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Abstract: Availability and continuous operation under critical conditions are very important in
electric machine drive systems. However, such systems, are suffering from several type of failures
that affect the electric machine or the associated voltage source inverter. Therefore, fault diagnosis
and fault tolerance are highly required. This paper presents a new robust deep learning-based
approach to diagnosis multiple open-circuit fault in three phase two level voltage source inverter
for induction motor drive applications. The proposed approach uses fault diagnosis variables
obtained from sigmoid transformation of the motor stator currents. The open-circuit fault diagnosis
variables are then introduced to a Bidirectional Long Short-Term Memory algorithm to detect the
faulty switch(es). Several simulation and experimental results are presented to show the proposed
fault diagnosis algorithm effectiveness and robustness.

Keywords: Open-Circuit Fault; Induction Motor; Sigmoid Function; Bidirectional Long Short-Term
Memory, Deep Learning

1. Introduction

Three phase pulse width modulated (PWM) voltage source inverters (VSI) have been widely
used for grid connected converters or AC machines variable speed drives applications. For the most
of these applications, high reliability and high availability are of utmost importance. Consequently,
condition monitoring, fault detection and fault tolerant control of thee phase PWM VSIs are
mandatory functions that should be added to the drive system’s controller [1,2].

Open-circuit fault is one of the most relevant faults that may affect induction motor speed
variable drives [3]. This type of fault may affect multiple power semi-conductors. As discussed in
[3,4], it introduces severe perturbations with a DC current injection and high oscillations of the
electromagnetic torque and, in some cases, the electric drive must be shut down. Hence, it is
important to diagnosis such type of fault. Open-circuit (OC) fault diagnosis issue has been discussed
in several studies and different methods have been proposed [5-8]. They are generally classified as
Model-based approaches [9-21] and signal-based approaches [26-30].

Model-based fault diagnosis approaches, use the mathematical model of the electric machine
and/or the model of the voltage source inverter. The main idea is to compare some estimated
quantities obtained from the system’s model to the measured quantities. In most cases, electric
machine currents [9-14] and voltage source inverter output voltages [15-20] are the estimated
quantities.

In healthy operation, measured and estimated quantities are almost the same. Hence, the
estimation error converges to zero. When an open-circuit fault is affecting one or more power
switch(es), the deviation of the estimation error is used to detect the fault and to identify the faulty
switch(es).

In [9,10], Jlassi et al. uses the current form factor (CFF) to detect open-circuit faults in permanent
magnet synchronous machine (PMSM) drives for both generator and motor applications. The main
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idea is to compare the CFF obtained from the measured currents to the CFF obtained from estimated
currents based on state Luenberger observer. A similar approach is discussed in [11] to detect currents
sensor and open-circuit fault in grid connected three level NPC inverters. In this study, the currents
are estimated using a sliding mode observer.

The current residual approach is proposed to diagnosis open-circuit faults in PMSM and
induction motor drive systems are discussed in [12] and [13] respectively.

Voltage based OC fault detection, had been discussed in [15-19]. To avoid the use of additional
voltage sensors, which may increase the system’s cost, the output voltage of the VSI should be
estimated. In [15], an OC fault diagnosis scheme is proposed based on voltage estimation for an
induction machine drive system. A state estimator is used to estimate the phase voltage based on the
induction machine model. The estimated voltage is compared the voltage obtained from the DC-link
voltage and the inverter switching signals. The residual of the estimation error is used to detect the
faulty switch(es). Nevertheless, this approach needs the use of low pass filters that need high tuning
and introduce delays in the detection time. Freire et al., presents a similar approach applied to PMSM
drive systems [16]. In [17], the calculated common mode voltage behavior is used to detect and locate
OS faults in three phase two level inverters for induction machine drive system.

Model based OC fault detection approaches had shown their effectiveness, but they need a good
knowledge of the studied system’s model, they should be less sensitive to system’s parameters
variations. Moreover, they required a robust fault detection threshold which makes them complex to
be contructed.

