complex-valued neural 361

network models, CVNN_Polar_128 and CVNN_Polar_64, against the number of neurons in 362

their hidden layers. The horizontal axis delineates the neuron count, ranging from 5 to 100, 363

while the vertical axis marks the achieved testing accuracy, expressed as a percentage. A 364

vertical dotted line at "20 Neurons" highlights the chosen neuron count, offering a visual 365

cue for the selection. Both models demonstrate a general upward trend, suggesting that 366

increasing the neuron count positively impacts the accuracy, up to a certain threshold. 367

Version November 16, 2023 submitted to Journal Not Specified 11 of 40

Figure 3. Testing Accuracy vs. Number of Hidden Layer Neurons

4.1.2. Performance Insights 368

• CVNN_Polar_128 consistently outperforms CVNN_Polar_64 for neuron counts up to 369

20. Beyond this, the performance difference narrows, with CVNN_Polar_64 eventually 370

achieving slightly higher accuracy at 100 neurons. 371

• The most significant rise in accuracy for both models is observed between 5 to 20 372

neurons, after which the gains in accuracy start to plateau. 373

4.1.3. Justification for Selection of 20 Neurons 374

From an optimization standpoint, selecting 20 neurons for the hidden layer of both 375

models appears judicious for several reasons: 376

1. Balanced Complexity and Performance: At 20 neurons, both models achieve a 377

substantial increase in accuracy compared to lower neuron counts, without the added 378

computational overhead of higher counts. This makes the models efficient without 379

compromising on performance. 380

2. Diminishing Returns: While further increments in neuron count do lead to accuracy 381

improvements, the gains become marginal. For instance, the leap from 20 to 100 382

neurons results in an increase of just over 2% for both models, which may not justify 383

the associated computational cost and potential overfitting risks. 384

3. Generalization: A model with fewer neurons is less prone to overfitting. With 20 385

neurons, CVNN_Polar_128 achieves an accuracy of 88.3%, and CVNN_Polar_64 386

attains 87%. These figures highlight efficient model architectures given the neuron 387

count. 388

4. Computational Efficiency: Neural networks with fewer neurons train faster and 389

require less memory. From a practical standpoint, especially in real-time applications 390

or scenarios with limited computational resources, a leaner model is advantageous. 391

In the conducted experiments, two CVNN models were trained on the preprocessed 392

MNIST dataset: CVNN_Polar_128 with 128 datapoints and CVNN_Polar_64 with 64 dat- 393

apoints. Performance evaluations, visualized through accuracy trends, training curves, 394

and loss plots, details provided in Appendix B revealed that CVNN_Polar_128 generally 395

outperformed CVNN_Polar_64, especially with up to 20 neurons in the hidden layer. Both 396

models exhibited an optimal balance of complexity and performance at this neuron count, 397

while further increments showed diminishing returns. Specifically, the CVNN_Polar_128 398

model achieved an overall accuracy of 88% on a 10,000-sample test dataset of the MNIST. 399

Version November 16, 2023 submitted to Journal Not Specified 12 of 40

4.2. Comparison with Real-Valued Neural Networks 400

In this section, we compare the performance of CVNNs with RVNNs in handling 401

complex data, specifically the polar-transformed MNIST digit dataset. We delve into 402

accuracy metrics between these two types of networks, shedding light on the advantages 403

of employing CVNNs for complex data. 404

4.2.1. Objective & Hypothesis 405

The central proposition behind adopting the polar representation was to minimize the 406

datapoint requirements for a neural network. By reducing the number of neurons in the 407

input layer, we anticipated not only a decrease in computational demands but also a faster 408

training and testing process, leading to energy savings. A key hypothesis was that CVNNs, 409

given their ability to process magnitude and phase information directly, would have an 410

edge over traditional RVNNs when presented with complex data. 411

4.2.2. Models Overview: 412

• RVNN_Raw_MNIST: A real-valued neural network that operates directly on the 413

original MNIST dataset without any preprocessing. This model serves as a benchmark, 414

providing a standard to which other models can be compared. 415

• CVNN_Polar_128 & CVNN_Polar_64: Complex-valued neural network models that 416

ingest the serialized polar-transformed MNIST dataset. The numerals ’128’ and ’64’ 417

denote the number of datapoints (or complex numbers) each model processes. 418

• RVNN_Polar_128 & RVNN_Polar_64: Real-valued adaptations designed to handle 419

the polar-transformed dataset. To accommodate the complex nature of the data, these 420

models separate and concatenate the real and imaginary parts, effectively doubling 421

their input neuron requirements. 422

4.2.3. Processing Complex Data in Real-Valued Networks 423

By segregating the real and imaginary components of the serialized polar-transformed 424

MNIST dataset and then concatenating them, the models were furnished with doubled 425

input fields. This ensured that the entirety of the complex data was captured, albeit in a 426

format palatable to real-valued networks. For instance, the RVNN_Polar_128 model, de- 427

signed for 128 complex datapoints, required 256 neurons in its input layer to accommodate 428

both the real and imaginary parts. 429

When comparing the RVNN and CVNN models, both were configured with an identi- 430

cal number of hidden layer neurons, set at 20 for this analysis. 431

Additionally, other parameters, including the number of output layer neurons, batch 432

size, and epochs, were kept uniform across both models for a consistent evaluation. 433

4.2.4. Performance Insights 434

• Benchmark Performance: While the RVNN model operating on the original MNIST 435

dataset set a high standard with an accuracy of 96%, our focus was primarily on the 436

performance gains achieved through polar transformation. 437

• Complex-Valued vs. Real-Valued on Polar Data: As hypothesized, the CVNN_Polar_128 438

model, attaining an accuracy of 88.3%, outperformed its RVNN counterpart, RVNN_Polar_128,439

which secured 87.5%, showed in Fig.4. This 0.8% differential underscores the inherent 440

advantage of CVNNs when processing polar-transformed data. The separation of 441

real and imaginary components in RVNNs, while necessary, may lead to the omission 442

of valuable interplay between these components, a nuance that CVNNs naturally 443

capture. 444

• Data Efficiency through Polar Transformation: The polar-transformed models, even 445

with reduced datapoints, achieved commendable accuracies. The slight performance 446

trade-offs were balanced by the benefits of reduced computational requirements and 447

energy consumption. 448

Version November 16, 2023 submitted to Journal Not Specified 13 of 40

Figure 4. Testing accuracy of various neural network models on the MNIST dataset

4.2.5. Testing accuracy cross various neuron counts 449

The graph in Fig. 5 delineates the testing accuracies of various neural network models 450

based on different neuron counts in the hidden layer. Notably, the "RVNN_Raw_MNIST" 451

model, processing the original dataset, exhibits superior performance, reaching 98% accu- 452

racy with 100 neurons. In contrast, models working with polar-transformed data display 453

a consistent trend: CVNNs initially outperform their RVNNs, especially at lower neuron 454

counts. However, as neuron counts rise, the performance disparity narrows, with RVNNs 455

nearly matching CVNNs, especially at 100 neurons. This underscores the RVNNs’ adapt- 456

ability and the inherent advantage of CVNNs with complex data, while also highlighting 457

the diminishing returns of increasing neuron count 458

4.2.6. Comparison with Contemporary Research 459

Jose Agustin Barrachina, in his implementation of the CVNN model [?], conducted 460

MNIST handwritten digits classification. He transformed the original MNIST dataset 461

from its real-valued version to a complex-valued version using TensorFlow’s tf.cast 462

function and tf.complex64 data type. This conversion resulted in each pixel of the image 463

comprising both real and imaginary components. Following testing, he achieved an 464

impressive 99% accuracy for the MNIST dataset. In our comparison table, we refer to Jose 465

Agustin Barrachina’s model as CVNN_JAB. 466

Table 5. Accuracy Comparison with contemporary research

Model Accuracy
CVNN_Polar_128 88.3%
CVNN_JAB 99%

While his model achieved higher accuracy, it came at the cost of increased computa- 467

tional complexity. This was due to the inclusion of all 784 data points for each MNIST image. 468

In contrast, our model only utilized 128 data points, resulting in reduced computational 469

demands. This makes it a more efficient choice for hardware accelerator implementation in 470

resource and energy-constrained environments. 471

According to the PapersWithCode.com website, as of today, the highest accuracy 472

achieved in MNIST classification is 99.83% by Byerly A et al. [?]. 473

Version November 16, 2023 submitted to Journal Not Specified 14 of 40

Figure 5. Testing accuracy of different neural network models across various neuron counts in the
hidden layer.

