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Abstract: In the field of maneuvering target tracking, the combined observations of azimuth and Doppler may 
cause weak observation or non-observation in the application of traditional target tracking algorithms. 
Additionally, traditional target-tracking algorithms require pre-defined multiple mathematical models to 
accurately capture the complex motion states of targets, while model mismatch and unavoidable measurement 
noise lead to significant errors in target state prediction. To address those above challenges, in recent years, the 
target-tracking algorithms based on neural networks, such as recurrent neural networks (RNNs), long short-
term memory (LSTM) networks, and Transformer architectures, have been widely used for their unique 
advantages to achieve accurate predictions. To better model the nonlinear relationship between the observation 
time series and the target state time series, as well as the contextual relationship among time series points, we 
present a deep learning algorithm called recursive downsample-convolve-interact neural network (RDCINN) 
based on convolutional neural network (CNN) that downsamples time series into sub-sequences and extracts 
multi-resolution features to enable the modeling of complex relationships between time series, which 
overcomes the shortcomings of traditional target-tracking algorithms in using observation information 
inefficiently due to weak observation or non-observation. The experimental results show that our algorithm 
outperforms other existing algorithms in the scenario of strong maneuvering target tracking with the combined 
observations of azimuth and Doppler. 

Keywords: azimuth and Doppler; convolutional neural network; deep learning algorithm; maneuvering 
targets tracking 
 

1. Introduction 

WITH the increasing application of radar maneuvering target tracking technology in both civil 
and military domains, how to use the data measured by radar sensors to obtain more accurate target 
state estimation has become a prominent research focus. Furthermore, the single-station passive 
positioning technology applied in target tracking utilizes the radar sensor that passively receives the 
source radiation signal to enable the positioning of the radiation source, and is highly regarded for 
its strong concealment and broad application [1]. In the past, pure azimuth passive positioning 
technology was commonly used for target localization and tracking [2]. However, relying solely on 
the nonlinear relationship between angle measurements and target states made it challenging to 
obtain accurate target state estimation. Subsequently, researchers discovered that introducing new 
observables such as angle change rate and Doppler frequency could enhance localization accuracy 
[3,4]. For instance, combining azimuth and Doppler observables enables more precise target state 
estimation.  

However, using the combined observations of azimuth and Doppler has certain requirements 
on the relative positions of the observation point and the target trajectory. In specific cases, the 
observation point will experience weak observation or non-observation during some relative motion 
periods [5,6], as shown in Figure 1. When a maneuvering target moves with a uniform or uniformly 
variable speed along the line connecting it to the observation point, both the azimuth and Doppler 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 November 2023                   doi:10.20944/preprints202311.1360.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202311.1360.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

measurements have a rate of change of 0. During these periods, the target becomes unobservable as 
there is no significant change in the measured information. Similarly, when the maneuvering target 
follows a uniform circular motion relative to the observation point, the Doppler measurement 
remains constant, and only the azimuth measurement provides some observable information, this 
observation is considered weak due to the lack of Doppler information, which limits the accuracy of 
target state estimation during such periods. 

In short, the single station passive positioning technique based on the combination of azimuth 
and Doppler measurement has some limitations in the observation range of the maneuvering target 
tracking. Meanwhile, the maneuvering target states are always uncertain and complex in practically, 
and the single-model traditional algorithms like extended Kalman filter (EKF) and unscented Kalman 
filter (UKF) applied in the field of weak maneuvering target tracking are difficult to achieve the 
accurate estimation of such complex maneuvering target states [7]. To solve this kind of complex 
strong maneuvering target tracking problem, multiple models (MM) algorithms and their various 
variants have been proposed and widely used [8]. Taking the interactive multiple model algorithm 
(IMM) as an example [9,10], it usually needs to predefine a variety of target maneuvering models, 
model probabilities, and model transfer probabilities for the estimation of target states. However, in 
the specific application of this traditional target tracking algorithm, there is the problem of delayed 
model estimation when the target maneuvering state changes abruptly [11], coupled with the fact 
that the multi-model algorithm essentially needs to set up the motion models in advance just as the 
single-model target tracking algorithm does, and the inaccuracy of the preset motion model may also 
occur in the face of complex maneuvering situations, as well as the existence of observation noise in 
the radar sensors themselves, and various other adverse factors have a negative impact on this 
interactive multi-model algorithm [12].  

