Pre prints.org

Article Not peer-reviewed version

Integrating Statistical Simulation
and Optimization for Redundancy
Allocation in Smart Grid
Infrastructure

Bahram Alidaee , Haibo Wang , Jun Huang, Lutfu Sagbansua :

Posted Date: 22 November 2023
doi: 10.20944/preprints202311.1405.v1

Keywords: Redundancy allocation; generalizes assignment problem; simulation; smart grid infrastructure

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/3224774
https://sciprofiles.com/profile/2165099
https://sciprofiles.com/profile/3102594

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1405.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Integrating Statistical Simulation and
Optimization for Redundancy Allocation in
Smart Grid Infrastructure

Bahram Alidaee !, Haibo Wang 2, Jun Huang 3 and Lutfu S. Sua 4*

! University of Mississippi; balidaee@bus.olemiss.edu

2 Texas A&M International University; hwang@tamiu.edu
3 Angelo State University; jun.huang@angelo.edu

4 Southern University and A&M College
Correspondence: lutfu.sagbansua@subr.edu

Abstract: It is a critical issue to allocate redundancy to critical smart grid infrastructure for disaster recovery
planning. In this study, we present a framework to combine statistical prediction methods and optimization
models for the optimal redundancy allocation problem. First, we develop statistical simulation methods to
identify critical nodes of very large-scale smart grid infrastructure based on the topological features of
embedding networks, and then present a linear integer programming model based on generalized assignment
problem (GAP) for redundancy allocation of critical nodes in smart grid infrastructure. The model is
specifically implemented in the context of smart grid infrastructure. The findings demonstrate that the
combined approach of statistical simulation and optimization effectively addresses the size limitations inherent
in a sole optimization approach. Notably, the optimal solutions for redundancy allocation in large grid systems
highlight that the cost of redundancy is only a fraction of the economic losses incurred due to weather-related
outages.

Keywords: redundancy allocation; generalizes assignment problem; simulation; smart grid
infrastructure

1. Introduction

The advent of the Smart Grid, akin to previous technology revolutions in telecom and the
Internet, marks a crucial milestone in modernizing our electric grid. With its implementation, we
harness technology to enhance the efficiency, reliability, and affordability of electricity distribution.
This transformation shifts our electric system from a centralized, producer-controlled network to a
more interactive, consumer-centric model.

Addressing the grid's declining reliability, marked by a surge in outages, the Smart Grid
becomes imperative. Currently, these interruptions cost Americans an estimated $150 billion
annually. Furthermore, with a projected 30% increase in nationwide electricity demand by 2030,
investments of around $1.5 trillion over the next two decades are essential for infrastructure
development [1]. By fostering this transition to a smarter grid — a process already underway — and
eventually adopting the Smart Grid, electricity will become more affordable, and our environment
will benefit from reduced impact. During this transformative period, ensuring fairness, cost-
effectiveness, and adequate customer protection will be paramount. The Smart Grid represents a
significant leap forward, utilizing data in megabytes to move megawatts of electricity efficiently and
reliably into the 21st century [2]. A key feature of the Smart Grid is its ability to conduct continuous
self-assessments, allowing it to prevent disruptions proactively rather than merely reacting to them.

Ever-increasing demand coupled with increasing energy prices have prompted the energy
industry to develop intelligent strategies for energy tracking, control, and conservation [3]. Electricity
disruptions like blackouts can trigger cascading failures affecting banking, communications, and
security, particularly in winter when heating is crucial. A Smart Grid enhances power system
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resilience, ensuring preparedness for storms, earthquakes, and emergencies. Its bidirectional
communication reroutes power automatically during outages, minimizing their impact. Smart Grid
technology swiftly detects and isolates outages, prioritizing essential services for swift recovery. By
integrating customer-owned generators, vital facilities remain operational during crises. Moreover,
it addresses aging infrastructure, boosts energy efficiency, raises consumer awareness, and enhances
national security, utilizing locally sourced, resilient electricity. On the other hand, interoperability
among various grid components, data handling and management across wide geographies with
different environmental conditions pose challenges for the traditional smart grids [4].

