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Abstract: It is a critical issue to allocate redundancy to critical smart grid infrastructure for disaster recovery 
planning. In this study, we present a framework to combine statistical prediction methods and optimization 
models for the optimal redundancy allocation problem. First, we develop statistical simulation methods to 
identify critical nodes of very large-scale smart grid infrastructure based on the topological features of 
embedding networks, and then present a linear integer programming model based on generalized assignment 
problem (GAP) for redundancy allocation of critical nodes in smart grid infrastructure. The model is 
specifically implemented in the context of smart grid infrastructure. The findings demonstrate that the 
combined approach of statistical simulation and optimization effectively addresses the size limitations inherent 
in a sole optimization approach. Notably, the optimal solutions for redundancy allocation in large grid systems 
highlight that the cost of redundancy is only a fraction of the economic losses incurred due to weather-related 
outages. 

Keywords: redundancy allocation; generalizes assignment problem; simulation; smart grid 
infrastructure 

 

1. Introduction 

The advent of the Smart Grid, akin to previous technology revolutions in telecom and the 
Internet, marks a crucial milestone in modernizing our electric grid. With its implementation, we 
harness technology to enhance the efficiency, reliability, and affordability of electricity distribution. 
This transformation shifts our electric system from a centralized, producer-controlled network to a 
more interactive, consumer-centric model. 

Addressing the grid's declining reliability, marked by a surge in outages, the Smart Grid 
becomes imperative. Currently, these interruptions cost Americans an estimated $150 billion 
annually. Furthermore, with a projected 30% increase in nationwide electricity demand by 2030, 
investments of around $1.5 trillion over the next two decades are essential for infrastructure 
development [1]. By fostering this transition to a smarter grid – a process already underway – and 
eventually adopting the Smart Grid, electricity will become more affordable, and our environment 
will benefit from reduced impact. During this transformative period, ensuring fairness, cost-
effectiveness, and adequate customer protection will be paramount. The Smart Grid represents a 
significant leap forward, utilizing data in megabytes to move megawatts of electricity efficiently and 
reliably into the 21st century [2]. A key feature of the Smart Grid is its ability to conduct continuous 
self-assessments, allowing it to prevent disruptions proactively rather than merely reacting to them. 

Ever-increasing demand coupled with increasing energy prices have prompted the energy 
industry to develop intelligent strategies for energy tracking, control, and conservation [3]. Electricity 
disruptions like blackouts can trigger cascading failures affecting banking, communications, and 
security, particularly in winter when heating is crucial. A Smart Grid enhances power system 
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resilience, ensuring preparedness for storms, earthquakes, and emergencies. Its bidirectional 
communication reroutes power automatically during outages, minimizing their impact. Smart Grid 
technology swiftly detects and isolates outages, prioritizing essential services for swift recovery. By 
integrating customer-owned generators, vital facilities remain operational during crises. Moreover, 
it addresses aging infrastructure, boosts energy efficiency, raises consumer awareness, and enhances 
national security, utilizing locally sourced, resilient electricity. On the other hand, interoperability 
among various grid components, data handling and management across wide geographies with 
different environmental conditions pose challenges for the traditional smart grids [4]. 

As systems become increasingly complex and critical to enterprise, the need for optimal 
redundancy becomes more important to business continuity. Systems failures can stem from a wide 
variety of causes (refer to the survey article [5]) ranging from the large-scale natural or human-caused 
disasters that can disrupt an entire region due to a simple electronic part failing. In a recent article, 
Wang et al. [6] noted that “diversification is one of the most effective approaches to safeguard 
multitier systems against attacks, failure, and accidents. However, designing such a diversified 
system poses challenges due to factors such as stochastic user and attacker behaviors, combinatorial-
explosive solution space, and multiple conflicting design objectives.” The authors further noted, 
“diversification is the application of different means for performing a required function. It is currently 
the best defense against attacks on the flaws of any particular software component.” Smart Grid 
redundancy is a diversification technique that aims to prevent information technology in the 
occurrence of a disaster. Smart Grid heavily depends on the IT infrastructure for operations such as 
cloud computing and edge computing. 

