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Abstract: he experiment proposed by Bose et al aims to show the non classicality of gravity through
entanglement. This paper seeks to establish optimal conditions under which the entanglement would
be maximized. The assumptions made by Bose et al to come to the conclusion of quantized gravity
would also be discussed along with alternate conclusions that could arise from the experiment.
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1. Introduction

In the realm of theoretical physics, quantum mechanics and quantum field theory have been
able to describe three out of four fundamental known forces till now which are the electromagnetic
interaction, the strong force, and the weak force. Gravity, however, still does not have a complete
theoretical model. Our current model of gravity is based on Einstein’s General Theory of Relativity
which has been remarkably accurate in describing many phenomena from the bending of light around
mass to gravitational waves. However a fundamental problem we face is that space-time interacts with
energy-momentum which are properties of fundamental particles which are currently best described
by the quantum theory. General Relativity and Quantum Theory are incompatible models due to a
variety of reasons [1], thus we must look for a way to introduce gravity to quantum physics.

In this paper we would look at an experimental proposal that aims to show that gravity can
influence matter at quantum scales through the double Stern Gerlach Interferometer experiment
devised by Bose et al in their paper [2]. This experiment might be able to show how gravitational field
could cause entanglement between two particles. The first portion would look at the experimental
parameters that would maximize spin entanglement in the experiment suggested by Bose et al under
optimal conditions. Later we discuss what the implications of this experiment are and exploring
further possible models.

2. Double Stern Gerlach Spin Entanglement

As suggested in Ref. [2], we keep two test masses in superposition of spacially localized states |L)
and |R). Their evolution happens under gravitational interaction and all other forces are minimized.
These two states are localized Gaussian wavepackets and due to their relatively small diameters with
respect to their distances dx and Ax, we can assume (L|R) = 0.

In this setup, we take two masses m; and my with the centers of the left and right states of both
the particles separated by the distance Ax as shown in the figure.

Closest distance between |R)1 and |L) is (Ax — dx) and farthest distance between |L); and |R)»
is (Ax + dx).

The Classical gravitational potential energy is E = — <742,
The initial state at t = 0 is:
¥(t = 0))1z = = (L)1 + [R}) ® —=(1L)2 +R)2) <1>
12=5(kh 1)@ 5k 2
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= §(|L>1 ®|L)2 4+ |L)1 ® [R)2 + |R)1 ® [L)2 + |R)1 ® |R)2)

a)

e,

Figure 1. Schematic depiction of the double Stern-Gerlach experiment as proposed by Bose et al. (a)
Two mesoscopic particles of equal mass in this case in superposition of two spatially localized states
IL) 4-|R). (b) Evolution of states in SG interferometer into spin entangled states |L, 1); + R, |); (j = 1,2)
Only the Top component of energy-momentum tensor is non-negligible due to speeds much slower
than the speed of light c [2], hence only hoo component evolves (where hy,; is the small perturbation in
linearized gravity g, = #uv + hyy, 1uv being the Minkowskian metric.)

Using the Schrédinger’s equation :
i 1w) = AlY) %)
ot '
The general solution is found to be [¥(t)) = e H¥/"¥(0)) when the Hamiltonian is
time-independent and U(t) = e~ 1*/" is the unitary time-evolution operator.

As E is an eigenvalue of the Hamiltonian, we can write the final state as [¥(t)) = e~'E*/"|¥(0))
At t = 7, the state evolves to:

e'® , ,
[¥(t =112 =5 (L)1 ® [L)2 + €AK|L)y @ [R)y + ™R [R)1 @ [L)2 + [R)1 @ [R)2)  (3)

Where ¢g, ~ %/‘PLR ~ h?f;fg;)lfp ~ Gt

ApLr = ¢rr — ¢ and APrp = PrL — ¢-

A state is said to be entangled if it cannot be factorized (non-separable) to be written as a product
of states such as [¥) = |¢)1 @ |¢)2 (a separable state).

If we try to factorize Eq(3), we obtain:

%ml ® (IL)2 + €218 [R)z) + [R)y @ (™5[L); + [R)2)).

