Article

FPGA implementation of Complex-valued Neural Network for
Polar-represented image classification

MARUF AHMAD !, Lei Zhang '* and Muhammad E. H. Chowdhury >

Citation: Ahmad, M.; Zhang,
L.,Chowdhury M. Title. Journal Not
Specified 2023,1,0. https://doi.org/

Received:
Revised:
Accepted:
Published:

Copyright: © 2023 by the authors.
Submitted to Journal Not Specified
for possible open access publication
under the terms and conditions
of the Creative Commons Attri-
bution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Faculty of Engineering and Applied Science, University of Regina, Regina, Canada; mah370@uregina.ca (MA),
Lei.Zhang@uregina.ca (LZ)

Department of Electrical Engineering, Qatar University, Doha 2713, Qatar; mchowdhury@qu.edu.qa (MEHC)
Correspondence: Lei Zhang, Lei.Zhang@uregina.ca;

Abstract: This proposed research explores a novel approach to image classification by deploying a
complex-valued neural network (CVNN) on a field-programmable gate array (FPGA), specifically
for classifying 2D images transformed into polar form. The aim of this research is to address the
limitations of existing neural network models in terms of energy and resource efficiency, by exploring
the potential of FPGA-based hardware acceleration in conjunction with advanced neural network
architectures like CVNNs. The methodological innovation of this research lies in the Cartesian to
polar transformation of 2D images, effectively reducing the input data volume required for neural
network processing. Subsequent efforts focused on constructing a CVNN model optimized for FPGA
implementation, emphasizing the enhancement of computational efficiency and overall performance.
The experimental findings provide empirical evidence supporting the efficacy of the image classi-
fication system developed in this study. One of the developed models, CVNN_128, achieves an
accuracy of 88.3% with an inference time of just 1.6ms and a power consumption of 4.66mW for the
classification of the MNIST test dataset consists of 10,000 frames. While there is a slight concession in
accuracy compared to recent FPGA implementations that achieve 94.43%, our model significantly
excels in classification speed and power efficiency—surpassing existing models by more than a factor
of 100. In conclusion, the paper demonstrates the substantial advantages of FPGA-implementation of
CVNN:s for image classification tasks, particularly in scenarios where speed, resource, and power
consumption are critical. The study’s reproducible results and corresponding code are available on
GitHub at the following link: https:/ /github.com/mahmad2005/CVNNonFPGA

Keywords: Image Classification; Complex-valued Neural Network; FPGA Implementation; CVNN
on FPGA; keyword 3 (List three to ten pertinent keywords specific to the article; yet reasonably
common within the subject discipline.)

1. Introduction

Recently, Generative Artificial Intelligence (GAI) [?] technologies have surged to the
forefront, with tools like ChatGPT [?] and Al-powered image and video generators [?]
like MidJourney [? | dominating the conversation. At the core of these visual generators
lies in the image processing and classification, serving as the backbone of this Al-driven
revolution. These breakthroughs have been made possible by the remarkable progress
in artificial neural networks applied to image and video processing [?]. However, this
progress has come at the cost of increased computational complexity. The amount of layers
and neurons in each layer required for state-of-the-art deep models has grown significantly,
often involving millions of parameters and billions of operations to achieve human-level
accuracy.

Simultaneously, the growth of Internet of Things (IoT) and embedded systems has led
to an escalating demand for neural network models to perform various tasks. However, the
computational demands of deep neural networks present challenges when deploying them
on low-power embedded platforms with limited computational and power resources [? ?].

Version November 16, 2023 submitted to Journal Not Specified https:/ /www.mdpi.com/journal /notspecified

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

https://doi.org/10.3390/1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://www.mdpi.com/journal/notspecified

Version November 16, 2023 submitted to Journal Not Specified 2 of 40

To address these challenges and enhance the efficiency of neural network algorithms,
particularly in terms of reducing computational costs, energy consumption, and resource s
usage, multiple strategies have emerged. One approach focuses on reducing the theoretical 4
number of basic operations required in neural network computations through algorithmic =«
innovations. Simultaneously, another direction aims to improve neural network algorithms
using hardware accelerators, such as Application-Specific Integrated Circuit (ASIC) and 4
Field-Programmable Gate Array (FPGA) designs [? ?]. as

In our work, we explore both of these approaches. We present innovative image
preprocessing methods tailored for neural network models and introduce a hardware 4
accelerator model designed to reduce computational costs in neural networks and optimize «
energy and resource utilization in hardware systems. This research endeavors to contribute s
to the ongoing efforts aimed at making neural network applications more efficient and 4
sustainable, addressing the challenges posed by increasing computational demands. 50

The efficacy of image classification models hinges not only on the sophistication of s
neural network architectures but also on the quality of the input data and the performance =
of the processing pipeline. Traditionally, image classification processes have operated in s
Cartesian coordinates (X, y), where 2D images are serialized for neural network input. How- s
ever, this conventional approach poses challenges. Applying frequency analysis methods s
like the Fourier Transform to serialize two-dimensional (2D) images can inadvertently lead s
to the omission of significant spatial data. This pertains to the positional information of the =
pixels and the contextual interactions between neighboring pixels, which can be diminished s
in the serialization transition. 59

Recent research [? | has addressed this limitation by introducing a novel preprocessing e
pipeline that transforms standard image datasets into a polar coordinate representation.
This transformation is inspired by the recognition that polar coordinates, defined by ra-
dial distance (r) and angular displacement () from a reference point, provide a more &
natural representation for circular and radial patterns. This transformation effectively e
retains the spatial information inherent in the pixel arrangement of the original image. By &
encoding images in polar coordinates, it aims to exploit these advantages and enhance e
the classification accuracy of image datasets. However, the research has not yet ventured &
into the practical application of this method in real-world image classification, despite its e
initial focus on constructing a Spiking Neural Network (SNN) model. To overcome the &
existing gap in research, our study focuses on replicating the process of converting 2D 7
images from Cartesian to polar coordinates. Subsequently, we apply this transformation =
technique to the challenge of classifying the Modified National Institute of Standards and =
Technology (MNIST) [?] handwritten digit dataset using artificial neural networks. 73

An essential aspect of the preprocessing pipeline involves the application of the
Discrete Fourier Transform (DFT) to the polar-transformed images. The DFT is a powerful
mathematical tool for decomposing signals into their constituent frequency components,
and it has found extensive use in image analysis. In our approach, we leverage the DFT #
to extract both magnitude and phase information from the polar-represented images. The
utilization of complex exponentials within the DFT allows us to capture nuanced variations 7
in pixel values and relationships, thus preserving essential spatial data. 80

What sets our research apart is the integration of Complex-Valued Neural Networks &
(CVNNSs) into the image classification framework. Unlike traditional Real-Valued Neural =
Networks (RVNNs), CVNNSs are tailored to handle complex-valued data, such as the output &
of the DFT. By treating the DFT outputs as complex numbers, we effectively harness the &
rich information embedded in both the real and imaginary parts. This nuanced approach &
promises to provide a more holistic understanding of the input data, potentially leading to s
improved classification accuracy. &7

While the theoretical advantages of CVNNSs in image classification have been explored &
in the literature, there is a notable gap in the practical implementation of such networks, &
particularly on resource-constrained platforms. Therefore, our research extends beyond
theoretical exploration to encompass practical deployment. We aim to implement the o

Version November 16, 2023 submitted to Journal Not Specified 3 of 40

trained CVNN model on FPGA, capitalizing on the parallel processing capabilities intrinsic o
to FPGA architecture. The FPGA implementation offers the potential for real-time classifica- o
tion with significantly reduced computational resources and power requirement compared o
to traditional CPU-based sequential computing and GPU-based parallel computing. %

1.1. Related Workd 96

Within the domain of image classification, conventional neural network models like o
Feed-Forward Neural Networks [? |, CVNNs , Recurrent Neural Networks (RNNs)[?], s
and Deep Neural Networks [?] have primarily been designed to handle real-valued
data. However, the growing prevalence of complex-valued data sources [? ? ?] such 10
as Complex-Valued MRI Images, SAR (Synthetic Aperture Radar) Images, Sonar Images, 1
Optical Coherence Tomography (OCT) Images, as well as sound and wave signals, has 10
spurred the need for specialized neural network models capable of directly processing 10
complex-valued inputs. Consequently, researchers have responded by developing a range 104
of models tailored to meet this specific demand. 105

As the capabilities of neural network models continue to grow in complexity, and 10
the data they process becomes increasingly vast, the computational demands and time 1o
required for tasks have surged [?]. Consequently, there is a pressing need to discover 10
solutions that can enhance the speed and throughput of neural networks while minimizing 10
energy consumption. This has led to the emergence of hardware accelerators as a pivotal 1o
area of research focus [?]. Accelerators utilizing GPUs, FPGAs, and ASICs have garnered 1
attention for their potential to meet the performance requirements of deep learning tasks. 1.
While GPU-based models have shown considerable performance, their applicability in 1
power-sensitive embedded devices remains a challenge, primarily due to their higher 1.
energy consumption. In contrast, FPGAs have gained prominence for their remarkable us
energy efficiency [? ?], flexibility, and shorter development periods compared to ASICs. s
With robust parallel computing capabilities and reduced energy consumption, FPGAs 1
have risen to prominence in the field of hardware acceleration for deep learning. These s
reconfigurable devices enable engineers to simulate digital circuits efficiently, paving 1o
the way for enhanced neural network computation. Unlike CPUs, which face inherent 10
structural limitations when processing vast amounts of data, FPGAs offer a versatile 1z
solution with virtually limitless reconfigurable logic, enabling the creation of tailored 12
accelerators for a multitude of applications. This inherent adaptability, combined with their 12
capacity for parallel processing and pipeline optimization, positions FPGAs as a compelling 124
choice for fast and energy-efficient neural network model implementations [?]. 125

A Recent research from our lab, Zahng et al. [? | presents an energy-efficient Spiking 12
Neural Network (SNN) designed and implemented on FPGA, emphasizing lower power 1
consumption and minimal accuracy loss. The approach utilizes rate coding to map ANN 12
parameters to SNNs efficiently, yielding power efficiency of 8841.7 frames/watt with 1
minimal accuracy degradation. The system sets a new performance standard, achieving an 13
impressive 90.39% accuracy rate, outperforming conventional SNN benchmarks. 131

Several studies [? ? ? | have investigated hardware accelerators for MNIST classifi- 12
cation using neural networks, primarily centered on CNNs. These studies also provide 13
comparisons of speed and resource utilization in contrast to CPUs or GPUs. 134

As of May 2023, we have identified just one instance of a CVNN model implemented 13
on FPGA [?]. The study introduces ComplexNet, a deep convolutional CVNN for channel 13
estimation (CE) in 5G OFDM communication systems. It demonstrates that ComplexNet en- 137
hances CE accuracy and offers a lightweight FPGA implementation, significantly reducing 13
power consumption compared to CPU and GPU platforms. 139

Notably, to best of our knowledge, no prior implementations of complex-valued neural 10
networks on FPGA for MNIST dataset classification have been found in our research. 141

Version November 16, 2023 submitted to Journal Not Specified 4 of 40

r. — - - - - - - - - - - - - - - - — — —/— /1

| Proposed Method |

| MNIST Pre Processing FPGA |
Handwritten CVNN or Class

'] Dpigits >> o, >> >> ASIC >> |

alfle

JILTS

a|flp
FPeAe O 7 |
JTITS |

| Resource:lll | |

| Power: B] |
Speed: NN |

| Accuracy: IININEGGN | |

S |

r - - - - - - - - - - - - - - - - — — = /1

| Conventional Method |

| | MNIST FPGA I
! Neural /

| Hang;/virgt en >> Network >> AJKe >> Class | |

| 9 Computer |

» » 7:

J
| TTTTT |
Resource: ININIGNN |

| Power: Imm—] |

| Speed: N] |
Accuracy: NG |
[-

L - - - —_- —_ —_ —_ —_ M — —_ —_ — — —_ — —

Figure 1. Graphical Abstract of this research

1.2. Research Objectives

The primary goal of this research is to explore the efficacy of polar coordinate repre-
sentation of 2D image data and its impact on Complex-Valued Neural Networks (CVNNSs)
and Real-Valued Neural Networks (RVNNSs) in image classification tasks. A key focus is
the comparative analysis of these neural networks in handling complex-valued inputs and
the subsequent implementation on Field-Programmable Gate Arrays (FPGAs) to assess
resource utilization, power efficiency, and inference speed. The goal is to demonstrate the
practical advantages of FPGA acceleration for real-time image classification, thus achieving
faster classification while consuming fewer resources and power.

