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Experimental Parameters for Detection of Spin
Entanglement via Quantum Gravity: Implications
and Proposed Models

Anhad Singh Kohli 1,2

1 Delhi Public School, Gurgaon
2 Cambridge Centre for International Research Academy; anhadsinghkohliask@gmail.com

Abstract: he experiment proposed by Bose et al aims to show the non classicality of gravity through

entanglement. This paper seeks to establish optimal conditions under which the entanglement would

be maximized. The assumptions made by Bose et al to come to the conclusion of quantized gravity

would also be discussed along with alternate conclusions that could arise from the experiment.

Keywords: quantum gravity; gravitational entanglement; semiclassical gravity

1. Introduction

In the realm of theoretical physics, quantum mechanics and quantum field theory have been

able to describe three out of four fundamental known forces till now which are the electromagnetic

interaction, the strong force, and the weak force. Gravity, however, still does not have a complete

theoretical model. Our current model of gravity is based on Einstein’s General Theory of Relativity

which has been remarkably accurate in describing many phenomena from the bending of light around

mass to gravitational waves. However a fundamental problem we face is that space-time interacts with

energy-momentum which are properties of fundamental particles which are currently best described

by the quantum theory. General Relativity and Quantum Theory are incompatible models due to a

variety of reasons [1], thus we must look for a way to introduce gravity to quantum physics.

In this paper we would look at an experimental proposal that aims to show that gravity can

influence matter at quantum scales through the double Stern Gerlach Interferometer experiment

devised by Bose et al in their paper [2]. This experiment might be able to show how gravitational field

could cause entanglement between two particles. The first portion would look at the experimental

parameters that would maximize spin entanglement in the experiment suggested by Bose et al under

optimal conditions. Later we discuss what the implications of this experiment are and exploring

further possible models.

2. Double Stern Gerlach Spin Entanglement

As suggested in Ref. [2], we keep two test masses in superposition of spacially localized states |L〉
and |R〉. Their evolution happens under gravitational interaction and all other forces are minimized.

These two states are localized Gaussian wavepackets and due to their relatively small diameters with

respect to their distances δx and ∆x, we can assume 〈L|R〉 = 0.

In this setup, we take two masses m1 and m2 with the centers of the left and right states of both

the particles separated by the distance ∆x as shown in the figure.

Closest distance between |R〉1 and |L〉2 is (∆x − δx) and farthest distance between |L〉1 and |R〉2

is (∆x + δx).

The Classical gravitational potential energy is E = −Gm1m2
d .

The initial state at t = 0 is:

|Ψ(t = 0)〉12 =
1√
2
(|L〉1 + |R〉1)⊗

1√
2
(|L〉2 + |R〉2) (1)
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=
1

2
(|L〉1 ⊗ |L〉2 + |L〉1 ⊗ |R〉2 + |R〉1 ⊗ |L〉2 + |R〉1 ⊗ |R〉2)

Figure 1. Schematic depiction of the double Stern-Gerlach experiment as proposed by Bose et al. (a)

Two mesoscopic particles of equal mass in this case in superposition of two spatially localized states

|L〉+ |R〉. (b) Evolution of states in SG interferometer into spin entangled states |L, ↑〉j + |R, ↓〉j (j = 1, 2)

Only the T00 component of energy-momentum tensor is non-negligible due to speeds much slower

than the speed of light c [2], hence only h00 component evolves (where hµν is the small perturbation in

linearized gravity gµν = ηµν + hµν, ηµν being the Minkowskian metric.)

Using the Schrödinger’s equation :

ih̄
∂

∂t
|Ψ〉 = Ĥ|Ψ〉 (2)

The general solution is found to be |Ψ(t)〉 = e−iHt/h̄|Ψ(0)〉 when the Hamiltonian is

time-independent and Û(t) = e−iHt/h̄ is the unitary time-evolution operator.