The condition for this to be completely factorizable would be if (|L); + ¢/A?Lk|R),) ~ (e/PRL|L), +
IR)2)
eDPRL| L)y + |R)y = e!APRL(|L), + e IAPRL|R),) means e APrL = ¢l(27T—A¢rL) where 71 is an arbitrary
integer.

Therefore for the state to be entangled, 2n7t — Adrr # APrr

This gives us the entanglement condition:

A(PLR + A(PRL #2nm 4)
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The SG interferometer accelerates the particles through a magnetic gradient for a time T and
then the magnetic field is switched off for a greater amount of time T enough to entangle both the
superposition states.

In this process, the two joint states of the test masses evolve as shown in Eq.(1) and Eq.(3) the
orbital states |L); and |R); get replaced by the spin-orbital qubit states |L, T); and R, 1);.(Ref.[2]).

Replacing the states in Eq.(3) with the spin-orbital states gives us:

i . .
[¥(t =T+ Tace) )12 = %(|L,T)1 @ |L, )2 + eBR|L, 1)1 @ R, 1)g + ¢2PRL|R, |)1 @ |L, )2+ |R, 1)1 @ R, 1)2)  (B)

In the final step, the superposition is brought back through unitary transformations (|L, 1); — |C, T
)i IR L)j = 1€, 1y

ip . .
[Y(t =T+ 2Tacc)12 = %U M1z + DR +1)1p + e BB [ 1)15 + | L1)12)|C)1]C)2 (6)

This entanglement can be measured using an entanglement witness ¥V which is discussed later in
Appendix A. If W satisfies a certain condition for example exceeding unity in the one Bose et al.
suggested, then the state is proven to be entangled.

3. Minimization of Casimir-Polder Interaction

While performing the experiment, it is important to reduce extra noise that may present itself due
to other forces between the two particles we are using. One of them is the Casimir force which we will
try to reduce.

We will be taking a linear setup for the experiment[3] and the particles as diamond nanoparticles
of mass ~ 10~ 4kg.

The formula for the Casimir force between two neutral dielectric particles is

23fic RS e—1\>
Vep = — 7
P 4t (Ax —bx)” (S—I—Z) @

Where R is the radius of the particles, Ax — dx is the minimum distance between them, c is the
speed of light in vacuum (~ 3 x 108m/s), 1 is reduced Planck’s constant (1.05 x 10~34Js)and ¢ is the
dielectric constant (~ 5.7 for diamonds).

For a minimum difference of one order of magnitude[3], we obtain 0.1|Vg| > |Vcp]

Gm? . 230%c R® e—1\?
Ax—3d6x = 4m (Ax—6x)7 \e+2
2

G(47(pR3/3)2>230hc R® e—1
Ax—é6x = 4 (Ax—6x)7 \e+2
(Ax — bx)7 9 23hcRé (e —1)?
— >
Ax —d6x — G(4mpR3)%2 40 \e+2
230nc [ 3 e—1)\>
Ax — 6
— (Ax—dxP 2 4ntG (47(p€+2>
1/6
230hc [ 3 e—1)2
— >l —— = — in &
Ax — bx > e ( 4@8”) (AX — 0x)min ~ 157um (8)

Thus we need the minimum distance between the entangled particles to be 157um for the Casimir
force to be negligible (one order of magnitude lower than gravitational force in this case).
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4. Conditions for Maximal Entanglement

We will be converting the quantum state to a density operator (9) in order to perform certain
operations on it.
. i . .
The state can be written as |¥) = &-(| 11) + ¢2Lr| 1) 4+ eAPRL| | 1) + ] []))

Here | 1) = (1) ) = (1) and [ap) = [a) @ |B)

The density matrix is evaluated to be

1 e IAPLR e IAPRL 1
N 1 i(BPLR—DPrL)  oidPLR
P =7 | eidore  oi(AprL—Dp1R) 1 PIDPRL

1 e IAPLR e IAPRL 1

The bipartite von Neumann entropy can help us find the maximally entangled state of a quantum
system and is represented by

S(pa) = —Tr[palogpa] = — Tr[op logpp] = S(oB) )

Where p4 = Trp(p) and pp = Tr(p) are the reduced density matrices.
The reduced density matrix was calculated to be:

A 1 2 e IDPRL | pIAPLR
P1= 7\ eiddre 4 e~ IDPLR 2

S(p1) = —Tr(p1 log(p1))

The system is maximally entangled when p; and py are maximally mixed[4] which is achieved
when they are diagonal matrices with diagonal elements as 1/d where d is the dimension of the Hilbert
space of the basis (which is 2 in our case).