By achieving these objectives, this research seeks to contribute to the fields of image
processing, neural networks, and hardware acceleration by offering a holistic approach
to image classification that incorporates innovative preprocessing techniques, advanced
neural network architectures, and efficient hardware deployment strategies. The main
objective is to achieve image classification while also minimizing the need, for resources
and power which helps tackle issues, in real time image processing applications as shown
in Fig.1.

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

Version November 16, 2023 submitted to Journal Not Specified 5 of 40

Image 2 Image 3 Image 4

II

Image 5 Image 6 Image 7 Image 8 Image 9

Figure 2. MNIST digits and its polar transformed and serialized view (A) 0-9 original MNIST hand-
written digits images, (B) Illustration of Polar transformed MNIST 0-9 images, (C) Polar transformed
0-9 MNIST image where N=128, p=[0,1], (D) Polar transformed 0-9 MNIST image where N=64, p=[0,1],
(E) DFT coefficient (magnitude) - N=128, and (F) DFT coefficient (Phase) - N=128

1.3. Outline

The remaining sections of the paper are organized in the way;

Section 2: In this section we provide an overview of the cartesian to polar coordinate
representation for 2d images..

Section 3 and 4 : In this section we provide an account of how the CVNN'’s imple-
mented for preprocessed image data. We also compare its performance with real valued
neural network counterparts.

Section 5 and 6: This section offers an explanation of how the hardware accelerator’s
implemented for CVNN using FPGA. We present an analysis of its performance compared
to running the model on environmental setups like CPU and GPU. We also compare it
against existing research.

Section 7: The final section serves as a summary of this research. It outlines discus-
sions highlights any limitations encountered during research suggests areas, for work and
provides concluding remarks.

2. Cartesian to Polar coordinate representation

In the present study, the MNIST database of handwritten digit images was employed.
Recognized as a benchmark dataset for neural network modeling and computer vision,
the MNIST dataset consists of handwritten digits from 0 to 9. This dataset is commonly
utilized for the training and assessment of classification algorithms. As depicted in Fig.
2(A), the dataset offers representative samples of each numeral from 0 through 9. It has
60,000 training and 10,000 testing samples. It is noteworthy that the pixel values within
these images span from 0 to 255, indicating the grayscale intensity.

In our study, we explored a methodology from a published paper[?] that transitions
MNIST images from the traditional cartesian coordinate system (x and y) to the polar

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

Version November 16, 2023 submitted to Journal Not Specified 6 of 40

coordinate system, defined by magnitude (p) and angle (9), using complex number repre- 1
sentation. This technique effectively captures the spatial characteristics of pixel locations 1
and their relationships during serialization. Figure 2 shows the a sample of 0-9 original 1
MNIST digits, polar-coordinate representation, and serialized view after Discrete Fourier s
Transformation. 186

To convert from Cartesian to polar coordinates, a series of steps is undertaken, includ- 1
ing a Logarithmic transformation, contour highlighting, down-sampling, and the actual 1
Cartesian to Polar coordinate transformation. The resulting polar-represented MNIST 1z
digits can be seen in Figure 2(B). Following this, Zero-Padding and Decimation techniques 10
are employed to select a specific number of data points. Figure 2(C) displays the polar- 1
represented images with 128 data points, while Figure 2(D) illustrates the images with 1
64 data points. Finally, the polar-represented images undergo serialization through Dis- 10
crete Fourier Transform (DFT), which captures both the amplitude and phase of specific 10
frequency components within the original sequence, as depicted in Figures 2(E and F). The 105
detailed process for these steps is discussed in Appendix A. 196

3. Complex-valued Neural Network (CVNN) implementation 197

CVNNSs represent a specialized class of neural networks that operate on complex 1
numbers, encompassing both real and imaginary components [?]. While conventional 19
neural networks primarily deal with real-valued data, CVINNs have gained prominence o
in applications where data inherently exhibits both magnitude and phase information, 20
especially those involving signals, waves, or data with phase information. 202

In the context of this study, the relevance of CVNNSs stems from their intrinsic capabil- 203
ity to effectively process complex-valued data. The research is focused on the preprocessed 2o
MNIST dataset, which undergoes a transformation from Cartesian to polar coordinates, 2o
followed by serialization using the discrete Fourier transform (DFT). This transformation 20
equips the dataset with complex numbers, enabling a more compact representation while 2o
retaining critical phase information, which is essential for character recognition tasks [?]. 20

3.1. Complex Numbers in Neural Networks 200
A complex number is represented as 210
z=a+bi

where a is the real part, b is the imaginary part, and i is the imaginary unit with the property o
12 - 71 212

When dealing with CVNNSs, both the weights and the activations can be complex 23
numbers. This means that when computing the weighted sum in a neuron, both the real 2.
and imaginary parts of the weights and inputs need to be considered. a5

3.2. Architectural Choices for CVNN: 216

1. Layers: Just like real-valued neural networks, CVNNs can have input layers, hidden 27
layers, and output layers. The number of layers and the number of neurons in each layer s
will depend on the specific problem and the complexity of the data. 219

a. Input Layer: The input layer of the CVNN corresponds to the serialized complex- 2o
valued representation of MNIST images in this work. For each input data point, the CVNN 2z
processes both real and imaginary components as a single complex number, thus requiring 2
an input layer with a size corresponding to the dimensionality of the complex input. 23

b. Hidden Layers: The hidden layers of the CVNN typically consist of multiple 2«
complex-valued neurons. The number of hidden layers and the number of neurons in each 25
layer are architectural hyperparameters optimized during the network’s training process.

IN]

6

Version November 16, 2023 submitted to Journal Not Specified 7 of 40

2. Neurons: In CVNNSs, each neuron can accept complex-valued inputs and produce
a complex-valued output. The computation within a neuron involves both the real and
imaginary parts of the weights and inputs. The weighted sum for a neuron is given by:

z= ijx]- +b (1)
]

where w; and x; are complex numbers, and b is a complex bias term. The weighted sum is
then passed through a complex activation function.

3. Activation Functions: Activation functions introduce non-linearity into the network,
enabling it to model complex relationships.

* CReLU: The complex rectified linear unit (CReLU) [?] activation function extends the
real-valued ReLU to complex numbers while preserving the phase information. It is
defined as:

f(z) = max(0,Re(z)) + imax(0,Im(z)))

4. Output Layer:

The output layer of the CVNN is responsible for producing predictions. For classifica-
tion tasks, the softmax function can be extended to handle complex numbers, ensuring the
outputs can be interpreted as probabilities. The complex-valued softmax [?] is given by:

%

B 2521 e%k

©)

o(z);

where K is the number of classes.

3.3. CVNN Model

1. Forward Pass: During the forward pass, input data propagates through the net-
work’s layers, undergoing linear transformations and activations. The result of the forward
pass is the network’s prediction. The weighted sum of its inputs is calculated by 1.

2. Backward Pass: The backward pass is where gradients are computed with respect
to the network’s parameters. Gradients are essential for optimizing the model during
training. The backpropagation algorithm’s primary goal is to compute the gradient of
the loss function with respect to the weights. With complex numbers, this involves the
Wirtinger derivatives [?].

Given a loss function L that is a function of a complex output z, the gradient with
respect to a complex weight w is:

OL AL 3z 9L oz
Jw 9z dw* = 9z* dw

(4)
: a‘% is the conjugate of the input associated with the weight w.

3. Update Rule: The update rule specifies how the network’s parameters are ad-
justed based on the computed gradients. We use optimization algorithms like Adam and
Stochastic Gradient Descent (SGD) to update weights during training.

Here

e Gradient Descent [?]
Given a function f(w), where w is a vector of parameters, the goal of gradient descent
is to find the value of w that minimizes f.
The update rule for gradient descent is:

Wnew = Wold — avf(wold))

Where:

- wis the learning rate.
- Vfis the gradient of f with respect to w.

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

262

263

Version November 16, 2023 submitted to Journal Not Specified 8 of 40

e Complex Gradient Descent [?] 264
When dealing with functions of complex variables, the gradient descent update rule 2
can be extended to handle complex numbers. Let’s say our function is f(z), where z s
is a complex variable. The gradient in the complex domain is often referred to as the 2

Wirtinger derivative. 268
The Wirtinger calculus provides us with two partial derivatives: 269
d]
3 and e (6)
Where z* is the complex conjugate of z. 210
The gradient of f with respect to z and z* is given by: m
of of
= (2L 7
vf (az " 9z*) @
The update rule for complex gradient descent can then be written as: 2
Znew = Zold — A3°% 8)

Note: The choice of using % in the update rule is a convention. Depending on the 2
of

specific problem or context, the other derivative 5 might be used. 274
4. Weight Initialization: The weights in CVNNs are complex. Therefore, both the real s
and imaginary parts of the weights need to be initialized. 216
5. Complex Batch Normalization [?] 277

Batch normalization is a technique to improve the training of deep neural networks =
by normalizing the activations of each layer. For CVNNSs, this normalization should be
applied separately to the real and imaginary parts. Given a complex activation z, the 20

batch-normalized output 2 is: 281
5 Z—H
= —)
Vo2 +e
Where: 282
* yuis the mean of the activations (computed separately for real and imaginary parts). 2
e o2 is the variance (also computed separately). 284
* ¢isasmall constant to prevent division by zero. 285
3.4. Training Procedure and Hyperparameters 286

We have developed a CVNN using the cvnn library, which is open-source and acces- 2
sible on GitHub [https://github.com/NEGU93/cvnn]. Detailed documentation can be 2
found on Read the Docs [https://complex-valued-neural-networks.readthedocs.io/en/ 2
latest/index.html]. This library is distributed under the MIT License, promoting flexibility 20
and ease of use for the community. 201

Our CVNN architecture is designed as a feedforward model, constructed using Ten- 20
sorFlow’s renowned Sequential API. The network structure consists of an initial input 2e
layer, followed by two dense layers, carefully crafted to efficiently process and manage 20
complex-valued data. 205

Table 1. The programming language and libraries used for build- ing the model are as follows

Item Description

Language Python

Main Libraries | TensorFlow and Keras

cvnn, which provides specialized layers and functions for complex-valued
neural networks.

Custom Library

https://github.com/NEGU93/cvnn
https://complex-valued-neural-networks.readthedocs.io/en/latest/index.html
https://complex-valued-neural-networks.readthedocs.io/en/latest/index.html
https://complex-valued-neural-networks.readthedocs.io/en/latest/index.html

Version November 16, 2023 submitted to Journal Not Specified 9 of 40

3.4.1. The parameters for the feedforward model are configured as follows:

¢ The model begins with a ‘ComplexInput’ layer with an input shape of 128 or 64.