4.3. Conclusion 474

The research affirms the efficacy of polar-transformed datasets in optimizing neural 475

network performance, both in terms of accuracy and computational efficiency. Notably, 476

CVNNs, with their intrinsic capability to handle complex data, demonstrated superiority 477

over RVNNs in this context. These findings pave the way for further exploration into 478

the synergies between data transformation techniques and neural network architectures, 479

potentially leading to even more efficient and eco-friendly machine learning models. 480

5. FPGA Implementation of CVNNs 481

In this section, we transition from the theoretical aspects discussed in the previous 482

sections, which focused on the polar representation of 2D images, serialization techniques, 483

and their application to neural networks (CVNN and RVNN) for MNIST handwritten 484

digit classification. Here, our focus shifts to the hardware implementation of these neural 485

network’s inference models, with a specific emphasis on CVNNs, using FPGA. 486

FPGAs are chosen as the hardware platform for several compelling reasons. These 487

include their inherent capabilities for massive parallelism, reconfigurability, and power 488

efficiency. In contrast to CPU-based systems, which operate sequentially, and GPUs, which 489

lack reconfigurability, FPGAs offer a unique combination of performance, adaptability, and 490

energy efficiency, making them an ideal choice for accelerating complex neural network 491

computations. 492

The evolution of digital systems design has been marked by several significant mile- 493

stones, with the inception of FPGA being a prominent one. Unlike ASIC, which are 494

permanently dedicated to a specific function after manufacturing, FPGAs are distinct due 495

to their reprogrammable nature, allowing them to be tailored for multiple applications 496

post-production [?]. This feature offers a level of versatility that’s unparalleled in the realm 497

of digital design. 498

5.1. FPGA’s Role in Neural Network Acceleration 499

The renaissance of neural networks and deep learning, driven by the surge in data 500

and computational power, has ignited the need for specialized hardware accelerators. 501

FPGAs, with their ability to parallelize operations, are emerging as a frontrunner in this 502

domain [?]. Neural networks often involve matrix multiplications, convolutions, and other 503

operations that can be parallelized. The inherent architecture of FPGAs, with its myriad of 504

reconfigurable logic blocks, can be optimized to handle such operations simultaneously, 505

offering a significant speedup compared to sequential processors. Moreover, the dynamism 506

of the field of artificial intelligence means that algorithms and models are continually 507

Version November 16, 2023 submitted to Journal Not Specified 15 of 40

Figure 6. Typical Inference Structure of the CVNNs.

evolving. FPGAs, with their reprogrammable nature, ensure that as newer models or 508

techniques emerge, the hardware can be reconfigured to adapt, ensuring longevity and 509

relevance in deployment. 510

5.2. Complex-Valued Neural Network Inference Model 511

In the previous sections, we delved into the intricacies of forward and backward 512

propagation within the CVNNs. As we transition into this section, our primary focus is on 513

offering a succinct recapitulation of forward propagation. This is imperative for a holistic 514

understanding of how we have implemented the CVNN inference model on FPGA. 515

Our implementation of the CVNN inference model leverages the weights and biases 516

from a pre-trained model. For a visual representation of our CVNN model’s architecture, 517

one can refer to figure 6. It’s pivotal to note that all the parameters, including input X, 518

weight W, bias b and output Y, are complex-valued in this architecture. 519

Complex numbers in our context are typically depicted as a + bi, where a signifies the 520

real part, b stands for the imaginary part, and i is the imaginary unit. 521

To elucidate further, let’s dissect the model’s operations: 522

1. Weighted Sum in Hidden Layer: The first step in our forward propagation is the com- 523

putation of the weighted sum for each neuron in the hidden layer. This is achieved by 524

linearly combining the complex-valued inputs with their respective weights, adding 525

the complex-valued biases subsequently. For instance, the weighted sum Z1 for the 526

first neuron in the hidden layer can be represented as: 527

Z1 = X1 ×Wh1 + X2 ×Wh2 + . . . + Xn ×Whn + bh1 (10)

Where, X refers to complex inputs, Wh refers to the complex weights in the hidden 528

layer, and bh denotes the complex biases in the hidden layer. 529

2. Activation in Hidden Layer: Following the computation of the weighted sum, we 530

introduce non-linearity through the Complex ReLU (CReLU) activation function. This 531

function, applied to each neuron’s weighted sum, separates the real and imaginary 532

components. It then rectifies negative values from both parts. For the first neuron, the 533

activation is: 534

H1 = CReLU(Z1) = max(0, Real(Z1)) + i×max(0, Imag(Z1)) (11)

Where, H is the output of a hidden layer neuron after activation. 535

3. Weighted Sum in Output Layer: The outputs from the hidden layer are then used 536

to compute the weighted sum for each neuron in the output layer. This involves 537

Version November 16, 2023 submitted to Journal Not Specified 16 of 40

multiplying each output from the hidden layer by the respective weights of the output 538

neurons and adding the corresponding biases. 539

O1 = H1 ×Wo1 + H2 ×Wo2 + . . . + Hn ×Won + bo1 (12)

Where, Wo are the weights in the output layer, bo are the biases in the output layer, 540

and O is the weighted-sum of a neuron in the output layer. 541

4. Activation in Output Layer: Finally, the CReLU activation function is once again 542

applied to the weighted sums from the output layer to yield the final complex-valued 543

outputs of the model. Using the first output neuron as an example: 544

Y1 = CReLU(O1) = max(0, Real(O1)) + i×max(0, Imag(O1)) (13)

In the original CVNN model, the softmax activation function was employed for the 545

output layer, providing a probabilistic interpretation of the model’s predictions. However, 546

when transitioning to FPGA implementation, it’s imperative to strike a balance between 547

computational accuracy and hardware efficiency. Given this consideration, we opted 548

for the CReLU activation function in our project. This choice not only streamlines the 549

FPGA implementation but also ensures a robust performance, while simplifying the overall 550

computational complexity. 551

In our pursuit to draw a comprehensive comparison with the CVNN model, we im- 552

plemented a RVNN inference model on FPGA. The underpinnings of this implementation 553

draw many parallels to the CVNN model. 554

For the RVNN, we took a strategic approach by separating the complex-valued inputs 555

into their real and imaginary components. These separated components were then treated 556

as independent real-valued inputs. Consistent with the RVNN paradigm, the weights, 557

biases, and activation functions were all real-valued. Specifically, the ReLU activation 558

function was employed for the RVNN, described by the equation: 559

Hn = ReLU(Zn) = max(0, Zn) (14)

This function effectively nullifies negative values, allowing only positive activations to 560

propagate through the network. By juxtaposing the CVNN and RVNN models, we aim to 561

provide a holistic understanding of their respective performances and intricacies on FPGA 562

platforms. 563

5.3. FPGA Implementation of Inference Model 564

In our previous discussions, we thoroughly examined the mathematical foundations 565

inherent to the inference models of neural networks that were central to our research. 566

Transitioning from theory to application, the linchpin of the FPGA implementation of these 567

models is the precise crafting of VHSIC Hardware Description Language (VHDL) modules 568

that correspond to each step and mathematical equation. At the heart of the architectures of 569

both the CVNNs and RVNNs lie several core modules: adders, multipliers, and the specific 570

activation functions - Complex Linear Rectified Unit (CReLU) and the traditional Rectified 571

Linear Unit (ReLU). 572

For this FPGA-centric endeavor, we predominantly utilized Vivado v2021.1 64-bit for 573

design and synthesis, combined with VHDL for hardware description and programming. 574