To get these conditions, we set the non-diagonal entries to 0 first:

e IDPRL  pIAPLR — () and e APRL e~ IDPLR =

This gives us two equations {COS(_A¢RL) j‘LiSin(_AquL) +cos(Agrr) + isin(Agrr) =0

cos(Adrpr) +isin(Aprr) + cos(—A¢rr) + isin(—Aprr) =0

They can be written as

(cos Agrr + cos Aprr) +i(sin Aprr — sin Agrr) = 0
(cos Apgr + cos Agprr) +i(sin Aprp, — sinAPrg) =0

By collecting the real and imaginary parts of the expressions.
For z € C to be 0, Re(z) = 0 and Im(z) = 0 (where Re and Im are the real an imaginary
components of the complex number respectively)
Looking at the imaginary part, sin A¢prr — sin Agry, = sin Apr; — sinA¢rr =0
This implies that sin A¢r = sin Agrr.
Which means either
Aprr = AprrL (10)

or
A(PLR = (2k+1)7T—A(PRL (11)

where k is an arbitrary integer.
Substituting Eq(10) in the real part, cos A¢r g + cos Aprr = cos Aprr + APrr = 2 cos APrr
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This is not a satisfactory condition as 2 cos A¢rr = 0 for only some values of A¢rr
Thus we can assume, Apr # Aprr This leads us to using Eq(11) as follows:
cos Aprr + cos Aprr = cos Aprr + cos((2k + 1) — Aprr) = cos Aprr — cos Aprg =0
And that satisfies the given conditions, therefore
Aprr + Apr = 2k + 1) (12)

This is our condition for non-diagonal elements being 0. Now to verify for maximally mixed state,
we can substitute these values in the reduced density matrix.

_1(2 0\ (27! o0
=% o 2) " Lo 2
-1 o -1
sosion =13 $)in (s )= 3 ) (76 i)
_ —log2 0 _ (—log2)/2 0
(5 0) ()

= (-4 %) =log2 = log(dim(#))
By analogy with the classical entropy formula, the entanglement entropy has the following
bounds:
0 < S(p1) < log(d;)

As the system saturates the upper pound, the state is maximally entangled.
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Figure 2. Plot of Entanglement Entropy as a function of A¢pr(from 0 to 71/2) and A¢g; (from 71/2 to
7). It can be seen that the entropy achieves its maximum value of log 2 when the sum of the phases
approach 7.

Now we can substitute the values of the phases to get an expression for the distances. For
simplicity, we will take k = 0 in Eq(12).

. Gm?t _ Gm?t n Gm?t B Gm?t -
h(Ax+0x) hAx  h(Ax—6x)  hAx

Gm?tT R SR S R
o \Ax+éx Ax Ax—96x)

APrR + AprL =TT = PR — P+ PrL — P =

gives
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And finally,
2
2(6x) _ _mh (13)
Ax((Ax)? — (6x)2)  Gm2T
The expression for the distance between the left and right states is[2]:
1 JxB
ox ~ ) g‘u]fn - Tazcc (14)

Where g ~ 2 is the electronic g-factor, g &~ 9.274 - 10~24] T~ is the Bohr magneton, 0, B is the magnetic
field gradient in the x-direction. The mass of the particles we are taking is = 10~ '*kg, the magnetic
field gradient is = 107 Tm 1, Toc is the time the masses are subjected to the magnetic field gradient
and is a variable.