* Subsequently, a "ComplexDense" layer is added with a varying number of neurons,
depending on the specific model. The "crelu" [equation 2] activation function is chosen,
and the layer is initialized with the ‘ComplexGlorotUniform’ initializer.

e The final layer in our model is another "ComplexDense" layer with 10 neurons for the
classification of ten different MNIST handwritten digits. It utilizes the "cart_softmax"
activation function and is initialized with the "ComplexGlorotUniform’ initializer.

3.4.2. The training parameters for the CVNN are configured as follows:

¢ Optimizer: We have used the "Adam’ optimizer, a well-known optimization algorithm
that adapts the learning rate during training.

¢ Loss Function: Our model employs the ‘ComplexAverageCrossEntropy’ loss func-
tion, which applies Categorical Cross Entropy to both the real and imaginary parts
separately and then averages the results.

* Metrics: Model performance is evaluated using the ‘ComplexCategorical Accuracy’
metric, which measures how often predictions match one-hot labels.

* Training: The model is trained using the ’fit’ method with a batch size of 32 and a
specified number of epochs (in our case, 50). Both training data ('train_images’ and
‘train_labels’) and validation data ('val_images’ and "val_labels’) are provided to this
method.

* Learning Rate: Our implementation does not specify any learning rate schedules, so
the learning rate defaults to the value set by the "Adam’ optimizer, which is "0.001".

3.5. Experimental Setup

In this section, we outline the comprehensive experimental setup for our study, con-
ducted on Google Colab, utilizing the Ubuntu 22.04.2 LTS environment with abundant
system resources. We detail the hardware and software configurations, as well as the
dataset and model variations considered.

3.5.1. Hardware and Software Environment

Our experiments were conducted on Google Colab, specifically version 1.0.0, which
offers a robust cloud-based environment for machine learning tasks. The underlying
specifications of the environment are as follows:

Hardware and Software Environment

Operating System Ubuntu 22.04.2 LTS

System RAM 51.0GB

CPU Intel(R) Xeon(R) CPU @ 2.00GHz
Python Version 3.10.12

TensorFlow Version TensorFlow 2.13.0

Table 2. Hardware and Software Environment Details

3.5.2. Dataset and Model Variations

Our research investigates the impact of varying the number of data points for input
within the context of polar-represented serialized MNIST digit datasets. In order to conduct
a comprehensive analysis of the performance of our models, we have developed two
independent models with varying input configurations:

The deliberate manipulation of the quantity of data points enables us to thoroughly
assess the effectiveness of our models across various input configurations.

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

Version November 16, 2023 submitted to Journal Not Specified 10 of 40

Table 3. Model Configurations

Model 1: 128 Data Points Model 2: 64 Data Points

Input Layer Neurons: 128 Input Layer Neurons: 64

Hidden Layers Neurons: 10, 15, 20, 25, 30, 50, | Hidden Layers Neurons: 10, 15, 20, 25, 30, 50,
100 100

Output Layer Neurons: 10 Output Layer Neurons: 10

Batch Size = 32 Batch Size = 32

Number of Epoch: 50 Number of Epoch: 50

3.5.3. Dataset Details

The dataset utilized in this study consists of serialized MNIST digit pictures rendered
in polar coordinates. This representation offers the benefit of reducing the number of data
points required for input. The dataset encompasses a range of key statistical measures,
which are as follows:

Table 4. Dataset Details

Dataset Details
Training Samples | 60,000
Testing Samples | 10,000
Validation Split 0.02% of the training data was set aside for validation

The dataset at our disposal is highly suitable for evaluating the efficacy of our models,
hence facilitating the derivation of significant comparisons and insights.

In brief, the experimental configuration for our study is established within a reliable
Google Colab environment that offers substantial computational capabilities. In this study,
we examine the influence of various input configurations on the performance of a model.
Our analysis is based on a dataset consisting of serialized MNIST digit pictures stored in
polar form. The purpose of this configuration is to enable thorough examinations and offer
significant observations regarding the performance of our models.

4. Results and Performance Evaluation

This section provides an overview of the experimental results and performance evalu-
ation of the CVNNs when trained on the preprocessed MNIST dataset. Our team offers
complete insights into our model’s behaviour through the provision of thorough visualiza-
tions, encompassing accuracy trends, training curves, and loss plots.

In the present study, we utilize two separate models of CVNNs. The initial model,
referred to as CVNN_Polar_128, is specifically designed to handle a dataset that is serialized
in the Polar representation and consists of 128 datapoints. On the other hand, the second
model is designed to accommodate a comparable dataset, albeit with a diminished count
of 64 datapoints, and is appropriately denoted as CVNN_Polar_64.

4.1. Accuracy Metrics

To assess the model’s performance comprehensively, we analyze the accuracy trends
for both of the models with the Serialized Polar-represented testing datasets.

4.1.1. Graph Interpretation

The graph in the Fig. 3 visualizes the testing accuracy of two complex-valued neural
network models, CUNN_Polar_128 and CVNN_Polar_64, against the number of neurons in
their hidden layers. The horizontal axis delineates the neuron count, ranging from 5 to 100,
while the vertical axis marks the achieved testing accuracy, expressed as a percentage. A
vertical dotted line at "20 Neurons" highlights the chosen neuron count, offering a visual
cue for the selection. Both models demonstrate a general upward trend, suggesting that
increasing the neuron count positively impacts the accuracy, up to a certain threshold.

334

335

336

337

338

339

340

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

Version November 16, 2023 submitted to Journal Not Specified 11 of 40

90.0 1

87.51

© o
N o
o o

Testing Accuracy (%)

©
o
=)

77.54

75.01

—8— CVNN_Polar_128
CVNN_Polar_64
—=- 20 Neurons

5. 10 15 20 25 30 50 100
Number of Neurons in the Hidden Layer

Figure 3. Testing Accuracy vs. Number of Hidden Layer Neurons

4.1.2. Performance Insights

CVNN_Polar_128 consistently outperforms CVNN_Polar_64 for neuron counts up to
20. Beyond this, the performance difference narrows, with CVNN_Polar_64 eventually
achieving slightly higher accuracy at 100 neurons.

The most significant rise in accuracy for both models is observed between 5 to 20
neurons, after which the gains in accuracy start to plateau.

4.1.3. Justification for Selection of 20 Neurons

From an optimization standpoint, selecting 20 neurons for the hidden layer of both

models appears judicious for several reasons:

1.

Balanced Complexity and Performance: At 20 neurons, both models achieve a
substantial increase in accuracy compared to lower neuron counts, without the added
computational overhead of higher counts. This makes the models efficient without
compromising on performance.

Diminishing Returns: While further increments in neuron count do lead to accuracy
improvements, the gains become marginal. For instance, the leap from 20 to 100
neurons results in an increase of just over 2% for both models, which may not justify
the associated computational cost and potential overfitting risks.

Generalization: A model with fewer neurons is less prone to overfitting. With 20
neurons, CVNN_Polar_128 achieves an accuracy of 88.3%, and CVNN_Polar_64
attains 87%. These figures highlight efficient model architectures given the neuron
count.

Computational Efficiency: Neural networks with fewer neurons train faster and
require less memory. From a practical standpoint, especially in real-time applications
or scenarios with limited computational resources, a leaner model is advantageous.

In the conducted experiments, two CVNN models were trained on the preprocessed

MNIST dataset: CVNN_Polar_128 with 128 datapoints and CVNN_Polar_64 with 64 dat-
apoints. Performance evaluations, visualized through accuracy trends, training curves,
and loss plots, details provided in Appendix B revealed that CVNN_Polar_128 generally
outperformed CVNN_Polar_64, especially with up to 20 neurons in the hidden layer. Both
models exhibited an optimal balance of complexity and performance at this neuron count,
while further increments showed diminishing returns. Specifically, the CVNN_Polar_128
model achieved an overall accuracy of 88% on a 10,000-sample test dataset of the MNIST.

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Version November 16, 2023 submitted to Journal Not Specified 12 of 40

4.2. Comparison with Real-Valued Neural Networks 400

In this section, we compare the performance of CVNNs with RVNNs in handling s

complex data, specifically the polar-transformed MNIST digit dataset. We delve into
accuracy metrics between these two types of networks, shedding light on the advantages s
of employing CVNNSs for complex data. 404

4.2.1. Objective & Hypothesis 405

The central proposition behind adopting the polar representation was to minimize the 40

datapoint requirements for a neural network. By reducing the number of neurons in the 47
input layer, we anticipated not only a decrease in computational demands but also a faster o
training and testing process, leading to energy savings. A key hypothesis was that CVNNs, 0
given their ability to process magnitude and phase information directly, would have an 0
edge over traditional RVNNs when presented with complex data. a1

4.2.2. Models Overview: 12

RVNN_Raw_MNIST: A real-valued neural network that operates directly on the s
original MNIST dataset without any preprocessing. This model serves as a benchmark, .
providing a standard to which other models can be compared. 415
CVNN_Polar_128 & CVNN_Polar_64: Complex-valued neural network models that 4
ingest the serialized polar-transformed MNIST dataset. The numerals 128" and '64" 4
denote the number of datapoints (or complex numbers) each model processes. a8
RVNN_Polar_128 & RVNN_Polar_64: Real-valued adaptations designed to handle 4
the polar-transformed dataset. To accommodate the complex nature of the data, these 4
models separate and concatenate the real and imaginary parts, effectively doubling
their input neuron requirements. 422

4.2.3. Processing Complex Data in Real-Valued Networks 423

By segregating the real and imaginary components of the serialized polar-transformed 4

MNIST dataset and then concatenating them, the models were furnished with doubled s
input fields. This ensured that the entirety of the complex data was captured, albeitina s
format palatable to real-valued networks. For instance, the RVNN_Polar_128 model, de-
signed for 128 complex datapoints, required 256 neurons in its input layer to accommodate s

both the real and imaginary parts. 429
When comparing the RVNN and CVNN models, both were configured with an identi- 4.
cal number of hidden layer neurons, set at 20 for this analysis. 431
Additionally, other parameters, including the number of output layer neurons, batch 42
size, and epochs, were kept uniform across both models for a consistent evaluation. 433
4.2.4. Performance Insights 434

Benchmark Performance: While the RVNN model operating on the original MNIST 4
dataset set a high standard with an accuracy of 96%, our focus was primarily on the 4
performance gains achieved through polar transformation. 437
Complex-Valued vs. Real-Valued on Polar Data: As hypothesized, the CVNN_Polar_128 s
model, attaining an accuracy of 88.3%, outperformed its RVNN counterpart, RVUNN_Polar_#28,
which secured 87.5%, showed in Fig.4. This 0.8% differential underscores the inherent 4o
advantage of CVNNs when processing polar-transformed data. The separation of s
real and imaginary components in RVNNSs, while necessary, may lead to the omission 2
of valuable interplay between these components, a nuance that CVNNSs naturally s
capture. aaa
Data Efficiency through Polar Transformation: The polar-transformed models, even s
with reduced datapoints, achieved commendable accuracies. The slight performance s
trade-offs were balanced by the benefits of reduced computational requirements and s
energy consumption. 448

Version November 16, 2023 submitted to Journal Not Specified 13 of 40

100 —

Accuracy (%)