The accompanying Fig. 7(B) offers a schematic representation of a singular neuron’s 575

FPGA realization. 576

5.3.1. Adder 577

Real-valued adder: 578

The adder module for real numbers in a digital FPGA environment is implemented 579

using fixed-point arithmetic. In fixed-point representation, every number is represented as 580

Version November 16, 2023 submitted to Journal Not Specified 17 of 40

Figure 7. (A) Data flow diagram of the proposed Neural Network models on FPGA and (B) Primary
schematic diagram of a single neuron implemented on FPGA

an integer and a fractional part. Mathematically, given two fixed-point numbers A and B, 581

the summation S is given by: 582

S = A + B (15)

Complex-valued adder: Complex numbers consist of real and imaginary components. 583

Thus, for two complex numbers C1 = a + bi and C2 = x + yi, the resultant R after addition 584

is: 585

R = (a + x) + (b + y)i (16)

5.3.2. Multiplier 586

Real-valued multiplier: 587

In the realm of fixed-point arithmetic, when two numbers P and Q are multiplied, the 588

result M is: 589

M = P×Q (17)

Complex-valued multiplier: 590

The multiplication of two complex numbers C1 = a + bi and C2 = x + yi results in: 591

R = (a× x− b× y) + (a× y + b× x)i (18)

5.3.3. Activation Functions 592

Activation functions introduce non-linearity into neural networks, allowing them to 593

capture intricate patterns and make complex decisions. 594

Rectified Linear Unit (ReLU): 595

Figure 8. Schematic diagram of (A) complex-valued multiplier and (B) CReLU Activation in FPGA

Version November 16, 2023 submitted to Journal Not Specified 18 of 40

One of the most widely adopted activation functions in our research, ReLU is mathe- 596

matically defined as: 597

f (x) = max(0, x) (19)

Where x is the input to the neuron. 598

For FPGA implementation using fixed-point arithmetic, we employed a simple com- 599

parison of the input with zero, choosing to either return the input or zero based on the 600

outcome of this comparison. 601

Complex Linear Rectified Unit (CReLU): 602

In our exploration of complex-valued neural networks, we utilized CReLU, which 603

operates on complex numbers by applying the ReLU function independently to both the 604

real and imaginary parts of the input. Given a complex number C = a + bi, the output after 605

CReLU, R, is: 606

R = max(0, a) + max(0, b)i (20)

Our VHDL implementation is analogous to the one for ReLU but distinctly applies 607

the function to both real and imaginary components. 608

Complex-valued multiplier and Complex Rectified Linear Unit activation function 609

schematic diagrams implemented on Vivado are shown in Fig. 8 610

5.4. Fixed-Point Quantization for Neural Network Inference on FPGA 611

Fixed-point representation is a widely-used approach for representing real numbers in 612

digital systems, especially in FPGA implementations. Unlike floating-point representation, 613

which dynamically adjusts precision and range, fixed-point representation assigns a set 614

number of bits to both the integer and fractional parts of a number. This methodology 615

presents a harmonious balance between precision, range, and computational demand, 616

rendering it particularly suitable for high-speed and resource-limited FPGA designs. 617

In the realm of neural network inference, the choice of fixed-point representation 618

becomes pivotal. It determines not only the network’s accuracy performance but also 619

the FPGA implementation’s efficiency. Both range (the span of representable numbers) 620

and precision (the smallest distinguishable difference between numbers) emerge as vital 621

considerations. 622

For our specific neural network inference model, the data’s dynamic range lies between 623

-120 and 120. It is imperative that our chosen numerical representation can accommodate 624

this range. Additionally, to preserve model accuracy, the system must achieve a precision 625

capable of differentiating values with a minimum difference of 0.01. 626

Given these prerequisites, a 16-bit fixed-point representation was our chosen config- 627

uration. This selection permitted an even bit distribution, allotting 8 bits to the integer 628

segment and 8 bits to the fractional segment. The rationale behind this is twofold: 629

1. Integer Part: Employing an 8-bit integer representation (with one bit reserved for sign) 630

enables the system to represent values spanning from -128 to 127. This adequately 631

covers our anticipated data range from -120 to 120, ensuring overflow is a non-issue. 632

2. Fractional Part: An 8-bit fractional part translates to a resolution of 2−8, approxi- 633

mately equal to 0.0039. This precision surpasses our stipulated minimum of 0.01, 634

guaranteeing that our system can depict values with the necessary precision and, in 635

turn, safeguarding our model’s inferential accuracy. 636

This fixed-point configuration aligns seamlessly with the distinct requirements of our 637

neural networks (CVNN and RVNN alike). Moreover, it taps into the inherent strengths of 638

FPGAs, such as computational parallelism and efficient arithmetic operations. Through 639

this astute choice of representation, we ensure the fidelity of our implemented neural 640

network models while reaping the benefits of the speed and resource efficiencies native to 641

FPGA-based designs. 642

Version November 16, 2023 submitted to Journal Not Specified 19 of 40

5.5. FPGA Structure for Our Neural Network Systems 643

In our research, we generated two datasets from the serialized polar-representations 644

of MNIST images. The first set, Polar-transformed MNIST with 64 input fields, is referred 645

to as PT_MNIST_64. The second, with 128 input fields, is termed PT_MNIST_128. Given our 646

target platform, an FPGA development board, there are inherent limitations with respect to 647

the number of I/O pins available. To mitigate this constraint, we designed the system to 648

process 8 input fields per clock cycle. As a result, the system necessitates 8 and 16 clock 649

cycles to fully ingest all the input fields for PT_MNIST_64 and PT_MNIST_128, respectively. 650

Each dataset comprises complex-valued data, entailing both real and imaginary compo- 651

nents. Consequently, the required I/O pin count doubles. Adopting a 16-bit representation, 652

the input field pin requirement is calculated as 8× 16× 2 = 256. 653

The flow of data within the system is depicted in Fig. 7(A). In the initial clock cycle, the 654

system multiplies the first 8 input values with their corresponding hidden layer weights. 655

This weighted sum is subsequently directed to a buffer with adding weighted sum of 656

the current batch (CB) to the current register (Reg) . This buffer retains the summation, 657

waiting until it assembles the complete set of input fields from a given sample. For instance, 658

in the case of the PT_MNIST_64 dataset, the buffer awaits the culmination of 8 cycles to 659

accumulate the entirety of input fields. At the conclusion of the 8th cycle, the weighted 660

sums are consolidated to the last register (for example in Fig.7(A) Reg7) and relayed 661

through the Activation Function — CReLU for CVNN and ReLU for RVNN. Following 662

this, the processed data traverses a multiplier corresponding to the output layer where it’s 663

multiplied with the layer’s weights. It then undergoes another round of accumulation and 664

subsequently, another Activation Function. The data flow intricacies for the CVNN FPGA 665

implementation are elucidated in Fig. 7(A). 666

The complete source code for our FPGA implementations of the Complex-Valued 667

Neural Networks (CVNNs) and Real-Valued Neural Networks (RVNNs) is provided in the 668

Appendix. 669

6. Result and Evaluation of FPGA Implementation 670

In this study, for the FPGA implementation of our neural network models, we em- 671

ployed the Virtex-7 VC707 Evaluation Platform. This platform features the xc7vx485tffg1761- 672

2 FPGA chip, a creation of AMD Xilinx. The detailed specifications of the chip are presented 673

as follows: 674

Table 6. Configuration of the xc7vx485tffg1761-2 FPGA chip

Parameter Value
Device xc7vx485tffg1761-2
Manufacturer AMD Xilinx
Logic Elements 485,760
DSP Units 2,800
I/O Pins 700
Supply Voltage 0.97V - 1.03V

For evaluation and reporting purposes, we did not utilize the actual FPGA hardware. 675

Instead, we relied on the behavioral simulation and post-implementation reports provided 676

by Xilinx Vivado. 677

Fig. 9 presents the behavioral simulation report for CVNN_64, which refers to the 678

