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Abstract: Capsizing accidents are regarded as marine accidents with a high rate of casualties per
accident. Approximately 89% of all such accidents occur in small ships (vessels with gross tonnage
less than 10 tons). Stability calculations are critical for assessing the risk of capsizing incidents and
evaluating a ship’s seaworthiness. Despite the high frequency of capsizing accidents involving small
ships, they are generally exempt from adhering to stability regulations, thus remaining systemically
exposed to the risk of capsizing. Moreover, the absence of essential design documents complicates
direct ship stability calculations. This study utilizes hull form feature data—obtained from the
general arrangement of small ships—as input for a deep learning model. The model is structured as
amultilayer neural network and aims to infer hydrostatic curves, which is required data for stability
calculations.

Keywords: hull form; deep learning model; hydrostatic curve modelling; small ships

1. Introduction
1.1. Background of Research

Capsizing accidents occur when external forces cause a stable ship to lose its stability, leading to
overturning. Since 2018, an average of 92 such incidents have occurred annually. As show in Figure
1, the rate of human casualties (number of deaths and missing persons per incident) per capsizing
incident is 0.238 (casualties/incident), making it the second-highest type of marine accident in terms
of human casualties, following safety incidents (0.355 casualties/incident). Over the past five years
since 2018, there have been 109 deaths and missing persons. During the same period, 480 ships were
involved in capsizing incidents, of which small ships accounted for 89% (428 ships). These statistics
confirm that capsizing is a high-risk maritime accident, particularly dangerous to human life on small
ships, as found in the survey.

Despite their relatively high frequency of capsizing accidents, small ships are exempt from
regulations closely related to their seaworthiness evaluation, specifically in terms of stability
standards. Small ships that are not subject to stability regulations lack even minimal assessments of
seaworthiness. Essential design documents required for stability calculations—such as general
arrangement, lines, midship section, and construction profile and deck plan—are often missing. This
makes direct calculations of stability practically difficult. Therefore, there is a pressing need to assess
whether appropriate seaworthiness can be ensured through stability calculations, as small ships are
systematically exposed to the risk of capsizing. As the majority of domestic coastal ships are chine-
type fiberglass reinforced plastic (FRP) vessels, we use key hull form feature data available from
limited design documents, such as the general arrangement, as input. As show in Figure 2, we apply

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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amultilayer neural network-based deep learning model to infer hydrostatic curves. This is to evaluate
the possibility of direct stability calculations for small ships.
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Figure 1. Rates of Casualty and Incident Occurrence by Marine Accident.
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Figure 2. Conceptual Diagram of the Research.

1.2. Status of Related Research

Research on the hull form features of small ships primarily focuses on improving resistance and
stability [1-3]. In particular, most studies on stability performance have focused on small fishing
vessels, considering that the majority of small ships are fishing boats. These studies often involve the
development of simplified formulas for estimating GM (metacentric height) due to the exemption of
stability tests for fishing vessels under 24 meters in length, or they perform estimates based on
stability standards for ships with a length of 24 meters or more [4,5]. Some countries have partially
adopted these stability standards for small ships; however, such adoption has often been found to be
impractical due to differences in basic hull shapes and the distribution of key dimensions [6]. Studies
on the chine shape of small ships primarily aim to improve resistance performance in high-speed
hulls [7]. Although some research has been conducted on stability estimation for small ships and the
application of stability standards for larger vessels (24 meters in length or larger) [8], systematic
studies on the change in stability performance due to chine distribution have been relatively
neglected.

Research on artificial intelligence (Al) in shipbuilding and the maritime industry has mostly
focused on improving production efficiency through image processing, hull development, and the
estimation of preliminary design data. Some studies on large ships include the estimation of optimal
stern shapes using a convolutional neural network (CNN) [9], the development of learning systems
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for the classification and bending information of shell plates [10], and studies on preliminary light
weight estimates using deep neural networks (DNN) [11]. Previous studies using Al techniques
related to small ships include the use of DNN for estimating key dimensions of small ships [12] and
the development of real-time distress recognition systems using real-time video from small ships [13].
However, no studies have investigated the hull form features and stability related to small ships.

2. Ship Stability and Hydrostatic Curve
2.1. Ship Stability Calculation

The stability of a ship refers to the force that enables the ship to return to its original equilibrium
state when inclined by an external force. Stability depends on factors such as the ship’s center of
gravity, displacement, and area moment of inertia with respect to the water plane shape, serving as
a minimum criterion for assessing the ship’s seaworthiness.

Initial stability corresponds to the restoring moment at a small transverse inclination angle (¢),
as depicted in Figure 3.

Stability (restoring moment) =W x GZ =W x GM x sing,

whereG_M=m—K_G=@—W—K_G=@+%-K_G

Here, W is the displacement, V is the displaced volume, M is the position of transverse
metacenter, B is the center of buoyancy, G is the center of gravity, and I: is the transverse moment of
inertia.

Figure 3. Initial Ship Stability Calculation.

Stability is calculated using the ship’s center of gravity (G) obtained through incline tests and
the hydrostatic curve. For chine-type vessels, the ship’s water plane shape and the transverse moment
of inertia (It) are determined by the arrangement of the chines. This affects the position of the
metacenter in initial stability calculations. Because these values can significantly change depending
on the chine shape, it can be assumed that the stability characteristics of small ships are determined
by the shape and arrangement of the chines.