In additional to the tens of millions of computers and servers heavily depend on the reliability 
of IT infrastructure using cloud computing paradigm, the development in the 5G cellular network, 
Internet of Things (IoT) applications of smart home, smart city, smart transportation of auto-driving 
has made edge computing an indispensable infrastructure to connect cloud and end users. The 
emergence of the IoT coupled with the advances in energy management sphere has resulted in the 
concept of the smart grid as the Internet of Energy (IoE). Krishnan and Jacob [7] propose a hybrid 
technique in developing an Energy Management System (EMS) for distribution system with IoT 
framework. As a popular technology, IoE integrates various forms of energy and leverages the 
internet to collect, organize, optimize, and manage energy networks. Mishra and Singh [8] study 
energy management techniques in smart cities using IoE in an effort to reveal improvements in clean 
energy processes.  

Edge computing utilizes the resource of cloud servers to direct the data and computing services 
to a real-time low-latency system at the edge of a network. For example, 5G network in the edge 
computing infrastructure provides high-bandwidth access to end users on location services, 
augmented reality, video analytics and data caching [9]. Unlike the data centers of cloud computing, 
the servers in edge computing of IOT systems must be located close to the end users in order to 
provide a real-time high bandwidth and low-latency services. Thus, redundancy allocation in edge-
to-cloud computing focuses on the network structure of the end user community such as critical 
nodes and links of social connectivity [10]. The network structure of the user community can be 
revealed via community detection methods [11]. ML models are popular methods of community 
detection in edge computing [12,13]. The IoT systems follow the power law distribution [14–17]. 
Patsidis et al. [18] employ an architecture which includes edge-cloud communication to extract data-
driven insights from microgrids. 

In an article addressing the economics modellings of information security, Gordon, and Loeb 
[19] underscored that an information set is characterized by the loss conditioned on a breach 
occurring, the probability of a threat occurring, and the vulnerability, defined in the model as the 
probability of a threat once realized. Interruptions in the services of large-scale service-oriented 
companies can potentially result in losses amounting to hundreds of millions of dollars per day in 
revenue. Consequently, these companies must implement specific disaster recovery or disaster 
avoidance strategies [20].  
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Cost is always a concern and is part of the redundancy model. Organizations face the challenge 
of determining the financial allocation for disaster recovery and, within that, the proportion to be 
allocated to Smart Grid redundancy. Due to the costly nature of redundancy allocation resources 
companies must select the best options they have to protect their assets [21,22]. It is economically 
efficiency to protect the critical nodes and links with redundancy resource. Multiple mathematical 
models have been proposed to identify the critical nodes and links in the Smart Grid (see Table 1). 

Table 1. Mathematical Models for Identifying Critical Nodes and Links. 

Class Methods Reference 

Entropy-based Graph neural network [23] 
Node Deletion Mixed integer programming [24] 
Network interdiction Mixed integer linear programming [25] 
maximum k-cut problem Simulated Annealing  [26] 

The mathematical models above encounter challenges when it comes to identifying critical 
nodes and links in larger-scale problems. Recently, statistical models have been applied to identify 
the critical nodes and links in very large  networks such as social networks and biology networks 
[27]. These models encompass both model-based and distribution-based methods. They utilize the 
topological features of the embedding networks for model training and validating the outcomes of 
critical nodes and links (See Table 2). 

Table 2. Mathematical Models for Identifying Critical Nodes and Links. 