Complex-valued Neural Network model implemented on FPGA catering to 64 data points 679

of the polar-transformed MNIST dataset. Within the simulation window, the object termed 680

Predicted_class displays the classification outcome for the complex-valued neural net- 681

work model tailored for the FPGA, targeting the polar-transformed MNIST dataset with 64 682

data points. Comparable classification outcomes emerged for the other model variations. 683

Version November 16, 2023 submitted to Journal Not Specified 20 of 40

Figure 9. Behavioural Simulation result of CVNN_64

6.1. Maximum Operating Frequency (Fmax) 684

The maximum operating frequency, denoted as Fmax, is a crucial metric derived from 685

the Worst Negative Slack (WNS) present in Vivado’s “Timing Summary Report” post- 686

synthesis and implementation. 687

In digital design, slack quantifies the deviation between the expected and actual arrival 688

times of signals, as defined by the design’s timing constraints. A negative slack is indicative 689

of a timing violation, suggesting that signals are not reaching their intended destinations 690

within the desired time frame. 691

Of all the timing violations, the WNS represents the most pronounced delay across the 692

entire design. A positive WNS implies that the design adheres to all its timing constraints. 693

Conversely, a negative WNS is indicative of a breach in timing specifications, necessitating 694

design modifications. 695

The effective clock period, adjusted based on the WNS, is computed as: 696

Adjusted Clock Period = T −WNS

Where T is the intended clock period. 697

Consequently, Fmax is derived using: 698

Fmax =
1

Adjusted Clock Period
=

1
T −WNS

For illustrative purposes, if the reported WNS is -0.5ns and the target clock period T 699

is 5ns, the effective clock period adjusts to 5.5ns. This results in a Fmax of approximately 700

181.82MHz, computed as 1
5.5ns . 701

It’s worth noting that alternative approaches exist to attain the desired target frequency 702

beyond simply recalculating Fmax based on WNS. However, in the scope of this research, our 703

emphasis was on determining Fmax using the WNS. Exploring these alternative strategies 704

might be a point of interest for future work to refine and optimize the design. 705

During the course of our research, while the above formula provided a theoretical 706

maximum frequency, we opted for a slightly reduced frequency to instate a safety margin. 707

This precaution ensures the design remains resilient against potential timing constraint 708

violations. 709

Following the generation of the post-implementation Timing reports for all models in 710

Vivado, we tabulated the results, as shown in Table 7. The table summarizes the maximum 711

clock period, the derived maximum operating frequency, and the Worst Negative Slack 712

(WNS) for each of the models. 713

Version November 16, 2023 submitted to Journal Not Specified 21 of 40

Table 7. Post-implementation Timing results for different neural network models on Vivado

Model Max. Clock Period (ns) Max. Freq. (MHz) WNS (ns)
RVNN_64 8 125 0.155
CVNN_64 10.5 95.238 0.096
RVNN_128 8 125 159
CVNN_128 10 100 0.182
RVNN_Raw_MNIST 8 125 0.166

6.2. Benchmarking FPGA Inference Models Against CPU and GPU Platforms 714

To gauge the performance of our FPGA-based inference models, we benchmarked 715

them against CPU and GPU-based models. For this comparison, we utilized the Google 716

Colab platform, executing inference models implemented in the Python programming 717

language. Below are the specifications of the computational environment we used: 718

Table 8. Computational environment specifications on Google Colab

Attribute Specification
Platform Google Colab
Operating System Ubuntu 22.04.2 LTS
CPU Intel(R) Xeon(R) CPU @ 2.00GHz
GPU NVIDIA® Tesla® P4
Python Version 3.10.12

The ensuing table, Table 9, delineates the inference times, in seconds, for various 719

neural network models. Each model inferred a total of 10,000 MNIST test datasets on both 720

CPU and GPU environments in Google Colab. Five trials were conducted for each model 721

and hardware platform, and the average results are presented in the table. Further details 722

are provided in the Appendix. 723

6.2.1. Inference time comparison 724

Table 9. Inference times for neural network models on Google Colab’s CPU and GPU environments

Model Inference Time (CPU, s) Inference Time (GPU, s)
RVNN_64 0.43 0.3
CVNN_64 0.28 0.23
RVNN_128 0.44 0.36
CVNN_128 0.31 0.26
RVNN_Raw_MNIST 0.53 0.35

Table 7 provides insights into the maximum operating frequency for each implemen- 725

tation. To comprehensively understand the performance of our FPGA-based models, we 726

derive the total inference time required to classify the 10,000 MNIST test dataset. The 727

formula to compute this is delineated below: 728

Infer_time = T × N × S (21)

Where: 729

• T: Duration of each clock cycle in nanosecond. 730

• N: Number of clock cycles needed to classify each sample. 731

• S: Total number of samples, which is 10,000 in this case. 732

For our dataset configurations: 733

• CVNN_64 and RVNN_64 each require 8 clock cycles to classify a sample. 734

• CVNN_128 and RVNN_128 each necessitate 16 clock cycles to complete the classifica- 735

tion of a sample. 736

Version November 16, 2023 submitted to Journal Not Specified 22 of 40

Figure 10. Speed Across Different Hardware Platforms (Log Scale)

• RVNN_Raw_MNIST requires 49 clock cycles to classify a sample 737

Following our analysis, the inferred times for each model are summarized in Table 10: 738

Table 10. Inference times for neural network models on FPGA

Model T×N×S Inference Time (ns)
RVNN_64 8×8×10,000 640,000
CVNN_64 10.5×8×10,000 840,000
RVNN_128 8×16×10,000 1,280,000
CVNN_128 10×16×10,000 1,600,000
RVNN_Raw_MNIST 8×49×10,000 3,920,000

6.2.2. Inference Time Comparison across CPU, GPU, and FPGA 739

Table 11. Inference Times in milliseconds for Different Models on Various Hardware Platforms

Models
Inference
Time (CPU,
ms)

Inference
Time (GPU,
ms)

Inference
Time (FPGA,
ms)

Inference
Time (CPU_2,
ms)

RVNN_64 430 300 0.64 180
CVNN_64 280 230 0.84 210
RVNN_128 440 360 1.28 210
CVNN_128 310 260 1.6 230
RVNN_Raw_MNIST 530 350 3.92 240

Table 11 shows the comparison of inference times in milliseconds for different models 740

on varisous hardware platforms. To convey the concept of “how fast” a model is, we use 741

the reciprocal of the inference time. In other words, we computed the “speed” as: 742

Speed =
1

Inference Time
(22)

This gives us a measure where larger values indicate faster performance. Note that 743

for this metric, a higher value is better, which is the opposite of the inference time where a 744

lower value is better. As shown in Equation 22, the speed is the inverse of the inference 745

time. 746

Version November 16, 2023 submitted to Journal Not Specified 23 of 40

In our comparative analysis of neural network model speeds across CPU, GPU, and 747

FPGA platforms, several distinct patterns emerged illustrated in the Fig. 10. Most promi- 748

nently, the FPGA demonstrated superior speeds when compared to both the CPU and 749

GPU, underscoring its viability for tasks requiring swift computation. The GPU, with its 750

parallel processing capabilities, showcased higher speeds relative to the CPU, signifying its 751

prowess in neural network computations. However, it was the remarkable speed of the 752

FPGA, especially for specific neural network architectures, that was most noticeable. 753

Diving deeper into the nuances of the model variants, the CVNN_64 and RVNN_64 754

models displayed considerably greater speeds compared to their CVNN_128 and RVNN_128 755

counterparts. This observation is intuitive: models with a reduced complexity and fewer 756

parameters naturally lead to faster computation times. While we did not implement the 757

RVNN_Raw_MNIST model on FPGA, when juxtaposed with the results from the FPGA models, 758

it becomes evident that FPGAs substantially outperform the models using the original 759

MNIST dataset. 760

This further suggests that the throughput for our CVNNs and RVNNs implemented 761

on FPGA systems is superior to that of similar networks running on CPU or GPU-based 762

systems. 763

In summation, our analysis emphasizes the critical role of hardware selection in 764

maximizing neural network efficiency. Within this context, FPGAs emerge as an optimal 765

choice, particularly when compared to models trained on traditional datasets. 766