In recent years, with the advancement of deep learning, the research on utilizing neural network 
modeling algorithms to break through the limitations of traditional target-tracking algorithms has 
significantly expanded [13]. Leveraging the distinctive advantages of neural networks [14], it 
becomes feasible to dispense with the requirement of predefining the motion models beforehand and 
accomplish end-to-end predictions between observations and maneuvering target states. A previous 
study with a maneuvering trajectory prediction method that employed a backpropagation neural 
network (BPNN) was introduced to combine the historical trajectory of the target to capture the 
target's motion patterns and generate predicted trajectories [15]. Furthermore, the articles [16–18] 
focus on addressing the challenges that arise from the inherent uncertainty in both maneuvering 
target states and the measurement information faced by traditional target tracking algorithms and 
presenting methodologies that better model the long-term dependence among sequence data through 
the gating mechanism. Subsequently, the articles [19,20] address the limitation of the long short-term 
memory (LSTM) model in capturing the global nature of the target maneuvering state by proposing 
the use of the transformer architecture which captures both long-term and short-term dependence of 
the target state, further enhance the accuracy of target tracking algorithms. 

To achieve an accurate estimation of strong maneuvering target states based on the combined 
observations of azimuth and Doppler, the first step is to use a time series of observations in the target 
motion state prediction to address the challenge of insufficient time information obtained from the 
azimuth-Doppler information at a single moment. The prediction of time series typically involves 
three fundamental structures, namely Recurrent Neural Networks (RNN), Transformer-based 
Networks (TBN), and Temporal Convolutional Networks (TCN) [21–23]. For leveraging the 
distinctive property where temporal relationships are largely preserved even after downsampling a 
time series into two subsequences, we propose a recursive downsample convolution interact-learning 
neural network (RDCINN) based on the Convolutional Neural Network (CNN) architecture [24] 
designed to address the challenge of motion states estimation. Our approach involves several key 
operations to extract motion features from the input observation time series. We first apply a full-
connection layer and a position-coding layer to perform temporal coding operations on the input. 
Then, we proceed with recursive downsampling, temporal convolution, and interactive learning 
operations. In each layer, multiple convolutional filters are employed to extract motion features from 
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the downsampling time series. By combining these rich features gathered from multiple resolutions, 
we can effectively address the issue of weak observation or non-observation encountered in 
traditional maneuvering target tracking algorithms based on the combined observations of azimuth 
and Doppler. Finally, the utilization of a binary tree structure in our model contributes to an increased 
depth of temporal feature extraction which allows for effective modeling of the nonlinear mapping 
relationship between high-noise observation time series and complex maneuvering states.  

 
Figure 1. The relative positions of the observation point and the maneuvering target in the two-
dimensional X-Y plane. The green trajectory illustrates the movement of a maneuvering target at a 
uniform or uniformly variable speed along the target and the observation point. The blue trajectory 
demonstrates the trajectory of a target moving circularly at a uniform velocity around the observation 
point. The red trajectory shows the movement of a maneuvering target relative to the observation 
point. 

