
Article

Not peer-reviewed version

Deep-Learning-Based Hydrostatic

Curve Modeling for Stability

Calculation of Chine-Type Small

Ships

Dongkeun Lee , Chaeog Lim , Sang-jin Oh , Minjoon Kim , Jun Soo Park , Sung-chul Shin 

*

Posted Date: 22 November 2023

doi: 10.20944/preprints202311.1392.v1

Keywords: hull form; deep learning model; hydrostatic curve modelling; small ships

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/1872179
https://sciprofiles.com/profile/1317376
https://sciprofiles.com/profile/927246


 

Article 

Deep-Learning-Based Hydrostatic Curve Modeling 

for Stability Calculation of Chine-Type Small Ships 

Dongkeun Lee 1, Chaeog Lim 2, Sang-jin Oh 2, Minjoon Kim 2, Jun Soo Park 3  

and Sung-chul Shin 2,* 

1 Busan branch office, KOMSA, Korea Maritime Transportation Safety Authority,  

Sejong-si 30100, Republic of Korea 
2 Department of Naval Architecture and Ocean Engineering, Pusan National University,  

Busan 46241, Republic of Korea 
3 Department of Naval Architecture and Ocean System Engineering, Kyungnam University,  

Changwon 51767, Republic of Korea 

* Correspondence: scshin@pusan.ac.kr 

Abstract: Capsizing accidents are regarded as marine accidents with a high rate of casualties per 

accident. Approximately 89% of all such accidents occur in small ships (vessels with gross tonnage 

less than 10 tons). Stability calculations are critical for assessing the risk of capsizing incidents and 

evaluating a ship’s seaworthiness. Despite the high frequency of capsizing accidents involving small 

ships, they are generally exempt from adhering to stability regulations, thus remaining systemically 

exposed to the risk of capsizing. Moreover, the absence of essential design documents complicates 

direct ship stability calculations. This study utilizes hull form feature data—obtained from the 

general arrangement of small ships—as input for a deep learning model. The model is structured as 

a multilayer neural network and aims to infer hydrostatic curves, which is required data for stability 

calculations. 

Keywords: hull form; deep learning model; hydrostatic curve modelling; small ships 

 

1. Introduction 

1.1. Background of Research 

Capsizing accidents occur when external forces cause a stable ship to lose its stability, leading to 

overturning. Since 2018, an average of 92 such incidents have occurred annually. As show in Figure 

1, the rate of human casualties (number of deaths and missing persons per incident) per capsizing 

incident is 0.238 (casualties/incident), making it the second-highest type of marine accident in terms 

of human casualties, following safety incidents (0.355 casualties/incident). Over the past five years 

since 2018, there have been 109 deaths and missing persons. During the same period, 480 ships were 

involved in capsizing incidents, of which small ships accounted for 89% (428 ships). These statistics 

confirm that capsizing is a high-risk maritime accident, particularly dangerous to human life on small 

ships, as found in the survey. 

Despite their relatively high frequency of capsizing accidents, small ships are exempt from 

regulations closely related to their seaworthiness evaluation, specifically in terms of stability 

standards. Small ships that are not subject to stability regulations lack even minimal assessments of 

seaworthiness. Essential design documents required for stability calculations—such as general 

arrangement, lines, midship section, and construction profile and deck plan—are often missing. This 

makes direct calculations of stability practically difficult. Therefore, there is a pressing need to assess 

whether appropriate seaworthiness can be ensured through stability calculations, as small ships are 

systematically exposed to the risk of capsizing. As the majority of domestic coastal ships are chine-

type fiberglass reinforced plastic (FRP) vessels, we use key hull form feature data available from 

limited design documents, such as the general arrangement, as input. As show in Figure 2, we apply 
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a multilayer neural network-based deep learning model to infer hydrostatic curves. This is to evaluate 

the possibility of direct stability calculations for small ships. 

 

Figure 1. Rates of Casualty and Incident Occurrence by Marine Accident. 

 

Figure 2. Conceptual Diagram of the Research. 

1.2. Status of Related Research 

Research on the hull form features of small ships primarily focuses on improving resistance and 

stability [1–3]. In particular, most studies on stability performance have focused on small fishing 

vessels, considering that the majority of small ships are fishing boats. These studies often involve the 

development of simplified formulas for estimating GM (metacentric height) due to the exemption of 

stability tests for fishing vessels under 24 meters in length, or they perform estimates based on 

stability standards for ships with a length of 24 meters or more [4,5]. Some countries have partially 

adopted these stability standards for small ships; however, such adoption has often been found to be 

impractical due to differences in basic hull shapes and the distribution of key dimensions [6]. Studies 

on the chine shape of small ships primarily aim to improve resistance performance in high-speed 

hulls [7]. Although some research has been conducted on stability estimation for small ships and the 

application of stability standards for larger vessels (24 meters in length or larger) [8], systematic 

studies on the change in stability performance due to chine distribution have been relatively 

neglected. 

Research on artificial intelligence (AI) in shipbuilding and the maritime industry has mostly 

focused on improving production efficiency through image processing, hull development, and the 

estimation of preliminary design data. Some studies on large ships include the estimation of optimal 

stern shapes using a convolutional neural network (CNN) [9], the development of learning systems 
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for the classification and bending information of shell plates [10], and studies on preliminary light 

weight estimates using deep neural networks (DNN) [11]. Previous studies using AI techniques 

related to small ships include the use of DNN for estimating key dimensions of small ships [12] and 

the development of real-time distress recognition systems using real-time video from small ships [13]. 