Class Methods Reference 

Model based  Structure-mechanics [28] 
Distribution based Tracy-widom distribution [29] 

Once the critical nodes are identified, redundancy resources are allocated based on the 
importance of components (nodes) in smart grid infrastructure. The redundancy allocation problem 
(RAP) is typically formulated with two alternative objectives: maximizing the reliability within the 
budget constraints or minimizing the system costs to satisfy the minimum system reliability. 
Kulturel-Konak et al. [30] proposed two integer programming (IP) models to address these 
alternative RAP objectives and pointed out that these IP models can be converted into 0-1 IP with 
additional binary decision variables. Shao [31] introduced a 0-1 integer programming solution 
formulation for RAP. However, this model is highly non-linear and complex. The author provided a 
specialized dynamic programming procedure for obtaining optimal solutions. 

This paper presents a novel linear integer programming approach to address RAP based on the 
generalized assignment problem (GAP). Over the past few decades, a variety of theoretical and 
heuristic findings have emerged for GAP, which can be readily applied to the Smart Grid redundancy 
allocation problem (see for example, [32,33], for a recent survey). Devi et al. [34] conducted an 
extensive literature review and classified 280 papers on RAP according to the methods employed. 
Our model here is more general than GAP with applications extending to various scenarios, 
including multi-skilled workforce assignment [35], the assignment of unmanned aerial vehicles 
(UAV) [36], and optimal preventive maintenance scheduling in manufacturing environment for 
related applications and heuristics, see the recent paper by [37] and its references). Two early 
development of the model regarding multi-skilled workforce applications with some heuristics also 
may be found in [38,39]. The rest of the paper is organized as follows. In section 2 we first present a 
framework of combining statistical simulation and optimization model to identify the critical nodes 
in the edge computing infrastructure using a power grid system as an example, then optimize the 
redundancy resource allocation with a linear integer programming model. In section 3, we report the 
computational results in critical nodes. Section 4 summarizes conclusions drawn from this study. 
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2. Materials and Methods 

2.1. Statistical simulation and optimization framework 

Statistical simulation for critical nodes is based on the random matrix theory that uses the 
probability distribution of eigenvalues such as the Tracy Widom (TW) distribution [29]. 

The critical nodes detection problem can be formulated as a special case of clustering, where 
critical nodes are assigned to a particular cluster, while the remaining nodes form some disconnected 
clusters. The number of singleton clusters increases as the number critical nodes increases.  

The largest eigenvalues of the adjacency matrix associated with the critical nodes cluster has the 
TW distribution. Instead of using parametric bootstrap to estimate the TW distribution, it is 
computationally efficient to run a few simulations to compute the mean and the variance of the 
distribution. Figure 1 illustrates the statistical simulation-optimization framework used in this study. 

 

Figure 1. Statistical simulation-optimization framework. 

To compute the eigenvalues of the graph network, we use spectral clustering method. Initially, 
the Laplacian matrix is computed, followed by generating eigenvectors. The eigenvectors form an n 
by n matrix, where each row represents a node, and each column stores an eigenvalue. These 
eigenvalues are sorted incrementally with those close to zero being removed. 

Once the eigenvalues are sorted, the largest k eigenvectors are chosen and stored in a new n by 
k matrix, which is subsequently normalized. We can assess the TW distribution on the new matrix of 
eigenvalues. If the matrix of eigenvalues follows the TW distribution, the clustering method 
described below is applied to the normalized matrix of eigenvalues to obtain the labels and scores of 
each bank. 

The simulation yields a normalized matrix of eigenvalues that can be used to compute the value 
of signed weight 𝑤௜௝ on each edge in the cluster, the critical nodes of that cluster can be computed 
with the following Integer Programming (IP) optimization model.  

IP: 𝑚𝑎𝑥   𝑥଴ = ∑ ∑ 𝑤௜௝ ∑ 𝑥௜௞𝑥௝௞௖_௠௔௫௞ୀଵ      (1)௡௝ୀ௜ାଵ௡ିଵ௜ୀଵ  

s.t. 