As E is an eigenvalue of the Hamiltonian, we can write the final state as |Ψ(t)〉 = e−iEt/h̄|Ψ(0)〉
At t = τ, the state evolves to:

|Ψ(t = τ)〉12 =
eiφ

2
(|L〉1 ⊗ |L〉2 + ei∆φLR |L〉1 ⊗ |R〉2 + ei∆φRL |R〉1 ⊗ |L〉2 + |R〉1 ⊗ |R〉2) (3)

Where φRL ∼ Gm1m2τ
h̄(∆x−δx)

, φLR ∼ Gm1m2τ
h̄(∆x+δx)

, φ ∼ Gm1m2τ
h̄∆x

∆φLR = φLR − φ and ∆φRL = φRL − φ.

A state is said to be entangled if it cannot be factorized (non-separable) to be written as a product

of states such as |Ψ〉 = |ψ〉1 ⊗ |ψ〉2 (a separable state).

If we try to factorize Eq(3), we obtain:

eiφ

2
(|L〉1 ⊗ (|L〉2 + ei∆φLR |R〉2) + |R〉1 ⊗ (ei∆φRL |L〉2 + |R〉2)).

The condition for this to be completely factorizable would be if (|L〉2 + ei∆φLR |R〉2) ∼ (ei∆φRL |L〉2 +

|R〉2)

ei∆φRL |L〉2 + |R〉2 = ei∆φRL(|L〉2 + e−i∆φRL |R〉2) means e−i∆φRL = ei(2nπ−∆φRL) where n is an arbitrary

integer.

Therefore for the state to be entangled, 2nπ − ∆φRL 6= ∆φLR

This gives us the entanglement condition:

∆φLR + ∆φRL 6= 2nπ (4)
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The SG interferometer accelerates the particles through a magnetic gradient for a time τacc and

then the magnetic field is switched off for a greater amount of time τ enough to entangle both the

superposition states.

In this process, the two joint states of the test masses evolve as shown in Eq.(1) and Eq.(3) the

orbital states |L〉j and |R〉j get replaced by the spin-orbital qubit states |L, ↑〉j and |R, ↑〉j.(Ref.[2]).

Replacing the states in Eq.(3) with the spin-orbital states gives us:

|Ψ(t = τ + τacc)〉12 =
eiφ

2
(|L, ↑〉1 ⊗ |L, ↑〉2 + ei∆φLR |L, ↑〉1 ⊗ |R, ↓〉2 + ei∆φRL |R, ↓〉1 ⊗ |L, ↑〉2 + |R, ↓〉1 ⊗ |R, ↓〉2) (5)

In the final step, the superposition is brought back through unitary transformations (|L, ↑〉j → |C, ↑
〉j, |R ↓〉j → |C, ↓〉j:

|Ψ(t = τ + 2τacc〉12 =
eiφ

2
(| ↑↑〉12 + ei∆φLR | ↑↓〉12 + ei∆φRL | ↓↑〉12 + | ↓↓〉12)|C〉1|C〉2 (6)

This entanglement can be measured using an entanglement witness W which is discussed later in

Appendix A. If W satisfies a certain condition for example exceeding unity in the one Bose et al.

suggested, then the state is proven to be entangled.

3. Minimization of Casimir-Polder Interaction

While performing the experiment, it is important to reduce extra noise that may present itself due

to other forces between the two particles we are using. One of them is the Casimir force which we will

try to reduce.

We will be taking a linear setup for the experiment[3] and the particles as diamond nanoparticles

of mass ∼ 10−14kg.

The formula for the Casimir force between two neutral dielectric particles is

VCP = −23h̄c

4π

R6

(∆x − δx)7

(

ε − 1

ε + 2

)2

(7)

Where R is the radius of the particles, ∆x − δx is the minimum distance between them, c is the

speed of light in vacuum (∼ 3 × 108m/s), h̄ is reduced Planck’s constant (1.05 × 10−34Js)and ε is the

dielectric constant (∼ 5.7 for diamonds).