2. Problem Formulation 

As in previous studies on maneuvering target tracking using deep learning approaches [17–19], 
our simulation scenarios are set on a 2D plane. In this setup, the radar observation point passively 
receives azimuth and Doppler information, and is positioned at the origin �. We assumed that �� 
and ��  are the � − �ℎ  momentary maneuvering target state vector and observation vector, 
respectively. (��, ��) denotes the position of a � − �ℎ moment maneuvering target in the X − Y 
plane, (�̇�,  �̇�) represents the corresponding velocity. And [��,  ��]�  represents the azimuth and 
Doppler information of the measurements kz  and is expressed as [25]: 

������ = � ������ �������̇� ����� + �̇������� + ���,���,��            (1) 

where ��,� ~ � (0, ���)，��,� ~ � (0, ���)，��、�� are the standard deviations of the Gaussian 
noise of the azimuth and Doppler measurement, respectively. 

To perform target tracking using a deep learning approach, it is essential to generate an extensive 
dataset of trajectories and observations for training the network model [26]. This dataset enables the 
modeling of the nonlinear relationship between target states and observation information, ultimately 
facilitating the accurate estimation of maneuvering target states. Typically, the dataset is generated 
based on the state equations and observation equations as follow: ��� = ����� + ��,��� = ℎ(��) + ��,�             (2) 

where ��,�、��,� denote state transfer noise and observation noise and are expressed as follow, 
respectively: ��,� = ���,� , ��,���                  (3)    
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��,� = �����,�, ����,� , ����,�, ����,���                  (4) 

where ����,� = ��� ��, ����,� = ���, � is the radar sensor sampling interval time. �� ~ � (0, ���) 
denotes the maneuvering acceleration noise, which follows a Gaussian distribution. In the state 
equation �� = ����� + ��,� , we have incorporated two maneuver models, namely the constant 
velocity (CV) motion and the constant turning (CT) motion. The definitions of these models are as 
follows: 

��� = �10 01 �0 0�00 00 10 01�                                (5) 

��� = ⎣⎢⎢
⎢⎡10 01 ���(��)������(��)�

���(��)������(��)�00 00 ���( ��)���( ��) − ���( ��)���( ��) ⎦⎥⎥
⎥⎤
               (6) 

In the network model, the input consists of the measurement time series �� : � = {��, ��, . . . , ��}, 
while the output is the estimated state of the maneuver target �̃� : � = {�̃�, �̃�, . . . , �̃�}, � represents the 
total number of time steps in the input-output time series, and�is the turning rate. To evaluate the 
performance of the model, we employ the mean absolute error (MAE) as a measure. We denote the 
loss function with the estimated state of the maneuver target and its true state as: ���� = ��� ∑ |�� − �̃�|����                     (7) 

3. The Model for Maneuvering Target Tracking 

In this section, we will discuss the deep learning algorithm applied to maneuvering target 
tracking based on the combined observations of azimuth and Doppler. The algorithm consists of two 
parts: the training phase and the testing phase. The training phase is depicted in Figure 2. Following 
a similar research scheme for maneuvering target tracking based on LSTM or TBN [18,19], we begin 
by using the observation equations and state equations to generate a large-scale trajectory dataset 
(LASTD) and then employ LASTD to train the neural network model. The LASTD is firstly followed 
by batch processing, and the normalized observations are input into the designed network model 
batch by batch. The output of the model is the predicted maneuvering target state which is converted 
back to its original form before. Finally, backpropagation and parameter updating of the network are 
performed using a loss function with the predicted states and the ground-truth states. We fine-tune 
the network to improve its performance in maneuvering target tracking. 

 
Figure 2. Flowchart of the algorithm training process. Generate target state and observation pairs for 
network training with motion and observation models first, then train with batch normalized 
observation as inputs, and update the parameters with back-propagation of the loss error between 
the predicted state and the true state iteratively. 