As systems become increasingly complex and critical to enterprise, the need for optimal
redundancy becomes more important to business continuity. Systems failures can stem from a wide
variety of causes (refer to the survey article [5]) ranging from the large-scale natural or human-caused
disasters that can disrupt an entire region due to a simple electronic part failing. In a recent article,
Wang et al. [6] noted that “diversification is one of the most effective approaches to safeguard
multitier systems against attacks, failure, and accidents. However, designing such a diversified
system poses challenges due to factors such as stochastic user and attacker behaviors, combinatorial-
explosive solution space, and multiple conflicting design objectives.” The authors further noted,
“diversification is the application of different means for performing a required function. It is currently
the best defense against attacks on the flaws of any particular software component.” Smart Grid
redundancy is a diversification technique that aims to prevent information technology in the
occurrence of a disaster. Smart Grid heavily depends on the IT infrastructure for operations such as
cloud computing and edge computing.

In additional to the tens of millions of computers and servers heavily depend on the reliability
of IT infrastructure using cloud computing paradigm, the development in the 5G cellular network,
Internet of Things (IoT) applications of smart home, smart city, smart transportation of auto-driving
has made edge computing an indispensable infrastructure to connect cloud and end users. The
emergence of the IoT coupled with the advances in energy management sphere has resulted in the
concept of the smart grid as the Internet of Energy (IoE). Krishnan and Jacob [7] propose a hybrid
technique in developing an Energy Management System (EMS) for distribution system with IoT
framework. As a popular technology, IoE integrates various forms of energy and leverages the
internet to collect, organize, optimize, and manage energy networks. Mishra and Singh [8] study
energy management techniques in smart cities using IoE in an effort to reveal improvements in clean
energy processes.

Edge computing utilizes the resource of cloud servers to direct the data and computing services
to a real-time low-latency system at the edge of a network. For example, 5G network in the edge
computing infrastructure provides high-bandwidth access to end users on location services,
augmented reality, video analytics and data caching [9]. Unlike the data centers of cloud computing,
the servers in edge computing of IOT systems must be located close to the end users in order to
provide a real-time high bandwidth and low-latency services. Thus, redundancy allocation in edge-
to-cloud computing focuses on the network structure of the end user community such as critical
nodes and links of social connectivity [10]. The network structure of the user community can be
revealed via community detection methods [11]. ML models are popular methods of community
detection in edge computing [12,13]. The IoT systems follow the power law distribution [14-17].
Patsidis et al. [18] employ an architecture which includes edge-cloud communication to extract data-
driven insights from microgrids.

In an article addressing the economics modellings of information security, Gordon, and Loeb
[19] underscored that an information set is characterized by the loss conditioned on a breach
occurring, the probability of a threat occurring, and the vulnerability, defined in the model as the
probability of a threat once realized. Interruptions in the services of large-scale service-oriented
companies can potentially result in losses amounting to hundreds of millions of dollars per day in
revenue. Consequently, these companies must implement specific disaster recovery or disaster
avoidance strategies [20].
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Cost is always a concern and is part of the redundancy model. Organizations face the challenge
of determining the financial allocation for disaster recovery and, within that, the proportion to be
allocated to Smart Grid redundancy. Due to the costly nature of redundancy allocation resources
companies must select the best options they have to protect their assets [21,22]. It is economically
efficiency to protect the critical nodes and links with redundancy resource. Multiple mathematical
models have been proposed to identify the critical nodes and links in the Smart Grid (see Table 1).

Table 1. Mathematical Models for Identifying Critical Nodes and Links.