6.2.3. Power Consumption Comparison 767

Understanding the power consumption of neural network models is crucial for their 768

deployment in real-world scenarios, especially in power-sensitive applications. Our neural 769

network designs, when implemented on FPGA, yielded power consumption results as 770

detailed in Table 2.2. 771

Table 12. Power Consumption for Neural Network Models on FPGA

Model Thermal Power Static Power Power Consumption
(Watt per second) (Watt per second) (Watt per 10,000 frame)

RVNN_64 1.585 0.252 0.001014
CVNN_64 2.585 0.26 0.022167
RVNN_128 1.694 0.253 0.002168
CVNN_128 2.917 0.263 0.004656
RVNN_Raw_MNIST 2.53 0.274 0.009917

Interpretation of Power Metrics: Thermal power, often termed as the total on-chip 772

power, is a summation of dynamic and static power. Dynamic power refers to the average 773

power consumption during logic utilization and switching activities. Conversely, static 774

power characterizes the scenario where the device remains active but abstains from any 775

form of utilization or switching. 776

From Table 2.2, it is evident that RVNN models are more power-efficient compared 777

to CVNN models. Moreover, models based on 64 input entries exhibit lower power 778

consumption than their 128 input counterparts. However, FPGA implementation of Neural 779

Network model (RVNN_Raw_MNIST) for unprocessed raw MNIST data consumed more 780

than double power than most expensive neural network model (such as CVNN_128) for 781

preprocessed data in classification of 10,000 frame of MNIST test dataset. 782

Comparison with CPU and GPU: Our attempt to directly compare FPGA-based power 783

consumption with CPU and GPU systems encountered a challenge. Google Colab, which 784

was employed for CPU and GPU-based designs, doesn’t furnish direct power consumption 785

metrics. However, resorting to the respective processor datasheets, we discerned their TDP 786

(Thermal Design Power) ratings. The Intel(R) Xeon(R) CPU @ 2.00GHz employed by Colab 787

boasts a TDP of 270 watts [?], whereas its GPU, the NVIDIA® Tesla® P4, has a TDP of 75 788

watts [?]. 789

Version November 16, 2023 submitted to Journal Not Specified 24 of 40

Further exploration led us to test on a multi-core CPU-based laptop powered by the 790

11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz processor. This processor’s datasheet 791

indicates a power consumption of approximately 25 watts in its Low Power Mode [?]. 792

Han J. et al. [?] developed a spiking neural network model for FPGA platforms, and 793

similarly implemented it in Python for NVIDIA Tesla P100 GPU. In their experiments pro- 794

cessing 10,000 frames from the MNIST test dataset, the GPU implementation required 7.96 795

seconds and averaged 29.6 watts of power consumption. Contrastingly, our CVNN_128 796

model showcases superior efficiency, consuming merely 2.917 watts per second and com- 797

pleting the same task in a swift 1.6 milliseconds. This performance not only makes our 798

system almost 100 times faster than the GPU-based solution but also achieves around ten 799

times greater power efficiency. 800

Literature provides further insights. Research shows that contemporary laptops 801

generally consume power in the range of 8 to 30 watts [?]. Another study, utilizing a shunt 802

resistor with a laptop’s power supply, revealed that the Intel i7-4820K processor expends 803

between 10-80 watts, contingent on the task [?]. 804

Comparative analyses between CPU, GPU, and FPGA platforms for identical tasks 805

have been conducted. One such study suggests that the Intel Core2 QX9650 CPU, NVidia 806

GTX 280 GPU, and Xilinx xc5vlx330 FPGA consume maximum power of 170 watts, 178 807

watts, and 30 watts respectively [?]. Another comparison focused on energy efficiency 808

for various vision kernels. In this study, the utilized CPU and GPU came equipped with 809

on-board power measuring ICs. The results unequivocally demonstrated that the FPGA 810

accelerator outperforms both GPU and CPU systems across all test cases [?]. 811

Conclusion: The evidence compiled, both from our own implementations and the 812

existing literature, robustly underscores FPGA’s prowess in energy efficiency, solidifying 813

its position as a more power-conscious choice than conventional CPU and GPU systems. 814

6.2.4. Resource Utilization among different neural network models implemented on FPGA 815

This section delves into the resource utilization of various neural network mod- 816

els when implemented on the Virtex-7 VC707 Evaluation Platform, which features the 817

xc7vx485tffg1761-2 FPGA chip. The neural network models under consideration include 818

RVNN_64, CVNN_64, RVNN_128, and CVNN_128. In the context of FPGA implementa- 819

tions, the resources can be described as follows: 820

• LUT (Look-Up Table): Used for implementing combinational logic functions. 821

• FF (Flip-Flop): Represents sequential logic, storing binary values. 822

• DSP (Digital Signal Processor): Useful for performing arithmetic operations, espe- 823

cially multiplication. 824

• IO (Input-Output Port): Interfaces for the FPGA to communicate with external com- 825

ponents. 826

• BUFG (Global Buffer): Provides clock and reset signal distribution across the FPGA. 827

Table 13. Resource Utilization among different neural network models

Resource RVNN_64 CVNN_64 RVNN_128 CVNN_128 RVNN_Raw_MNIST Available
LUT 9,123 17,723 13,122 24,164 20,993 303,600
FF 3,110 5,936 5,703 11,520 16,066 607,200
BRAM - - - - 160 1,030
DSP 485 1,333 469 1,333 507 2,800
IO 417 577 417 577 417 700
BUFG 1 1 1 1 1 32

In the analysis of the resource utilization, CVNN_128 consistently demands the most re- 828

sources, particularly in LUTs and FFs, while RVNN_64 remains the least resource-intensive. 829

DSP utilization is highest for CVNN_64 and CVNN_128, and IO consumption is fairly 830

Version November 16, 2023 submitted to Journal Not Specified 25 of 40

consistent across models, with a minor edge for CVNN_64. Notably, all models have 831

minimal BUFG consumption, utilizing only a fraction of what’s available. 832

6.2.5. Evaluation with Existing Result 833

Until now, we have come across just one FPGA-based complex-valued neural network 834

model, published in May 2023. However, it should be noted that this model was not 835

applied to MNIST or image classification tasks, making it incomparable to our research. 836

To assess our findings in the context of existing work, we selected two distinct neural 837

network models (SNN[?] and CNN[?]) implemented on FPGA for MNIST classification. 838

In Table 14, we present a performance comparison among these three FPGA-based neural 839

network models for MNIST digit classification. 840

Table 14. Comparative Analysis of Different Neural Network Models on FPGA

Models Accuracy Inference Time Power (watt per second) (watt per 10,000 frame)
SNN 90.39% 1s 1.131W 1.131W
CNN 94.43% 0.127s 4.5W 0.5715W
CVNN_128 88.3% 0.0016s 2.91W 0.004656W
CVNN_64 87.0% 0.00084s 2.58W 0.002167W

In recent publications, a spiking neural network (SNN) by Zhang J et el. [?] pub- 841

lished in May 2023 and a convolutional neural network (CNN) by Parra D. et el. [?] 842

published in October 2023 achieved accuracy rates of 90.39% and 94.43%, respectively, on 843

the MNIST test dataset. Our model, CVNN_128, achieved an accuracy of 88.3% on the same 844

dataset. Comparing power consumption, the SNN, CNN, and CVNN_128 models con- 845

sumed 1.131W, 0.5715W, and 0.004656W, respectively, for the 10,000 frames of the MNIST 846

test dataset. Despite its slightly lower accuracy, CVNN_128 stands out for its significantly 847

lower power consumption (almost 122 times less than CNN and 240 times less than SNN) 848

and exceptional speed (thousands of times faster than SNN and over hundred times faster 849

than CNN). 850

Table 15. Resource Utilization for Different Neural Network Models on FPGA

Resource SNN CNN CVNN_128
LUT 73,677 6,373 24,164
LUTRAM 3,669 71 0
FF 32,853 12,470 11,520
BRAM 0 0 0
DSP 10 93 1,333
IO 419 18 577
BUFG 1 0 1

