

Supporting information

OsMYB58 negatively regulates phosphate acquisition via *OsmiR399*-dependent phosphate starvation signaling in rice.

Dongwon Baek^{1,†}, Won Tae Yang^{2,†}, Soyeon Hong^{3,†}, Hye Jeong Kim², Sunok Moon⁴, Ki Hong Jung⁴, and Doh Hoon Kim^{2,*}

¹ Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; dw100@hanmail.net (D.B.).

² College of Life Science and Natural Resources, Dong-A University, Busan 49315, Republic of Korea; wtyang@dau.ac.kr (W.T.Y.), hjkim83@dau.ac.kr (H.J.K.), dhkim@dau.ac.kr (D.H.K.).

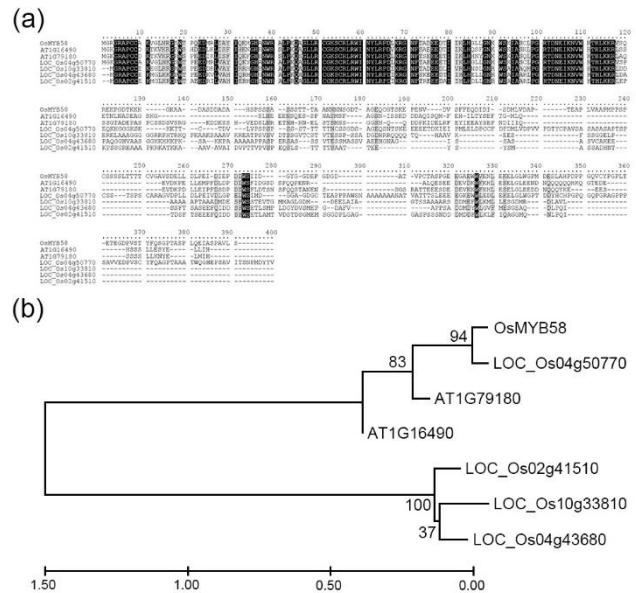
³ National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; hsy1203@korea.kr (S.H.).

⁴ Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; moonsun@khu.ac.kr (S.M.), kjhjung2010@khu.ac.kr (K.H.J.).

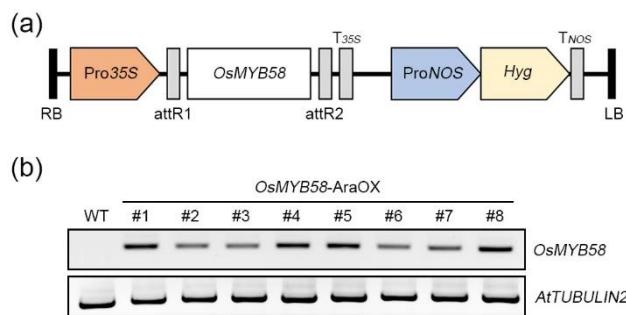
[†] These authors contributed equally to this work

* Correspondence: dhkim@dau.ac.kr; Tel.: +82-51-200-7507 (D.H.K.)

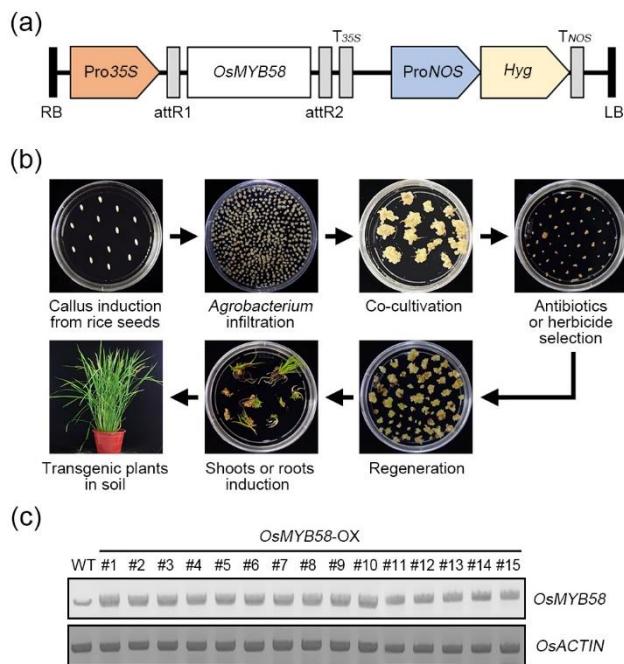
Supplementary Materials:

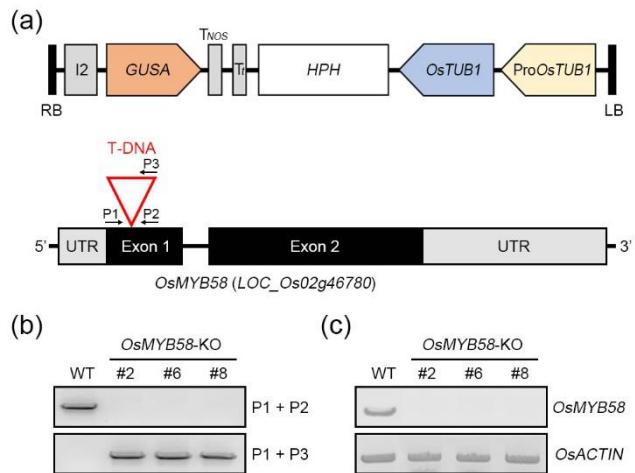

Supplementary Figure S1. Sequence alignment and phylogenetic tree analysis of R2R3-type MYB transcription factors in Arabidopsis and rice.