However, no studies have investigated the hull form features and stability related to small ships. 

2. Ship Stability and Hydrostatic Curve 

2.1. Ship Stability Calculation 

The stability of a ship refers to the force that enables the ship to return to its original equilibrium 

state when inclined by an external force. Stability depends on factors such as the ship’s center of 

gravity, displacement, and area moment of inertia with respect to the water plane shape, serving as 

a minimum criterion for assessing the ship’s seaworthiness. 

Initial stability corresponds to the restoring moment at a small transverse inclination angle (φ), 

as depicted in Figure 3. 

Stability (restoring moment) = W × GZ = W × GM × sinφ, 

where GM = KM − KG = KB − BM − KG = KB + 
୍౪∇ - KG 

Here, W is the displacement, ▽ is the displaced volume, M is the position of transverse 

metacenter, B is the center of buoyancy, G is the center of gravity, and It is the transverse moment of 

inertia. 

 

Figure 3. Initial Ship Stability Calculation. 

Stability is calculated using the ship’s center of gravity (G) obtained through incline tests and 

the hydrostatic curve. For chine-type vessels, the ship’s water plane shape and the transverse moment 

of inertia (It) are determined by the arrangement of the chines. This affects the position of the 

metacenter in initial stability calculations. Because these values can significantly change depending 

on the chine shape, it can be assumed that the stability characteristics of small ships are determined 

by the shape and arrangement of the chines. 

2.2. Hydrostatic Curve 

The hydrostatic curve calculates changes in displacement with respect to changes in the draft of 

the ship. It represents the distribution of corresponding hydrostatic characteristics of the ship, either 

graphically or in tabular form. These characteristics include various coefficients such as draft-specific 

displacement, center of buoyancy (LCB, KB), water plane area (Aw), and wetted surface area, as well 

as the block coefficient (CB). These data are essential for calculating ship stability. Lines indicating the 

accurate hull shape schematics below the waterline are crucial for creating the hydrostatic curve. 
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Many small ships are often exempt from having these design documents (Lines), making direct 

stability calculations challenging. 

3. Deep Learning Data Configuration 

The training data consist of 430 ships for which hydrostatic data could be calculated, limited to 

ships propelled by conventional propulsion systems such as internal combustion engines and 

propellers. The hydrostatic data calculations include only the main hull and the box keel, excluding 

additional structures such as the side appendage and stern wedge. 

3.1. Dimensionless Learning Data 

The input data for deep learning, referred to as feature data, consists of key hull form features. 

These include principal dimension ratios, upper deck data, and details on the chine and box keel, all 

of which can be obtained from a general arrangement drawing. 

To enhance the effectiveness of deep learning training and facilitate intuitive comparisons and 

parameter utilization, we have converted the training data to be dimensionless. The offset 

coordinates in length, width, and depth dimensions are normalized to dimensionless values between 

0 and 1, based on the aft end, centerline, and baseline of the ship, respectively. Individual elements 

of hydrostatic data, such as area, volume, and moment of inertia, were made dimensionless by 

converting them into ratios corresponding to specific ship features (refer to Table 1). 

Table 1. Range of Dimensionless Data. 

Feature Data (Unit) Dimensionless Scaled by Remarks 

Offset 

Data  

(m) 

Length (x) LT (Upper Deck Length) At aft end, value is 0 

Breadth (y) Bm (Molded Breadth) At centerline, value is 0 

Depth (z) Dm (Molded Depth) At baseline, value is 0 

Volume (m3) LT × Bm × Dm (Cubic Number) - 

KB (m) Dm (Molded Depth) At baseline, value is 0 

It (m4) LT × Bm3/12 (Rectangle I) - 

As shown in Figure 4, various linear characteristics of the training data can be plotted on the 

same [0, 1] plane. This allows for easy comparison between different datasets and an intuitive 

understanding of the correlations among them by overlaying other dimensionless data (hydrostatic 

curve). 

 

Figure 4. Concept of Dimensionless Training Data. 
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3.2. Deep Learning Range 

To investigate the operational conditions of small ships, we examined draft and displacement 

across various loading conditions, including light ship and full load conditions (refer to Table 2). 

Table 2. Draft and Displaced Volume Statistics. 

The actual operational draft range for small ships can be assumed to span from light ship to full 

load conditions. As shown in Figure 5, by applying a method that identifies statistical outliers 

through the quartiles of the distribution of minimum and maximum drafts, we calculated the draft 

range to be 0.28–0.89Dm. Within this range, we confirmed that the average minimum and maximum 

loaded displacement volumes operate within the range of 0.29–0.43 cubic number. To reflect the 

actual operating conditions of small ships and enhance the accuracy of deep learning training, we set 

the scope of the study to the 0.28–0.89Dm range. 

 

Figure 5. Draft Distribution in Loading. 

Items 

Statistics 

Draft Volume 

Min. Max. Min. Max. 

Mean 0.4896 0.6538 0.2899 0.4294 

Standard Deviation 0.0804 0.0898 0.0577 0.0872 

Min. Value 0.2405 0.3778 0.1517 0.2418 

25th Percentile 0.4369 0.5898 0.2515 0.3692 

50th Percentile 0.4915 0.6521 0.2870 0.4207 

75th Percentile 0.5442 0.7116 0.3273 0.4796 

Max. Value 0.7950 0.9250 0.4588 0.7835 
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3.3. Deep Learning Feature Data 

The input data used for training consists of 12 key hull form features and offsets, which can be 

verified from three major dimensions and general arrangements, as well as key hull form items such 

as sheer (refer to Table 3). 