Table 15 provides a comparison of resource utilization on FPGA for the SNN, CNN, 851

and CVNN_128 models. It’s evident that the SNN consumes more resources than CNN and 852

CVNN. CNN exhibits the most efficient resource utilization among them. It’s important 853

to note that these are three distinct models, each optimized differently, making a direct 854

comparison challenging. Nevertheless, the resource utilization table offers a general idea of 855

the differences in their designs. 856

In summary, our CVNN_128 model showcases remarkable improvements in both 857

energy efficiency and processing speed when compared to recently published models. We 858

believe that the integration of polar representation for 2D images and complex-valued 859

neural networks on FPGA holds great promise for energy-constrained environments, 860

offering faster processing capabilities. 861

Version November 16, 2023 submitted to Journal Not Specified 26 of 40

7. Discussion and Conclusion 862

This research set out to explore the implementation of CVNNs for polar-represention 863

of 2D image classification on FPGA. The primary objectives were to assess the effective- 864

ness of CVNNs in this context and to evaluate the performance benefits of FPGA-based 865

implementations. 866

The results indicate a notable performance in the classification accuracy of the polar- 867

represented MNIST dataset using CVNNs. In our comparative analysis against Real- 868

valued Neural Networks (RVNNs), we observed that the CVNN model with 128 input 869

datapoints (CVNN_128) achieved a classification accuracy 0.8 percent higher than its RVNN 870

counterpart, RVNN_128. Furthermore, with a more reduced number of input datapoints 871

(64 datapoints), CVNN_64 exhibited a 1.1 percent higher classification accuracy when 872

compared to RVNN_64 in the context of processing polar-represented MNIST handwritten 873

digit test dataset. These findings align with our initial hypothesis, demonstrating that 874

complex-valued networks excel in handling polar-represented image data. This superiority 875

arises from CVNN’s ability to learn correlations between magnitude and phase information 876

in complex data, resulting in improved performance compared to RVNNs. The use of 877

FPGAs for implementation further enhanced the computational efficiency, showcasing the 878

potential of hardware acceleration in neural network processing. 879

Comparatively, the FPGA implementation demonstrated improvements in processing 880

speed and power efficiency. Our research reveals that our robust design, CVNN_128, 881

is approximately 200 times faster than a CPU-based computer running CVNN and 150 882

times faster than a GPU-based computer for MNIST digit classification. Additionally, it 883

demonstrates lower power consumption when compared to CPU and GPU-based systems, 884

as well as other neural network models implemented on FPGA for MNIST digit classi- 885

fication.This supports the hypothesis that FPGA-based systems can provide significant 886

advantages in specific neural network applications, particularly in scenarios where low 887

power consumption and high-speed computation are crucial. 888

7.1. Limitations of the Study 889

The study was limited to the MNIST handwritten digits dataset, which may constrain 890

the generalizability of the findings to other types of datasets. 891

7.2. Recommendations for Future Research 892

Further research should extend the validation of polar-represented image classification 893

using Complex-Valued Neural Networks (CVNNs) beyond the MNIST dataset to include 894

a wider array of 2D images. This expansion would test the model’s generalizability and 895

effectiveness across diverse image sets. 896

Exploring the use of Spiking Neural Networks (SNNs) for polar-represented image 897

data also presents a valuable opportunity. A comparative analysis between SNN and 898

CVNN performance could offer deeper insights into the potential benefits of each neural 899

network type for specific image classification tasks. Since the reprocessing technique was 900

primarily thought for SNNs. 901

Finally, the optimization of CVNN implementation on FPGAs warrants continued 902

effort, particularly through enhanced pipelining techniques, which could significantly 903

improve computational throughput and energy efficiency. Such advancements could bring 904

FPGA-based CVNNs to the forefront of practical applications, where resource optimization 905

is paramount. 906

7.3. Conclusion 907

This research highlights the possibilities of using polar representation of 2D images 908

and complex-valued neural networks through FPGA-based implementations for image 909

classification tasks. The results provide valuable insights into the realm of neural network 910

acceleration and pave the way for further exploration into hardware-accelerated machine 911

learning. 912

Version November 16, 2023 submitted to Journal Not Specified 27 of 40

Author Contributions: “Conceptualization, M.A. and L.Z.; methodology, M.A. and L.Z.; software, 913

M.A.; validation, M.A. and M.E.H.C.; formal analysis, M.A.; investigation, M.A. and M.E.H.C.; 914

resources, L.Z.; data curation, M.A.; writing—original draft preparation, M.A.; writing—review and 915

editing, L.Z. and M.E.H.C.; visualization, M.A.; supervision, L.Z.; project administration, L.Z.; All 916

authors have read and agreed to the published version of the manuscript. 917

Funding: This research received no external funding. 918

Institutional Review Board Statement: N/A 919

Informed Consent Statement: N/A 920

Data Availability Statement: Data sharing not applicable 921

Acknowledgments: N/A 922

Conflicts of Interest: The authors declare no conflict of interest. 923

Version November 16, 2023 submitted to Journal Not Specified 28 of 40

Abbreviations 924

The following abbreviations are used in this manuscript: 925

926

FPGA Field-Programmable Gate Array 927

MNIST Modified National Institute of Standards and Technology 928

ASIC Application-Specific Integrated Circuit 929

DFT Discrete Fourier Transform 930

CVNNs Complex-Valued Neural Networks 931

RVNNs Real-Valued Neural Networks 932

SNN Spiking Neural Network 933

VHDL VHSIC Hardware Description Language 934

VHSIC Very High Speed Integrated Circuit 935

DFT Discrete Fourier Transform 936

GPU Graphics Processing Unit 937

CPU Central Processing Unit 938

MLPs Multi-Layer Perceptrons 939

RNNs Recurrent Neural Networks 940

CNNs Convolutional Neural Networks 941

Version November 16, 2023 submitted to Journal Not Specified 29 of 40

Appendix A. Polar-coordinate representation details 942

Appendix A.1. Logarithmic Transform 943

Pixel intensity perception in the human visual system is non-linear. Contrary to 944

a straightforward linear response, the human eye exhibits a logarithmic sensitivity to 945

brightness variations. This implies that the perceptual distinction between two pixel 946

intensities doesn’t align directly with their numerical disparity. In essence, the human 947

eye is more adept at discerning variations in low-intensity regions compared to those in 948

brighter or high-intensity areas. Such an observation is supported by the Weber-Fechner 949

law[?]. With this understanding, numerous technologies tailored for image processing 950

are designed to optimize visuals for human perception. To achieve this, we transitioned 951

the image encoding from a 0-256 scale to a 0-8 level priority encoding. The calculation 952

of log2(P) = 8 is employed to identify pixels with the highest intensity level, as depicted 953

in Fig. A1. The priority encoding technique notably amplifies the contrast of the source 954

images. 955

Figure A1. 0-9 MNIST handwritten digits with level-8 intensity

Appendix A.2. Highlighted Contour 956

Following the logarithmic transformation to an eight-level intensity, all intensity 957

levels, with the exception of the 8th level, are reduced to zero, resulting in a prominently 958

highlighted contour. This contour effectively captures and depicts the most crucial details 959

and shapes[?], as illustrated in Fig. A2. By nullifying other intensity levels, there is 960

a significant reduction in data volume, thereby enhancing the efficiency and speed of 961

subsequent algorithms. 962

Appendix A.3. Downsampling 963

Downsampling in two-dimensional imagery can be conceptualized as a spatial reduc- 964

tion, where the resolution is systematically decreased across both dimensions[?]. 965

In 2D image downsampling, an image matrix I(x, y) is reduced to Id(x′, y′) using: 966

Id(x′, y′) = I(Dx × x′, Dy × y′) (A1)

Where Dx and Dy are the down-sampling factors for width and height, respectively. 967