2.2. Hydrostatic Curve

The hydrostatic curve calculates changes in displacement with respect to changes in the draft of
the ship. It represents the distribution of corresponding hydrostatic characteristics of the ship, either
graphically or in tabular form. These characteristics include various coefficients such as draft-specific
displacement, center of buoyancy (LCB, KB), water plane area (Aw), and wetted surface area, as well
as the block coefficient (Cs). These data are essential for calculating ship stability. Lines indicating the
accurate hull shape schematics below the waterline are crucial for creating the hydrostatic curve.
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Many small ships are often exempt from having these design documents (Lines), making direct
stability calculations challenging.

3. Deep Learning Data Configuration

The training data consist of 430 ships for which hydrostatic data could be calculated, limited to
ships propelled by conventional propulsion systems such as internal combustion engines and
propellers. The hydrostatic data calculations include only the main hull and the box keel, excluding
additional structures such as the side appendage and stern wedge.

3.1. Dimensionless Learning Data

The input data for deep learning, referred to as feature data, consists of key hull form features.
These include principal dimension ratios, upper deck data, and details on the chine and box keel, all
of which can be obtained from a general arrangement drawing.

To enhance the effectiveness of deep learning training and facilitate intuitive comparisons and
parameter utilization, we have converted the training data to be dimensionless. The offset
coordinates in length, width, and depth dimensions are normalized to dimensionless values between
0 and 1, based on the aft end, centerline, and baseline of the ship, respectively. Individual elements
of hydrostatic data, such as area, volume, and moment of inertia, were made dimensionless by
converting them into ratios corresponding to specific ship features (refer to Table 1).

Table 1. Range of Dimensionless Data.

Feature Data (Unit) Dimensionless Scaled by Remarks
Offset | Length (x) Lt (Upper Deck Length) At aft end, value is 0
Data | Breadth (y) Bm (Molded Breadth) At centerline, value is 0
(m) Depth (z) Dm (Molded Depth) At baseline, value is 0
Volume (m?3) Lt x Bm x Dm (Cubic Number) -
KB (m) Dm (Molded Depth) At baseline, value is 0
It (m*) Lt x Bn?/12 (Rectang]le I) -

As shown in Figure 4, various linear characteristics of the training data can be plotted on the
same [0, 1] plane. This allows for easy comparison between different datasets and an intuitive
understanding of the correlations among them by overlaying other dimensionless data (hydrostatic
curve).

35 Scheme of Dimension less Learning Data

Dimensionless upper deck & chine line data profile, plan

Chine Line Plan 01 02 03 04 05 06 Q7 08 09 10

Dimensionless Length

< General Arragement > < Dimension less Learning Data >

Figure 4. Concept of Dimensionless Training Data.
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3.2. Deep Learning Range

To investigate the operational conditions of small ships, we examined draft and displacement

doi:10.20944/preprints202311.1392.v1

across various loading conditions, including light ship and full load conditions (refer to Table 2).

Table 2. Draft and Displaced Volume Statistics.

Ttems Draft Volume
Statistics Min. Max. Min. Max.

Mean 0.4896 0.6538 0.2899 0.4294
Standard Deviation 0.0804 0.0898 0.0577 0.0872
Min. Value 0.2405 0.3778 0.1517 0.2418
25th Percentile 0.4369 0.5898 0.2515 0.3692
50th Percentile 0.4915 0.6521 0.2870 0.4207
75th Percentile 0.5442 0.7116 0.3273 0.4796
Max. Value 0.7950 0.9250 0.4588 0.7835

The actual operational draft range for small ships can be assumed to span from light ship to full
load conditions. As shown in Figure 5, by applying a method that identifies statistical outliers
through the quartiles of the distribution of minimum and maximum drafts, we calculated the draft
range to be 0.28-0.89Dm. Within this range, we confirmed that the average minimum and maximum
loaded displacement volumes operate within the range of 0.29-0.43 cubic number. To reflect the
actual operating conditions of small ships and enhance the accuracy of deep learning training, we set

the scope of the study to the 0.28-0.89Dm range.
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3.3. Deep Learning Feature Data

The input data used for training consists of 12 key hull form features and offsets, which can be
verified from three major dimensions and general arrangements, as well as key hull form items such
as sheer (refer to Table 3).

Table 3. Composition of Input Data.

ltems Description N
Particulars & Offsets escriptio ©
Principal Dilmensmn L/B, B/D, L/D 3

Ratio
Principal Particulars Aft & Fore Sheer Height 2
Upper Deck Offsets Aft End, Midship, Max. Breadth End Offsets 3

Chine Offsots Aft End, Midship, Max. Breadth End, Fore End 4
Offsets
Box Keel Offsets Max. Height & Offsets, Aft & Fore End Offsets 3

The sheer at the bow and stern was measured to be 35% and 28% of the ship’s depth (Dm),
respectively. We observed that the sheer at the stern is set higher than at the bow to ensure adequate
propeller clearance.

As shown in Figure 6, the distribution of chine height averages 39%, 21%, and 66% of the ship’s
depth at the stern, center, and bow, respectively. The average maximum width of the chine is
approximately 98% of the ship’s breadth (Bm), and it was found to extend from the stern up to 72% of
the ship’s length. Small ships tend to have a relatively low chine height and maximize displacement
by having a chine width close to the ship’s breadth.
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Figure 6. Distribution of Chine Height by Ship Length.

Most small ships are equipped with a box keel, and we observed that the shape of the hydrostatic
data near the baseline changes depending on the placement of the box keel. The average length of the
box keel installation is approximately 68% of the ship’s total length (L), and its average volume is
3.57% of the cubic number. It was found to be installed within a range of 25% to 92% of the ship’s
length from the stern.