For a minimum difference of one order of magnitude[3], we obtain 0.1|VG| ≥ |VCP|

Gm2

∆x − δx
≥ 230h̄c

4π

R6

(∆x − δx)7

(

ε − 1

ε + 2

)2

=⇒ G(4πρR3/3)2

∆x − δx
≥ 230h̄c

4π

R6

(∆x − δx)7

(

ε − 1

ε + 2

)2

=⇒ (∆x − δx)7

∆x − δx
≥ 9

G(4πρR3)2

23h̄cR6

40π

(

ε − 1

ε + 2

)2

=⇒ (∆x − δx)6 ≥ 230h̄c

4πG

(

3

4πρ

ε − 1

ε + 2

)2

∆x − δx ≥
[

230h̄c

4πG

(

3

4πρ

ε − 1

ε + 2

)2
]1/6

≡ (∆x − δx)min ≈ 157µm (8)

Thus we need the minimum distance between the entangled particles to be 157µm for the Casimir

force to be negligible (one order of magnitude lower than gravitational force in this case).
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4. Conditions for Maximal Entanglement

We will be converting the quantum state to a density operator (ρ̂) in order to perform certain

operations on it.

The state can be written as |Ψ〉 = eiφ

2 (| ↑↑〉+ ei∆φLR | ↑↓〉+ ei∆φRL | ↓↑〉+ | ↓↓〉)

Here | ↑〉 =
(

1

0

)

, | ↓〉 =
(

0

1

)

and |αβ〉 = |α〉 ⊗ |β〉

The density matrix is evaluated to be

ρ̂ =
1

4











1 e−i∆φLR e−i∆φRL 1

ei∆φLR 1 ei(∆φLR−∆φRL) ei∆φLR

ei∆φRL ei(∆φRL−∆φLR) 1 ei∆φRL

1 e−i∆φLR e−i∆φRL 1











The bipartite von Neumann entropy can help us find the maximally entangled state of a quantum

system and is represented by

S(ρA) = −Tr[ρA log ρA] = −Tr[ρB log ρB] = S(ρB) (9)

Where ρA = TrB(ρ) and ρB = TrA(ρ) are the reduced density matrices.

The reduced density matrix was calculated to be:

ρ̂1 =
1

4

(

2 e−i∆φRL + ei∆φLR

ei∆φRL + e−i∆φLR 2

)

S(ρ1) = −Tr(ρ1 log(ρ1))

The system is maximally entangled when ρ1 and ρ2 are maximally mixed[4] which is achieved

when they are diagonal matrices with diagonal elements as 1/d where d is the dimension of the Hilbert

space of the basis (which is 2 in our case).

To get these conditions, we set the non-diagonal entries to 0 first:

e−i∆φRL + ei∆φLR = 0 and ei∆φRL + e−i∆φLR = 0

This gives us two equations

{

cos(−∆φRL) + i sin(−∆φRL) + cos(∆φLR) + i sin(∆φLR) = 0

cos(∆φRL) + i sin(∆φRL) + cos(−∆φLR) + i sin(−∆φLR) = 0

They can be written as

{

(cos ∆φRL + cos ∆φLR) + i(sin ∆φLR − sin ∆φRL) = 0

(cos ∆φRL + cos ∆φLR) + i(sin ∆φRL − sin ∆φLR) = 0

By collecting the real and imaginary parts of the expressions.

For z ∈ C to be 0, Re(z) = 0 and Im(z) = 0 (where Re and Im are the real an imaginary

components of the complex number respectively)

Looking at the imaginary part, sin ∆φLR − sin ∆φRL = sin ∆φRL − sin ∆φLR = 0

This implies that sin ∆φLR = sin ∆φRL

Which means either

∆φLR = ∆φRL (10)

or

∆φLR = (2k + 1)π − ∆φRL (11)

where k is an arbitrary integer.

Substituting Eq(10) in the real part, cos ∆φLR + cos ∆φRL = cos ∆φLR + ∆φLR = 2 cos ∆φLR
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This is not a satisfactory condition as 2 cos ∆φLR = 0 for only some values of ∆φLR

Thus we can assume, ∆φLR 6= ∆φRL This leads us to using Eq(11) as follows:

cos ∆φLR + cos ∆φRL = cos ∆φLR + cos((2k + 1)π − ∆φLR) = cos ∆φLR − cos ∆φLR = 0

And that satisfies the given conditions, therefore

∆φLR + ∆φRL = (2k + 1)π (12)

This is our condition for non-diagonal elements being 0. Now to verify for maximally mixed state,

we can substitute these values in the reduced density matrix.