In the current work, given that the MNIST images possess a resolution of 28× 28, 968

we adopted two specific down-sampling approaches. For a dataset encompassing 64 data 969

points, the down-sampling coefficients were designated as Dx = Dy = 2. For a dataset of 970

128 data points, the coefficients were adjusted to Dx = Dy = 4
3 . The rationale and intricacies 971

behind these choices are pivotal to our research objectives and will be elaborated upon in 972

Version November 16, 2023 submitted to Journal Not Specified 30 of 40

Figure A2. 0-9 MNIST handwritten digits with level-8 intensity and highlighted contour

Figure A3. 10 MNIST level-8 intensity images after down-sampled

the following sections. Fig. A3 depicts the 0-9 MNIST numbers after down-sampling with 973

a factor of 4/3. 974

Appendix A.4. Polar Coordinate Representation 975

The polar transform of a 2D image shifts the image’s representation from the Cartesian 976

coordinate system to the polar coordinate system. In the Cartesian system, each pixel’s 977

position is denoted by x and y coordinates. In contrast, in the polar system, pixel locations 978

are characterized by magnitude ρ and phase θ. Here, the magnitude signifies the radial 979

distance of a pixel from the center of the polar plane, while the phase indicates the pixel’s 980

angle or orientation. 981

The polar representation offers several advantages in image processing and analysis. 982

For instance, the polar transform is instrumental in frequency analysis and pattern recogni- 983

tion within images. In this context, the radial distance in the polar plane can be interpreted 984

as a frequency magnitude, and the pixel’s orientation as its phase. These attributes are 985

beneficial for tasks such as noise reduction, feature segmentation, and image compression 986

[?]. Moreover, the polar format accentuates radial lines and concentric circles, enhancing 987

the visualization of textures, facilitating fingerprint analysis, and aiding in object detection 988

within an image [?]. 989

Version November 16, 2023 submitted to Journal Not Specified 31 of 40

In the process of converting image coordinates from Cartesian to polar representation, 990

given an image’s Cartesian coordinates (x, y) with the origin centered in the image, the 991

corresponding polar coordinates (ρ, θ) are determined using the equations 992

ρ =
√

x2 + y2

and 993

θ = arctan 2(y, x).

Initially, the image’s dimensions are ascertained, and its center is computed. A meshgrid, 994

representing the x and y coordinates of each pixel, is then generated and adjusted to have 995

the origin at the image’s center. Subsequently, for each pixel, the polar coordinates are 996

calculated. Only pixels with intensity values greater than 0 are considered, and their corre- 997

sponding polar coordinates are stored in the theta_rho_pairs list. This transformation, 998

implemented in Python with the NumPy library, efficiently captures the polar coordinates 999

of all non-black pixels in the image. 1000

Algorithm A1 Cartesian to Polar Conversion Algorithm

1: procedure CARTESIANTOPOLAR(img)
2: rows← img.height
3: cols← img.width
4: centerX← cols/2
5: centerY← rows/2
6: X, Y← CreateMeshgrid(1 to cols, 1 to rows)
7: X← X− centerX
8: Y← centerY− Y
9: θ ← CalculateAngle(Y, X)

10: ρ← CalculateDistance(X, Y)
11: theta_rho_pairs← EmptyList()
12: for i from 0 to rows− 1 do
13: for j from 0 to cols− 1 do
14: if img[i, j] > 0 then
15: theta_rho_pairs.append([θ[i, j], ρ[i, j]])
16: end if
17: end for
18: end for
19: return theta_rho_pairs
20: end procedure

Following the polar transformation, we subjected the magnitude values of the image 1001

data to normalization. This step ensures that the magnitude values reside within a desig- 1002

nated range, establishing uniformity in the radial distances. This uniformity is crucial for 1003

subsequent computational processes and offers enhanced visualization clarity. 1004

In the polar representation of an image, it is depicted as a sequence of complex 1005

exponential values, denoted as P(ρ, θ) = ρeiθ . In this context, θ stands for the angle or 1006

phase, spanning from −π to π, and ρ indicates the magnitude or radial distance. 1007

Histogram Analysis: To select the optimal number of data points for the serialization 1008

and Fourier Transform of polar-transformed images, we performed a histogram distribution 1009

analysis. This analysis utilized 10,000 test images and 60,000 training images to assess the 1010

number of data points present in each image. 1011

The histograms presented in Fig. A5 elucidate the distribution of data points for both 1012

training and testing images. Upon close inspection of these figures, it becomes evident 1013

that the predominant number of data points for both sets of images hovers around 150. In 1014

light of this observation, an optimal data point threshold, N = 128, was established for 1015

subsequent analyses, a decision informed by the histogram assessments. 1016

Version November 16, 2023 submitted to Journal Not Specified 32 of 40

Figure A4. Illustration of Polar transformed MNIST 0-9 images

Figure A5. Distribution of data points for all train and test images

Version November 16, 2023 submitted to Journal Not Specified 33 of 40

Figure A6. Polar transformed 0-9 MNIST image where N=128, ρ=[0,1]

Appendix A.5. Zero-Padding and Decimation 1017

To standardize the data point counts across images: 1018

• Images with fewer than 128 data points were subjected to zero-padding to achieve a 1019

consistent count of 128. 1020

• On the other hand, images with data points surpassing 128 underwent decimation to 1021

bring their count down to the stipulated 128. 1022

The rationale behind setting N = 128 was multifaceted. Opting for a threshold of 150 1023

would have necessitated extensive zero-padding for a vast number of images, potentially 1024

introducing extraneous noise. Conversely, a threshold considerably below 128 risked 1025

omitting vital image information. The selected threshold of 128 adeptly balances these 1026

considerations, ensuring data uniformity across images while retaining their inherent 1027

distinctiveness. The combined approach of zero-padding and decimation guarantees that 1028

all images, irrespective of their original dimensions or data point counts, adhere to this 1029

standardized threshold. 1030

It is important to highlight that following the extraction of the highlighted contour 1031

from the 2D MNIST image, and before proceeding with the polar transformation, an 1032

intermediate decimation step was introduced. At this juncture, a decimation factor of 4
3 1033

was applied, facilitating the selection of 128 data points for our subsequent analysis. This 1034

choice was informed by our earlier observations and the need for a balanced representation 1035

of the image data. In a similar vein, a decimation factor of 2 was employed to refine our 1036

selection further to 64 data points. This additional selection was made to provide a more 1037

compact representation, while still capturing essential image features. Consequently, both 1038

128 and 64 data points were chosen for in-depth analysis. These two distinct data point 1039

sets, 128 and 64, were uniformly adopted throughout our research, ensuring a consistent 1040

methodology and laying the groundwork for comparative evaluations. 1041

Fig. A6 illustrates the polar-transformed MNIST images, ranging from 0 to 9, after 1042

selecting 128 data points. Furthermore, as observed in Fig. A7, even with a reduced set of 1043

64 data points, the visualization still conveys discernible information. 1044

Appendix A.6. Serialization 1045

The primary motivation behind the polar transformation of 2D MNIST images was 1046

to devise a phase encoding technique tailored for the spiking neural network (SNN). In 1047

this approach, individual spiking neurons symbolize unique frequency components of the 1048

image. Notably, phase encoding has demonstrated a significant speed advantage over rate 1049

encoding [?]. 1050

Version November 16, 2023 submitted to Journal Not Specified 34 of 40

Figure A7. Polar transformed 0-9 MNIST image where N=64, ρ=[0,1]

While our study does not delve into the implementation of SNNs, our aim is to harness 1051

this encoded data within a complex-valued neural network. This will allow us to gauge 1052

both the efficacy of the encoded data and the performance of our model. The serialization 1053

of the polar-represented image is a two-fold process. Initially, the polar data is translated to 1054

its complex representation using the Euler’s formula: 1055

z = ρ× eiθ

Here, z stands for the complex number, ρ represents the magnitude, and θ is the angle in 1056

polar coordinates [?]. 1057

Subsequently, the Discrete Fourier Transform (DFT) is applied. DFT serves as a 1058

mathematical tool that transforms a sequence (typically time-domain signals) into its 1059

constituent frequency components. The outcome is a series of complex numbers, each 1060

signifying the amplitude and phase of a specific frequency component in the original 1061

sequence. In our methodology, this transformation yields N complex coefficients using the 1062

formula: 1063

X[k] =
N−1

∑
n=0

x[n] · e−i 2πkn
N (A2)