As shown in Figure 7, the distribution of key dimension ratios for small ships varies widely. In
particular, the L/D ratio related to depth ranges from 8.36 to 26.88, while the B/D ratio, which is
closely related to initial stability, has an average of 3.89 and a range of 2.30 to 8.05.

doi:10.20944/preprints202311.1392.v1
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Figure 7. Distribution of Key Dimension Ratios by Ship Length.

3.4. Deep Learning Target Data

The shape and distribution of hydrostatic data exhibit specific patterns depending on the shape
and placement of the chine. By converting the form parameters that define the geometric
characteristics of hydrostatic data into a mathematical model, the correlation between chine shape
and form parameters can be inferred. Therefore, in this study, we converted hydrostatic data
composed of continuous numerical data into a mathematical model using form parameters and set it
as the target output for deep learning.

3.4.1. Mathematical Modeling Using Form Parameters

The form parameter method involves converting various types of shape data into a
mathematical model by appropriately combining geometric dimensions, known as form parameters,
representing the characteristics of the shape. Form parameters defining geometric characteristics
consist of points (location), derivatives (slope, curvature), and integrals (area, centroid) [14].

Hydrostatic data for the 430 vessels used in the training data were calculated using a stability
calculation program (K-SHIP) and are output as continuous numerical distribution-type data
corresponding to draft changes.

We mathematically modeled the changes in hydrostatic data related to the underwater hull
volume, location of the center of buoyancy (KB), and transverse moment of inertia according to the
draft required for initial stability calculations.

In this study, we calculated form parameters by setting the hydrostatic data as a combination of
second- and third-degree polynomial functions or linear functions. We then compared the errors
between these mathematical models and the actual values to verify the model’s suitability.

3.4.2. Volume & KB Data Mathematical Modeling

The distribution of volume data can be approximated as a curve using a polynomial function of
at least a second degree with respect to draft (x), as shown in Figure 8. We performed B-spline curve
fitting (order=3) on the volume data, and observed that a section where the slope of fitting curve
becomes constant tend to begin around 0.5Dm.

This characteristic is presumed to occur based on the location of the previously discussed chine
height distribution. Generally, characteristics of the volume curve change based on this factor.
Therefore, to improve the accuracy of the mathematical model transformation and learning
efficiency, we set x = 0.5 as the segment split point for mathematical modeling. We modeled the
volume data as a combination of two polynomial curves based on form parameters.

f 00<x<0.5
a . S .

From the B-spline fitting curve, we calculated the position and derivative form parameters (f(x),
f'(x)) at both endpoints and the split point. We mathematically modeled the volume data as split
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curves of third- and second-degree polynomial functions in the fore and aft sections, applying C!
continuity (differentiability) conditions at the split point.

Fore curve: fi(x) < [f(0.0), f'(0.0), £f(0.5) ] & polynomial degree =3

Aft curve: fy(x) < [f(0.5), £'(0.5), f(1.0)] & polynomial degree =2

We reconstructed KB data in a similar manner using a mathematical polynomial function based
on form parameters and evaluated the accuracy by calculating mean absolute error (MAE), mean
absolute percentage error (MAPE), and R? (R-squared score).

Volume Curve Mathematical Modeling (S974)
1.0 -

S| fo) 00883
O.E:T~ f(s) :04283

084 "
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Volume Data(Original)
;| === Mathematical Modeling

Figure 8. Mathematical Modeling of Volume Data.

3.4.3. It Data Mathematical Modeling

It data represents the transverse moment of inertia (m*) with respect to the ship lengthwise
central axis of the water plane and significantly impacts the height of the transverse metacenter,
which determines the initial stability of the vessel.

As a result, the shape of the water plane varies according to the arrangement of the chine line,
and It is determined according to the shape of water plane, which in turn affects the computation of
the initial stability.

Small ships predominantly feature a relatively low chine height and wide chine width close to
the breadth of the vessel. These ships demonstrate rapid changes in the water plane shape depending
on draft changes from the baseline to the chine height. Changes in It data according to variations in
chine height of the datasets used for learning were categorized into four major stages of change.

As shown in Figure 9, the stages of change in It data include a nonlinear section (Part (1)), which
occurs due to drastic changes in water plane shape from the baseline to the height around the central
chine height caused by hull curvature. This is followed by a linear section (Part (2)) extending to the
maximum chine breadth height, a nonlinear section (Part (3)) up to the stern chine height, and a linear
section (Part (4)) influenced by the final bow chine height.

In this study, considering the operational draft range of small ships, the initial nonlinear section
(Part (1)) was excluded. We simplified the mathematical modeling of the remaining sections of It data
using a combination of three straight-line segments (fore, mid, and end line segments) with linear
approximation techniques. We found that the slope and position of these line segments vary
depending on the chine distribution. To simplify the mathematical model’s structure while
considering the geometric distribution features of these line segments, we used their intersection
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points (Pix, Piy), weight (Ws, WE), and intersection distance with the central segment (Ds, De) as form
parameters in our learning data.
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Figure 9. Mathematical Modeling of It Data.

3.4.4. Mathematical Model Test Results

To verify the effectiveness of the mathematical model, error calculations were performed using
MAPE and MAE, which are commonly used as performance metrics in regression models.