ρ1 =
1

4

(

2 0

0 2

)

=

(

2−1 0

0 2−1

)

So S(ρ1) = −Tr

(

1
2

(

1 0

0 1

)

log

(

2−1 0

0 2−1

))

= −Tr

(

1
2

(

1 0

0 1

)(

log
(

2−1
)

0

0 log
(

2−1
)

))

= −Tr

(

1
2

(

− log 2 0

0 − log 2

))

= −Tr

((

(− log 2)/2 0

0 (− log 2)/2

))

= −
(

− log2
2 − log 2

2

)

= log 2 = log(dim(H1))

By analogy with the classical entropy formula, the entanglement entropy has the following

bounds:

0 ≤ S(ρ1) ≤ log
(

dH1

)

As the system saturates the upper pound, the state is maximally entangled.

Figure 2. Plot of Entanglement Entropy as a function of ∆φLR(from 0 to π/2) and ∆φRL(from π/2 to

π). It can be seen that the entropy achieves its maximum value of log 2 when the sum of the phases

approach π.

Now we can substitute the values of the phases to get an expression for the distances. For

simplicity, we will take k = 0 in Eq(12).

∆φLR + ∆φRL = π =⇒ φLR − φ + φRL − φ = π
Gm2τ

h̄(∆x + δx)
− Gm2τ

h̄∆x
+

Gm2τ

h̄(∆x − δx)
− Gm2τ

h̄∆x
= π

gives

Gm2τ

h̄

(

1

∆x + δx
− 2

∆x
+

1

∆x − δx

)

= π
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And finally,

2(δx)2

∆x((∆x)2 − (δx)2)
=

πh̄

Gm2τ
(13)

The expression for the distance between the left and right states is[2]:

δx ∼ 1

2

gµB∂xB

m
τ2

acc (14)

Where g ∼ 2 is the electronic g-factor, µB ≈ 9.274 · 10−24 JT−1 is the Bohr magneton, ∂xB is the magnetic

field gradient in the x-direction. The mass of the particles we are taking is = 10−14kg, the magnetic

field gradient is = 107Tm−1, τacc is the time the masses are subjected to the magnetic field gradient

and is a variable.

Substituting the distance for minimized CP-effect, ∆x − δx = 157µm =⇒ ∆x = δx + 157µm, we

get:

2
(

gµB∂x B
2m τ2

acc

)2

(

gµB∂x B
2m τ2

acc + 157 × 10−6
)

(

(

gµB∂x B
2m τ2

acc + 157 × 10−6
)2

−
(

gµB∂x B
2m τ2

acc

)2
) =

πh̄

Gm2τ
(15)

As the experiment cannot be completely free from outside interaction, there would always be

some sort of decoherence in the system. The collisional decoherence time is approximately of the same

magnitude as the total fall time of the particle τdecoherence ∼ τtotal = τ + 2τacc [2]. This will lead to a

strong loss of coherence which will interfere with the gravitational entanglement. To minimize this,

we can minimize the total time taken for the particle to fall (τtotal)

Minimizing τtotal by a simple python program mentioned in Appendix C gives τ ≈ 8.34349s and

τacc ≈ 0.58829s Using these values, we can obtain the distances between the entangled states as

δx = 3209.59µm and ∆x = 3366.59µm

Calculating the phase values:

φLR =
Gm2τ

h̄(∆x + δx)
= 0.08059546

φRL =
Gm2τ

h̄(∆x − δx)
3.37586158

φ =
Gm2τ

h̄∆x
= 0.157432377

This gives ∆φRL = 3.218429203, ∆φLR = −0.076836917

These values can be substituted in Eq(12) to verify that the maximal entanglement conditions are

met:

∆φRL + ∆φLR = 3.141592286 ≈ π

Some rounding error of 1.17 · 10−5% persists but it is almost negligible.