Table 3. Composition of Input Data. 

Items 

Particulars & Offsets 
Description No. 

Principal Dimension 

Ratio 
L/B, B/D, L/D 3 

Principal Particulars Aft & Fore Sheer Height 2 

Upper Deck Offsets Aft End, Midship, Max. Breadth End Offsets 3 

Chine Offsets 
Aft End, Midship, Max. Breadth End, Fore End 

Offsets 
4 

Box Keel Offsets Max. Height & Offsets, Aft & Fore End Offsets 3 

The sheer at the bow and stern was measured to be 35% and 28% of the ship’s depth (Dm), 

respectively. We observed that the sheer at the stern is set higher than at the bow to ensure adequate 

propeller clearance. 

As shown in Figure 6, the distribution of chine height averages 39%, 21%, and 66% of the ship’s 

depth at the stern, center, and bow, respectively. The average maximum width of the chine is 

approximately 98% of the ship’s breadth (Bm), and it was found to extend from the stern up to 72% of 

the ship’s length. Small ships tend to have a relatively low chine height and maximize displacement 

by having a chine width close to the ship’s breadth. 

 

Figure 6. Distribution of Chine Height by Ship Length. 

Most small ships are equipped with a box keel, and we observed that the shape of the hydrostatic 

data near the baseline changes depending on the placement of the box keel. The average length of the 

box keel installation is approximately 68% of the ship’s total length (Lt), and its average volume is 

3.57% of the cubic number. It was found to be installed within a range of 25% to 92% of the ship’s 

length from the stern. 

As shown in Figure 7, the distribution of key dimension ratios for small ships varies widely. In 

particular, the L/D ratio related to depth ranges from 8.36 to 26.88, while the B/D ratio, which is 

closely related to initial stability, has an average of 3.89 and a range of 2.30 to 8.05. 
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Figure 7. Distribution of Key Dimension Ratios by Ship Length. 

3.4. Deep Learning Target Data 

The shape and distribution of hydrostatic data exhibit specific patterns depending on the shape 

and placement of the chine. By converting the form parameters that define the geometric 

characteristics of hydrostatic data into a mathematical model, the correlation between chine shape 

and form parameters can be inferred. Therefore, in this study, we converted hydrostatic data 

composed of continuous numerical data into a mathematical model using form parameters and set it 

as the target output for deep learning. 

3.4.1. Mathematical Modeling Using Form Parameters 

The form parameter method involves converting various types of shape data into a 

mathematical model by appropriately combining geometric dimensions, known as form parameters, 

representing the characteristics of the shape. Form parameters defining geometric characteristics 

consist of points (location), derivatives (slope, curvature), and integrals (area, centroid) [14]. 

Hydrostatic data for the 430 vessels used in the training data were calculated using a stability 

calculation program (K-SHIP) and are output as continuous numerical distribution-type data 

corresponding to draft changes. 

We mathematically modeled the changes in hydrostatic data related to the underwater hull 

volume, location of the center of buoyancy (KB), and transverse moment of inertia according to the 

draft required for initial stability calculations. 

In this study, we calculated form parameters by setting the hydrostatic data as a combination of 

second- and third-degree polynomial functions or linear functions. We then compared the errors 

between these mathematical models and the actual values to verify the model’s suitability. 

3.4.2. Volume & KB Data Mathematical Modeling 

The distribution of volume data can be approximated as a curve using a polynomial function of 

at least a second degree with respect to draft (x), as shown in Figure 8. We performed B-spline curve 

fitting (order=3) on the volume data, and observed that a section where the slope of fitting curve 

becomes constant tend to begin around 0.5Dm. 

This characteristic is presumed to occur based on the location of the previously discussed chine 

height distribution. Generally, characteristics of the volume curve change based on this factor. 

Therefore, to improve the accuracy of the mathematical model transformation and learning 

efficiency, we set x = 0.5 as the segment split point for mathematical modeling. We modeled the 

volume data as a combination of two polynomial curves based on form parameters. 

Volume  Data    ≈     f(x)        ൜   f୤(x)            0.0 ≤ x ≤ 0.5    fୟ(x)            0.5 < x ≤ 1.0
 

From the B-spline fitting curve, we calculated the position and derivative form parameters (f(x), 

f ᇱ(x)) at both endpoints and the split point. We mathematically modeled the volume data as split 
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curves of third- and second-degree polynomial functions in the fore and aft sections, applying C1 

continuity (differentiability) conditions at the split point. 

Fore curve: f୤(x)  ⇔ [f(0.0) , f ᇱ(0.0) , f(0.5) ] & polynomial degree = 3 

Aft curve: fୟ(x)  ⇔ [f(0.5) , f ᇱ(0.5) , f(1.0)] & polynomial degree = 2 

We reconstructed KB data in a similar manner using a mathematical polynomial function based 

on form parameters and evaluated the accuracy by calculating mean absolute error (MAE), mean 

absolute percentage error (MAPE), and R2 (R-squared score). 

 

Figure 8. Mathematical Modeling of Volume Data. 

3.4.3. It Data Mathematical Modeling 

It data represents the transverse moment of inertia (m4) with respect to the ship lengthwise 

central axis of the water plane and significantly impacts the height of the transverse metacenter, 

which determines the initial stability of the vessel. 