MAPE, MAE, and R? are representative performance metrics for evaluating the accuracy of the
predicted model. For n data points, when comparing the model’s predicted values (y;) to the actual
values (f(x;)), MAE represents the average of all absolute errors, while MAPE shows the average
percentage of absolute errors relative to the actual values. R? indicates how well the independent
variable in the model can represent the dependent variable and is defined as follows.

n
1
MAE = = > |y; = f(x)|
i=1

n
100 o — f(x4
MAPE = —Zlyl—(l)l (Yi +* 0)
n i=1 y

1

e Z f0 -5, Z St
= YiTy = Vi—y

The MAPE (%) of the mathematical model ranges as 1.00-1.12%. Although some datasets
showed a maximum MAPE error ranging from 3.94% to 17.96%, this likely occurs due to the nature
of MAPE calculations, where the MAPE value tends to diverge toward infinity as the actual value
(vi) approaches zero.

MAE was calculated for both the real hydrostatic data (MAER) and the dimensionless hydrostatic
data (MAEN). The overall average MAER for the actual volume data was calculated to be 0.116 m3.
The error ranged from a minimum of 0.009 m?® to a maximum of 0.427 m?. The overall average MAEN
for dimensionless data was calculated to be 0.22% of the cubic number. For the actual KB data values,
the MAER ranged from a minimum of 0.001 m to a maximum of 0.007 m, with an overall average
calculated to be 0.002 m. The overall average of MAEN for dimensionless data was calculated to be

0.24% of the ship’s depth (Dm). For the actual It data values, the overall average MAER was calculated
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to be 0.324 m*. The error ranged from a minimum of 0.023 m* to a maximum of 4.837 m* (refer to

Table 4).
Table 4. Distribution of Errors in Mathematical Modeling.
Hydro. Data Volume Curve KB Curve It Curve
Error MAPE | MAEN | MAER | R?2 |MAPE|MAEN| MAER| R2 |MAPE|MAEN| MAER| R2
Statistics | (%) () (m?) () (%) ) (m) ) (%) ) (m?) )
Mean 1.00 |0.0022|0.1164 | 0.9961 | 1.12 |0.0024 | 0.0023 [ 0.9967 | 1.01 | 0.0048 | 0.3235 | 0.9875
Standard
o 0.69 |0.0011 | 0.0771 | 0.0040 | 0.63 |0.0011 |0.0011 | 0.0034 | 1.71 | 0.0044 | 0.4281 | 0.0268
Deviation
Min. Value | 0.08 |0.0002 | 0.0091 | 0.9774 | 0.19 | 0.0006 | 0.0006 | 0.9765| 0.07 | 0.0005 | 0.0230 | 0.5754
25th
. 0.51 |0.0013 |0.0600 | 0.9946 | 0.72 |0.0016 | 0.0015|0.9960 | 0.33 | 0.0022 | 0.1036 | 0.9871
Percentile
50th
. 0.88 |0.0022 |0.1043 | 0.9974 | 1.00 |0.0022 |0.0021 |0.9978 | 0.54 | 0.0035 | 0.1949 | 0.9943
Percentile
75th
. 1.37 |0.0030|0.1503 | 0.9989 | 1.36 | 0.0030 | 0.0028 | 0.9988 | 0.93 | 0.0054 | 0.3677 | 0.9978
Percentile
Max. Value | 3.94 | 0.0058 | 0.4269 | 1.0000 | 4.97 | 0.0069 | 0.0066 | 0.9998 | 17.96 | 0.0450 | 4.8369 | 0.9999

Remark : Verification range: 0.28d to 0.89d, frequency: 430 vessels

The frequency distribution of MAPE (%) for the mathematical transformation model is
illustrated in Figure 10. Some datasets had MAPE values classified as statistical outliers, and these
were reviewed considering statistical heuristics. The upper limits for 20 (95%) are a maximum error
rate of 2.28%, 2.24%, and 2.82% for volume, KB, and It data, respectively. For 30 (99.7%), the upper
limits are calculated to be a maximum of 3.83%, 3.89%, and 14.83%. Within the 20 and 30 ranges, the
overall average error rates are a maximum of 2.45% and 7.52%, respectively. The model aligns with
at least 97.55% and 92.48% of the total training data within the ranges of 95% and 99.7%, respectively.
The overall average MAPE of the mathematical model is 1.04%, and it was calculated that the model
shows an average alignment of about 99% with the raw data.

Distribution of MAPE frequency

160
[—IVolume
140 ;= 20(95%) Limit KB : 2.24 ———
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120 4 - 20 (95%) Limit Volume : 2.28
100 « =20 (95%) Limit 1, : 2.82
5 - .
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2 80 = 307(99.7%) Limit Volume : 3.83
E — 30 (99.7%) Limit KB : 3.89
60 : 30°(99.7%) Limit ;- 14:83 =7
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Figure 10. Distribution of MAPE in Mathematical Modeling.


https://doi.org/10.20944/preprints202311.1392.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1392.v1

11

The overall average R? for the actual values in the mathematical model is 0.9934. The average R?
for It data was the lowest, calculated to be 0.9875, while for volume and KB, it was calculated to be
0.9961 and 0.9967, respectively. The coefficient of determination R?, which quantifies the degree of
causal relationship between variables in the regression model, is a measure that evaluates how well
the independent variable represents the dependent variables and falls within the range [0, 1]. The
closer R?is to 1, the higher the correlation of the independent variable with the dependent variables
in the regression model. The mathematical model using the form parameter was found to have a
significant correlation.

Therefore, we comprehensively examined the error rate of the mathematical transformation
model using various evaluation metrics. We found that the accuracy of the model using the form
parameter is satisfactory and used it as training data for deep learning.