Class Methods Reference
Entropy-based Graph neural network [23]
Node Deletion Mixed integer programming [24]
Network interdiction Mixed integer linear programming  [25]
maximum k-cut problem Simulated Annealing [26]

The mathematical models above encounter challenges when it comes to identifying critical
nodes and links in larger-scale problems. Recently, statistical models have been applied to identify
the critical nodes and links in very large networks such as social networks and biology networks
[27]. These models encompass both model-based and distribution-based methods. They utilize the
topological features of the embedding networks for model training and validating the outcomes of
critical nodes and links (See Table 2).

Table 2. Mathematical Models for Identifying Critical Nodes and Links.

Class Methods Reference
Model based Structure-mechanics [28]
Distribution based Tracy-widom distribution [29]

Once the critical nodes are identified, redundancy resources are allocated based on the
importance of components (nodes) in smart grid infrastructure. The redundancy allocation problem
(RAP) is typically formulated with two alternative objectives: maximizing the reliability within the
budget constraints or minimizing the system costs to satisfy the minimum system reliability.
Kulturel-Konak et al. [30] proposed two integer programming (IP) models to address these
alternative RAP objectives and pointed out that these IP models can be converted into 0-1 IP with
additional binary decision variables. Shao [31] introduced a 0-1 integer programming solution
formulation for RAP. However, this model is highly non-linear and complex. The author provided a
specialized dynamic programming procedure for obtaining optimal solutions.

This paper presents a novel linear integer programming approach to address RAP based on the
generalized assignment problem (GAP). Over the past few decades, a variety of theoretical and
heuristic findings have emerged for GAP, which can be readily applied to the Smart Grid redundancy
allocation problem (see for example, [32,33], for a recent survey). Devi et al. [34] conducted an
extensive literature review and classified 280 papers on RAP according to the methods employed.
Our model here is more general than GAP with applications extending to various scenarios,
including multi-skilled workforce assignment [35], the assignment of unmanned aerial vehicles
(UAV) [36], and optimal preventive maintenance scheduling in manufacturing environment for
related applications and heuristics, see the recent paper by [37] and its references). Two early
development of the model regarding multi-skilled workforce applications with some heuristics also
may be found in [38,39]. The rest of the paper is organized as follows. In section 2 we first present a
framework of combining statistical simulation and optimization model to identify the critical nodes
in the edge computing infrastructure using a power grid system as an example, then optimize the
redundancy resource allocation with a linear integer programming model. In section 3, we report the
computational results in critical nodes. Section 4 summarizes conclusions drawn from this study.
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2. Materials and Methods

2.1. Statistical simulation and optimization framework

Statistical simulation for critical nodes is based on the random matrix theory that uses the
probability distribution of eigenvalues such as the Tracy Widom (TW) distribution [29].

The critical nodes detection problem can be formulated as a special case of clustering, where
critical nodes are assigned to a particular cluster, while the remaining nodes form some disconnected
clusters. The number of singleton clusters increases as the number critical nodes increases.

The largest eigenvalues of the adjacency matrix associated with the critical nodes cluster has the
TW distribution. Instead of using parametric bootstrap to estimate the TW distribution, it is
computationally efficient to run a few simulations to compute the mean and the variance of the
distribution. Figure 1 illustrates the statistical simulation-optimization framework used in this study.

Statistical Simulation

AN
Compute Eigenvalues ] ( Tracy-Widom
Distribution
N/
Optimization Models

Figure 1. Statistical simulation-optimization framework.

To compute the eigenvalues of the graph network, we use spectral clustering method. Initially,
the Laplacian matrix is computed, followed by generating eigenvectors. The eigenvectors form an n
by n matrix, where each row represents a node, and each column stores an eigenvalue. These
eigenvalues are sorted incrementally with those close to zero being removed.

Once the eigenvalues are sorted, the largest k eigenvectors are chosen and stored in a new n by
k matrix, which is subsequently normalized. We can assess the TW distribution on the new matrix of
eigenvalues. If the matrix of eigenvalues follows the TW distribution, the clustering method
described below is applied to the normalized matrix of eigenvalues to obtain the labels and scores of
each bank.