87

T
RVNN_Raw_MNIST CVNN_Polar_128 RVNN_Polar_128 CVNN_Polar_64 RVNN_Polar_64

Figure 4. Testing accuracy of various neural network models on the MNIST dataset

4.2.5. Testing accuracy cross various neuron counts 449

The graph in Fig. 5 delineates the testing accuracies of various neural network models 4o
based on different neuron counts in the hidden layer. Notably, the "RVNN_Raw_MNIST" s
model, processing the original dataset, exhibits superior performance, reaching 98% accu- s
racy with 100 neurons. In contrast, models working with polar-transformed data display 3
a consistent trend: CVNNs initially outperform their RVNNS, especially at lower neuron s
counts. However, as neuron counts rise, the performance disparity narrows, with RVNNs s
nearly matching CVNNSs, especially at 100 neurons. This underscores the RVNNs’ adapt- s
ability and the inherent advantage of CVNNs with complex data, while also highlighting 4
the diminishing returns of increasing neuron count 458

4.2.6. Comparison with Contemporary Research 459

Jose Agustin Barrachina, in his implementation of the CVNN model [?], conducted 0
MNIST handwritten digits classification. He transformed the original MNIST dataset 4
from its real-valued version to a complex-valued version using TensorFlow’s tf.cast
function and tf . complex64 data type. This conversion resulted in each pixel of the image 4
comprising both real and imaginary components. Following testing, he achieved an s
impressive 99% accuracy for the MNIST dataset. In our comparison table, we refer to Jose s
Agustin Barrachina’s model as CVNN_JAB. 466

Table 5. Accuracy Comparison with contemporary research

Model Accuracy
CVNN_Polar_128 | 88.3%
CVNN_JAB 99%

While his model achieved higher accuracy, it came at the cost of increased computa- s
tional complexity. This was due to the inclusion of all 784 data points for each MNIST image. 4
In contrast, our model only utilized 128 data points, resulting in reduced computational s
demands. This makes it a more efficient choice for hardware accelerator implementation in 47
resource and energy-constrained environments. ant

According to the PapersWithCode.com website, as of today, the highest accuracy
achieved in MNIST classification is 99.83% by Byerly A etal. [?]. a3

Version November 16, 2023 submitted to Journal Not Specified 14 of 40

- RVNN_Raw_MNIST - CVNN_Polar_128 - RVNN_Polar_128 - CVNN_Polar_64 = RVNN_Polar_64

100

95

90

Accuracy

85

80

s AL

T T T T 1
20 40 60 80 100

Number of Neurons in Hidden Layer

Figure 5. Testing accuracy of different neural network models across various neuron counts in the
hidden layer.

4.3. Conclusion

The research affirms the efficacy of polar-transformed datasets in optimizing neural
network performance, both in terms of accuracy and computational efficiency. Notably,
CVNNSs, with their intrinsic capability to handle complex data, demonstrated superiority
over RVNNSs in this context. These findings pave the way for further exploration into
the synergies between data transformation techniques and neural network architectures,
potentially leading to even more efficient and eco-friendly machine learning models.

5. FPGA Implementation of CVNNs

In this section, we transition from the theoretical aspects discussed in the previous
sections, which focused on the polar representation of 2D images, serialization techniques,
and their application to neural networks (CVNN and RVNN) for MNIST handwritten
digit classification. Here, our focus shifts to the hardware implementation of these neural
network’s inference models, with a specific emphasis on CVNNSs, using FPGA.

FPGAs are chosen as the hardware platform for several compelling reasons. These
include their inherent capabilities for massive parallelism, reconfigurability, and power
efficiency. In contrast to CPU-based systems, which operate sequentially, and GPUs, which
lack reconfigurability, FPGAs offer a unique combination of performance, adaptability, and
energy efficiency, making them an ideal choice for accelerating complex neural network
computations.

The evolution of digital systems design has been marked by several significant mile-
stones, with the inception of FPGA being a prominent one. Unlike ASIC, which are
permanently dedicated to a specific function after manufacturing, FPGAs are distinct due
to their reprogrammable nature, allowing them to be tailored for multiple applications
post-production [?]. This feature offers a level of versatility that’s unparalleled in the realm
of digital design.

5.1. FPGA’s Role in Neural Network Acceleration

The renaissance of neural networks and deep learning, driven by the surge in data
and computational power, has ignited the need for specialized hardware accelerators.
FPGAs, with their ability to parallelize operations, are emerging as a frontrunner in this
domain [?]. Neural networks often involve matrix multiplications, convolutions, and other
operations that can be parallelized. The inherent architecture of FPGAs, with its myriad of
reconfigurable logic blocks, can be optimized to handle such operations simultaneously;,
offering a significant speedup compared to sequential processors. Moreover, the dynamism
of the field of artificial intelligence means that algorithms and models are continually

474

475

476

477

478

479

480

482

483

484

485

486

487

488

489

490

491

492

493

495

496

497

498

499

500

501

502

503

504

505

506

507

Version November 16, 2023 submitted to Journal Not Specified 15 of 40

Input Layer Hidden Layer Output Layer
Figure 6. Typical Inference Structure of the CVNNS.

evolving. FPGAs, with their reprogrammable nature, ensure that as newer models or
techniques emerge, the hardware can be reconfigured to adapt, ensuring longevity and
relevance in deployment.

5.2. Complex-Valued Neural Network Inference Model

In the previous sections, we delved into the intricacies of forward and backward
propagation within the CVNNs. As we transition into this section, our primary focus is on
offering a succinct recapitulation of forward propagation. This is imperative for a holistic
understanding of how we have implemented the CVNN inference model on FPGA.

Our implementation of the CVNN inference model leverages the weights and biases
from a pre-trained model. For a visual representation of our CVNN model’s architecture,
one can refer to figure 6. It’s pivotal to note that all the parameters, including input X,
weight W, bias b and output Y, are complex-valued in this architecture.

Complex numbers in our context are typically depicted as a + bi, where a signifies the
real part, b stands for the imaginary part, and i is the imaginary unit.

To elucidate further, let’s dissect the model’s operations:

1. Weighted Sum in Hidden Layer: The first step in our forward propagation is the com-
putation of the weighted sum for each neuron in the hidden layer. This is achieved by
linearly combining the complex-valued inputs with their respective weights, adding
the complex-valued biases subsequently. For instance, the weighted sum Z; for the
first neuron in the hidden layer can be represented as:

Z1=X1 X Whi + Xo Xx Why + ...+ X;; x Why, + by (10)

Where, X refers to complex inputs, Wh refers to the complex weights in the hidden
layer, and bh denotes the complex biases in the hidden layer.

2. Activation in Hidden Layer: Following the computation of the weighted sum, we
introduce non-linearity through the Complex ReLU (CReLU) activation function. This
function, applied to each neuron’s weighted sum, separates the real and imaginary
components. It then rectifies negative values from both parts. For the first neuron, the
activation is:

H; = CReLU(Z;) = max(0,Real(Z1)) + i x max(0,Imag(Z;)) (11)

Where, H is the output of a hidden layer neuron after activation.
3. Weighted Sum in Output Layer: The outputs from the hidden layer are then used
to compute the weighted sum for each neuron in the output layer. This involves

508

509

510

511

512

513

514

515

516

517

518

519

520

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

Version November 16, 2023 submitted to Journal Not Specified 16 of 40

multiplying each output from the hidden layer by the respective weights of the output
neurons and adding the corresponding biases.

01 = Hy X Woq + Hy X Woy + ...+ Hy x Wo,, + boy (12)

Where, Wo are the weights in the output layer, bo are the biases in the output layer,
and O is the weighted-sum of a neuron in the output layer.

4. Activation in Output Layer: Finally, the CReLU activation function is once again
applied to the weighted sums from the output layer to yield the final complex-valued
outputs of the model. Using the first output neuron as an example:

Y} = CReLU(O;) = max(0,Real(O1)) + i x max(0,Imag(O;)) (13)

In the original CVNN model, the softmax activation function was employed for the
output layer, providing a probabilistic interpretation of the model’s predictions. However,
when transitioning to FPGA implementation, it’s imperative to strike a balance between
computational accuracy and hardware efficiency. Given this consideration, we opted
for the CReLU activation function in our project. This choice not only streamlines the
FPGA implementation but also ensures a robust performance, while simplifying the overall
computational complexity.

In our pursuit to draw a comprehensive comparison with the CVNN model, we im-
plemented a RVNN inference model on FPGA. The underpinnings of this implementation
draw many parallels to the CVNN model.

For the RVNN, we took a strategic approach by separating the complex-valued inputs
into their real and imaginary components. These separated components were then treated
as independent real-valued inputs. Consistent with the RVNN paradigm, the weights,
biases, and activation functions were all real-valued. Specifically, the ReLU activation
function was employed for the RVNN, described by the equation:

H, = ReLU(Z,) = max(0, Z,) (14)

This function effectively nullifies negative values, allowing only positive activations to
propagate through the network. By juxtaposing the CVNN and RVNN models, we aim to
provide a holistic understanding of their respective performances and intricacies on FPGA
platforms.

5.3. FPGA Implementation of Inference Model

In our previous discussions, we thoroughly examined the mathematical foundations
inherent to the inference models of neural networks that were central to our research.
Transitioning from theory to application, the linchpin of the FPGA implementation of these
models is the precise crafting of VHSIC Hardware Description Language (VHDL) modules
that correspond to each step and mathematical equation. At the heart of the architectures of
both the CVNNs and RVNNSs lie several core modules: adders, multipliers, and the specific
activation functions - Complex Linear Rectified Unit (CReLU) and the traditional Rectified
Linear Unit (ReLU).

For this FPGA-centric endeavor, we predominantly utilized Vivado v2021.1 64-bit for
design and synthesis, combined with VHDL for hardware description and programming.

The accompanying Fig. 7(B) offers a schematic representation of a singular neuron’s
FPGA realization.

5.3.1. Adder

Real-valued adder:
The adder module for real numbers in a digital FPGA environment is implemented
using fixed-point arithmetic. In fixed-point representation, every number is represented as

538

539

540

541

542

543

544

545

546

548

549

550

551

552

553

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Version November 16, 2023 submitted to Journal Not Specified 17 of 40

) Hidden Layer | Output Layer

r 2-yoewy , ‘

I - g

CB= ‘Z’&*Wh) H=ReLUZ) HW 0=F('W) Y=ReLU(0)
T " suffer RelU Multipiler Accumulator RelU

Activator

Accumulator

Multiplier

Figure 7. (A) Data flow diagram of the proposed Neural Network models on FPGA and (B) Primary
schematic diagram of a single neuron implemented on FPGA

an integer and a fractional part. Mathematically, given two fixed-point numbers A and B,

the summation S is given by:

Complex-valued adder: Complex numbers consist of real and imaginary components.
Thus, for two complex numbers C; = a + bi and C; = x + yi, the resultant R after addition

is:

5.3.2. Multiplier

Real-valued multiplier:

In the realm of fixed-point arithmetic, when two numbers P and Q are multiplied, the

result M is:

R=(a+x)+(b+y)i

Complex-valued multiplier:

The multiplication of two complex numbers C; = a + bi and C; = x + yi results in:

S=A+B

M=PxQ

R=(axx—bxy)+(axy+bxx)i

5.3.3. Activation Functions

Activation functions introduce non-linearity into neural networks, allowing them to
capture intricate patterns and make complex decisions.