Rencently, with the increase of the use of model predictive control (MPC) in variable speed drive
systems, some studies propose to use the motor prediction current errors to detect OC fault for PMSM
drive systems [22-25]. Thanks to the robustness of MPC, the motor current prediction errors are very
low in healthy operation mode. It has been shown that in case of OC faults, the motor current
prediction errors increase allowing to detect and to identify the fault switch.

Signal based methods are generally based on current analysis [26-30]. In [26], a single current
sensor is employed to detect OS faults in PMSM drive system. The DC-link current sensor is used to
reconstruct the motor stator currents. Then after, the normalized average value of the reconstructed
current is used to detect the faulty switch. Sejir et al. [27], presents a current analysis-based algorithm
to detect OS faults in PMSM drive systems. The fault detection variables use the interaction between
two stator currents which allow to detect 27 types of OC faults and current sensor faults. Reference
current errors are employed to detect OC faults in voltage source inverters [28]. However, this
approach can only be used for closed loop controlled electric drives.

More recently, intelligence artificial tools had become more attractive for fault diagnosis and
fault classification issues [31-43]. Indeed, data driven approaches are only based on recorded data
obtained from measured quantities instead of specific complex mathematical models.

In [31,32], a Fast Fourrier Transform (FFT) algorithm is used to extract open-circuit fault features
from motor current [31] or inverter’s output line-to-line voltage [32]. Then, a fast-learning technology
is applied to diagnosis the faulty switch(es). Xia et al. [33] presents a transferrable data driven
algorithm for open-circuit switch fault diagnosis in three phase inverters. Deep learning-based
approach for open switch fault diagnosis of three phase PWM converters is discussed in [34].
Currents behavior in healthy and faulty operation modes are analyzed for fault features extraction.

Recently, Long Short-Term Memory Network (LSTM) networks have became more and more
attractive in fault diagnosis issues due to their high accuracy over other fault diagnosis techniques
[36—43]. The effectiveness of the method is confirmed in [36] where it is used to detect multiple open-
circuit switch faults of the back-to-back converter in doubly-fed induction generator (DFIG)-based
wind turbine systems. Similar approach has been used to diagnosis open-circuit faults in multilevel
converters [37-39]. LSTM approach is applied for diagnosing faults in Electric Vehicles [40,41] and
for motor electrical fault [42] and mecanical fault diagnosis [43].

To deal with the above mentioned issues, this paper proposes a Bidirectional Long Short-Term
Memory (BiLSTM) based algorithm to diagnosis open-circuit power semiconductor faults in three
phase PWM voltage source inverter for an induction motor drive system. The proposed method is
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able to achieve accurate diagnosis of single and multiple open-circuit faults without any extra
hardware requirements. Only already measured induction motor stator currents are used. To keep
the fault diagnosis method free from load torque and motor speed variations, the induction motor
stator currents are normalized using the sigmoid function. Then, three fault detection variables are
defined and introduced to the BiLSTM network to identify the faulty switch(es). Moreover, the
BiLSTM network does not need to set any fault detection threshold which increases the accuracy and
the effectiveness of the proposed approach.

The rest of the paper is organized as follows: Section 2 presents the fault detection variables and
analysis the fault features. Section 3 describes the BILSTM network and the fault diagnosis algorithm.
The simulation results are presented in Section 4 and the performances of the proposed approach are
experimentally analyzed in Section 5. Finally, conculsions are drawn in Section 6.

2. Fault Features Analysis

The structure of the three-phase induction motor drive system is depicted out in Figure 1. The
two level VSI is composed of six IGBTs (Tt — Te) and their anti-parallel diodes. Under healthy
operation conditions, the induction motor stator currents are expressed as:

i(t)=1 sin(wt)
i (H)=1I_sin(ot —2% ) (1)
i (H)=1I_sin(ot —4% )

where [ is the induction motor stator current amplitude and @ is the synchronous electrical
pulsation. When an open circuit fault occurs, it produces distortion of the stator currents with the
increase of their amplitude, electromagnetic torque oscillation and excess heat which can lead to
motor failure [3]. Hence, the motor current measurement can be used to pinpoint open-circuit faults.