Substituting the distance for minimized CP-effect, Ax — dx = 157um = Ax = dx + 157um, we
get:

2
SHBoxB_2
2( 2m TaCC) 7th

2 2N~ G2
(8152:2 2. +157 x 10°6) <(8"§fnx37§cc +157 x10-6)" — (842872 ) ) m

(15)

As the experiment cannot be completely free from outside interaction, there would always be
some sort of decoherence in the system. The collisional decoherence time is approximately of the same
magnitude as the total fall time of the particle Tgecoherence ™~ Tiotal = T + 2Tace [2]. This will lead to a
strong loss of coherence which will interfere with the gravitational entanglement. To minimize this,
we can minimize the total time taken for the particle to fall (Tiota1)

Minimizing Ty, by a simple python program mentioned in Appendix C gives T ~ 8.34349s and
Tace = 0.58829s Using these values, we can obtain the distances between the entangled states as

ox = 3209.59um and Ax = 3366.59um

Calculating the phase values:

Gm?t
PR = foay 1 o) = 008059546
__GmT 4 arsseiss
9RL = h(Ax —ox)™"
2

T
= 20 —0.157432377
¢ = —5— = 01574323

This gives A¢pry, = 3.218429203, A r = —0.076836917
These values can be substituted in Eq(12) to verify that the maximal entanglement conditions are
met:
Aprr + Aprr = 3.141592286 ~ 7

Some rounding error of 1.17 - 1075% persists but it is almost negligible.

5. Discussion

In order to make inferences from the proposed experiment, we will first need to know its
assumptions and limitations.

The main theoretical assumptions of the Bose et al [2] paper is that the gravitational interaction
between two masses is mediated by a gravitational field (not a direct action at a distance) and
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that entanglement between two systems cannot be created by Local Operations and Classical
Communication (LOCC).

Another assumption made by them is using the Newtonian potential for mediating the
gravitational entanglement which is not the true degree of freedom of the gravitational field and
hence might have affected the implications of the experiment. (Discussed thoroughly in Ref. [5])

Based on the given assumptions, the entanglement generated by gravity would be non-classical.
However, even if it eliminates the possibility of a completely classical model of gravity, it does not
strictly imply that gravity is quantum and a semi-classical model of a gravity is still a valid possibility.

Due to the success of the general theory of relativity in explaining gravity, a good start to
uncovering the mystery would be to look at the semi-classical models of gravity. The classical
Einstein’s Field Equations are

Gu = 871G Ty (16)

Where Gy,y is the Einstein Tensor and T),, is the stress-energy tensor. However in a quantum scenario,
the stress-energy tensor has to be an operator THV which would be inconsistent with the left half of the
equation which is why we take its expectation value according to Meller-Rosenfeld [6,7], giving us a
scalar value of the operator.

Gu = 8nG(T) (17)

Here (T,,) = (|1 |). We do run into technical difficulties in this equation one of them being that
the expectation value of the energy-momentum tensor is not conserved while the Einstein tensor is
(VH <TW> # 0, VIG, = 0). Thus we need to renormalize T, which would give us V#(T},;,) = 0 and
other conditions discussed by Wald [8].

Another flaw with the field equations semi-classical gravity is that the expectation value in some
cases implies that the net curvature of the superposition states would be averaged out in the center
and we would expect a test particle to move towards that center. This is not what experiments have
shown so it is a massive downside of this model. ([9,10]) Due to the limitations of this model, other
semi-classical models have also been proposed, an important one being the stochastic model [11].

a) b)

Figure 3. a) Expected behaviour in Meller-Rosenfeld semi-classical gravity vs b) Observed behaviour
of particle in superposition |L) + |R)

Two of the current leading models for quantum gravity are the Loop Quantum Gravity model [12]
and the String Theory [13] which would not be discussed here being beyond the scope of this paper.

In conclusion, new experiments might help us eliminate more erroneous models and get closer to
the right one.
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Appendix A: Entanglement Witness

Entanglement witnesses are functions (often applied on the density matrix) to show that a state is
entangled. These witnesses are useful as they do not give false positives and are helpful in confirming
whether a given state is entangled. Of course a witness might not be able to detect all entangled states
but they can be optimized to detect most of them.

Figure 4. Diagram depicting convex set of quantum states including separable and entangled states.
The witness WW; detects more states than ¥V, and hence, is more efficient.