Rectified Linear Unit (ReLU):

(15)

(16)

(17)

(18)

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

mutgenfojmut_unit

a empr 1
g5 ax |
oo Noms r @
1150
N s=ro1 o150
RIL_MuLT . opsg) 5ol
sl Sedetaut_1p150] = —
tempa.| < magi150)
temp2 1 0259
2 mag(150) wpiso) L2200 ™ g c reatiso] i of SRS
"\ omsg sy S
o reatisg) psa | o159
> magtisol AT CRED e [<)°
temp4 i X
wpso) tempe 1 S=ro1_iits0)
oo 0250) t - onso) »iltso)
s o230 X 1150] S-getaut _1[150]
npsg [+ pR——
R ML e
RTL_A0D a1 G
temps 1 — °
o5)C 1
L0 7™ oo It 11159 |
e RecsL— =
R
R_wuLr
A T_compex B -

Figure 8. Schematic diagram of (A) complex-valued multiplier and (B) CReLU Activation in FPGA

Version November 16, 2023 submitted to Journal Not Specified 18 of 40

One of the most widely adopted activation functions in our research, ReLU is mathe-
matically defined as:

f(x) = max(0, x) (19)

Where x is the input to the neuron.

For FPGA implementation using fixed-point arithmetic, we employed a simple com-
parison of the input with zero, choosing to either return the input or zero based on the
outcome of this comparison.

Complex Linear Rectified Unit (CReLU):

In our exploration of complex-valued neural networks, we utilized CReLU, which
operates on complex numbers by applying the ReLU function independently to both the
real and imaginary parts of the input. Given a complex number C = a + bi, the output after
CRelLU, R, is:

R = max(0,a) + max(0, b)i (20)

Our VHDL implementation is analogous to the one for ReLU but distinctly applies
the function to both real and imaginary components.

Complex-valued multiplier and Complex Rectified Linear Unit activation function
schematic diagrams implemented on Vivado are shown in Fig. 8

5.4. Fixed-Point Quantization for Neural Network Inference on FPGA

Fixed-point representation is a widely-used approach for representing real numbers in
digital systems, especially in FPGA implementations. Unlike floating-point representation,
which dynamically adjusts precision and range, fixed-point representation assigns a set
number of bits to both the integer and fractional parts of a number. This methodology
presents a harmonious balance between precision, range, and computational demand,
rendering it particularly suitable for high-speed and resource-limited FPGA designs.

In the realm of neural network inference, the choice of fixed-point representation
becomes pivotal. It determines not only the network’s accuracy performance but also
the FPGA implementation’s efficiency. Both range (the span of representable numbers)
and precision (the smallest distinguishable difference between numbers) emerge as vital
considerations.

For our specific neural network inference model, the data’s dynamic range lies between
-120 and 120. It is imperative that our chosen numerical representation can accommodate
this range. Additionally, to preserve model accuracy, the system must achieve a precision
capable of differentiating values with a minimum difference of 0.01.

Given these prerequisites, a 16-bit fixed-point representation was our chosen config-
uration. This selection permitted an even bit distribution, allotting 8 bits to the integer
segment and 8 bits to the fractional segment. The rationale behind this is twofold:

1. Integer Part: Employing an 8-bit integer representation (with one bit reserved for sign)
enables the system to represent values spanning from -128 to 127. This adequately
covers our anticipated data range from -120 to 120, ensuring overflow is a non-issue.

2. Fractional Part: An 8-bit fractional part translates to a resolution of 278, approxi-
mately equal to 0.0039. This precision surpasses our stipulated minimum of 0.01,
guaranteeing that our system can depict values with the necessary precision and, in
turn, safeguarding our model’s inferential accuracy.

This fixed-point configuration aligns seamlessly with the distinct requirements of our
neural networks (CVNN and RVNN alike). Moreover, it taps into the inherent strengths of
FPGAs, such as computational parallelism and efficient arithmetic operations. Through
this astute choice of representation, we ensure the fidelity of our implemented neural
network models while reaping the benefits of the speed and resource efficiencies native to
FPGA-based designs.

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

632

633

634

635

636

637

638

639

640

641

642

Version November 16, 2023 submitted to Journal Not Specified 19 of 40

5.5. FPGA Structure for Our Neural Network Systems 643

In our research, we generated two datasets from the serialized polar-representations e
of MNIST images. The first set, Polar-transformed MNIST with 64 input fields, is referred e
to as PT_MNIST_64. The second, with 128 input fields, is termed PT_MNIST_128. Given our s
target platform, an FPGA development board, there are inherent limitations with respect to e
the number of I/O pins available. To mitigate this constraint, we designed the system to s
process 8 input fields per clock cycle. As a result, the system necessitates 8 and 16 clock e
cycles to fully ingest all the input fields for PT_MNIST_64 and PT_MNIST_128, respectively. s

Each dataset comprises complex-valued data, entailing both real and imaginary compo- e
nents. Consequently, the required I/O pin count doubles. Adopting a 16-bit representation, s
the input field pin requirement is calculated as 8 x 16 x 2 = 256. 653

The flow of data within the system is depicted in Fig. 7(A). In the initial clock cycle, the e
system multiplies the first 8 input values with their corresponding hidden layer weights. s
This weighted sum is subsequently directed to a buffer with adding weighted sum of s
the current batch (CB) to the current register (Reg) . This buffer retains the summation, s
waiting until it assembles the complete set of input fields from a given sample. For instance, s
in the case of the PT_MNIST_64 dataset, the buffer awaits the culmination of 8 cycles to &5
accumulate the entirety of input fields. At the conclusion of the 8th cycle, the weighted e
sums are consolidated to the last register (for example in Fig.7(A) Reg7) and relayed e
through the Activation Function — CReLU for CVNN and ReLU for RVNN. Following s
this, the processed data traverses a multiplier corresponding to the output layer where it'’s e
multiplied with the layer’s weights. It then undergoes another round of accumulation and e
subsequently, another Activation Function. The data flow intricacies for the CVNN FPGA s
implementation are elucidated in Fig. 7(A). 666

The complete source code for our FPGA implementations of the Complex-Valued e
Neural Networks (CVNNSs) and Real-Valued Neural Networks (RVNNS) is provided in the s
Appendix. 669

6. Result and Evaluation of FPGA Implementation 670

In this study, for the FPGA implementation of our neural network models, we em- &1
ployed the Virtex-7 VC707 Evaluation Platform. This platform features the xc7vx485tffg1761-
2 FPGA chip, a creation of AMD Xilinx. The detailed specifications of the chip are presented o
as follows: 67

Table 6. Configuration of the xc7vx485tffg1761-2 FPGA chip

Parameter Value

Device xc7vx485tffg1761-2
Manufacturer AMD Xilinx

Logic Elements | 485,760

DSP Units 2,800

I/0 Pins 700

Supply Voltage | 0.97V - 1.03V

For evaluation and reporting purposes, we did not utilize the actual FPGA hardware. s
Instead, we relied on the behavioral simulation and post-implementation reports provided o
by Xilinx Vivado. o7

Fig. 9 presents the behavioral simulation report for CVNN_64, which refers to the &
Complex-valued Neural Network model implemented on FPGA catering to 64 data points e
of the polar-transformed MNIST dataset. Within the simulation window, the object termed ez
Predicted_class displays the classification outcome for the complex-valued neural net- e
work model tailored for the FPGA, targeting the polar-transformed MNIST dataset with 64 e
data points. Comparable classification outcomes emerged for the other model variations. s

Version November 16, 2023 submitted to Journal Not Specified 20 of 40

Odct
—
e Predicted 0 0 1

» B y_out_imagl0

Figure 9. Behavioural Simulation result of CVNN_64

6.1. Maximum Operating Frequency (Fyay)

The maximum operating frequency, denoted as Fnax, is a crucial metric derived from
the Worst Negative Slack (WNS) present in Vivado’s “Timing Summary Report” post-
synthesis and implementation.

In digital design, slack quantifies the deviation between the expected and actual arrival
times of signals, as defined by the design’s timing constraints. A negative slack is indicative
of a timing violation, suggesting that signals are not reaching their intended destinations
within the desired time frame.

Of all the timing violations, the WNS represents the most pronounced delay across the
entire design. A positive WNS implies that the design adheres to all its timing constraints.
Conversely, a negative WNS is indicative of a breach in timing specifications, necessitating
design modifications.

The effective clock period, adjusted based on the WNS, is computed as:

Adjusted Clock Period = T — WNS

Where T is the intended clock period.
Consequently, Frnax is derived using:

1 1
F = =
P Adjusted Clock Period ~ T — WNS

For illustrative purposes, if the reported WNS is -0.5ns and the target clock period T
is 5ns, the effective clock period adjusts to 5.5ns. This results in a Fnax of approximately
181.82MHz, computed as ﬁ

It’s worth noting that alternative approaches exist to attain the desired target frequency
beyond simply recalculating Fnax based on WNS. However, in the scope of this research, our
emphasis was on determining Fnax using the WNS. Exploring these alternative strategies
might be a point of interest for future work to refine and optimize the design.

During the course of our research, while the above formula provided a theoretical
maximum frequency, we opted for a slightly reduced frequency to instate a safety margin.
This precaution ensures the design remains resilient against potential timing constraint
violations.

Following the generation of the post-implementation Timing reports for all models in
Vivado, we tabulated the results, as shown in Table 7. The table summarizes the maximum
clock period, the derived maximum operating frequency, and the Worst Negative Slack
(WNS) for each of the models.

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

702

703

704

705

706

707

708

709

710

711

712

713

Version November 16, 2023 submitted to Journal Not Specified 21 of 40

Table 7. Post-implementation Timing results for different neural network models on Vivado

Model Max. Clock Period (ns) Max. Freq. (MHz) WNS (ns)
RVNN_64 8 125 0.155
CVNN_64 10.5 95.238 0.096
RVNN_128 8 125 159
CVNN_128 10 100 0.182
RVNN_Raw_MNIST 8 125 0.166

6.2. Benchmarking FPGA Inference Models Against CPU and GPU Platforms

To gauge the performance of our FPGA-based inference models, we benchmarked
them against CPU and GPU-based models. For this comparison, we utilized the Google
Colab platform, executing inference models implemented in the Python programming
language. Below are the specifications of the computational environment we used:

Table 8. Computational environment specifications on Google Colab

Attribute Specification

Platform Google Colab

Operating System | Ubuntu 22.04.2 LTS

CPU Intel(R) Xeon(R) CPU @ 2.00GHz
GPU NVIDIA® Tesla® P4

Python Version 3.10.12

The ensuing table, Table 9, delineates the inference times, in seconds, for various
neural network models. Each model inferred a total of 10,000 MNIST test datasets on both
CPU and GPU environments in Google Colab. Five trials were conducted for each model
and hardware platform, and the average results are presented in the table. Further details
are provided in the Appendix.

6.2.1. Inference time comparison

Table 9. Inference times for neural network models on Google Colab’s CPU and GPU environments

Model Inference Time (CPU, s) Inference Time (GPU, s)
RVNN_64 0.43 0.3
CVNN_64 0.28 0.23
RVNN_128 0.44 0.36
CVNN_128 0.31 0.26
RVNN_Raw_MNIST 0.53 0.35

Table 7 provides insights into the maximum operating frequency for each implemen-
tation. To comprehensively understand the performance of our FPGA-based models, we
derive the total inference time required to classify the 10,000 MNIST test dataset. The
formula to compute this is delineated below:

Infer_time =T x N x S (21)
Where:

e T: Duration of each clock cycle in nanosecond.

* N: Number of clock cycles needed to classify each sample.

. S: Total number of samples, which is 10,000 in this case.
For our dataset configurations:

e CVNN_64 and RVNN_64 each require 8 clock cycles to classify a sample.

e CVNN_128 and RVNN_128 each necessitate 16 clock cycles to complete the classifica-
tion of a sample.