෍ 𝑥௜௞ = 1  𝑖 = 1, 𝑛       (2)௖_௠௔௫
௞ୀଵ  

Denoted by 𝑥௝௞ equal to 1 if node i in cluster k and c_max as the maximum number of clusters 
formed. After the clusters are formed, then the critical nodes are identified using a connected node 
pairs (CNP) reduction model to minimize the total connectivity of the computer network. 

Minimize 𝐹(𝑛ଵ, ⋯ , 𝑛௅, 𝐿) = ଵଶ ∑ 𝑛௟ ∙ (𝑛௟ − 1)௅௟ୀଵ  (3) 

Statistical Simulation 

Optimization Models 

Compute Eigenvalues Tracy-Widom 

Distribution 
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denoted by 𝑛௟, 𝑙 = 1, . . ., L, and the number of nodes in each cluster. Once the critical nodes are 
identified, resources can be allocated to improve the resilience of the network. 

2.2. Optimization model for redundancy allocation 

Before we present a general linear IP model for GRAP, the notations for optimization model is 
given as follows:  

Parameters and Variables: 
D: number of potential disasters +1 (the last one for no disaster occurring), 𝑝ௗ: probability of disaster d occurring, 𝑝ௗ ∈ (0,1) and   ∑ 𝑝ௗ஽ௗୀଵ = 1, 
M: number of components in Smart Grid needs to perform, 𝑤௠: importance weight of components (nodes) in Smart Grid m, 𝑤௠ ∈ (0,1) and ∑ 𝑤௠ெ௠ୀଵ = 1, 𝑛௠: number of solutions (assets) available for component (node) m to select from, 𝑋௠௜: 1 if solution 𝑖 ∈ ሼ1, … , 𝑛௠ሽ is selected for component (node) m, or 0 otherwise, 𝐶௠௜: cost of selecting solution i for component (node) m, 𝑆௠௜ௗ: survivability of solution i for component (node) m against disaster d, 𝑣௠௜ௗ:failure probability of solution i for component (node) m against disaster d (i.e., 𝑣௠௜ௗ = 1 −𝑆௠௜ௗ). 𝑓௠ௗ൫𝑋௠ଵ, … , 𝑋௠௡೘൯, a real-valued function defined on vector ൫𝑋௠ଵ, … , 𝑋௠௡೘൯, for 𝑚 = 1, … , 𝑀, 

and 𝑑 = 1, … , 𝐷, 𝑈௠ௗ(𝑌௠ௗ), a utility function defined on vector 𝑌௠ௗ = 𝑓௠ௗ൫𝑋௠ଵ, … , 𝑋௠௡೘൯,for 𝑚 = 1, … , 𝑀, and 𝑑 = 1, … , 𝐷,  when 𝑌௠ௗ  is the total contribution of applying all or some of available solutions 𝑋௠௜ , (𝑖 = 1, … , 𝑛௠).   
Here, we give a general redundancy allocation problem (GRAP). As we mentioned earlier the 

GRAP has various of applications in different settings, (see [32,33] for explanations, examples, and 
several heuristic algorithms). 

(GRAP)  𝑚𝑎𝑥   𝑆 = ∑ 𝑝ௗሾ∑ 𝑤௠𝑈௠ௗ(𝑍௠ௗ)ெ௠ୀଵ ሿ஽ௗୀଵ  (4) 
s.t. ∑ 𝑋௠௜௡೘௜ୀଵ ≥ 1, 𝜙𝜊𝜌 𝑚 = 1, … , 𝑀, (5) ∑ ∑ 𝐶௠௜𝑋௠௜௡೘௜ୀଵெ௠ୀଵ ≤ 𝐵, (6) 𝑋௠௜ ∈ ሼ0,1ሽ, 𝜙𝜊𝜌 𝑚 = 1, … , 𝑀 ανδ 𝑖 = 1, … , 𝑛௠ (7) 𝑌௠ௗ = 𝑓௠ௗ൫𝑋௠ଵ, … , 𝑋௠௡೘൯, 𝜙𝜊𝜌 𝑚 = 1, … , 𝑀, ανδ 𝑑 = 1, … , 𝐷, (8) 𝑌௠௜ ≥ 0, 𝜙𝜊𝜌 𝑚 = 1, … , 𝑀 ανδ 𝑖 = 1, … , 𝑛௠  (9) 