3.1. Normalization Methods 

To effectively utilize LASTD for network training and enhance the convergence speed, we 
normalize each generated trajectory data and its corresponding observations. In this study, we 
employ a hybrid normalization approach that takes into consideration the distributional 
characteristics of both the observation and target state data. Given that the observation data noise is 
assumed to be additive white noise, we adopt Gaussian normalization for the observation data. The 
normalization formula is expressed as follows: 
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�� : �� = �� : ������(�� : �)���(�� : �)                                    (8) 

where �� : �� , �� : �  denotes the normalized observation segment and the corresponding 
generated original observation segment respectively. ����(•) denotes the mean of the segment data 
and ���(•) is the variance of the same. For the real target trajectory states, we normalize them using 
the min-max normalization method. The formula is denoted as: �� : �� = �� : �����(�� : �)���(�� : �)����(�� : �)                                 (9) 

where �� : �� , �� : � denotes the normalized target state and the generated target state respectively. ���(•) denotes the minimum value of the data, and max(•) denotes the maximum value of the data. 
The partially normalized trajectory data distribution and the original trajectory data distribution are 
shown in Figure 3. 

 
Figure 3. Min-max normalization of trajectory segments. The left side of the figure shows the original 
trajectories generated by 9 different motion models. On the right side, the distributions of the 
normalized trajectory data can be observed. The x and y ranges of the trajectories are restricted to the 
interval [0, 1] which ensures that the LASTD does not have excessively large ranges to pose difficulties 
during network training. 

3.2. Proposed Model  

Most previous studies tackling this problem of maneuvering target tracking utilized deep 
learning algorithms based on RNN or LSTM to model the nonlinear relationship between observation 
time series and target state time series. However, RNN may face challenges such as gradient 
explosion or vanishing during the training phase, while LSTM may not be very efficient with step-
by-step prediction. Hence, the TBN was proposed for further accurate modeling with its advantages 
of parallel training and global processing of long sequences. Nevertheless, TBN may exhibit a weaker 
ability to extract local information compared to RNN and CNN [27].  

To fully extract rich dynamic features from time series and overcome the challenges posed by 
the weak observation or non-observation in traditional algorithms, as well as accurately model the 
nonlinear relationship between observation sequences and target state sequences along with the 
contextual relationships among time series points in a complex motion environment, we propose a 
neural network called RDCINN based on one-dimensional CNN [24] as shown in Figure 4. This 
model architecture leverages a diverse array of convolutional filters to extract dynamic temporal 
features at multiple resolutions to learn the complex nonlinear relationships between temporal 
sequences and the contextual relationships within the temporal sequences.  

In each block module of RDCINN, the input undergoes a two-step process: splitting and 
interactive learning. The splitting step involves downsampling the input into two subsequences. 
These subsequences consist of the odd and even elements of the original sequence, respectively. This 
splitting operation takes advantage of the unique nature of time series, allowing the subsequences to 
retain most of the information present in the original sequence. The split odd and even subsequences 
are then individually processed by different convolutional kernels to extract valuable features and 
enhance the expressive power of the model. Following the splitting step, the interactive learning step 
compensates for any potential loss of information due to downsampling. This step involves the 
mutual learning of affine transform parameters between the two subsequences. The equations 
expressing the interactive learning step are as follows: 
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������� = ���� ⊗ ���( ����1�(�����))          (10) �������� = ����� ⊗ ���( ����1�(����))          (11) ������� = ������� + ����1�(�������� )                (12) �������� = �������� − ����1�(������� )                (13) 

where �����  and ����  represent the subsequence of even and odd elements obtained after 
splitting the original sequence respectively. ����1�  represents the one-dimensional convolution 
layer, ��� is the exponential operation applied to the sequence after convolution, and ⊗ represents 
the Hadamard (element-wise) product operation. �������  and ��������  represent the parity 
subsequences obtained after the sequence splitting, convolution, exponential, and Hadamard 
operations. Finally, the module generates the two parity subsequences �������  and ��������  after the 
interactive learning step.  