The simulation yields a normalized matrix of eigenvalues that can be used to compute the value
of signed weight w;; on each edge in the cluster, the critical nodes of that cluster can be computed
with the following Integer Programming (IP) optimization model.

IP: max xo = XI5 N wij iy XaeXje (1)

s.t.
c_max
Z xp =1 i=1n (2)
k=1

Denoted by xj, equal to 1 if node i in cluster k and c_max as the maximum number of clusters
formed. After the clusters are formed, then the critical nodes are identified using a connected node
pairs (CNP) reduction model to minimize the total connectivity of the computer network.

Minimize F(n,--,n;,L) = %ZzLﬂ n-(m—1) 3)
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denoted by n,;, [=1, ..., L, and the number of nodes in each cluster. Once the critical nodes are
identified, resources can be allocated to improve the resilience of the network.

2.2. Optimization model for redundancy allocation

Before we present a general linear IP model for GRAP, the notations for optimization model is
given as follows:

Parameters and Variables:

D: number of potential disasters +1 (the last one for no disaster occurring),

pa: probability of disaster d occurring, py € (0,1) and  Y5_,ps =1,

M: number of components in Smart Grid needs to perform,

Wy,: importance weight of components (nodes) in Smart Grid m, w,, € (0,1) and ¥¥_,w,, =1,

n,,: number of solutions (assets) available for component (node) m to select from,

Xmi: 1if solution i € {1, ...,ny,} is selected for component (node) m, or 0 otherwise,

Cpit cost of selecting solution i for component (node) m,

Smiq: survivability of solution i for component (node) m against disaster 4,

Vmiq:failure probability of solution i for component (node) m against disaster d (i.e., Vg = 1 —
Smid)-

fmd(Xml: ...,anm), a real-valued function defined on vector (Xml, ...,anm), form=1,..,M,
and d =1,..,D,

Uma(Yma), a utility function defined on vector Yy = fra(Xm1, ...,anm),for m=1,..,M, and
d=1,..,D, when Y,,, is the total contribution of applying all or some of available solutions
Xt 0 =1, e ).

Here, we give a general redundancy allocation problem (GRAP). As we mentioned earlier the
GRAP has various of applications in different settings, (see [32,33] for explanations, examples, and
several heuristic algorithms).

(GRAP)
max S = Y41 palXm—1 Wi Una(Zma)] (4)
s.t.
T Xomi >1 popm=1,..,M, )

1 2 ConiXomi < B (6)
Xmi € {0,1}, ¢op m=1, ...,M avvi=1,..,n, (7
Yia = fina(Xmar o Xmn, ), popm =1,..,M,avdd = 1,...,D, (8)
Yi=z0,popm=1,., Mavdi=1,..,ny, 9)

The objective function in this case aims to maximize the overall survivability of all components
(nodes) against all potential disasters. Also, note that component (node) m fails against disaster d
only when all of its selected solutions fail at the same time. For a component (node) m and a disaster
d, we define Y,,;, as the total contribution of applying all or some of available solutions
Xmi(@=1,..,n,). The utility of such solution application is equal to Upg(Ymg). It is worth
mentioning that GRAP is written in a generic format. When estimating the functions and parameters,
one possibility is to use of game theory, see for example [40,41] for a survey.

Moreover, it is important to note that GRAP is a non-linear integer program. However, if Y4 =
Y™ QpiXmi, for m=1,..,M, and d =1,...,D, and Upg(Yma) = Yimg where a,,; is a constant
weight, then the ob]ectlve function is separable and linear which is a special case of the generalized
assignment problem (GAP) [37]. Although GAP is known to be strongly NP-hard, it is easier to solve
compared to a non-linear optimization with a non-separable objective function like the GRAP. A
variety of exact and heuristic algorithms are available for GAP (see for example, [28,29], for a recent
survey). A variety of exact and heuristic algorithms are available for GAP (see for example, [32,33],
for a recent survey).