The objective function in this case aims to maximize the overall survivability of all components 
(nodes) against all potential disasters. Also, note that component (node) m fails against disaster d 
only when all of its selected solutions fail at the same time. For a component (node) m and a disaster 
d, we define 𝑌௠ௗ  as the total contribution of applying all or some of available solutions 𝑋௠௜ , (𝑖 = 1, … , 𝑛௠) . The utility of such solution application is equal to 𝑈௠ௗ(𝑌௠ௗ) . It is worth 
mentioning that GRAP is written in a generic format. When estimating the functions and parameters, 
one possibility is to use of game theory, see for example [40,41] for a survey.  

Moreover, it is important to note that GRAP is a non-linear integer program. However, if 𝑌௠ௗ =∑ 𝑎௠௜𝑋௠௜௡೘௜ୀଵ ,  for  𝑚 = 1, … , 𝑀,  and  𝑑 = 1, … , 𝐷,    and 𝑈௠ௗ(𝑌௠ௗ) = 𝑌௠ௗ where 𝑎௠௜  is a constant 
weight, then the objective function is separable and linear which is a special case of the generalized 
assignment problem (GAP) [37]. Although GAP is known to be strongly NP-hard, it is easier to solve 
compared to a non-linear optimization with a non-separable objective function like the GRAP. A 
variety of exact and heuristic algorithms are available for GAP (see for example, [28,29], for a recent 
survey). A variety of exact and heuristic algorithms are available for GAP (see for example, [32,33], 
for a recent survey). 

In the following section, we will demonstrate how the GRAP can be transformed into an 
optimization with separable objective function, and linear constraints, converting it into a GAP. By 
taking logarithm from both sides of equality (8), we will have the following.  𝑙𝑜𝑔(𝑌௠ௗ) = 𝑙𝑜𝑔൫∏ 𝑣௠௜ௗ௑೘೔௡೘௜ୀଵ ൯ = ∑ 𝑋௠௜൫𝑙𝑜𝑔(𝑣௠௜ௗ)൯௡೘௜ୀଵ  (10) 
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and −𝑙𝑜𝑔(𝑌௠ௗ) = ∑ 𝑋௠௜൫−𝑙𝑜𝑔(𝑣௠௜ௗ)൯௡೘௜ୀଵ  (11) 
Let 𝑍௠ௗ = −𝑙𝑜𝑔(𝑌௠ௗ)  and 𝐾௠௜ௗ = −𝑙𝑜𝑔(𝑣௠௜ௗ).  Since 0 ≤ 𝑣௠௜ௗ ≤ 1  then we have 𝐾௠௜ௗ ≥ 0 

and thus, we have 𝑍௠ௗ = ∑ 𝐾௠௜ௗ𝑋௠௜ ,௡೘௜ୀଵ  𝜙𝜊𝜌 𝑚 = 1, … , 𝑀, 𝑑 = 1, … , 𝐷 (12) 
Note that, we have ∏ 𝑣௠௜ௗ௑೘೔௡೘௜ୀଵ = 2ି௭೘೏ . With this in mind, the GRAP transforms into the 

following, where the objective function is separable and nonlinear. Please note that the last term in 
the objective function is constant thus can be ignored. 