As a result, the shape of the water plane varies according to the arrangement of the chine line, 

and It is determined according to the shape of water plane, which in turn affects the computation of 

the initial stability. 

Small ships predominantly feature a relatively low chine height and wide chine width close to 

the breadth of the vessel. These ships demonstrate rapid changes in the water plane shape depending 

on draft changes from the baseline to the chine height. Changes in It data according to variations in 

chine height of the datasets used for learning were categorized into four major stages of change. 

As shown in Figure 9, the stages of change in It data include a nonlinear section (Part ①), which 

occurs due to drastic changes in water plane shape from the baseline to the height around the central 

chine height caused by hull curvature. This is followed by a linear section (Part ②) extending to the 

maximum chine breadth height, a nonlinear section (Part ③) up to the stern chine height, and a linear 

section (Part ④) influenced by the final bow chine height. 

In this study, considering the operational draft range of small ships, the initial nonlinear section 

(Part ①) was excluded. We simplified the mathematical modeling of the remaining sections of It data 

using a combination of three straight-line segments (fore, mid, and end line segments) with linear 

approximation techniques. We found that the slope and position of these line segments vary 

depending on the chine distribution. To simplify the mathematical model’s structure while 

considering the geometric distribution features of these line segments, we used their intersection 
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points (Pix, Piy), weight (WS, WE), and intersection distance with the central segment (DS, DE) as form 

parameters in our learning data. 

 

Figure 9. Mathematical Modeling of It Data. 

3.4.4. Mathematical Model Test Results 

To verify the effectiveness of the mathematical model, error calculations were performed using 

MAPE and MAE, which are commonly used as performance metrics in regression models. 

MAPE, MAE, and R2 are representative performance metrics for evaluating the accuracy of the 

predicted model. For n data points, when comparing the model’s predicted values (y୧) to the actual 

values (f(x୧)), MAE represents the average of all absolute errors, while MAPE shows the average 

percentage of absolute errors relative to the actual values. R2 indicates how well the independent 

variable in the model can represent the dependent variable and is defined as follows. 

MAE  =  1
n
 ෍ |

୬
୧ୀଵ y୧  −  f(x୧)| 

MAPE  =  100

n
 ෍ |

୬
୧ୀଵ

y୧  −  f(x୧)
y୧ |   (y୧   ≠  0) 

Rଶ  =   ෍  ୬
୧ୀଵ (

f(x୧)  −  y y୧  −  y )ଶ  =  1− ෍  ୬
୧ୀଵ (

 y୧ − f(x୧)
y୧  −  y )ଶ 

The MAPE (%) of the mathematical model ranges as 1.00–1.12%. Although some datasets 

showed a maximum MAPE error ranging from 3.94% to 17.96%, this likely occurs due to the nature 

of MAPE calculations, where the MAPE value tends to diverge toward infinity as the actual value 

(y୧) approaches zero. 

MAE was calculated for both the real hydrostatic data (MAER) and the dimensionless hydrostatic 

data (MAEN). The overall average MAER for the actual volume data was calculated to be 0.116 m³. 

The error ranged from a minimum of 0.009 m³ to a maximum of 0.427 m³. The overall average MAEN 

for dimensionless data was calculated to be 0.22% of the cubic number. For the actual KB data values, 

the MAER ranged from a minimum of 0.001 m to a maximum of 0.007 m, with an overall average 

calculated to be 0.002 m. The overall average of MAEN for dimensionless data was calculated to be 

0.24% of the ship’s depth (Dm). For the actual It data values, the overall average MAER was calculated 
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to be 0.324 m⁴. The error ranged from a minimum of 0.023 m⁴ to a maximum of 4.837 m⁴ (refer to 

Table 4). 

Table 4. Distribution of Errors in Mathematical Modeling. 

Hydro. Data 

Error 

Statistics 

Volume Curve KB Curve It Curve 

MAPE 

(%) 

MAEN 

(-) 

MAER 

(m3) 

R2 

(-) 

MAPE 

(%) 

MAEN 

(-) 

MAER 

(m) 

R2 

(-) 

MAPE 

(%) 

MAEN 

(-) 

MAER 

(m4) 

R2 

(-) 

Mean 1.00 0.0022 0.1164 0.9961 1.12 0.0024 0.0023 0.9967 1.01 0.0048 0.3235 0.9875 

Standard 

Deviation 
0.69 0.0011 0.0771 0.0040 0.63 0.0011 0.0011 0.0034 1.71 0.0044 0.4281 0.0268 

Min. Value 0.08 0.0002 0.0091 0.9774 0.19 0.0006 0.0006 0.9765 0.07 0.0005 0.0230 0.5754 

25th 

Percentile 
0.51 0.0013 0.0600 0.9946 0.72 0.0016 0.0015 0.9960 0.33 0.0022 0.1036 0.9871 

50th 

Percentile 
0.88 0.0022 0.1043 0.9974 1.00 0.0022 0.0021 0.9978 0.54 0.0035 0.1949 0.9943 

75th 

Percentile 
1.37 0.0030 0.1503 0.9989 1.36 0.0030 0.0028 0.9988 0.93 0.0054 0.3677 0.9978 

Max. Value 3.94 0.0058 0.4269 1.0000 4.97 0.0069 0.0066 0.9998 17.96 0.0450 4.8369 0.9999 

Remark : Verification range: 0.28d to 0.89d, frequency: 430 vessels 

The frequency distribution of MAPE (%) for the mathematical transformation model is 

illustrated in Figure 10. Some datasets had MAPE values classified as statistical outliers, and these 

were reviewed considering statistical heuristics. The upper limits for 2σ (95%) are a maximum error 

rate of 2.28%, 2.24%, and 2.82% for volume, KB, and It data, respectively. For 3σ (99.7%), the upper 

limits are calculated to be a maximum of 3.83%, 3.89%, and 14.83%. Within the 2σ and 3σ ranges, the 

overall average error rates are a maximum of 2.45% and 7.52%, respectively. The model aligns with 

at least 97.55% and 92.48% of the total training data within the ranges of 95% and 99.7%, respectively. 