5. Discussion

In order to make inferences from the proposed experiment, we will first need to know its

assumptions and limitations.

The main theoretical assumptions of the Bose et al [2] paper is that the gravitational interaction

between two masses is mediated by a gravitational field (not a direct action at a distance) and
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that entanglement between two systems cannot be created by Local Operations and Classical

Communication (LOCC).

Another assumption made by them is using the Newtonian potential for mediating the

gravitational entanglement which is not the true degree of freedom of the gravitational field and

hence might have affected the implications of the experiment. (Discussed thoroughly in Ref. [5])

Based on the given assumptions, the entanglement generated by gravity would be non-classical.

However, even if it eliminates the possibility of a completely classical model of gravity, it does not

strictly imply that gravity is quantum and a semi-classical model of a gravity is still a valid possibility.

Due to the success of the general theory of relativity in explaining gravity, a good start to

uncovering the mystery would be to look at the semi-classical models of gravity. The classical

Einstein’s Field Equations are

Gµν = 8πGTµν (16)

Where Gµν is the Einstein Tensor and Tµν is the stress-energy tensor. However in a quantum scenario,

the stress-energy tensor has to be an operator T̂µν which would be inconsistent with the left half of the

equation which is why we take its expectation value according to Møller-Rosenfeld [6,7], giving us a

scalar value of the operator.

Gµν = 8πG〈T̂µν〉 (17)

Here 〈T̂µν〉 = 〈ψ|T̂µν|ψ〉. We do run into technical difficulties in this equation one of them being that

the expectation value of the energy-momentum tensor is not conserved while the Einstein tensor is

(∇µ〈T̂µν〉 6= 0,∇µGµν = 0). Thus we need to renormalize Tµν which would give us ∇µ〈Tµν〉 = 0 and

other conditions discussed by Wald [8].

Another flaw with the field equations semi-classical gravity is that the expectation value in some

cases implies that the net curvature of the superposition states would be averaged out in the center

and we would expect a test particle to move towards that center. This is not what experiments have

shown so it is a massive downside of this model. ([9,10]) Due to the limitations of this model, other

semi-classical models have also been proposed, an important one being the stochastic model [11].

Figure 3. a) Expected behaviour in Møller-Rosenfeld semi-classical gravity vs b) Observed behaviour

of particle in superposition |L〉+ |R〉

Two of the current leading models for quantum gravity are the Loop Quantum Gravity model [12]

and the String Theory [13] which would not be discussed here being beyond the scope of this paper.

In conclusion, new experiments might help us eliminate more erroneous models and get closer to

the right one.
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Appendix A: Entanglement Witness

Entanglement witnesses are functions (often applied on the density matrix) to show that a state is

entangled. These witnesses are useful as they do not give false positives and are helpful in confirming

whether a given state is entangled. Of course a witness might not be able to detect all entangled states

but they can be optimized to detect most of them.

Figure 4. Diagram depicting convex set of quantum states including separable and entangled states.

The witness W1 detects more states than W2 and hence, is more efficient.

Entanglement Witness suggested by Bose et al [2] is W = |〈σ(1)
x ⊗ σ

(2)
z 〉 − 〈σ(1)

y ⊗ σ
(2)
z 〉|.

Their condition is that if W > 1 then the state is proven to be entangled. To verify this we will use the

bell states as they are maximally entangled.

For |Φ+〉 = |00〉+|11〉√
2

:

W = |〈Φ+|σ(1)
x ⊗ σ

(2)
z |Φ+〉+ 〈Φ+|σ(1)

y ⊗ σ
(2)
z |Φ+〉|

=

∣

∣

∣

∣

∣

( 〈00|+ 〈11|√
2

)

(

0 1

1 0

)

⊗
(

1 0

0 −1

)

( |00〉+ |11〉√
2

)

−
( 〈00|+ 〈11|√

2

)

(

0 −i

i 0

)

⊗
(

1 0

0 −1

)

( |00〉+ |11〉√
2

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1 0 0 1
)

2













0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

























1

0

0

1













−

(

1 0 0 1
)

2













0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

























1

0

0

1













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1 0 0 1
)

2













0

−1

1

0













−

(

1 0 0 1
)

2













−1

0

0

−1













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= |0 − (−2)

2
| = 1

Similarly, W(|Φ−〉) = W(|Ψ+〉) = W(|Ψ−〉) = 1

As we can observe even the maximally entangled bell state does not exceed unity for this

entanglement witness hence it might not be useful for the states calculated in this paper which

is why the need to use a different witness arises.