3.5. Data Normalization

Data scaling was performed to minimize the distortion effects caused by varying numerical
ranges in the training data and to enhance the efficiency and effectiveness of the learning process.
Normalization' was carried out as described below to ensure that the learning model was not
dependent on specific data and to maintain a consistent range for the weights and biases in the
activation functions. Positive learning outcomes were confirmed in the deep learning model
constructed for this study.

4. Composition of Deep Learning Model & Test Results

4.1 Composition of Deep Learning Model

To create and train the deep learning model, we used the Keras Model, a high-level API from
the open-source library TensorFlow. For data preprocessing, numerical operations, and evaluation
of learning, we utilized Python-based modules such as Pandas, NumPy, and Scikit-learn.

As shown in Figure 11, we designated 12 hull form feature offset data and key dimension ratios,
discernible from the general arrangement of 430 vessels in the training data, as the input features for
deep learning. The form parameter, calculated during the mathematical modeling process, was set as
the target data for the deep learning model.

The split ratio between training and test data was set at 10%, and the data were randomly
selected. To prevent overfitting and improve the model’s accuracy, K-fold cross-validation was
performed on the training data. The learning rate, number of epochs, and configuration and
connectivity of the hidden layers and nodes were determined through hyperparameter tuning to
achieve optimal values. The activation functions used in the model include sigmoid, ELU
(exponential linear unit), and ReLU (rectified linear unit), which are suitable for regression models.

Separate deep learning models were constructed for volume, KB, and It data. These models were
validated by calculating the error between the mathematical model, which applied the predicted form
parameter from the test data, and the actual values.

1 Min-Max Scaling: All feature data are transformed to be positioned between [0, 1].
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Figure 11. Composition of Deep Learning Model.

4.2. Deep Learning Test Results

Given the challenging nature of quantitatively comparing form parameter data characteristics,
we evaluated the deep learning training outcomes based on MAE and the ratio (%) of MAE to the
average of the actual values of form parameters in the test data (refer to Table 5). Additionally, we
indirectly assessed the similarity in data distribution by comparing the item-specific ratios (%) of the
descriptive statistics (mean, standard deviation, quartiles, and maximum and minimum values)
between the test and predicted data.

Table 5. Error Distribution of Deep Learning Training Results.

Items Error MAE Test Data Error Rate (%)
Target Data Average

f(0) 0.0021 0.0383 5.53

f(s) 0.0090 0.3132 2.88

Volume f(1) 0.0115 0.7509 1.53
f'(0) 0.0245 0.1280 19.16

f'(s) 0.0161 0.8291 1.94

Average 0.0127 0.4119 6.21

f(0) 0.0087 0.2038 4.28

f(s) 0.0041 0.2445 1.69

KB f(1) 0.0043 0.5412 0.80
f'(0) 0.0502 1.0953 4.58

f'(s) 0.0204 0.6898 2.95

Average 0.0175 0.5549 2.86

P, 0.0263 0.3369 7.80

P 0.0148 0.7526 1.97
It Wi 0.0468 0.3153 14.84
Wg 0.0178 0.1480 12.04
Ds 0.0505 0.2279 22.18
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As shown in Figure 12, form parameters of volume and KB data, which show relatively
consistent patterns in response to chine changes, tend to cluster closely around the equal line (y = x).
These also demonstrated relatively low MAE percentages. However, It data, which is highly sensitive
to changes in chine shape, exhibited less clustering density around the equal line and higher MAE

percentages.
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Figure 12. Distribution of Deep Learning Training Results.

The overall average MAE of the predicted data is 0.0280. Compared to the average standard
deviation (0.0818) of the test data, this represents approximately 34%, and the overall MAE
percentage was calculated to be 7.61%.

The volume and KB curves, which exhibit consistent patterns according to draft and are
mathematically modeled using a combination of polynomial functions, showed relatively satisfactory
training results. In contrast, It data, modeled as a mathematical combination of multiple line segments
for linear approximation, displayed inferior training results.

To examine the statistical distribution similarity between the test and predicted data, we
performed mutual comparison calculations on the descriptive statistics of each dataset, as shown in
Tables 6-8.

Table 6. Comparison of Input and Output Statistical Measures for Volume Curve Form Parameter.

Target Data £(0) f(s) f(1) £'(0) £(s)
Statistics Test | Predict | Test | Predict| Test | Predict| Test |Predict| Test | Predict
Mean 0.0383 | 0.0385 | 0.3132 | 0.3101 | 0.7509 | 0.7489 | 0.1280 | 0.1269 | 0.8291 | 0.8341
Standard
Deviation 0.0156 | 0.0158 | 0.0453 | 0.0443 | 0.0535 | 0.0504 | 0.0614 | 0.0517 | 0.0499 | 0.0464
Min. Value 0.0094 | 0.0096 | 0.2040 | 0.2093 | 0.6296 | 0.6396 | 0.0565 | 0.0456 | 0.6608 | 0.6689
25th Percentile | 0.0304 | 0.0302 | 0.2837 | 0.2766 | 0.7202 | 0.7162 | 0.0837 | 0.0937 | 0.8068 | 0.8131
50th Percentile | 0.0378 | 0.0371 | 0.3168 | 0.3156 | 0.7427 | 0.7545 | 0.1174 | 0.1190 | 0.8317 | 0.8428
75th Percentile | 0.0458 | 0.0475 | 0.3411 | 0.3374 | 0.7882 | 0.7812 | 0.1555 | 0.1429 | 0.8570 | 0.8625
Max. Value 0.0873 | 0.0850 | 0.3962 | 0.3991 | 0.8372 | 0.8552 | 0.3375 | 0.2858 | 0.9185 | 0.9025

Table 7. Comparison of Input and Output Statistical Measures for KB Curve Form Parameter.