The overall average MAPE of the mathematical model is 1.04%, and it was calculated that the model 

shows an average alignment of about 99% with the raw data. 

 

Figure 10. Distribution of MAPE in Mathematical Modeling. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 November 2023                   doi:10.20944/preprints202311.1392.v1

https://doi.org/10.20944/preprints202311.1392.v1


 11 

 

The overall average R² for the actual values in the mathematical model is 0.9934. The average R² 

for It data was the lowest, calculated to be 0.9875, while for volume and KB, it was calculated to be 

0.9961 and 0.9967, respectively. The coefficient of determination R², which quantifies the degree of 

causal relationship between variables in the regression model, is a measure that evaluates how well 

the independent variable represents the dependent variables and falls within the range [0, 1]. The 

closer R² is to 1, the higher the correlation of the independent variable with the dependent variables 

in the regression model. The mathematical model using the form parameter was found to have a 

significant correlation. 

Therefore, we comprehensively examined the error rate of the mathematical transformation 

model using various evaluation metrics. We found that the accuracy of the model using the form 

parameter is satisfactory and used it as training data for deep learning. 

3.5. Data Normalization 

Data scaling was performed to minimize the distortion effects caused by varying numerical 

ranges in the training data and to enhance the efficiency and effectiveness of the learning process. 

Normalization1  was carried out as described below to ensure that the learning model was not 

dependent on specific data and to maintain a consistent range for the weights and biases in the 

activation functions. Positive learning outcomes were confirmed in the deep learning model 

constructed for this study. 

4. Composition of Deep Learning Model & Test Results 

4.1 Composition of Deep Learning Model 

To create and train the deep learning model, we used the Keras Model, a high-level API from 

the open-source library TensorFlow. For data preprocessing, numerical operations, and evaluation 

of learning, we utilized Python-based modules such as Pandas, NumPy, and Scikit-learn. 

As shown in Figure 11, we designated 12 hull form feature offset data and key dimension ratios, 

discernible from the general arrangement of 430 vessels in the training data, as the input features for 

deep learning. The form parameter, calculated during the mathematical modeling process, was set as 

the target data for the deep learning model. 

The split ratio between training and test data was set at 10%, and the data were randomly 

selected. To prevent overfitting and improve the model’s accuracy, K-fold cross-validation was 

performed on the training data. The learning rate, number of epochs, and configuration and 

connectivity of the hidden layers and nodes were determined through hyperparameter tuning to 

achieve optimal values. The activation functions used in the model include sigmoid, ELU 

(exponential linear unit), and ReLU (rectified linear unit), which are suitable for regression models. 

Separate deep learning models were constructed for volume, KB, and It data. These models were 

validated by calculating the error between the mathematical model, which applied the predicted form 

parameter from the test data, and the actual values. 

 

1 Min-Max Scaling: All feature data are transformed to be positioned between [0, 1]. 
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Figure 11. Composition of Deep Learning Model. 

4.2. Deep Learning Test Results 

Given the challenging nature of quantitatively comparing form parameter data characteristics, 

we evaluated the deep learning training outcomes based on MAE and the ratio (%) of MAE to the 

average of the actual values of form parameters in the test data (refer to Table 5). Additionally, we 

indirectly assessed the similarity in data distribution by comparing the item-specific ratios (%) of the 

descriptive statistics (mean, standard deviation, quartiles, and maximum and minimum values) 

between the test and predicted data. 

Table 5. Error Distribution of Deep Learning Training Results. 

Items 
Error  

Target Data 
MAE 

Test Data 

Average 
Error Rate (%) 

Volume 

f(0) 0.0021 0.0383 5.53 

f(s) 0.0090 0.3132 2.88 

f(1) 0.0115 0.7509 1.53 

f ᇱ(0) 0.0245 0.1280 19.16 

f ᇱ(s) 0.0161 0.8291 1.94 

Average 0.0127 0.4119 6.21 

KB 

f(0) 0.0087 0.2038 4.28 

f(s) 0.0041 0.2445 1.69 

f(1) 0.0043 0.5412 0.80 

f ᇱ(0) 0.0502 1.0953 4.58 

f ᇱ(s) 0.0204 0.6898 2.95 

Average 0.0175 0.5549 2.86 

It 

P୧୶ 0.0263 0.3369 7.80 

P୧୷ 0.0148 0.7526 1.97 

Wୗ 0.0468 0.3153 14.84 

W୉ 0.0178 0.1480 12.04 

Dୗ 0.0505 0.2279 22.18 
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D୉ 0.0435 0.1825 23.82 

Average 0.0333 0.3272 13.77 

As shown in Figure 12, form parameters of volume and KB data, which show relatively 

consistent patterns in response to chine changes, tend to cluster closely around the equal line (y = x). 