Entanglement Witness suggested by Bose et al [2] is W = |<(T,E1) ® 0752)) - <0'y(l) ® 0P M-
Their condition is that if YW > 1 then the state is proven to be entangled. To verify this we will use the
bell states as they are maximally entangled.

For |®1) = 7|00>\?2‘11>:

w = (@ ol @ ol |o+) + (@ o) ® ol |0

_ ‘((00\4/%(110 <(1) (1)) o ((1) _01> (|00>\2|11>) ~ (<00|\2<11|) <? ;z) o ((1) —01> <|oo>;§|11>)‘

0o 0 1 0) (1 0 0 o0 -1\ (1
_(1001)000—10(1001)00100
a 2 1 0 0 o0]fof 2 0o 10 0]fo
0 -1 0 0/ \1 100 o)/ \1
0 -1
:(1001) _17(1001) 0|0 2, _,
2 2 0 2

Similarly, W(|®7)) = W([¥T)) =W(¥ 7)) =1

As we can observe even the maximally entangled bell state does not exceed unity for this
entanglement witness hence it might not be useful for the states calculated in this paper which
is why the need to use a different witness arises.

Here we can use the common entanglement witness Wy, = (0x ® 0x) + (0y ® 0y) + (0: ® 02) < 0
for entangled states.
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1
i el¢ oL e —iApLR  ,—IAPRL ; :
The state is [¥) = & oiddrs | 7 (Y| = % (1 e e 1) Evaluating the witness for
1
this state:
0 0 01 0 0 0 -1 1 0 0 0
0 010 0 01 O 0O -1 0 0
Wiyz = (¥ Y b4 Y Y Y
=Y g o0 EI g 1 o o 0TIy o 1 ol®
1 0 00 -1 0 0 0 0 0 0 1
1 -1 1
1 . . eiA(PRL eiA(PRL —eiA(PLR
— —iA —iA
=4 (1 o—iDPLR  pibpRL 1) o | | oo | | _sivons
1 -1 1
1
1 . . 2pIAPRL _ pIAPLR 1 . B ) 3
! (1 eTR iR 1) 26iAPLR _ pidgrL [ T E(1+231(A¢RL AfLR) — 1 4 2/ (A1 AfrL) —141)

1

_ %(ZEi(A%rAm) + 26! (APLR—APRL) ) — %(63-29531' + 732953y — _197642/2 = —0.98821

As —0.98 < 0, we can say that the obtained state is definitely entangled.

Appendix B: Density Matrix Calculations

For notational convenience, we will be taking | 1) = [0) and | |) = [1).
In Section 4, the quantum state used is |¥) = # (]00) + eAPLr|01) 4 €'APRL|10) 4 |11))
The conjugate transpose of this ket is the corresponding bra:

(¥] = ——({00] +¢~"80Lr (01 + ¢ 74P (10] + (11])

The density operator p = |¢) (1|

e~ i¢
2
= 1(]00)(00] -+ e~"A¢L& |00) (01| + e~A¥L|00) (10| 4 |00) (11| + €'APL&|01) (00| + [01)(01]|
+ e/ (APLR=DPRL)|01) (10| + €/2PLr|01) (11] + €/2PRL[10)(00] + €/(APRL=APLR) [10) (01| + |10) (10
+ € BPRL|10) (11| 4 [11)(00] + e*APLr|11) (01| 4 e~ *APRL|11) (10| + |11)(11])
This can be converted to matrix notation using the following:

((00] + e~APLr (01| + e~APRL (10| + (11])

i , .
p=[¥)(¥]= %(|00> +el80R|01) + e'80RE[10) + [11))