In the following section, we will demonstrate how the GRAP can be transformed into an
optimization with separable objective function, and linear constraints, converting it into a GAP. By
taking logarithm from both sides of equality (8), we will have the following.

10g(Yma) = log (T vperst) = X0 Xpni(log (Wmia))  (10)
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and
_log(Ymd) nmX ( log(vmld)) (11)
Let Z,4 = —log(Yme) and Kpig = —log(vmld). Since 0 < v,y <1 then we have K,,;4 =0
and thus, we have
md - Z:l 1Kmldeu ¢Op m= 1 M d= 1 D (12)
Note that, we have ]_[:l”; Tfl:’; = 27%md . With this in mind, the GRAP transforms into the

following, where the objective function is separable and nonlinear. Please note that the last term in
the objective function is constant thus can be ignored.

(GRAP)
D M
Maximize S* = Z P, [Z Wy, (1 — 27%ma)
d=1 m=1
= X=1 Py [Ehe1 —wp27md] a=1Pa [Zh=1wm] (13)
s.t.
(5-7,12)

Zma =0, popm=1,K,M avdi=1,K,D(14)

Since p, for d=1,...,D, is an array of constants in the objective function and is not part of any
constraint, thus in order to maximize S* for a given d we need to optimize

min YM_ wp,27%md  (15)

Now, since wy, for m=1,...,M, is also an array of constants and the decision variable is Z,,,, for
each m we need 27%md tobe as small as possible under the constraints and thus Z,,; mustbe as large
as possible. This proves that the RAP is equivalent to the following linear integer program.

max S **x= Y0_1 palXii-1 WimnZmal (16)
s.t. (5-7) and (9-10)
Since Z,,4 = Z | KiniaXmi, thus we can restate the RAP as the following generalized assignment
problem.
max S *xx= %0_1 pg Yot Win 2iey KmiaXmi (17
s.t.
»m Xml >1, popm=1,.., M, (18)
1 2 CiXmi < B, (19)
X €{0,13, d)opm =1,...M avdi=1,..,n, (20)

Constraints (19) are capacitated with the budget limit. Following our recently published method
(the r-flip paper [43] and recent papers [35,44]), we implemented a r-flip local search heuristic to
improve the assignment. In this r-flip heuristic, we choose r = 2,3, and 4 for the assignment of both
components (nodes) and assets that components (nodes) s chose from to improve the survivability.
The improvement process based on the r-flip heuristic is implemented by the Tabu Search algorithm
with an embedded strategic oscillation, as detailed in .

3. Results

The statistical simulation and optimization experiments are coded in R. We chose a power grid
dataset to illustrate the proposed framework (Figure 2). The dataset has 4941 nodes, 6594 edges, with
a maximum distance of 45 between the pair of nodes in the graph. The minimal distance for 90% of
nodes pairs is 26.
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Figure 2. Node connectivity of power grid.

The distribution of degree nodes in power grid follows the power law distribution with p
value=0.76, which is greater than 0.05, so the data follows the power law distribution [42]. Figure 3
shows the degree distribution of nodes in the power grid.

Histogram of Degree Distribution of Nodes in Power Grid

2500

Frequency
1500

0 500

T T 1
5 10 15

Degree (Power Grid)

Figure 3. Histogram for power grid nodes.

The eigenvector of nodes is obtained by using Spectrum function and the smallest eigenvalues
are removed from the matrix. Following the TW distribution test, the critical nodes are identified by
the optimization model (1)-(4). Figure 4 highlights the results of spectral clustering of critical nodes
with large vector size. Figure 5 shows the network structure after the critical nodes are removed from
the graph. The cost of redundancy allocation is computed based on the critical nodes by a heuristic
algorithm. Table 3 displays the network nodes’ connectivity after the critical nodes are removed and
the average nodes’ connectivity are measured by the complement of fragmentation score.