Target Data f(0) f(s) f(1) f'(0) f'(s)
Statistics Test | Predict| Test | Predict| Test | Predict| Test | Predict| Test | Predict
Mean 0.2038 | 0.2055 | 0.2445 | 0.2449 | 0.5412 | 0.5423 | 1.0953 | 1.0834 | 0.6898 | 0.6972
Standard
. 0.0602 | 0.0582 | 0.0348 | 0.0343 | 0.0285 | 0.0281 | 0.1415 | 0.1130 | 0.0868 | 0.0861
Deviation
Min. Value 0.0724 | 0.0965 | 0.1547 | 0.1545 | 0.4668 | 0.4620 | 0.7347 | 0.8453 | 0.5544 | 0.5597
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25th Percentile | 0.1645 | 0.1726 | 0.2313 | 0.2294 | 0.5208 | 0.5252 | 1.0075 | 1.0115 | 0.6380 | 0.6428
50th Percentile | 0.1996 | 0.2047 | 0.2469 | 0.2482 | 0.5434 | 0.5394 | 1.0920 | 1.0762 | 0.6710 | 0.6800
75th Percentile | 0.2359 | 0.2392 | 0.2650 | 0.2661 | 0.5536 | 0.5575 | 1.1860 | 1.1503 | 0.7126 | 0.7372

Max. Value 0.3722 | 0.3688 | 0.3128 | 0.3244 | 0.6119 | 0.6163 | 1.4043 | 1.3396 | 1.0325 | 1.0412

Table 8. Comparison of Input and Output Statistical Measures for It Curve Form Parameter.

Target Data 5 P W W D Dg
Statistics Test |Predict| Test |Predict| Test |Predict| Test |Predict| Test |Predict| Test |Predict

Mean 0.3369 | 0.3531 | 0.7526 | 0.7546 | 0.3153 | 0.2978 | 0.1480 | 0.1501 | 0.2279 | 0.2337 | 0.1825 | 0.1545
Standard

L. 0.0868 | 0.0775 | 0.0538 | 0.0473 | 0.0806 | 0.0636 | 0.0530 | 0.0536 | 0.1422 | 0.1309 | 0.1219 | 0.1001
Deviation

Min. Value 0.1891 | 0.2328 | 0.6441 | 0.6471 | 0.2123 | 0.1929 | 0.0512 | 0.0595 | 0.0259 | 0.0654 | 0.0439 | 0.0518
25th Percentile |0.2779|0.2997 | 0.7140 | 0.7198 | 0.2623 | 0.2642 | 0.1079 | 0.1126 | 0.1049 | 0.1259 | 0.0698 | 0.0725
50th Percentile |0.31820.3318 | 0.7392 | 0.7562 | 0.2917 | 0.2819 | 0.1444 | 0.1530 | 0.2114 | 0.1898 | 0.1407 | 0.1205
75th Percentile |0.4011 |0.4218 |0.7907 | 0.7843 | 0.3567 | 0.3285 | 0.1823 | 0.1857 | 0.3357 | 0.3399 | 0.2531 | 0.2024

Max. Value |0.5402 | 0.5287|0.8623 | 0.8392 | 0.5793 | 0.5646 | 0.2694 | 0.3022 | 0.5694 | 0.5180 | 0.5144 | 0.4131

The average percentages of item-specific statistics for form parameters in the test and predicted
data are as follows: volume, 101.73%; KB, 99.53%; and It, 100.88%. The overall average was calculated
to be 100.74%. Kernel density estimation was conducted on the form parameters, as shown in Figure
13, to intuitively examine the similarity in data distribution trends. Based on these findings, we
concluded that the test and predicted data have a significant degree of statistical distribution

similarity.
Form Parameter Kernal Density Plot (Volume) Form Parameter Kernal Density Plot (KD} Form Parameter Kernal Density Plot (I}
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5 —is) — 1=
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Figure 13. Kernel Density Estimation of Input and Output Form Parameters.

Therefore, the deep learning model’s training results are considered to be relatively satisfactory.
This conclusion was reached after cross-validating statistical similarities between the test and
predicted data, considering data distribution forms through kernel density estimation, and
calculating evaluation metrics such as MAE and MAE percentages.

4.3. Hydrostatic Data Mathematical Modeling Results

To verify the hydrostatic data mathematically modeled through deep learning, commonly used
regression model evaluation metrics such as MAPE, MAE, and R? were utilized. The average MAPE
for each item in the predicted data ranged from 2.54% to 2.91%, with an overall average of
approximately 2.80% (refer to Table 9).

In evaluating the correlation between input and output variables in the regression model, the R?
values were calculated as follows: 0.9919 for volume data and 0.9955 for KB data. These were modeled
as combinations of polynomial functions. For It data, which was modeled as a mathematical
combination of multiple line segments for linear approximation, a relatively low R? value of 0.8903
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was observed. This also impacted the R? value for KMT 2data (0.9419). Nonetheless, the overall
average R? was calculated to be 0.9549, confirming a significant correlation between input and output
data.

Table 9. Error and Evaluation Metrics for Hydrostatic Curve Deep Learning Results.