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

Version November 16, 2023 submitted to Journal Not Specified 22 of 40

cPU
GPU
FPGA

10°

1071

Speed (1/ms, log scale)

RVNN_64 CVNN_64 RVNN_128 CVNN_128 RVNN_Raw_MNIST

Figure 10. Speed Across Different Hardware Platforms (Log Scale)

* RVNN_Raw_MNIST requires 49 clock cycles to classify a sample 737
Following our analysis, the inferred times for each model are summarized in Table 10: 73

Table 10. Inference times for neural network models on FPGA

Model TxNxS Inference Time (ns)
RVNN_64 8x8x10,000 640,000
CVNN_64 10.5x8x10,000 840,000
RVNN_128 8x16x10,000 1,280,000
CVNN_128 10x16x10,000 1,600,000
RVNN_Raw_MNIST 8x49x10,000 3,920,000
6.2.2. Inference Time Comparison across CPU, GPU, and FPGA 739

Table 11. Inference Times in milliseconds for Different Models on Various Hardware Platforms

Inference Inference Inference Inference
Models Time (CPU, Time (GPU, Time (FPGA, Time (CPU_2,

ms) ms) ms) ms)
RVNN_64 430 300 0.64 180
CVNN_64 280 230 0.84 210
RVNN_128 440 360 1.28 210
CVNN_128 310 260 1.6 230
RVNN_Raw_MNIST 530 350 3.92 240

Table 11 shows the comparison of inference times in milliseconds for different models 7o
on varisous hardware platforms. To convey the concept of “how fast” a model is, we use
the reciprocal of the inference time. In other words, we computed the “speed” as: 742

1
Speed = —/———— 22
P Inference Time)
This gives us a measure where larger values indicate faster performance. Note that s
for this metric, a higher value is better, which is the opposite of the inference time wherea 74
lower value is better. As shown in Equation 22, the speed is the inverse of the inference 75

time. 746

Version November 16, 2023 submitted to Journal Not Specified 23 of 40

In our comparative analysis of neural network model speeds across CPU, GPU, and
FPGA platforms, several distinct patterns emerged illustrated in the Fig. 10. Most promi-
nently, the FPGA demonstrated superior speeds when compared to both the CPU and
GPU, underscoring its viability for tasks requiring swift computation. The GPU, with its
parallel processing capabilities, showcased higher speeds relative to the CPU, signifying its
prowess in neural network computations. However, it was the remarkable speed of the
FPGA, especially for specific neural network architectures, that was most noticeable.

Diving deeper into the nuances of the model variants, the CVNN_64 and RVNN_64
models displayed considerably greater speeds compared to their CVNN_128 and RVNN_128
counterparts. This observation is intuitive: models with a reduced complexity and fewer
parameters naturally lead to faster computation times. While we did not implement the
RVNN_Raw_MNIST model on FPGA, when juxtaposed with the results from the FPGA models,
it becomes evident that FPGAs substantially outperform the models using the original
MNIST dataset.

This further suggests that the throughput for our CVNNs and RVNNs implemented
on FPGA systems is superior to that of similar networks running on CPU or GPU-based
systems.

In summation, our analysis emphasizes the critical role of hardware selection in
maximizing neural network efficiency. Within this context, FPGAs emerge as an optimal
choice, particularly when compared to models trained on traditional datasets.

6.2.3. Power Consumption Comparison

Understanding the power consumption of neural network models is crucial for their
deployment in real-world scenarios, especially in power-sensitive applications. Our neural
network designs, when implemented on FPGA, yielded power consumption results as
detailed in Table 2.2.

Table 12. Power Consumption for Neural Network Models on FPGA

Model Thermal Power Static Power Power Consumption
(Watt per second) (Watt per second) (Watt per 10,000 frame)
RVNN_64 1.585 0.252 0.001014
CVNN_64 2.585 0.26 0.022167
RVNN_128 1.694 0.253 0.002168
CVNN_128 2917 0.263 0.004656
RVNN_Raw_MNIST 2.53 0.274 0.009917

Interpretation of Power Metrics: Thermal power, often termed as the total on-chip
power, is a summation of dynamic and static power. Dynamic power refers to the average
power consumption during logic utilization and switching activities. Conversely, static
power characterizes the scenario where the device remains active but abstains from any
form of utilization or switching.

From Table 2.2, it is evident that RVINN models are more power-efficient compared
to CVNN models. Moreover, models based on 64 input entries exhibit lower power
consumption than their 128 input counterparts. However, FPGA implementation of Neural
Network model (RVNN_Raw_MNIST) for unprocessed raw MNIST data consumed more
than double power than most expensive neural network model (such as CVNN_128) for
preprocessed data in classification of 10,000 frame of MNIST test dataset.

Comparison with CPU and GPU: Our attempt to directly compare FPGA-based power
consumption with CPU and GPU systems encountered a challenge. Google Colab, which
was employed for CPU and GPU-based designs, doesn’t furnish direct power consumption
metrics. However, resorting to the respective processor datasheets, we discerned their TDP
(Thermal Design Power) ratings. The Intel(R) Xeon(R) CPU @ 2.00GHz employed by Colab
boasts a TDP of 270 watts [? |, whereas its GPU, the NVIDIA® Tesla® P4, has a TDP of 75
watts [?].

747

748

749

750

751

752

753

754

755

756

757

758

759

760

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

Version November 16, 2023 submitted to Journal Not Specified 24 of 40

Further exploration led us to test on a multi-core CPU-based laptop powered by the
11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz processor. This processor’s datasheet
indicates a power consumption of approximately 25 watts in its Low Power Mode [?].

HanJ. etal. [?] developed a spiking neural network model for FPGA platforms, and
similarly implemented it in Python for NVIDIA Tesla P100 GPU. In their experiments pro-
cessing 10,000 frames from the MNIST test dataset, the GPU implementation required 7.96
seconds and averaged 29.6 watts of power consumption. Contrastingly, our CVNN_128
model showcases superior efficiency, consuming merely 2.917 watts per second and com-
pleting the same task in a swift 1.6 milliseconds. This performance not only makes our
system almost 100 times faster than the GPU-based solution but also achieves around ten
times greater power efficiency.

Literature provides further insights. Research shows that contemporary laptops
generally consume power in the range of 8 to 30 watts [?]. Another study, utilizing a shunt
resistor with a laptop’s power supply, revealed that the Intel i7-4820K processor expends
between 10-80 watts, contingent on the task [?].

Comparative analyses between CPU, GPU, and FPGA platforms for identical tasks
have been conducted. One such study suggests that the Intel Core2 QX9650 CPU, NVidia
GTX 280 GPU, and Xilinx xc5vIx330 FPGA consume maximum power of 170 watts, 178
watts, and 30 watts respectively [?]. Another comparison focused on energy efficiency
for various vision kernels. In this study, the utilized CPU and GPU came equipped with
on-board power measuring ICs. The results unequivocally demonstrated that the FPGA
accelerator outperforms both GPU and CPU systems across all test cases [?].

Conclusion: The evidence compiled, both from our own implementations and the
existing literature, robustly underscores FPGA’s prowess in energy efficiency, solidifying
its position as a more power-conscious choice than conventional CPU and GPU systems.

6.2.4. Resource Utilization among different neural network models implemented on FPGA

This section delves into the resource utilization of various neural network mod-
els when implemented on the Virtex-7 VC707 Evaluation Platform, which features the
xc7vx485tffg1761-2 FPGA chip. The neural network models under consideration include
RVNN_64, CVNN_64, RVNN_128, and CVNN_128. In the context of FPGA implementa-
tions, the resources can be described as follows:

¢ LUT (Look-Up Table): Used for implementing combinational logic functions.

e FF (Flip-Flop): Represents sequential logic, storing binary values.

* DSP (Digital Signal Processor): Useful for performing arithmetic operations, espe-
cially multiplication.

¢ IO (Input-Output Port): Interfaces for the FPGA to communicate with external com-
ponents.

* BUFG (Global Buffer): Provides clock and reset signal distribution across the FPGA.

Table 13. Resource Utilization among different neural network models

Resource RVNN_64 CVNN_64 RVNN_128 CVNN_128 RVNN_Raw_MNIST Available
LUT 9,123 17,723 13,122 24,164 20,993 303,600
FF 3,110 5,936 5,703 11,520 16,066 607,200
BRAM - - - - 160 1,030
DSP 485 1,333 469 1,333 507 2,800
10 417 577 417 577 417 700
BUFG 1 1 1 1 1 32

In the analysis of the resource utilization, CVNN_128 consistently demands the most re-
sources, particularly in LUTs and FFs, while RVNN_64 remains the least resource-intensive.
DSP utilization is highest for CVNN_64 and CVNN_128, and IO consumption is fairly

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

Version November 16, 2023 submitted to Journal Not Specified 25 of 40

consistent across models, with a minor edge for CVNN_64. Notably, all models have
minimal BUFG consumption, utilizing only a fraction of what’s available.

6.2.5. Evaluation with Existing Result

Until now, we have come across just one FPGA-based complex-valued neural network
model, published in May 2023. However, it should be noted that this model was not
applied to MNIST or image classification tasks, making it incomparable to our research.

To assess our findings in the context of existing work, we selected two distinct neural
network models (SNN[?] and CNNJ?]) implemented on FPGA for MNIST classification.
In Table 14, we present a performance comparison among these three FPGA-based neural
network models for MNIST digit classification.

Table 14. Comparative Analysis of Different Neural Network Models on FPGA

Models Accuracy Inference Time Power (watt per second) (watt per 10,000 frame)
SNN 90.39% 1s 1.131W 1.131W

CNN 94.43% 0.127s 45W 0.5715W
CVNN_128 88.3% 0.0016s 2.91W 0.004656W
CVNN_64 87.0% 0.00084s 2.58W 0.002167W

In recent publications, a spiking neural network (SNN) by Zhang J et el. [?] pub-
lished in May 2023 and a convolutional neural network (CNN) by Parra D. et el. [?]
published in October 2023 achieved accuracy rates of 90.39% and 94.43%, respectively, on
the MNIST test dataset. Our model, CVNN_128, achieved an accuracy of 88.3% on the same
dataset. Comparing power consumption, the SNN, CNN, and CVNN_128 models con-
sumed 1.131W, 0.5715W, and 0.004656W, respectively, for the 10,000 frames of the MNIST
test dataset. Despite its slightly lower accuracy, CVNN_128 stands out for its significantly
lower power consumption (almost 122 times less than CNN and 240 times less than SNN)
and exceptional speed (thousands of times faster than SNN and over hundred times faster
than CNN).

Table 15. Resource Utilization for Different Neural Network Models on FPGA
Resource SNN CNN CVNN_128

LUT 73,677 6,373 24,164
LUTRAM 3,669 71 0
FF 32,853 12,470 11,520
BRAM 0 0 0
DSsp 10 93 1,333
IO 419 18 577
BUFG 1 0 1

Table 15 provides a comparison of resource utilization on FPGA for the SNN, CNN,
and CVNN_128 models. It’s evident that the SNN consumes more resources than CNN and
CVNN. CNN exhibits the most efficient resource utilization among them. It’s important
to note that these are three distinct models, each optimized differently, making a direct
comparison challenging. Nevertheless, the resource utilization table offers a general idea of
the differences in their designs.

In summary, our CVNN_128 model showcases remarkable improvements in both
energy efficiency and processing speed when compared to recently published models. We
believe that the integration of polar representation for 2D images and complex-valued
neural networks on FPGA holds great promise for energy-constrained environments,
offering faster processing capabilities.

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

Version November 16, 2023 submitted to Journal Not Specified 26 of 40

7. Discussion and Conclusion

This research set out to explore the implementation of CVNNSs for polar-represention
of 2D image classification on FPGA. The primary objectives were to assess the effective-
ness of CVNNs in this context and to evaluate the performance benefits of FPGA-based
implementations.