These also demonstrated relatively low MAE percentages. However, It data, which is highly sensitive 

to changes in chine shape, exhibited less clustering density around the equal line and higher MAE 

percentages. 

 

Figure 12. Distribution of Deep Learning Training Results. 

The overall average MAE of the predicted data is 0.0280. Compared to the average standard 

deviation (0.0818) of the test data, this represents approximately 34%, and the overall MAE 

percentage was calculated to be 7.61%. 

The volume and KB curves, which exhibit consistent patterns according to draft and are 

mathematically modeled using a combination of polynomial functions, showed relatively satisfactory 

training results. In contrast, It data, modeled as a mathematical combination of multiple line segments 

for linear approximation, displayed inferior training results. 

To examine the statistical distribution similarity between the test and predicted data, we 

performed mutual comparison calculations on the descriptive statistics of each dataset, as shown in 

Tables 6–8. 

Table 6. Comparison of Input and Output Statistical Measures for Volume Curve Form Parameter. 

Target Data 

Statistics 

f(0) f(s) f(1) f ᇱ(0) f ᇱ(s) 

Test Predict Test Predict Test Predict Test Predict Test Predict 

Mean 0.0383 0.0385 0.3132 0.3101 0.7509 0.7489 0.1280 0.1269 0.8291 0.8341 

Standard 

Deviation 
0.0156 0.0158 0.0453 0.0443 0.0535 0.0504 0.0614 0.0517 0.0499 0.0464 

Min. Value 0.0094 0.0096 0.2040 0.2093 0.6296 0.6396 0.0565 0.0456 0.6608 0.6689 

25th Percentile 0.0304 0.0302 0.2837 0.2766 0.7202 0.7162 0.0837 0.0937 0.8068 0.8131 

50th Percentile 0.0378 0.0371 0.3168 0.3156 0.7427 0.7545 0.1174 0.1190 0.8317 0.8428 

75th Percentile 0.0458 0.0475 0.3411 0.3374 0.7882 0.7812 0.1555 0.1429 0.8570 0.8625 

Max. Value 0.0873 0.0850 0.3962 0.3991 0.8372 0.8552 0.3375 0.2858 0.9185 0.9025 

Table 7. Comparison of Input and Output Statistical Measures for KB Curve Form Parameter. 

Target Data 

Statistics 

f(0) f(s) f(1) f ᇱ(0) f ᇱ(s) 

Test Predict Test Predict Test Predict Test Predict Test Predict 

Mean 0.2038 0.2055 0.2445 0.2449 0.5412 0.5423 1.0953 1.0834 0.6898 0.6972 

Standard 

Deviation 
0.0602 0.0582 0.0348 0.0343 0.0285 0.0281 0.1415 0.1130 0.0868 0.0861 

Min. Value 0.0724 0.0965 0.1547 0.1545 0.4668 0.4620 0.7347 0.8453 0.5544 0.5597 
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25th Percentile 0.1645 0.1726 0.2313 0.2294 0.5208 0.5252 1.0075 1.0115 0.6380 0.6428 

50th Percentile 0.1996 0.2047 0.2469 0.2482 0.5434 0.5394 1.0920 1.0762 0.6710 0.6800 

75th Percentile 0.2359 0.2392 0.2650 0.2661 0.5536 0.5575 1.1860 1.1503 0.7126 0.7372 

Max. Value 0.3722 0.3688 0.3128 0.3244 0.6119 0.6163 1.4043 1.3396 1.0325 1.0412 

Table 8. Comparison of Input and Output Statistical Measures for It Curve Form Parameter. 

Target Data 

Statistics 

P୧୶ P୧୷ Wୗ W୉ Dୗ D୉ 

Test Predict Test Predict Test Predict Test Predict Test Predict Test Predict 

Mean 0.3369 0.3531 0.7526 0.7546 0.3153 0.2978 0.1480 0.1501 0.2279 0.2337 0.1825 0.1545 

Standard 

Deviation 
0.0868 0.0775 0.0538 0.0473 0.0806 0.0636 0.0530 0.0536 0.1422 0.1309 0.1219 0.1001 

Min. Value 0.1891 0.2328 0.6441 0.6471 0.2123 0.1929 0.0512 0.0595 0.0259 0.0654 0.0439 0.0518 

25th Percentile 0.2779 0.2997 0.7140 0.7198 0.2623 0.2642 0.1079 0.1126 0.1049 0.1259 0.0698 0.0725 

50th Percentile 0.3182 0.3318 0.7392 0.7562 0.2917 0.2819 0.1444 0.1530 0.2114 0.1898 0.1407 0.1205 

75th Percentile 0.4011 0.4218 0.7907 0.7843 0.3567 0.3285 0.1823 0.1857 0.3357 0.3399 0.2531 0.2024 

Max. Value 0.5402 0.5287 0.8623 0.8392 0.5793 0.5646 0.2694 0.3022 0.5694 0.5180 0.5144 0.4131 

The average percentages of item-specific statistics for form parameters in the test and predicted 

data are as follows: volume, 101.73%; KB, 99.53%; and It, 100.88%. The overall average was calculated 

to be 100.74%. Kernel density estimation was conducted on the form parameters, as shown in Figure 

13, to intuitively examine the similarity in data distribution trends. Based on these findings, we 

concluded that the test and predicted data have a significant degree of statistical distribution 

similarity. 