In RDCINN, an encoder-decoder architecture is employed. The encoder consists of multiple 
blocks organized in a binary tree structure. This structure enables the network model to have both 
local and global views of the entire time series, facilitating the extraction of useful temporal features. 
After the downsampling, convolution, and interaction operations within the encoder, the extracted 
features are reshaped into a new sequence representation. These reshaped features are then combined 
with the original time series for prediction. The decoder with a two-layer one-dimensional 
convolutional network layer, performs the prediction based on the combined representation of the 
reshaped features and the original time series. This encoder-decoder architecture allows RDCINN to 
leverage both local and global temporal information in the input time series, enhancing its ability to 
capture and model complex temporal relationships for accurate prediction. 

 
Figure 4. Model architecture of RDCINN. On the left is a diagram of a sub-block structure of the 
binary tree network architecture, which performs splitting, convolution, and interactive learning 
operations on the input sequence X sequentially, and finally outputs the odd and even subsequences �������  and �������� . The input to the binary tree network is the 2-dimensional sequence of normalized 
observations z1:k. It is first mapped through the fully connected layer into the E-dimension, and the 
final outputs obtained through the network as a 4-dimensional sequence of predicted target states s1:k. 

3.3. Test Reorganization Phase 

We utilize the trained network to perform complex maneuvering target tracking on long 
trajectories. As illustrated in Figure 5, the process consists of the following steps: Divide the 
observation �� : � corresponding to the target states into �  length segments using a sliding window 
approach. The window size ws  is set to 16 with a moving stride  st = 4. This division results ��(�) = �� with the length � = 16 is the nth time sequence of inputs, and � can be denoted as: � = 1 + (� − 1) ∗ ��: �� + (� − 1) ∗ ��            (14) 
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where n=1,2..., (K-ws)/st+1, K is the total steps. Normalize each segment of the observation time 
sequence ��(�). Input the normalized observation time sequence ��(�)∗ into the network to obtain 
the predicted target state outputs. Apply denormalization on the predicted target state output ��(�)∗ 
to obtain the corresponding predicted state sequence ��(�) = ��. 

Reconstruct each segment of the predicted target state sequences after denormalization. Process 
the overlapping length ������� = �� − �� among target state sequences ��(�) by averaging them. 
The reconstruction steps are expressed mathematically as follows: �(�)� : � = ���(�(� − 1)�:�, (�(�)�:����(���)�:�)� , �(�)��:��) (15) 

where we denote ������� as �� , a = (� − 1) ∗ �� + �� , � = � ∗ (� − 1), ���  means that merge 
the state sequence  �(� − 1) and �(�) together. Additionally, we set the initial states s(1) = ss(1), s(2) = ss(2), while s(n) is the merged result of state sequences. 

 
Figure 5. Trajectory segmentation and reconstruction consist of the following steps: Divide the 
observations �� : � corresponding to the target states using a sliding window approach. Normalize 
each segment of the observation time sequence��(�). Apply denormalization on the predicted target 
state outputs��(�)∗to obtain the corresponding predicted state sequence �s(�). Finally reconstruct 
each segment of predicted target state sequence after denormalization. 

4. Simulation Experiments 

In this section, we design several experimental scenarios to evaluate the superiority of our 
algorithm in predicting the states of strong maneuvering radar targets with the combined 
observations of azimuth and Doppler. Additionally, we provide a detailed explanation of the specific 
parameters listed in each part of the experiment. 

4.1. Parameter Setting Details 

We utilize the LASTD which consists of 450000 trajectories with different motion laws and their 
corresponding observations for a comprehensive evaluation of the algorithms’ performance in 
maneuvering target tracking tasks. The dataset was structured as follows: 150000 samples consist of 
16s long trajectories of either uniform linear motion or uniform circular motion. Another 150000 
samples are composed of 16s trajectories segmented into two 8s-long trajectories, every trajectory 
could be uniform linear motion or uniform circular motion. The remaining 150000 samples consist of 
16s trajectories segmented into four 4s-long trajectories, while every trajectory could be either 
uniform linear motion or uniform circular motion. The sampling time T for each trajectory was set to 
1s. The parameters of the LASTD are listed in Table 1. 
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Table 1. Parameters of LASTD. 