The results indicate a notable performance in the classification accuracy of the polar-
represented MNIST dataset using CVNNSs. In our comparative analysis against Real-
valued Neural Networks (RVNNSs), we observed that the CVINN model with 128 input
datapoints (CVNN_128) achieved a classification accuracy 0.8 percent higher than its RVNN
counterpart, RVNN_128. Furthermore, with a more reduced number of input datapoints
(64 datapoints), CVNN_64 exhibited a 1.1 percent higher classification accuracy when
compared to RVNN_64 in the context of processing polar-represented MNIST handwritten
digit test dataset. These findings align with our initial hypothesis, demonstrating that
complex-valued networks excel in handling polar-represented image data. This superiority
arises from CVNN's ability to learn correlations between magnitude and phase information
in complex data, resulting in improved performance compared to RVNNSs. The use of
FPGAs for implementation further enhanced the computational efficiency, showcasing the
potential of hardware acceleration in neural network processing.

Comparatively, the FPGA implementation demonstrated improvements in processing
speed and power efficiency. Our research reveals that our robust design, CVNN_128,
is approximately 200 times faster than a CPU-based computer running CVNN and 150
times faster than a GPU-based computer for MNIST digit classification. Additionally, it
demonstrates lower power consumption when compared to CPU and GPU-based systems,
as well as other neural network models implemented on FPGA for MNIST digit classi-
fication.This supports the hypothesis that FPGA-based systems can provide significant
advantages in specific neural network applications, particularly in scenarios where low
power consumption and high-speed computation are crucial.

7.1. Limitations of the Study

The study was limited to the MNIST handwritten digits dataset, which may constrain
the generalizability of the findings to other types of datasets.

7.2. Recommendations for Future Research

Further research should extend the validation of polar-represented image classification
using Complex-Valued Neural Networks (CVNNSs) beyond the MNIST dataset to include
a wider array of 2D images. This expansion would test the model’s generalizability and
effectiveness across diverse image sets.

Exploring the use of Spiking Neural Networks (SNNs) for polar-represented image
data also presents a valuable opportunity. A comparative analysis between SNN and
CVNN performance could offer deeper insights into the potential benefits of each neural
network type for specific image classification tasks. Since the reprocessing technique was
primarily thought for SNNs.

Finally, the optimization of CVNN implementation on FPGAs warrants continued
effort, particularly through enhanced pipelining techniques, which could significantly
improve computational throughput and energy efficiency. Such advancements could bring
FPGA-based CVNN:Ss to the forefront of practical applications, where resource optimization
is paramount.

7.3. Conclusion

This research highlights the possibilities of using polar representation of 2D images
and complex-valued neural networks through FPGA-based implementations for image
classification tasks. The results provide valuable insights into the realm of neural network
acceleration and pave the way for further exploration into hardware-accelerated machine
learning.

862

863

864

865

866

867

868

869

870

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

Version November 16, 2023 submitted to Journal Not Specified 27 of 40

Author Contributions: “Conceptualization, M.A. and L.Z.; methodology, M.A. and L.Z.; software,
M.A.; validation, M.A. and M.E.H.C.; formal analysis, M.A.; investigation, M.A. and M.EH.C.;
resources, L.Z.; data curation, M. A.; writing—original draft preparation, M.A.; writing—review and
editing, L.Z. and M.E.H.C.; visualization, M.A; supervision, L.Z.; project administration, L.Z.; All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: N/A

Informed Consent Statement: N/A

Data Availability Statement: Data sharing not applicable
Acknowledgments: N/A

Conflicts of Interest: The authors declare no conflict of interest.

913

914

915

916

917

918

919

920

921

922

923

Version November 16, 2023 submitted to Journal Not Specified

28 of 40

Abbreviations

The following abbreviations are used in this manuscript:

FPGA Field-Programmable Gate Array

MNIST Modified National Institute of Standards and Technology
ASIC Application-Specific Integrated Circuit
DFT Discrete Fourier Transform

CVNNs Complex-Valued Neural Networks
RVNNs Real-Valued Neural Networks

SNN Spiking Neural Network

VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
DFT Discrete Fourier Transform

GPU Graphics Processing Unit

CPU Central Processing Unit

MLPs Multi-Layer Perceptrons

RNNs Recurrent Neural Networks

CNNs Convolutional Neural Networks

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

Version November 16, 2023 submitted to Journal Not Specified 29 of 40

Appendix A. Polar-coordinate representation details o2
Appendix A.1. Logarithmic Transform 043

Pixel intensity perception in the human visual system is non-linear. Contrary to o
a straightforward linear response, the human eye exhibits a logarithmic sensitivity to s
brightness variations. This implies that the perceptual distinction between two pixel s
intensities doesn’t align directly with their numerical disparity. In essence, the human o
eye is more adept at discerning variations in low-intensity regions compared to those in s
brighter or high-intensity areas. Such an observation is supported by the Weber-Fechner s
law[?]. With this understanding, numerous technologies tailored for image processing o
are designed to optimize visuals for human perception. To achieve this, we transitioned o
the image encoding from a 0-256 scale to a 0-8 level priority encoding. The calculation o
of log, (P) = 8 is employed to identify pixels with the highest intensity level, as depicted s
in Fig. Al. The priority encoding technique notably amplifies the contrast of the source o

images. 955
Image O Image 1 Image 2 Image 3 Image 4

Image 5 Image 6 Image 7 Image 8 Image 9

Figure A1. 0-9 MNIST handwritten digits with level-8 intensity

Appendix A.2. Highlighted Contour 956

Following the logarithmic transformation to an eight-level intensity, all intensity o
levels, with the exception of the 8th level, are reduced to zero, resulting in a prominently s
highlighted contour. This contour effectively captures and depicts the most crucial details o5
and shapes[?], as illustrated in Fig. A2. By nullifying other intensity levels, there is o0
a significant reduction in data volume, thereby enhancing the efficiency and speed of o

subsequent algorithms. %62

Appendix A.3. Downsampling 963

Downsampling in two-dimensional imagery can be conceptualized as a spatial reduc- o4

tion, where the resolution is systematically decreased across both dimensions[?]. %65

In 2D image downsampling, an image matrix I(x, y) is reduced to I;(x’, ") using: 966
Li(x",y") = I(Dx x X', D, x y/') (A1)

Where D, and D, are the down-sampling factors for width and height, respectively.
In the current work, given that the MNIST images possess a resolution of 28 x 28, s
we adopted two specific down-sampling approaches. For a dataset encompassing 64 data o
points, the down-sampling coefficients were designated as Dy = D, = 2. For a dataset of oo
128 data points, the coefficients were adjusted to Dy = Dy = %. The rationale and intricacies o
behind these choices are pivotal to our research objectives and will be elaborated uponin o

Version November 16, 2023 submitted to Journal Not Specified 30 of 40

Image 0 Image 1 Image 2 Image 3 Image 4
Image 5 Image 6 Image 7 Image 8 Image 9

Figure A2. 0-9 MNIST handwritten digits with level-8 intensity and highlighted contour

Image 0 Image 4

Figure A3. 10 MNIST level-8 intensity images after down-sampled

the following sections. Fig. A3 depicts the 0-9 MNIST numbers after down-sampling with
a factor of 4/3.

Appendix A.4. Polar Coordinate Representation

The polar transform of a 2D image shifts the image’s representation from the Cartesian
coordinate system to the polar coordinate system. In the Cartesian system, each pixel’s
position is denoted by x and y coordinates. In contrast, in the polar system, pixel locations
are characterized by magnitude p and phase 0. Here, the magnitude signifies the radial
distance of a pixel from the center of the polar plane, while the phase indicates the pixel’s
angle or orientation.

The polar representation offers several advantages in image processing and analysis.
For instance, the polar transform is instrumental in frequency analysis and pattern recogni-
tion within images. In this context, the radial distance in the polar plane can be interpreted
as a frequency magnitude, and the pixel’s orientation as its phase. These attributes are
beneficial for tasks such as noise reduction, feature segmentation, and image compression
[?]. Moreover, the polar format accentuates radial lines and concentric circles, enhancing
the visualization of textures, facilitating fingerprint analysis, and aiding in object detection
within an image [?].

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

Version November 16, 2023 submitted to Journal Not Specified 31 0f 40

In the process of converting image coordinates from Cartesian to polar representation, oo

given an image’s Cartesian coordinates (x,y) with the origin centered in the image, the o
corresponding polar coordinates (p, f) are determined using the equations 992

and 993

6 = arctan2(y, x).

Initially, the image’s dimensions are ascertained, and its center is computed. A meshgrid, o
representing the x and y coordinates of each pixel, is then generated and adjusted to have s
the origin at the image’s center. Subsequently, for each pixel, the polar coordinates are s
calculated. Only pixels with intensity values greater than 0 are considered, and their corre- o7

sponding polar coordinates are stored in the theta_rho_pairs list. This transformation, s
implemented in Python with the NumPy library, efficiently captures the polar coordinates s
of all non-black pixels in the image. 1000
Algorithm A1 Cartesian to Polar Conversion Algorithm
1: procedure CARTESIANTOPOLAR(img)
2: rows <— img.height
3 cols < img.width
4: centerX < cols/2
5: centerY < rows/2
6 X, Y « CreateMeshgrid(1 to cols, 1 to rows)
7 X <= X — centerX
8 Y < centerY —Y
9: f < CalculateAngle(Y, X)
10: p + CalculateDistance(X, Y)
11: theta_rho_pairs < EmptyList()
12: for i from 0 to rows — 1 do
13: for j from 0 to cols — 1 do
14: if img][i, j] > 0 then
15: theta_rho_pairs.append([0[i, j], pli, j]])
16: end if
17: end for
18: end for
19: return theta_rho_pairs
20: end procedure

Following the polar transformation, we subjected the magnitude values of the image 100

data to normalization. This step ensures that the magnitude values reside within a desig- 100
nated range, establishing uniformity in the radial distances. This uniformity is crucial for 10
subsequent computational processes and offers enhanced visualization clarity. 1004

In the polar representation of an image, it is depicted as a sequence of complex iuws

exponential values, denoted as P(p,0) = pe'®. In this context, § stands for the angle or s
phase, spanning from —7 to 77, and p indicates the magnitude or radial distance. 1007

Histogram Analysis: To select the optimal number of data points for the serialization 100

and Fourier Transform of polar-transformed images, we performed a histogram distribution 10
analysis. This analysis utilized 10,000 test images and 60,000 training images to assess the 100
number of data points present in each image. 1011

The histograms presented in Fig. A5 elucidate the distribution of data points for both 102

training and testing images. Upon close inspection of these figures, it becomes evident 103
that the predominant number of data points for both sets of images hovers around 150. In 1014
light of this observation, an optimal data point threshold, N = 128, was established for 1us
subsequent analyses, a decision informed by the histogram assessments. 1016

Version November 16, 2023 submitted to Journal Not Specified

32 0f 40

Figure A4. Illustration of Polar transformed MNIST 0-9 images

Frequency (Number of image)

4000

3000

2000

1000

Distribution of number of data points for train images

Distribution of number of data points for test images

100 125
Number of data points

Frequency (Number of image)

700

600

@«
=
5}

5
1]
8

w
8
S

N
S
S

100

80 100 120
Number of data points

Figure A5. Distribution of data points for all train and test images

Version November 16, 2023 submitted to Journal Not Specified 33 of 40

Figure A6. Polar transformed 0-9 MNIST image where N=128, p=[0,1]

Appendix A.5. Zero-Padding and Decimation 1017
To standardize the data point counts across images: 1018
* Images with fewer than 128 data points were subjected to zero-padding to achieve a 109
consistent count of 128. 1020
* On the other hand, images with data points surpassing 128 underwent decimation to 10z
bring their count down to the stipulated 128. 1022