(GRAP)  𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑆∗ = ෍ 𝑃ௗ஽ௗୀଵ ൤෍ 𝑤௠(1 − 2ି௓೘೏ெ௠ୀଵ )൨ =      ∑ 𝑃ௗ஽ௗୀଵ ሾ∑ −𝑤௠2ି௓೘೏ெ௠ୀଵ ሿ∑ 𝑃ௗ஽ௗୀଵ ሾ∑ 𝑤௠ெ௠ୀଵ ሿ (13) 
s.t. 
(5-7, 12) 𝑍௠ௗ ≥ 0, 𝜙𝜊𝜌 𝑚 = 1, 𝐾, 𝑀  ανδ 𝑖 = 1, 𝐾, 𝐷 (14) 
Since 𝑝ௗ for d=1,…,D, is an array of constants in the objective function and  is not part of any 

constraint, thus in order to maximize S*, for a given d we need to  optimize 𝑚𝑖𝑛   ∑ 𝑤௠2ି௭೘೏ெ௠ୀଵ  (15) 
Now, since 𝑤௠ for m=1,…,M, is also an array of constants and the decision variable is 𝑍௠ௗ, for 

each m we need 2ି௓೘೏ to be as small as possible under the constraints and thus 𝑍௠ௗ must be as large 
as possible. This proves that the RAP is equivalent to the following linear integer program. 𝑚𝑎𝑥   𝑆 ∗∗= ∑ 𝑝ௗሾ∑ 𝑤௠𝑍௠ௗெ௠ୀଵ ሿ஽ௗୀଵ  (16) 

s.t. (5-7) and (9-10) 
Since 𝑍௠ௗ = ∑ 𝐾௠௜ௗ𝑋௠௜௡೘௜ୀଵ , thus we can restate the RAP as the following generalized assignment 

problem. 𝑚𝑎𝑥   𝑆 ∗∗∗= ∑ 𝑝ௗ ∑ 𝑤௠ ∑ 𝐾௠௜ௗ𝑋௠௜௡೘௜ୀଵெ௠ୀଵ஽ௗୀଵ  (17) 
s.t. ∑ 𝑋௠௜௡೘௜ୀଵ ≥ 1, 𝜙𝜊𝜌 𝑚 = 1, … , 𝑀, (18) ∑ ∑ 𝐶௠௜𝑋௠௜௡೘௜ୀଵெ௠ୀଵ ≤ 𝐵, (19) 𝑋௠௜ ∈ ሼ0,1ሽ, 𝜙𝜊𝜌 𝑚 = 1, … , 𝑀  ανδ 𝑖 = 1, … , 𝑛௠ (20) 

Constraints (19) are capacitated with the budget limit. Following our recently published method 
(the r-flip paper [43] and recent papers [35,44]), we implemented a r-flip local search heuristic to 
improve the assignment. In this r-flip heuristic, we choose r = 2,3, and 4 for the assignment of both 
components (nodes) and assets that components (nodes) s chose from to improve the survivability. 
The improvement process based on the r-flip heuristic is implemented by the Tabu Search algorithm 
with an embedded strategic oscillation, as detailed in . 

3. Results 

The statistical simulation and optimization experiments are coded in R. We chose a power grid 
dataset to illustrate the proposed framework (Figure 2). The dataset has 4941 nodes, 6594 edges, with 
a maximum distance of 45 between the pair of nodes in the graph. The minimal distance for 90% of 
nodes pairs is 26. 
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Figure 2. Node connectivity of power grid. 

The distribution of degree nodes in power grid follows the power law distribution with p 
value=0.76, which is greater than 0.05, so the data follows the power law distribution [42]. Figure 3 
shows the degree distribution of nodes in the power grid.  

 

Figure 3. Histogram for power grid nodes. 

The eigenvector of nodes is obtained by using Spectrum function and the smallest eigenvalues 
are removed from the matrix. Following the TW distribution test, the critical nodes are identified by 
the optimization model (1)-(4). Figure 4 highlights the results of spectral clustering of critical nodes 
with large vector size. Figure 5 shows the network structure after the critical nodes are removed from 
the graph. The cost of redundancy allocation is computed based on the critical nodes by a heuristic 
algorithm. Table 3 displays the network nodes’ connectivity after the critical nodes are removed and 
the average nodes’ connectivity are measured by the complement of fragmentation score. 