 

Figure 13. Kernel Density Estimation of Input and Output Form Parameters. 

Therefore, the deep learning model’s training results are considered to be relatively satisfactory. 

This conclusion was reached after cross-validating statistical similarities between the test and 

predicted data, considering data distribution forms through kernel density estimation, and 

calculating evaluation metrics such as MAE and MAE percentages. 

4.3. Hydrostatic Data Mathematical Modeling Results 

To verify the hydrostatic data mathematically modeled through deep learning, commonly used 

regression model evaluation metrics such as MAPE, MAE, and R2 were utilized. The average MAPE 

for each item in the predicted data ranged from 2.54% to 2.91%, with an overall average of 

approximately 2.80% (refer to Table 9). 

In evaluating the correlation between input and output variables in the regression model, the R2 

values were calculated as follows: 0.9919 for volume data and 0.9955 for KB data. These were modeled 

as combinations of polynomial functions. For It data, which was modeled as a mathematical 

combination of multiple line segments for linear approximation, a relatively low R2 value of 0.8903 
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was observed. This also impacted the R2 value for KMT 2data (0.9419). Nonetheless, the overall 

average R2 was calculated to be 0.9549, confirming a significant correlation between input and output 

data. 

Table 9. Error and Evaluation Metrics for Hydrostatic Curve Deep Learning Results. 