The rationale behind setting N = 128 was multifaceted. Opting for a threshold of 150 102
would have necessitated extensive zero-padding for a vast number of images, potentially 102
introducing extraneous noise. Conversely, a threshold considerably below 128 risked 1os
omitting vital image information. The selected threshold of 128 adeptly balances these 10
considerations, ensuring data uniformity across images while retaining their inherent 1o
distinctiveness. The combined approach of zero-padding and decimation guarantees that 10
all images, irrespective of their original dimensions or data point counts, adhere to this 102
standardized threshold. 1030

It is important to highlight that following the extraction of the highlighted contour 10
from the 2D MNIST image, and before proceeding with the polar transformation, an 103
intermediate decimation step was introduced. At this juncture, a decimation factor of % 1033
was applied, facilitating the selection of 128 data points for our subsequent analysis. This 103
choice was informed by our earlier observations and the need for a balanced representation 13
of the image data. In a similar vein, a decimation factor of 2 was employed to refine our 1
selection further to 64 data points. This additional selection was made to provide a more 103
compact representation, while still capturing essential image features. Consequently, both 103
128 and 64 data points were chosen for in-depth analysis. These two distinct data point 1
sets, 128 and 64, were uniformly adopted throughout our research, ensuring a consistent 10
methodology and laying the groundwork for comparative evaluations. 1001

Fig. A6 illustrates the polar-transformed MNIST images, ranging from 0 to 9, after 1o
selecting 128 data points. Furthermore, as observed in Fig. A7, even with a reduced set of 104
64 data points, the visualization still conveys discernible information. 1044

Appendix A.6. Serialization 1045

The primary motivation behind the polar transformation of 2D MNIST images was 10
to devise a phase encoding technique tailored for the spiking neural network (SNN). In 107
this approach, individual spiking neurons symbolize unique frequency components of the 10
image. Notably, phase encoding has demonstrated a significant speed advantage over rate 10
encoding [?]. 1050

Version November 16, 2023 submitted to Journal Not Specified 34 of 40

eeo\se e
o e s om0
w

Figure A7. Polar transformed 0-9 MNIST image where N=64, p=[0,1]

While our study does not delve into the implementation of SNNs, our aim is to harness 105
this encoded data within a complex-valued neural network. This will allow us to gauge 1=
both the efficacy of the encoded data and the performance of our model. The serialization 105
of the polar-represented image is a two-fold process. Initially, the polar data is translated to 105
its complex representation using the Euler’s formula: 1055

z=pxe"
Here, z stands for the complex number, p represents the magnitude, and 6 is the angle in 1056
polar coordinates [?]. 1057
Subsequently, the Discrete Fourier Transform (DFT) is applied. DFT serves as a 1o
mathematical tool that transforms a sequence (typically time-domain signals) into its s
constituent frequency components. The outcome is a series of complex numbers, each 10
signifying the amplitude and phase of a specific frequency component in the original 16
sequence. In our methodology, this transformation yields N complex coefficients using the 10

formula: 1063
N=1 i 27tkn
X[k] = Z x[n]-e”tN (A2)
n=0
Where: 1064
* X[k] denotes the output in the frequency domain corresponding to the frequency index 1o
k. 1066
e x[n] represents the time domain samples. 1067
* Nis the total number of these samples. 1068
¢ nisan index running through the time samples, ranging from 0 to N — 1. 1069
* kisanindex for the frequency components, also ranging from 0 to N — 1. 1070
Appendix A.7. Complex-valued Neural Network (CVNN) implementation 1071

CVNNSs represent a specialized class of neural networks that operate on complex 1o
numbers, encompassing both real and imaginary components [?]. While conventional 1o
neural networks primarily deal with real-valued data, CVNNs have gained prominence 1o
in applications where data inherently exhibits both magnitude and phase information, 1o
especially those involving signals, waves, or data with phase information. The deployment 17
of complex numbers within neural networks is of particular relevance to this research, 1o
as it addresses the unique challenges posed by the preprocessed MNIST handwritten 107

Version November 16, 2023 submitted to Journal Not Specified 35 of 40

0 1 2 3 4

10 20

b 10
0 10 4
0 0 0
-201 0

110 110

120
=401 +10 1204 120
—604 150 130 140 1304

0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

5 6 7 8 9
20 10

| 104

10 . o
0 041 0

10 10 1%

2% 410
120 440

20 1201 104

~40 1] 4301 Jeod!
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

Figure A8. DFT coefficient (magnitude) - N=128

R I o
(i N MWW | ‘NLZ:ZN‘ﬁwmvmhwww S
M 121)] MMM . :
_:::; HWJ“N‘"!MNWM N AN : WMW N f\/NW\M |

Figure A9. DFT coefficient (Phase) - N=128

Version November 16, 2023 submitted to Journal Not Specified 36 of 40

digits dataset. In the context of this study, the relevance of CVNNs stems from their
intrinsic capability to effectively process complex-valued data. The research is focused
on the preprocessed MNIST dataset, which undergoes a transformation from Cartesian

to polar coordinates, followed by serialization using the discrete Fourier transform (DFT).

This transformation equips the dataset with complex numbers, enabling a more compact
representation while retaining critical phase information, which is essential for character
recognition tasks [?].

1079

1080

1081

1082

1083

1084

1085

Version November 16, 2023 submitted to Journal Not Specified 37 of 40

Training and Validation Loss

1.29

1.04

0.6 q

0.4

—— Training Loss
—— Validation Loss

10 20 30 0 50
Epochs

Training and Validation Accuracy

0.90 1

0.85 1

Accuracy
o
=3
o

o
~
v

0.70 1

—— Training Accuracy
—— Validation Accuracy

10 20 30 0 50
Epochs

Figure A10. Training and Validation Metrics for CVNN Model with 128 datapoints of serialized
polar-represented MNIST digit dataset

Appendix B. CVNN Extra
Appendix B.1. Training and Validation Results

The Fig.A10 illustrates the training and validation metrics over 50 epochs for a
complex-valued neural network applied to serialized polar-representation MNIST digit
dataset with 128 datapoints.

1. Training and Validation Loss:

The blue trajectory represents the training loss, which exhibits a consistent decre-
ment over the epochs. This is indicative of the model’s proficiency in assimilating
patterns from the training dataset.

The red trajectory symbolizes the validation loss, which also manifests a descend-
ing trend. This infers that the model is generalizing effectively on unseen data
without succumbing to overfitting. The close convergence of the training and
validation loss trajectories is propitious, suggesting a balanced bias-variance
trade-off in the model.

2. Training and Validation Accuracy:

The blue trajectory in the subsequent graph portrays the training accuracy, which
escalates as the epochs progress. This insinuates an enhancement in the model’s
prediction accuracy on the training dataset.

The red trajectory illustrates the validation accuracy. The uniform ascent of this
trajectory implies continuous improvement in the model’s performance on the
validation set. The close tracking of the validation accuracy with the training
accuracy further corroborates the absence of overfitting in the model.

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

Version November 16, 2023 submitted to Journal Not Specified

38 of 40

Table A1. Classification Report for CVNN Model with 128 datapoints of serialized polar-represented

MNIST digit dataset
Precision Recall F1-Score Support
0 0.92 0.92 0.92 980
1 0.95 0.95 0.95 1135
2 0.88 0.91 0.90 1032
3 0.87 0.83 0.85 1010
4 0.85 0.89 0.87 982
5 0.84 0.84 0.84 892
6 0.95 0.89 0.92 958
7 0.92 0.86 0.89 1028
8 0.79 0.84 0.81 974
9 0.86 0.87 0.86 1009
Accuracy 0.88 10000
Macro Avg 0.88 0.88 0.88 10000
Weighted Avg 0.88 0.88 0.88 10000

Similar Training and Validation result were found with for model CVNN_Polar_64 with

64 datapoints.

Appendix B.2. Classification Metrics

In the evaluation of the CVNN model tested on 128 datapoints of the serialized polar-

represented MNIST digit dataset, consisting of 10,000 handwritten digit samples ranging
from 0 to 9, the model achieved an overall accuracy of 88%. This high accuracy is reflected

across individual classes showed in the Table A1l and Figure A11, with particularly com-
mendable performance for digits 0 and 1, boasting precision and recall scores above 92%.
However, certain digits, notably 8 and 3, posed challenges for the model, as evidenced by
their relatively lower precision and recall values of 79% and 83% respectively. The F1-Score,

which harmoniously combines both precision and recall, remained consistently high across

all digits, further underscoring the model’s balanced performance. The congruence be-

tween the macro and weighted averages for precision, recall, and F1-Score at 88% suggests
that the model’s efficacy is consistent across classes, irrespective of their sample size in the

dataset.

Similar classification result were found with for model CVNN_Polar_64 with 64 data-

points.

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

Version November 16, 2023 submitted to Journal Not Specified

39 of 40

True label

iR 906 4 23
1A 1 41
2 9 28
31 25 32
4 4 6 14
51 10 43
61 26
74 2 16 28 13 10 4
8434 4 23 24 14 29
94 6 8 4 9 62 5

o 1 2 3 4 5 7 8

Predicted label

1000

800

600

- 400

200

Figure A11. Confusion metrics for CVNN Model with 128 datapoints of serialized polar-represented

MNIST digit dataset

Version November 16, 2023 submitted to Journal Not Specified 40 of 40

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 1125
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 112

people or property resulting from any ideas, methods, instructions or products referred to in the content. 1127

	Introduction
	Related Workd
	Research Objectives
	Outline

	Cartesian to Polar coordinate representation
	Complex-valued Neural Network (CVNN) implementation
	Complex Numbers in Neural Networks
	Architectural Choices for CVNN:
	CVNN Model
	Training Procedure and Hyperparameters
	The parameters for the feedforward model are configured as follows:
	The training parameters for the CVNN are configured as follows:

	Experimental Setup
	Hardware and Software Environment
	Dataset and Model Variations
	Dataset Details

	Results and Performance Evaluation
	Accuracy Metrics
	Graph Interpretation
	Performance Insights
	Justification for Selection of 20 Neurons

	Comparison with Real-Valued Neural Networks
	Objective & Hypothesis
	Models Overview:
	Processing Complex Data in Real-Valued Networks
	Performance Insights
	Testing accuracy cross various neuron counts
	Comparison with Contemporary Research

	Conclusion

	FPGA Implementation of CVNNs
	FPGA's Role in Neural Network Acceleration
	Complex-Valued Neural Network Inference Model
	FPGA Implementation of Inference Model
	Adder
	Multiplier
	Activation Functions

	Fixed-Point Quantization for Neural Network Inference on FPGA
	FPGA Structure for Our Neural Network Systems

	Result and Evaluation of FPGA Implementation
	Maximum Operating Frequency (Fmax)
	Benchmarking FPGA Inference Models Against CPU and GPU Platforms
	Inference time comparison
	Inference Time Comparison across CPU, GPU, and FPGA
	Power Consumption Comparison
	Resource Utilization among different neural network models implemented on FPGA
	Evaluation with Existing Result

	Discussion and Conclusion
	Limitations of the Study
	Recommendations for Future Research
	Conclusion

	Abbreviations
	Polar-coordinate representation details
	Appendix A
	Logarithmic Transform
	Highlighted Contour
	Downsampling
	Polar Coordinate Representation
	Zero-Padding and Decimation
	Serialization
	Complex-valued Neural Network (CVNN) implementation

	CVNN Extra
	Appendix B
	Training and Validation Results
	Classification Metrics