Where: 1064

• X[k] denotes the output in the frequency domain corresponding to the frequency index 1065

k. 1066

• x[n] represents the time domain samples. 1067

• N is the total number of these samples. 1068

• n is an index running through the time samples, ranging from 0 to N − 1. 1069

• k is an index for the frequency components, also ranging from 0 to N − 1. 1070

Appendix A.7. Complex-valued Neural Network (CVNN) implementation 1071

CVNNs represent a specialized class of neural networks that operate on complex 1072

numbers, encompassing both real and imaginary components [?]. While conventional 1073

neural networks primarily deal with real-valued data, CVNNs have gained prominence 1074

in applications where data inherently exhibits both magnitude and phase information, 1075

especially those involving signals, waves, or data with phase information. The deployment 1076

of complex numbers within neural networks is of particular relevance to this research, 1077

as it addresses the unique challenges posed by the preprocessed MNIST handwritten 1078

Version November 16, 2023 submitted to Journal Not Specified 35 of 40

Figure A8. DFT coefficient (magnitude) - N=128

Figure A9. DFT coefficient (Phase) - N=128

Version November 16, 2023 submitted to Journal Not Specified 36 of 40

digits dataset. In the context of this study, the relevance of CVNNs stems from their 1079

intrinsic capability to effectively process complex-valued data. The research is focused 1080

on the preprocessed MNIST dataset, which undergoes a transformation from Cartesian 1081

to polar coordinates, followed by serialization using the discrete Fourier transform (DFT). 1082

This transformation equips the dataset with complex numbers, enabling a more compact 1083

representation while retaining critical phase information, which is essential for character 1084

recognition tasks [?]. 1085

Version November 16, 2023 submitted to Journal Not Specified 37 of 40

Figure A10. Training and Validation Metrics for CVNN Model with 128 datapoints of serialized
polar-represented MNIST digit dataset

Appendix B. CVNN Extra 1086

Appendix B.1. Training and Validation Results 1087

The Fig.A10 illustrates the training and validation metrics over 50 epochs for a 1088

complex-valued neural network applied to serialized polar-representation MNIST digit 1089

dataset with 128 datapoints. 1090

1. Training and Validation Loss: 1091

• The blue trajectory represents the training loss, which exhibits a consistent decre- 1092

ment over the epochs. This is indicative of the model’s proficiency in assimilating 1093

patterns from the training dataset. 1094

• The red trajectory symbolizes the validation loss, which also manifests a descend- 1095

ing trend. This infers that the model is generalizing effectively on unseen data 1096

without succumbing to overfitting. The close convergence of the training and 1097

validation loss trajectories is propitious, suggesting a balanced bias-variance 1098

trade-off in the model. 1099

2. Training and Validation Accuracy: 1100

• The blue trajectory in the subsequent graph portrays the training accuracy, which 1101

escalates as the epochs progress. This insinuates an enhancement in the model’s 1102

prediction accuracy on the training dataset. 1103

• The red trajectory illustrates the validation accuracy. The uniform ascent of this 1104

trajectory implies continuous improvement in the model’s performance on the 1105

validation set. The close tracking of the validation accuracy with the training 1106

accuracy further corroborates the absence of overfitting in the model. 1107

Version November 16, 2023 submitted to Journal Not Specified 38 of 40

Table A1. Classification Report for CVNN Model with 128 datapoints of serialized polar-represented
MNIST digit dataset

Precision Recall F1-Score Support

0 0.92 0.92 0.92 980
1 0.95 0.95 0.95 1135
2 0.88 0.91 0.90 1032
3 0.87 0.83 0.85 1010
4 0.85 0.89 0.87 982
5 0.84 0.84 0.84 892
6 0.95 0.89 0.92 958
7 0.92 0.86 0.89 1028
8 0.79 0.84 0.81 974
9 0.86 0.87 0.86 1009

Accuracy 0.88 10000
Macro Avg 0.88 0.88 0.88 10000
Weighted Avg 0.88 0.88 0.88 10000

Similar Training and Validation result were found with for model CVNN_Polar_64 with 1108

64 datapoints. 1109

Appendix B.2. Classification Metrics 1110

In the evaluation of the CVNN model tested on 128 datapoints of the serialized polar- 1111

represented MNIST digit dataset, consisting of 10,000 handwritten digit samples ranging 1112

from 0 to 9, the model achieved an overall accuracy of 88%. This high accuracy is reflected 1113

across individual classes showed in the Table A1 and Figure A11, with particularly com- 1114

mendable performance for digits 0 and 1, boasting precision and recall scores above 92%. 1115

However, certain digits, notably 8 and 3, posed challenges for the model, as evidenced by 1116

their relatively lower precision and recall values of 79% and 83% respectively. The F1-Score, 1117

which harmoniously combines both precision and recall, remained consistently high across 1118

all digits, further underscoring the model’s balanced performance. The congruence be- 1119

tween the macro and weighted averages for precision, recall, and F1-Score at 88% suggests 1120

that the model’s efficacy is consistent across classes, irrespective of their sample size in the 1121

dataset. 1122

Similar classification result were found with for model CVNN_Polar_64 with 64 data- 1123

points. 1124

Version November 16, 2023 submitted to Journal Not Specified 39 of 40

Figure A11. Confusion metrics for CVNN Model with 128 datapoints of serialized polar-represented
MNIST digit dataset

Version November 16, 2023 submitted to Journal Not Specified 40 of 40

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 1125

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 1126

people or property resulting from any ideas, methods, instructions or products referred to in the content. 1127

	Introduction
	Related Workd
	Research Objectives
	Outline

	Cartesian to Polar coordinate representation
	Complex-valued Neural Network (CVNN) implementation
	Complex Numbers in Neural Networks
	Architectural Choices for CVNN:
	CVNN Model
	Training Procedure and Hyperparameters
	The parameters for the feedforward model are configured as follows:
	The training parameters for the CVNN are configured as follows:

	Experimental Setup
	Hardware and Software Environment
	Dataset and Model Variations
	Dataset Details

	Results and Performance Evaluation
	Accuracy Metrics
	Graph Interpretation
	Performance Insights
	Justification for Selection of 20 Neurons

	Comparison with Real-Valued Neural Networks
	Objective & Hypothesis
	Models Overview:
	Processing Complex Data in Real-Valued Networks
	Performance Insights
	Testing accuracy cross various neuron counts
	Comparison with Contemporary Research

	Conclusion

	FPGA Implementation of CVNNs
	FPGA's Role in Neural Network Acceleration
	Complex-Valued Neural Network Inference Model
	FPGA Implementation of Inference Model
	Adder
	Multiplier
	Activation Functions

	Fixed-Point Quantization for Neural Network Inference on FPGA
	FPGA Structure for Our Neural Network Systems

	Result and Evaluation of FPGA Implementation
	Maximum Operating Frequency (Fmax)
	Benchmarking FPGA Inference Models Against CPU and GPU Platforms
	Inference time comparison
	Inference Time Comparison across CPU, GPU, and FPGA
	Power Consumption Comparison
	Resource Utilization among different neural network models implemented on FPGA
	Evaluation with Existing Result

	Discussion and Conclusion
	Limitations of the Study
	Recommendations for Future Research
	Conclusion

	Abbreviations
	Polar-coordinate representation details
	Appendix A
	Logarithmic Transform
	Highlighted Contour
	Downsampling
	Polar Coordinate Representation
	Zero-Padding and Decimation
	Serialization
	Complex-valued Neural Network (CVNN) implementation

	CVNN Extra
	Appendix B
	Training and Validation Results
	Classification Metrics