Table 3. Statistical Learning of Embedding Networks to Identify Critical Nodes & Links. 

Number of Removed Critical Nodes Connectivity 

5 0.0615851 
10 0.0605954 
15 0.0592443 
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Figure 4. Results of spectral clustering of critical nodes. 

 

Figure 5. Results of node connectivity after critical nodes are removed. 

To evaluate the impact of resource allocation costs on the redundancy of critical nodes using 
benchmark datasets, we first identify critical nodes based on a reliability threshold ranging from 98% 
to 99% for the power grid system. In this study, we specifically examine power transformers as the 
primary components. The cost of a power transformer ranges from $600,000 to $4,000,000, with a 15-
year life cycle. We randomly assign a cost between $600,000 and $4,000,000 for the critical nodes. 
Table 4 presents the costs associated with redundancy on critical nodes to maintain 98.79%-99.74% 
reliability (connectivity). A Congressional Research Service study in 2012 estimated the inflation-
adjusted cost of weather-related outages at $25 to $70 billion annually 
(https://www.energy.gov/articles/economic-benefits-increasing-electric-grid-resilience-weather-
outages). Notably, the cost of redundancy is only a fraction of the economic losses incurred due to 
weather-related outages. 

Table 4. Cost of redundancy on critical components in the power grid system. 

PowerGrid Size Critical Nodes Cost of redundancy  Reliability 

South Carolina cities 
500 13 $13,744,377 99.74% 

Texas cities 2,000 17 $19,378,002 99.66% 

Texas state 6,717 31 $47,454,580 99.63% 

Midwest 24,000 59 $104,646,071 99.61% 

West-East US 80,000 156 $312,855,059 98.79% 
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4. Discussion 

The Smart Grid incorporates proven technologies to optimize its assets – from power plants to 
distribution substations and critical infrastructure. These advancements lead to increased power flow 
through existing assets and provide utilities with precise insights, enabling them to assess the 
necessity for additional power plants accurately. Operational enhancements span improved load 
factors to reduce system losses, resulting in a net reduction in utility costs and enhanced overall 
efficiency. 

The results of this study highlight the key strategies to improve the reliability of the Smart Grid: 

• Redundancy Planning: Identify critical components in the Smart Grid infrastructure. Allocate 
redundancy by duplicating these components, ensuring backup systems are in place to 
seamlessly take over in case of failures. 

• Risk Assessment: Conduct a thorough risk analysis to understand potential failure points. 
Allocate redundancies to the most vulnerable areas identified during this assessment. 

• Advanced Monitoring: Implement real-time monitoring systems to detect anomalies and 
potential failures. Use data analytics to predict failure patterns and allocate redundancies 
accordingly. 

5. Conclusions 

In this paper, we presented a framework that combines statistical learning and optimization to 
identify critical nodes in the smart grid infrastructure. To optimize the resource allocation for critical 
nodes, we proposed a general redundancy allocation model based on generalized assignment 
problem (GAP). It includes the generalized redundancy allocation problem (GRAP) as a special case. 
We gave an equivalent linear GAP of GRAP. 

Power outages pose an extensive list of risks, including but not limited to economy, health, and 
public safety. Only weather-related outages are estimated to cost between $25-70 billion to the US 
economy annually [45]. Thus, it is vital to develop risk assessment and quick-response plans. 
Combination of statistical simulation and integer programming-based optimization approach 
proposed in this study promises an efficient framework for managers and decision-makers in 
determining the critical components of smart grids and optimizing redundancy allocation for a well-
planned, organized, and coordinated course of action to be followed in disaster recovery.  

Another implication of this study for managers is the improved capability in assessing risks and 
vulnerabilities of the smart grid for redundancy allocation while using limited resources in the most 
efficient way. Performance of smart grids are closely related to the reliability and uncertainties 
involved. Thus, risk assessment to systematically detect the vulnerabilities with the potential to result 
in grid failures is an essential component for the future of smart grids. 
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