Table 3. Statistical Learning of Embedding Networks to Identify Critical Nodes & Links.

Number of Removed Critical Nodes Connectivity
5 0.0615851
10 0.0605954

15 0.0592443
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Figure 4. Results of spectral clustering of critical nodes.

Power Grid Structure After Critical Nodes Removed

Figure 5. Results of node connectivity after critical nodes are removed.

To evaluate the impact of resource allocation costs on the redundancy of critical nodes using
benchmark datasets, we first identify critical nodes based on a reliability threshold ranging from 98%
to 99% for the power grid system. In this study, we specifically examine power transformers as the
primary components. The cost of a power transformer ranges from $600,000 to $4,000,000, with a 15-
year life cycle. We randomly assign a cost between $600,000 and $4,000,000 for the critical nodes.
Table 4 presents the costs associated with redundancy on critical nodes to maintain 98.79%-99.74%
reliability (connectivity). A Congressional Research Service study in 2012 estimated the inflation-
adjusted cost of weather-related outages at $25 to $70  billion annually
(https://www .energy.gov/articles/economic-benefits-increasing-electric-grid-resilience-weather-
outages). Notably, the cost of redundancy is only a fraction of the economic losses incurred due to
weather-related outages.

Table 4. Cost of redundancy on critical components in the power grid system.

PowerGrid Size  Critical Nodes Cost of redundancy  Reliability
South Carolina cities 500 13 $13,744,377 99.74%
Texas cities 2,000 17 $19,378,002 99.66%
Texas state 6,717 31 $47,454,580 99.63%
Midwest 24,000 59 $104,646,071 99.61%

West-East US 80,000 156 $312,855,059 98.79%
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4. Discussion

The Smart Grid incorporates proven technologies to optimize its assets — from power plants to
distribution substations and critical infrastructure. These advancements lead to increased power flow
through existing assets and provide utilities with precise insights, enabling them to assess the
necessity for additional power plants accurately. Operational enhancements span improved load
factors to reduce system losses, resulting in a net reduction in utility costs and enhanced overall
efficiency.

The results of this study highlight the key strategies to improve the reliability of the Smart Grid:

¢  Redundancy Planning: Identify critical components in the Smart Grid infrastructure. Allocate
redundancy by duplicating these components, ensuring backup systems are in place to
seamlessly take over in case of failures.

e Risk Assessment: Conduct a thorough risk analysis to understand potential failure points.
Allocate redundancies to the most vulnerable areas identified during this assessment.

e Advanced Monitoring: Implement real-time monitoring systems to detect anomalies and
potential failures. Use data analytics to predict failure patterns and allocate redundancies
accordingly.

5. Conclusions

In this paper, we presented a framework that combines statistical learning and optimization to
identify critical nodes in the smart grid infrastructure. To optimize the resource allocation for critical
nodes, we proposed a general redundancy allocation model based on generalized assignment
problem (GAP). It includes the generalized redundancy allocation problem (GRAP) as a special case.
We gave an equivalent linear GAP of GRAP.

Power outages pose an extensive list of risks, including but not limited to economy, health, and
public safety. Only weather-related outages are estimated to cost between $25-70 billion to the US
economy annually [45]. Thus, it is vital to develop risk assessment and quick-response plans.
Combination of statistical simulation and integer programming-based optimization approach
proposed in this study promises an efficient framework for managers and decision-makers in
determining the critical components of smart grids and optimizing redundancy allocation for a well-
planned, organized, and coordinated course of action to be followed in disaster recovery.

Another implication of this study for managers is the improved capability in assessing risks and
vulnerabilities of the smart grid for redundancy allocation while using limited resources in the most
efficient way. Performance of smart grids are closely related to the reliability and uncertainties
involved. Thus, risk assessment to systematically detect the vulnerabilities with the potential to result
in grid failures is an essential component for the future of smart grids.
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