Supplementary Figure S2. Generation of *OsMYB58* overexpressing Arabidopsis plants.


Supplementary Figure S3. Generation of *OsMYB58* overexpressing rice plants.

Supplementary Figure S4. Generation of *OsMYB58* T-DNA tagging knock-out mutant rice plants.


Supplementary Table S1. Lists of primers in this study.


Supplementary Figure S1. Sequence alignment and phylogenetic tree analysis of R2R3-type MYB transcription factors in *Arabidopsis* and rice. (A) Multiple protein sequence alignment of R2R3-type MYB protein in *Arabidopsis* and rice was generated by the Clustal Omega program (<https://www.ebi.ac.uk/Tools/msa/clustalo/>). Identical protein sequences are shaded in black and similar protein sequences are shaded in gray. (B) The phylogenetic tree of *Arabidopsis* and rice MYB proteins was constructed with the Neighbor-Joining method in MEGA X (<https://www.megasoftware.net/>) using R2R3 domain sequences.

Supplementary Figure S2. Generation of *OsMYB58* overexpressing *Arabidopsis* plants. (a) For overexpressing *OsMYB58* into *Arabidopsis* Col-0 plants, the diagram showed the plasmid DNA construct including the hygromycin (Hyg) selection marker. (b) *OsMYB58* expression in *OsMYB58*-AraOX plants by RT-PCR analysis. Total RNA was extracted from selected *OsMYB58*-AraOX plants by hygromycin. *AtTUBULIN2* is an internal control.

Supplementary Figure S3. Generation of *OsMYB58* overexpressing rice plants. (a) For overexpressing *OsMYB58* into rice plants, the diagram showed the plasmid DNA construct including the hygromycin (Hyg) selection marker. (b) The process diagram indicated the rice transformation by *Agrobacterium*-mediated methods. (c) *OsMYB58* expression in *OsMYB58*-OX plants by RT-PCR analysis. Total RNA was extracted from selected *OsMYB58*-OX rice plants by hygromycin. *OsACTIN* is an internal control.

Supplementary Figure S4. Generation of *OsMYB58* T-DNA tagging knock-out mutant rice plants. (a) For mutation of *OsMYB58* into rice plants using T-DNA tagging vector (*pGA2707*) systems, diagram showed the plasmid DNA construct including the hygromycin phosphotransferase (*HPH*) selectable gene. *GUSA*; native *E. coli* β -glucuronidase reporter, *ProOsTUB1*; promoter of coding sequence (*OsTUB1*), I2 and Tt; second (I2) intron and terminator sequence (Tt) of the rice α -TUBULIN A1 gene. (b) Genotyping PCR analysis in *OsMYB58*-KO plants. For selecting T-DNA-inserted transgenic plants, diagnostic PCR was performed in wild-type (WT) and *OsMYB58*-KO plants using a combination of gene-specific (P1 and P2) or T-DNA-specific (P3) primers. (c) *OsMYB58* expression in *OsMYB58*-KO plants by RT-PCR analysis. Total RNA was extracted from selected *OsMYB58*-KO rice plants by hygromycin. *OsACTIN* is an internal control.

Supplementary Table S1. Lists of primers in this study

Gene	Direction	Sequence (5' → 3')	Purpose
<i>OsMYB58</i> -RT	Forward	CATCGCCTACATCCAGAAG	Analysis of qRT-PCR or RT-PCR
	Reverse	GAGATGTCGATGTCTTGCTC	
<i>OsACTIN</i> -RT	Forward	ATGCTCTCCCCATGCTATC	Analysis of qRT-PCR or RT-PCR
	Reverse	TCTTCCTTGCTCATCCTGTC	
<i>AtTUBULIN2</i> -RT	Forward	TGGCATCAACTTCATTGGA	Analysis of qRT-PCR or RT-PCR
	Reverse	ATGTTGCTCTCGCTTCTGT	
<i>OsmiR399a</i> -qRT	Forward	GCTGGAAATGATGCTGGTAGC	Analysis of qRT-PCR or RT-PCR
	Reverse	CTCCTTGGCACGAGATCTGT	
<i>OsmiR399j</i> -qRT	Forward	GGAGCATGTAAGTCTTTGTAGC	Analysis of qRT-PCR or RT-PCR
	Reverse	GGCAACTCTCCTTGGCAGA	
<i>OsIPSI</i> -qRT	Forward	CTAAGGTAGGGCAACTTGTATC	Analysis of qRT-PCR or RT-PCR
	Reverse	TTATTAGAGCAAGGACCGAAC	
<i>OsPHO2</i> -qRT	Forward	GGTGCAGCTGGAACACCTTA	Analysis of qRT-PCR or RT-PCR
	Reverse	GCACCGGAATGGTAGTGAA	
<i>OsPT2</i> -qRT	Forward	GACGAGACCGCCCAAGAAC	Analysis of qRT-PCR or RT-PCR
	Reverse	TTTCAGTCACTCACGTCGAGAC	
<i>OsPT4</i> -qRT	Forward	TTCTGCTAGTGTACCAAACAAAATTACA	Analysis of qRT-PCR or RT-PCR
	Reverse	CTAAGTGGCATTATAATATCAACAGTAACC	
<i>OsACTIN</i> -qRT	Forward	GAACCTGGTATGGTCAAGGCTG	Genotyping from RNAi-plants
	Reverse	ACACGGAGCTCGTTGTAGAAG	
<i>OsMYB58</i> -KO	P1	CGAACACGCAAGAATTAAC	Genotyping from RNAi-plants
	P2	GCTAAGCACACGTGTAGGAT	
	P3	GGTGAATGGCATCGTTGAA	