Items Volume Curve KB Curve It Curve KMT Curve
Error | MAPE MAE R2 MAPE MAE R2 MAPE MAE R2 MAPE MAE R2
Ship No| (%) (%) (%) (%)

5947 0.30 |0.0010 | 0.9999 | 1.47 |0.0036 | 0.9979 | 0.50 | 0.0035 | 0.9944 | 0.45 | 0.0140 | 0.9984
A714 0.69 |0.0023 | 0.9997 [ 0.85 |0.0015 |0.9997 | 0.52 | 0.0041 | 0.9893 | 0.66 | 0.0201 | 0.9975
A913 1.00 | 0.0027 | 0.9995 | 3.21 | 0.0053 | 0.9977 [ 1.32 | 0.0088 | 0.9846 | 1.01 | 0.0293 | 0.9909
5513 349 |0.0119 | 0.9930 | 4.03 | 0.0086 | 0.9917 | 3.81 | 0.0257 | 0.7961 | 1.05 | 0.0278 | 0.9917
5720 1.22 | 0.0055 | 0.9985 | 2.01 |0.0017 | 0.9997 [ 0.27 | 0.0020 | 0.9942 [ 1.08 | 0.0263 | 0.9975
5067 0.71 |0.0027 | 0.9996 | 0.52 | 0.0009 | 0.9999 | 1.23 | 0.0092 | 0.9895 | 1.21 | 0.0443 | 0.9885
5624 1.54 |0.0067 | 0.9979 | 1.92 |0.0056 | 0.9969 [ 0.71 | 0.0056 | 0.9692 [ 1.29 | 0.0317 | 0.9972
5818 213 |0.0072 { 0.9969 | 0.55 |0.0017 | 0.9997 | 1.44 | 0.0100 | 0.9926 | 1.34 | 0.0333 | 0.9878
5763 1.44 |0.0040 | 0.9992 | 1.44 |0.0048 | 0.9977 [ 0.57 | 0.0038 | 0.9990 [ 1.35 | 0.0393 | 0.9867
5959 095 |0.0034 | 0.9995 [ 0.66 |0.0019 | 0.9996 | 1.66 | 0.0113 | 0.9721 | 1.56 | 0.0509 | 0.9760
5804 1.43 |0.0050 | 0.9989 | 0.72 |0.0026 | 0.9989 [ 0.23 | 0.0017 | 0.9903 [ 1.56 | 0.0397 | 0.9923
5729 0.71 |0.0022 | 0.9997 [ 2.96 |0.0050 | 0.9980 | 1.12 | 0.0073 | 0.9887 | 1.64 | 0.0441 | 0.9873
A923 1.56 | 0.0031 | 0.9992 | 2.57 | 0.0051 | 0.9981 [ 0.68 | 0.0031 | 0.9988 | 1.92 | 0.0514 | 0.9661
5999 3.00 |0.0091 | 0.9954 | 1.80 | 0.0060 | 0.9967 | 3.73 | 0.0265 | 0.9630 | 1.93 | 0.0540 | 0.9866
5984 473 10.0162 | 0.9865 | 1.27 |0.0031 | 0.9992 | 271 |0.0178 | 0.9710 | 1.99 | 0.0547 | 0.9861
5032 1.76 |0.0036 | 0.9993 | 0.57 |0.0013 | 0.9997 [ 3.68 | 0.0207 | 0.9806 [ 2.01 | 0.0517 | 0.9668
5023 1.31 [0.0032 | 0.9993 | 1.87 |0.0036 | 0.9986 [ 1.11 | 0.0067 | 0.9946 [ 2.05 | 0.0634 | 0.9612
A710 2.86 |0.0101 | 0.9956 | 1.83 | 0.0052 | 0.9975 | 1.67 | 0.0114 | 0.9491 | 2.11 | 0.0474 | 0.9847
5979 2.03 |0.0069 | 0.9976 | 1.44 | 0.0039 | 0.9984 | 1.38 | 0.0098 | 0.9781 | 2.25 | 0.0568 | 0.9854
A804 093 [0.0030 | 0.9995 | 1.11 |0.0029 | 0.9992 | 2.52 | 0.0185 | 0.9267 | 2.27 | 0.0833 | 0.9560
5648 3.16 |0.0126 | 0.9930 | 1.75 | 0.0045 | 0.9981 | 2.11 | 0.0157 | 0.9504 | 2.32 | 0.0636 | 0.9722
5709 1.50 | 0.0045 | 0.9990 | 4.90 | 0.0127 | 0.9788 [ 1.59 | 0.0102 | 0.9834 | 2.33 | 0.0706 | 0.9789
5956 3.07 |0.0113 | 0.9933 | 0.52 | 0.0014 | 0.9998 | 2.19 | 0.0160 | 0.7036 | 2.34 | 0.0973 | 0.9521
5820 2.89 |0.0105 | 0.9951 | 2.69 |0.0077 | 0.9942 | 1.16 | 0.0086 | 0.9113 | 2.49 | 0.0588 | 0.9872
A914 3.07 |0.0126 | 0.9925 | 522 |0.0078 | 0.9959 | 4.38 | 0.0339 | 0.9416 | 2.62 | 0.1233 | 0.9427
5667 3.50 |0.0107 | 0.9945 | 0.79 |0.0020 | 0.9995 | 6.01 | 0.0418 | 0.7213 | 2.75 | 0.0516 | 0.9840
5066 2.78 10.0106 | 0.9947 | 3.04 |0.0073 | 0.9960 | 2.46 | 0.0198 | 0.9126 | 2.82 | 0.1016 | 0.9851
A909 1.26 |0.0031 | 0.9993 | 3.74 | 0.0088 | 0.9931 [ 2.45 | 0.0083 | 0.9954 [ 2.85 | 0.0774 | 0.9506
A915 1.53 |0.0033 | 0.9994 | 535 |0.0164 | 09812 [ 2.40 |0.0132|0.9928 [ 2.89 | 0.0798 | 0.9834
5706 242 |0.0074 | 0.9962 | 1.00 | 0.0035 | 0.9987 | 3.90 | 0.0205 | 0.9646 | 3.06 | 0.0865 | 0.8897
5784 0.62 |0.0017 | 0.9998 [ 3.14 | 0.0069 | 0.9963 | 3.54 | 0.0247 | 0.8437 | 3.56 | 0.0983 | 0.8942
5980 832 [0.0353 | 0.9486 | 1.47 | 0.0041 | 0.9981 | 4.62 | 0.0379 | 0.2933 | 3.69 | 0.1111 | 0.9770
5411 3.72 | 0.0160 | 0.9890 | 14.39 | 0.0099 | 0.9867 | 1.14 | 0.0090 | 0.6384 | 3.88 | 0.3108 | 0.9622
5778 3.83 |0.0137 | 0.9915 | 5.28 |0.0091 | 0.9916 | 5.83 | 0.0409 | 0.5320 | 4.18 | 0.1721 | 0.9053
A202 2.52 |0.0086 | 0.9968 | 1.18 | 0.0036 | 0.9985 | 7.01 | 0.0471 | 0.4598 | 4.20 | 0.1008 | 0.8376
5816 6.10 |0.0219 | 0.9758 [ 1.88 | 0.0054 | 0.9969 | 2.35 | 0.0169 | 0.9610 | 4.22 | 0.1208 | 0.9483