Parameters Value 

Distance Range [926m,18520m] 

Angle Range [-180o,180o] 

Velocity Range [-340m/s,340m/s] 

Turn Rate (�) [-10o/s,10o/s] 

The Standard Deviation of Acceleration Noise (��) [8m/s2,13m/s2] 

The Standard Deviation of Azimuth Noise (��) [1o,1.8o] 

The Standard Deviation of Doppler Noise (��) 1m/s 

Sampling Time Interval(T) 1s 

In the training process, we set the following hyperparameters for our model: the dimension E of 
the fully connected layer is set to 64, the binary tree height is set to 2, the convolutional layer's kernel 
size, dilation rate, and group length is set to 5, 2, and 1, respectively. For the decoding layer, we have 
two one-dimensional convolutional layers with dimensions of 16 and 4, respectively. We use the 
Adam optimizer for the model training process. The weight decay rate is set to 1e-5. The learning rate 
is initially set to 7e-4, and it decays by 0.95 after each epoch. We trained 300 epochs with a batch size 
of 256 on a single NVIDIA 3090 GPU. 

In our experiments, we compare our proposed algorithm with three existing algorithms: the 
LSTM network [17], the TBN model [19], and the traditional maneuvering target tracking method 
IMM-EKF [9]. We keep the model parameters of the LSTM network and the TBN model unchanged, 
as specified in their respective research papers, and train the deep learning models using the LASTD 
we have created. 

4.2. Experimental Results 

We first created a data set that consists of 1500 trajectories to evaluate the performance of each 
baseline neural network model, as well as our model. 

The data set is similar in structure to the training set and consists of three types of trajectories 
with different motion patterns. Specifically, there are 500 samples of 16s uniform linear motion 
trajectory or uniform circular motion trajectory, 500 samples of two 8s uniform linear motion 
trajectories or uniform circular motion trajectories combined, and 500 samples of four 4s uniform 
linear motion trajectories or uniform circular motion trajectories combined. The trajectory tracking 
performance results are shown in Table 2. 

Table 2. Tracking performance results of several neural network algorithms for trajectory segments. 

 MAE of Position(m) MAE of Velocity(m) 

LSTM 58.73 8.84 

TBN 44.16 6.82 

RDCINN 42.76 6.35 

Based on the results presented in Table 2, it can be observed that our network achieves lower 
position mean absolute error and velocity mean absolute error results compared to the other two 
baseline neural networks. This demonstrates that our model, applied to the strong maneuvering 
target tracking domain based on the combined observations of azimuth and Doppler, outperforms 
the previous target tracking networks. 

After that, we utilize Monte Carlo simulation to generate a 16s strong maneuvering trajectory A. 
The initial state of A is [-4000m, 4000m, 50m/s, -66m/s]. This trajectory consists of four segments, each 
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lasting 4s and employing different motion models, which reflect sudden changes in the motion target 
states in real-world scenarios. The first segment of the trajectory is a 4s uniform motion. The second 
segment is uniform circular motion with a turning rate � of -7o. The third segment is also a uniform 
circular motion but with a turning rate � of 7o. Finally, we set the last segment as a uniform motion. 
Additionally, we introduce azimuth observation noise as white noise with zero mean and standard 
deviation �� of 1.8o, while the standard deviation of Doppler velocity observation noise ��  is 1m/s. 
Additionally, the standard deviation of acceleration ��  is set to 10m/s2. To assess the tracking 
performance of trajectory A, we employ our own network model as well as three other baseline 
algorithms. Table 3 presents the evaluation results, while Figures 6–8 provides visual representations 
of these results. 

Table 3. Tracking performance of several target tracking algorithms on trajectory A. 

 MAE of Position(m) MAE of Velocity(m) 

IMM+EKF 219.53 11.17 

LSTM 18.92 3.73 

TBN 9.21 3.19 

RDCINN 4.07 3.04 

 

Figure 6. Tracking trajectory results of the trajectory A using different algorithms on the X-Y plane. 