Here we can use the common entanglement witness Wxyz = 〈σx ⊗ σx〉+ 〈σy ⊗ σy〉+ 〈σz ⊗ σz〉 < 0

for entangled states.
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The state is |Ψ〉 = eiφ

2











1

ei∆φLR

ei∆φRL

1











, 〈Ψ| = e−iφ

2

(

1 e−i∆φLR e−i∆φRL 1
)

Evaluating the witness for

this state:

Wxyz = 〈Ψ|











0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0











|Ψ〉+ 〈Ψ|











0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0











|Ψ〉+ 〈Ψ|











1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1











|Ψ〉

=
1

4

(

1 e−i∆φLR e−i∆φRL 1
)





















1

ei∆φRL

ei∆φLR

1











+











−1

ei∆φRL

ei∆φLR

−1











+











1

−ei∆φLR

−ei∆φRL

1





















=
1

4

(

1 e−i∆φLR e−i∆φRL 1
)











1

2ei∆φRL − ei∆φLR

2ei∆φLR − ei∆φRL

1











=
1

4
(1+ 2ei(∆φRL−∆φLR)− 1+ 2ei(∆φLR−∆φRL)− 1+ 1)

=
1

4
(2ei(∆φRL−∆φLR) + 2ei(∆φLR−∆φRL)) =

1

2
(e3.2953i + e−3.2953i) = −1.97642/2 = −0.98821

As −0.98 < 0, we can say that the obtained state is definitely entangled.

Appendix B: Density Matrix Calculations

For notational convenience, we will be taking | ↑〉 ≡ |0〉 and | ↓〉 ≡ |1〉.
In Section 4, the quantum state used is |Ψ〉 = eiφ

2 (|00〉+ ei∆φLR |01〉+ ei∆φRL |10〉+ |11〉)
The conjugate transpose of this ket is the corresponding bra:

〈Ψ| = e−iφ

2
(〈00|+ e−i∆φLR〈01|+ e−i∆φRL〈10|+ 〈11|)

The density operator ρ̂ = |ψ〉〈ψ|

ρ̂ = |Ψ〉〈Ψ| = eiφ

2
(|00〉+ ei∆φLR |01〉+ ei∆φRL |10〉+ |11〉) e−iφ

2
(〈00|+ e−i∆φLR〈01|+ e−i∆φRL〈10|+ 〈11|)

= 1
4 (|00〉〈00|+ e−i∆φLR |00〉〈01|+ e−i∆φRL |00〉〈10|+ |00〉〈11|+ ei∆φLR |01〉〈00|+ |01〉〈01|

+ ei(∆φLR−∆φRL)|01〉〈10|+ ei∆φLR |01〉〈11|+ ei∆φRL |10〉〈00|+ ei(∆φRL−∆φLR)|10〉〈01|+ |10〉〈10|
+ ei∆φRL |10〉〈11|+ |11〉〈00|+ e−i∆φLR |11〉〈01|+ e−i∆φRL |11〉〈10|+ |11〉〈11|)

This can be converted to matrix notation using the following:

|00〉〈00| =
((

1

0

)

⊗
(

1

0

))

((

1 0
)

⊗
(

1 0
))

=











1

0

0

0











(

1 0 0 0
)