2 KMT : Transverse Metacenter Height (KB + BM )
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5702 2.62 | 0.0085 | 0.9967 | 3.05 | 0.0067 | 0.9954 | 2.12 | 0.0149 | 0.9445 | 4.61 | 0.1464 | 0.8863
5064 719 10.0294 | 0.9636 | 4.99 |0.0092 | 0.9898 | 3.03 | 0.0219 | 0.5322 | 4.90 | 0.1364 | 0.9591
5009 1.83 | 0.0070 | 0.9958 | 3.57 | 0.0117 | 0.9871 [ 6.08 | 0.0433 | 0.8645 | 4.94 | 0.1347 | 0.9356
5909 462 |0.0170 | 0.9884 | 9.44 |0.0124 | 0.9814 | 3.47 | 0.0280 | 0.8381 | 5.47 | 0.2559 | 0.9326
A606 5.57 10.0099 | 0.9942 | 1.24 |0.0031 | 0.9992 | 5.07 |0.0109 | 0.9928 | 6.68 | 0.1227 | 0.7573
5753 9.03 |0.0290 | 0.9508 | 1.69 | 0.0054 | 0.9969 | 1.70 | 0.0106 | 0.9880 | 8.55 | 0.1557 | 0.5112
A803 8.60 |0.0311 | 0.9507 | 10.04 | 0.0118 | 0.9870 | 3.55 | 0.0241 | 0.8971 | 9.08 | 0.3310 | 0.6866
Average| 2.87 |0.0099 | 09919 | 2.86 |0.0057 | 0.9955 | 2.54 | 0.0169 | 0.8903 [ 2.91 | 0.0900 | 0.9419

As shown in Figure 14, examining the error distribution (MAPE) of the hydrostatic data inferred
through deep learning reveals that the KMT MAPE showed less than a 5% error in 91% (39 vessels)
of the test data. According to the statistical empirical rule, a review of the 30 range showed that a
maximum error rate of 13.84% (KB) was observed in 99.7% of the population. The remaining items
exhibited a maximum error rate calculated between 6.89% and 9.01%.
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Figure 14. Statistical Distribution of Error (MAPE) for Hydrostatic Curve Deep Learning Results.

As shown in Figure 15, using the hydrostatic data inferred through deep learning for initial
stability calculations on KMT data, the error rate (based on MAPE) ranged from a minimum of 0.45%
to a maximum of 9.08%. The average error rate was calculated to be 2.91%, showing an alignment of
over 97%. Therefore, the inference results of the hydrostatic data through deep learning proposed in
this study were found to be a relatively satisfactory and reliable model. Figures 16-19 show samples
of learning results.
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Figure 15. MAPE-based Hydrostatic Curve Deep Learning Results.
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Figure 18. It Curve Deep Learning Results.
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Figure 19. KMT Curve Deep Learning Results.

5. Conclusion and Future Work

In this study, we set hull form feature data, which can be extracted from the general
arrangements of small chine-type ships, as input variables. We then inferred the hydrostatic data
needed for initial stability calculations using a multilayer neural network-based deep learning model.
The following results were observed:

1. Hydrostatic data based on form parameters can be converted into a mathematical model.

2.  Hydrostatic data required for initial stability calculations can be inferred by training a deep
learning model using hull form feature data identifiable from general arrangements.

3. The deep learning model implemented in this study yielded an MAPE of 2.91% for KMT
(transverse metacentric height), confirming satisfactory results.

Thus, this study confirmed the feasibility of inferring hydrostatic data needed for initial stability
calculations via deep learning using limited design data (general arrangements) from small ships. By
securing more real-world ship data, enabling type-specific supervised learning focused on chine
shape and location, and conducting further research on hydrostatic data items, we expect the
applicability of this foundational data for stability calculations in domestic coastal areas to increase
further.
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