 

Figure 7. MAE results of position tracking by different algorithms for trajectory A. 
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Figure 8. MAE results of velocity tracking by different algorithms for trajectory A. 

In order to verify the applicability of our network model for tracking strong maneuvering 
trajectories with different step sizes, we generate trajectory B and trajectory C by conducting Monte 
Carlo simulations. Trajectory B is a 32s strong maneuvering trajectory with an initial state of [-8000m, 
5000m, -30m/s, 21m/s]. It consists of four segments of 8s trajectories, each with a different model. The 
models for each segment are as follows: uniform circular motion with a turning rate � of 6o, uniform 
motion, uniform circular motion with a turning rate � of -5o, and uniform motion, respectively. 
Trajectory C is a 64s strong maneuvering trajectory with an initial state of [-5000m, 5000m, 30m/s, -
23m/s]. It also consists of four segments of 16s trajectories with different motion models. The motion 
models for each 16s trajectory are as follows: uniform circular motion with a turning rate � of -1o, 
uniform motion, uniform circular motion with a turning rate �  of 2o, and uniform motion, 
respectively. Keeping the standard deviation setup as what trajectory A set up as the same, we then 
evaluate the tracking performance of trajectories B and C using our network model and three baseline 
algorithms. The evaluation results are presented in Tables 4 and 5. Additionally, Figures 9–14 provide 
visual representations of these results. 

Table 4. Tracking performance of several target tracking algorithms on trajectory B. 

 MAE of Position(m) MAE of Velocity(m) 

IMM+EKF 184.08 10.25 

LSTM 21.56 1.02 

TBN 24.01 0.99 

RDCINN 15.66 0.82 
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Figure 9. Tracking trajectory results of the trajectory B using different algorithms on the X-Y plane. 

 
Figure 10. MAE results of position tracking by different algorithms for trajectory B. 

 
Figure 11. MAE results of velocity tracking by different algorithms for trajectory B. 
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Table 5. Tracking performance of several target tracking algorithms on trajectory C. 

 MAE of Position(m) MAE of Velocity(m) 

IMM+EKF 60.82 5.73 

LSTM 13.65 0.16 

TBN 15.02 0.19 

RDCINN 13.33 0.13 

 

Figure 12. MAE results of position tracking by different algorithms for trajectory C. 

 
Figure 13. MAE results of position tracking by different algorithms for trajectory C. 
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Figure 14. MAE results of velocity tracking by different algorithms for trajectory C. 

The experimental results demonstrate that our model achieves superior trajectory tracking 
performance compared to other algorithms. This is particularly noticeable when tracking strong 
maneuvering targets under the combined observations of azimuth and Doppler. 

5. Conclusions 

In this paper, we propose a deep learning algorithm called RDCINN for tracking strong 
maneuvering targets with the combined observations of azimuth and Doppler. We utilize LASTD 
generated by the motion models to train RDCINN to learn the nonlinear mapping relationship 
between observations and target states and facilitate accurate offline estimation of target states in 
complex maneuvering scenarios despite noisy observations. Simulation results demonstrate that our 
algorithm not only addresses the limitations of traditional target tracking algorithms, which struggle 
to update target states due to weak observation or non-observation but also outperforms two 
previous deep learning algorithms applied to maneuvering target tracking. It is important to note 
that our algorithm is currently limited to two-dimensional target tracking scenarios, and future work 
will focus on extending its application to three-dimensional scenarios. Furthermore, there is relatively 
limited research on the utilization of temporal convolutional networks in the field of target tracking. 
Future work will involve gaining a deeper understanding of temporal convolutional networks and 
further improving state estimation accuracy. 

Funding: This work was supported in part by National Natural Science Foundation of China (62171287), 
Shenzhen Science and Technology Program (Grant No. JCYJ 20220818100004008). 
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