=











1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0











Similarly, |00〉〈01| =











0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0











, |00〉〈10| =











0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0











, |00〉〈11| =











0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0










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|01〉〈00| =











0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0











, |01〉〈01| =











0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0











, |01〉〈10| =











0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0











, |01〉〈11| =











0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0











|10〉〈00| =











0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0











, |10〉〈01| =











0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0











, |10〉〈10| =











0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0











, |10〉〈11| =











0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0











|11〉〈00| =











0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0











, |11〉〈01| =











0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0











, |11〉〈10| =











0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0











, |11〉〈11| =











0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1











Adding the terms,

ρ̂ =
1

4











1 e−i∆φLR e−i∆φRL 1

ei∆φLR 1 ei(∆φLR−∆φRL) ei∆φLR

ei∆φRL ei(∆φRL−∆φLR) 1 ei∆φRL

1 e−i∆φLR e−i∆φRL 1











The reduced density matrix is defined as ρA =
dim(HB)

∑
j

(IA ⊗ 〈j|B)(|Ψ〉〈Ψ|)(Ia ⊗ |j〉B) = TrBρAB

Where IA is the identity operator in HA and TrB is the partial trace of the density matrix.

Tr2(ρ̂) =
1
4 (Tr2(|0〉〈0|)|0〉〈0|+ e−i∆φLR Tr2(|0〉〈1|)|0〉〈0|+ e−i∆φRL Tr2(|0〉〈0|)|0〉〈1|+ Tr2(|0〉〈1|)|0〉〈1|

+ ei∆φLR Tr2(|1〉〈0|)|0〉〈0|+ Tr2(|1〉〈1|)|0〉〈0|+ ei(∆φLR−∆φRL) Tr2(|1〉〈0|)|0〉〈1|+ ei∆φLR Tr2(|1〉〈1|)|0〉〈1|
+ ei∆φRL Tr2(|0〉〈0|)|1〉〈0|+ ei(∆φRL−∆φLR) Tr2(|0〉〈1|)|1〉〈0|+ Tr2(|0〉〈0|)|1〉〈1|+ ei∆φRL Tr2(|0〉〈1|)|1〉〈1|
Tr2(|1〉〈0|)|1〉〈0|+ e−i∆φLR Tr2(|1〉〈1|)|1〉〈0|+ e−i∆φRL Tr2(|1〉〈0|)|1〉〈1|+ Tr2(|1〉〈1|)|1〉〈1|)
As Tr(|i〉〈j|) = δij when 〈i|j〉 = δij, this leaves us with

1

4
(|0〉〈0|+ e−i∆φRL |0〉〈1|+ |0〉〈0|+ ei∆φLR |0〉〈1|+ ei∆φRL |1〉〈0|+ |1〉〈1|+ e−i∆φLR |1〉〈0|+ |1〉〈1|)

In matrix form:

ρ1 =
1

4

(

2 e−i∆φRL + ei∆φLR

ei∆φRL + e−i∆φLR 2

)
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Appendix C: Minimization of Time Taken

Our minimization expression is τ + 2τacc.

The minimization constraint is Eq(15) which we will be simplifying by assigning variables to the

numerical constants















gµB∂x B
2m = 9.274 · 10−3 = A

157 × 10−6 = B
πh̄

Gm2 ≈ 49455.3566 = C

This reduces Eq(15) to:

2A2τ4
accτ

(Aτ2
acc + B)((Aτ2

acc + B)2 − (Aτ2
acc)

2)
= C

Now this can be rearranged to define τ as a function of τacc as

τ =
C(Aτ2

acc + B)((Aτ2
acc + B)2 − (Aτ2

acc)
2)

2A2τ4
acc

(18)

By substituting Eq(18) in our minimization expression, we obtain a function in one variable which

can be minimized using a simple python code.

import numpy as np

import scipy as sp

from scipy.optimize import minimize

# Defining constants

A = 9.274*10 ** (-3)

B = 157*10 **(-6)

C = 49455.3566

# Defining function

def f(x):

y = 2x + (C*(A*(x **2)+B)*(2*A*B*(x**2)+(B **2)))/(2*(A **2)*(x** 4))

return y

# Minimization

res = minimize(f, 0.2)

res

This gives τacc ≈ 0.58829s, τ ≈ 8.34349s and τ + 2τacc ≈ 9.52007s.

Figure 5. Graph of τtotal as a function of τacc.
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