1 1 0 0 O
1 1 0 0 00O
o= ()= (5)) (0 el )= [5] (oo a)= |0 50
0 00 00
01 00 0 010 0 0 01
- 10 0 0 O 10 0 0 O 10 0 0 O
Similarly, |00) (01| = 00 0 0 ,100) (10| = 000 0 ,100) (11| = 00 0 0
0 00O 0 00O 0 00O
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00 0O 00 00 0 00O
1 0 0 O 01 00 0 01O
|01)(00| = 00 0 0 ,|01)(01] = 000 0 ,|01){(10| = 000 0 ,101)(11] =
0 00O 00 00O 0 00O
00 0O
00 01
00 0O
00 0O
0 0 0O 00 00O 0 00O
0 00O 00 00 0 00O
[10) (00| = 100 0 ,110)(01| = 010 0 ,[10)(10| = 0010 ,[10) (11| =
0 0 0O 00 00O 0 00O
00 0O
00 0O
00 01
00 0O
0 0 0O 00 00O 0 00O
0 0 0O 00 00O 0 00O
[11)(00| = 00 0 0 ,11)(01] = 00 0 0 ,11)(10| = 00 0 0 L1111 =
1 0 0O 01 00 0 01O
00 0O
00 0O
00 0O
00 01
Adding the terms,
1 e~ IAPLR e IAPRL 1
1| AR 1 o (BPLR—DPRL)  piIDPLR
P=13 eIAPRL  i(APRL—APLR) 1 eI APRL
1 e IAPLR e IAPRL 1
dim(3)

The reduced density matrix is definedaspa = L (1a ® (j|p) ([¥)(¥|)(L @ [j)5) = Trppas

]
Where 1, is the identity operator in ¢4 and Trp is the partial trace of the density matrix.

Try(p) = 1 (Tr EO (01)[0)(0] 4 e~"A9Lx Try (10) (1])|0) (0] + e~ AL Trp (10) (0[)[0) (1] + Tr2(|0)(1])[0) (1]
5 (|1)(0

2(10) (0]
+ ALk Tr (11){01)]0) (0] + Tra(|1)(1[)[0) (0] + e APLr—APRL) Ty (]1)(0[)[0) (1] + e?AP2& Tra (1) (1])[0) (1]
+ e"A9RL Ty (10) (0]) 1) (0] + /(APrL=A9LR) Ty (10) (1]) 1) (0] + Tra (J0) (0]) 1) (1| + 9= Tirp (|0) (1])[1) (1
Trp([1)(0[)[1) (0] + e~ "APLR Ty (|1) (1])[1) (0] + e~ *APRE T (1) (0])[1) (1] 4 Tr2 (1) (1) [1) (1))
As Tr(|i)(j|) = J;; when (ilj) = dij, this leaves us with

i(l0> (O] -+ e~ ™A9RL[0) (1] +10) (O] + €™¢1K [0) (1] + e 8PRE 1) 0] + [1) (1] + e~k [1) (0] + [1)(1])

1 2 e IAPRL - oIAPLR
P1= 7\ pidgre + o iBPLR 2

In matrix form:
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Appendix C: Minimization of Time Taken

Our minimization expression is T + 2Tacc.
The minimization constraint is Eq(15) which we will be simplifying by assigning variables to the
numerical constants

gHpoxB __ -3 _
SEBS —9274-1073 = A
157 x 107 = B

h A~ _
omz 49455.3566 = C

This reduces Eq(15) to:
2A%TE T

acc =C
(ATe%cc + B)((ATazcc + B)Z - (ATe%cc)z)

Now this can be rearranged to define T as a function of T, as

C<ATa2CC + B)((ATazcc + B)z — (ATa2cc)2)
2A2TA

acc

T= (18)

By substituting Eq(18) in our minimization expression, we obtain a function in one variable which
can be minimized using a simple python code.

import numpy as np
import scipy as sp

from scipy.optimize import minimize

Defining constants
= 9.274%10%* (-3)

= 157%10%x (-6)
49455 .3566

Q W = #

# Defining function

def f(x):
y = 2x + (Cx(Ax(x**x2)+B)* (2*%A*B* (x*x2)+(B**2))) /(2% (A**2) *x (x**x4))
return y

# Minimization
res = minimize(f, 0.2)

res

This gives Tace ~ 0.58829s, T ~ 8.34349s and T + 2T, ~ 9.52007s.

Tiotal
10.0

0.0 0.2 0.4 0.6 0.8 10 12 14 T acc

Figure 5. Graph of Ty, as a function of Tacc.
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