Items 

Error 

Ship No 

Volume Curve KB Curve It Curve KMT Curve 

MAPE 

(%) 
MAE R2 

MAPE 

(%) 
MAE R2 

MAPE 

(%) 
MAE R2 

MAPE 

(%) 
MAE R2 

S947 0.30 0.0010 0.9999 1.47 0.0036 0.9979 0.50 0.0035 0.9944 0.45 0.0140 0.9984 

A714 0.69 0.0023 0.9997 0.85 0.0015 0.9997 0.52 0.0041 0.9893 0.66 0.0201 0.9975 

A913 1.00 0.0027 0.9995 3.21 0.0053 0.9977 1.32 0.0088 0.9846 1.01 0.0293 0.9909 

S513 3.49 0.0119 0.9930 4.03 0.0086 0.9917 3.81 0.0257 0.7961 1.05 0.0278 0.9917 

S720 1.22 0.0055 0.9985 2.01 0.0017 0.9997 0.27 0.0020 0.9942 1.08 0.0263 0.9975 

S067 0.71 0.0027 0.9996 0.52 0.0009 0.9999 1.23 0.0092 0.9895 1.21 0.0443 0.9885 

S624 1.54 0.0067 0.9979 1.92 0.0056 0.9969 0.71 0.0056 0.9692 1.29 0.0317 0.9972 

S818 2.13 0.0072 0.9969 0.55 0.0017 0.9997 1.44 0.0100 0.9926 1.34 0.0333 0.9878 

S763 1.44 0.0040 0.9992 1.44 0.0048 0.9977 0.57 0.0038 0.9990 1.35 0.0393 0.9867 

S959 0.95 0.0034 0.9995 0.66 0.0019 0.9996 1.66 0.0113 0.9721 1.56 0.0509 0.9760 

S804 1.43 0.0050 0.9989 0.72 0.0026 0.9989 0.23 0.0017 0.9903 1.56 0.0397 0.9923 

S729 0.71 0.0022 0.9997 2.96 0.0050 0.9980 1.12 0.0073 0.9887 1.64 0.0441 0.9873 

A923 1.56 0.0031 0.9992 2.57 0.0051 0.9981 0.68 0.0031 0.9988 1.92 0.0514 0.9661 

S999 3.00 0.0091 0.9954 1.80 0.0060 0.9967 3.73 0.0265 0.9630 1.93 0.0540 0.9866 

S984 4.73 0.0162 0.9865 1.27 0.0031 0.9992 2.71 0.0178 0.9710 1.99 0.0547 0.9861 

S032 1.76 0.0036 0.9993 0.57 0.0013 0.9997 3.68 0.0207 0.9806 2.01 0.0517 0.9668 

S023 1.31 0.0032 0.9993 1.87 0.0036 0.9986 1.11 0.0067 0.9946 2.05 0.0634 0.9612 

A710 2.86 0.0101 0.9956 1.83 0.0052 0.9975 1.67 0.0114 0.9491 2.11 0.0474 0.9847 

S979 2.03 0.0069 0.9976 1.44 0.0039 0.9984 1.38 0.0098 0.9781 2.25 0.0568 0.9854 

A804 0.93 0.0030 0.9995 1.11 0.0029 0.9992 2.52 0.0185 0.9267 2.27 0.0833 0.9560 

S648 3.16 0.0126 0.9930 1.75 0.0045 0.9981 2.11 0.0157 0.9504 2.32 0.0636 0.9722 

S709 1.50 0.0045 0.9990 4.90 0.0127 0.9788 1.59 0.0102 0.9834 2.33 0.0706 0.9789 

S956 3.07 0.0113 0.9933 0.52 0.0014 0.9998 2.19 0.0160 0.7036 2.34 0.0973 0.9521 

S820 2.89 0.0105 0.9951 2.69 0.0077 0.9942 1.16 0.0086 0.9113 2.49 0.0588 0.9872 

A914 3.07 0.0126 0.9925 5.22 0.0078 0.9959 4.38 0.0339 0.9416 2.62 0.1233 0.9427 

S667 3.50 0.0107 0.9945 0.79 0.0020 0.9995 6.01 0.0418 0.7213 2.75 0.0516 0.9840 

S066 2.78 0.0106 0.9947 3.04 0.0073 0.9960 2.46 0.0198 0.9126 2.82 0.1016 0.9851 

A909 1.26 0.0031 0.9993 3.74 0.0088 0.9931 2.45 0.0083 0.9954 2.85 0.0774 0.9506 

A915 1.53 0.0033 0.9994 5.35 0.0164 0.9812 2.40 0.0132 0.9928 2.89 0.0798 0.9834 

S706 2.42 0.0074 0.9962 1.00 0.0035 0.9987 3.90 0.0205 0.9646 3.06 0.0865 0.8897 

S784 0.62 0.0017 0.9998 3.14 0.0069 0.9963 3.54 0.0247 0.8437 3.56 0.0983 0.8942 

S980 8.32 0.0353 0.9486 1.47 0.0041 0.9981 4.62 0.0379 0.2933 3.69 0.1111 0.9770 

S411 3.72 0.0160 0.9890 14.39 0.0099 0.9867 1.14 0.0090 0.6384 3.88 0.3108 0.9622 

S778 3.83 0.0137 0.9915 5.28 0.0091 0.9916 5.83 0.0409 0.5320 4.18 0.1721 0.9053 

A202 2.52 0.0086 0.9968 1.18 0.0036 0.9985 7.01 0.0471 0.4598 4.20 0.1008 0.8376 

S816 6.10 0.0219 0.9758 1.88 0.0054 0.9969 2.35 0.0169 0.9610 4.22 0.1208 0.9483 

 

2 KMT : Transverse Metacenter Height (KB + BM )  
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S702 2.62 0.0085 0.9967 3.05 0.0067 0.9954 2.12 0.0149 0.9445 4.61 0.1464 0.8863 

S064 7.19 0.0294 0.9636 4.99 0.0092 0.9898 3.03 0.0219 0.5322 4.90 0.1364 0.9591 

S009 1.83 0.0070 0.9958 3.57 0.0117 0.9871 6.08 0.0433 0.8645 4.94 0.1347 0.9356 

S909 4.62 0.0170 0.9884 9.44 0.0124 0.9814 3.47 0.0280 0.8381 5.47 0.2559 0.9326 

A606 5.57 0.0099 0.9942 1.24 0.0031 0.9992 5.07 0.0109 0.9928 6.68 0.1227 0.7573 

S753 9.03 0.0290 0.9508 1.69 0.0054 0.9969 1.70 0.0106 0.9880 8.55 0.1557 0.5112 

A803 8.60 0.0311 0.9507 10.04 0.0118 0.9870 3.55 0.0241 0.8971 9.08 0.3310 0.6866 

Average 2.87 0.0099 0.9919 2.86 0.0057 0.9955 2.54 0.0169 0.8903 2.91 0.0900 0.9419 

As shown in Figure 14, examining the error distribution (MAPE) of the hydrostatic data inferred 

through deep learning reveals that the KMT MAPE showed less than a 5% error in 91% (39 vessels) 

of the test data. According to the statistical empirical rule, a review of the 3σ range showed that a 

maximum error rate of 13.84% (KB) was observed in 99.7% of the population. The remaining items 

exhibited a maximum error rate calculated between 6.89% and 9.01%. 

 

Figure 14. Statistical Distribution of Error (MAPE) for Hydrostatic Curve Deep Learning Results. 

As shown in Figure 15, using the hydrostatic data inferred through deep learning for initial 

stability calculations on KMT data, the error rate (based on MAPE) ranged from a minimum of 0.45% 

to a maximum of 9.08%. The average error rate was calculated to be 2.91%, showing an alignment of 

over 97%. Therefore, the inference results of the hydrostatic data through deep learning proposed in 

this study were found to be a relatively satisfactory and reliable model. Figures 16–19 show samples 

of learning results. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 November 2023                   doi:10.20944/preprints202311.1392.v1

https://doi.org/10.20944/preprints202311.1392.v1


 17 

 

 

Figure 15. MAPE-based Hydrostatic Curve Deep Learning Results. 

 

Figure 16. Volume Curve Deep Learning Results. 

 

Figure 17. KB Curve Deep Learning Results. 
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Figure 18. It Curve Deep Learning Results. 

 

Figure 19. KMT Curve Deep Learning Results. 

5. Conclusion and Future Work 

In this study, we set hull form feature data, which can be extracted from the general 

arrangements of small chine-type ships, as input variables. We then inferred the hydrostatic data 

needed for initial stability calculations using a multilayer neural network-based deep learning model. 

The following results were observed: 

1. Hydrostatic data based on form parameters can be converted into a mathematical model. 

2. Hydrostatic data required for initial stability calculations can be inferred by training a deep 

learning model using hull form feature data identifiable from general arrangements. 

3. The deep learning model implemented in this study yielded an MAPE of 2.91% for KMT 

(transverse metacentric height), confirming satisfactory results. 

Thus, this study confirmed the feasibility of inferring hydrostatic data needed for initial stability 

calculations via deep learning using limited design data (general arrangements) from small ships. By 

securing more real-world ship data, enabling type-specific supervised learning focused on chine 

shape and location, and conducting further research on hydrostatic data items, we expect the 

applicability of this foundational data for stability calculations in domestic coastal areas to increase 

further. 
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