2L-3® VSI

Induction Motor

Figure 1. Structure of 2L-3® VSI fed IM system.

Motor current based open-circuit fault methods should be less sensitive to motor paramters
mismatch or operating point variations. Therefore, the normalization of the motor current
measurement is required. In this way, several approaches have discussed by the literature where the

Park Vector’'s Modulus Hz qu = Ji; +i; in [23], the maximum absolute value of the motor phase

currents max {|ia

(i

they also require additional computational effort and prior knowledge of the motors parameters to

ALl ic|} in [27] and the average absolute values of the motor phase currents

> { in [28] are proposed as normalization tools. Although these methods give good results,
={a,b,c

n

ensure a real-time normalization of diagnosis variables which increases computation time and
decreases the performance of the OC fault methods.

In this work, the main idea is to apply the sigmoid function to motor currents for the
normalization process. The sigmoid function of the real variable x, F(x), is defined as:
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where A is a positive real. In Figure 2, is presented the sigmoid function of the sinusoidal variable x.
It can be seen that F(x) vary between *1 and has the same period as the variable x. The impact of the

positive real A on the dynamic of F(x) is depicted out in Figure 2. More A is higher more F(x) variation

is faster.
* N )\=U.1
=10
Normalization L 0 :1:1000
1 J
0 05 1 0 05 1

Figure 2. Sigmoid function for different coefficient values A.

where xmis the amplitude of the current signal x(t).
However, the sampled currents are not smooth, which involve the notch due to the PWM and
noise due to measurement in the actual current sampling process of the motor drive system. As result,
the chattering problem appears in normalized function that it can be seen during the zero crossing of
the current signal as shown in Figure 3a. To analyze this feature, take the positive current half period
as an exemple: the current can be divided into two zones according to the zero-crossing of current
signal. Zonel is the chattering area since the current drop in this zone is soo small. Zone 2 is the no-
chattering area due to enough current drop. Therefore, this problem makes it difficult, if not
impossible, to detect occured faults during this time.
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Figure 3. Current normalization method: (a) with chattering problem, (b) without chattering

problem.

To reduce the chattering effect of the sigmoid function, the normalization function of the
induction motor stator current is modified and expressed as below:


https://doi.org/10.20944/preprints202311.1353.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 November 2023 doi:10.20944/preprints202311.1353.v1

0 if xe [—xh , xh]
F (x) = 2 ®3)
— 01 else
I+e™
where xn is the minimum value of signal x(t) that avoid the chattering problem. Figure 3b shows the
output of the modified normalization function where it is forced to be zero during the zero-crossing

of the current signal. Sowhen |x(t)|§xh , the fault occurring during [t1; f2] can be detected

immediately in [to; t3] by the proposed algorithm, but the fault occurring during [t3; t«] must wait for
the second chance for diagnosis in the next cycle.

By applying Equation (3) to the stator currents of the induction motor, we obtain the variations
of the sigmoid variables Fs, Fy and F. of the stator currents i,, % and ic as presented in Figure 4a.
Accordingly, three fault diagnosis indictors xa xvand X« are defined as:

Zu :ZFu_Fb_FC
%, =2F —F —F, @)
Zu :ZFC_Fu _Fb

The variations of the induction motor stator currents, their respective sigmoid functions and the
fault diagnosis indicators for one period of the stator currents are depicted out in Figure 4b. The fault
detection variables have similar behavior of the motor stator currents with the same period and a
phase shift between them equal to 27t/3. Moreover, they vary between +4. It should be noted that the
variations of the fault detection variables are independent from motor speed or load torque.
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Figure 4. Time domain waveforms of three phase currents, sigmoid functions and detection fault
variables in healthy mode.

When an open-switch fault occurs, it affects the stator currents waveforms and then after Fa, Fo
and Fc and Xa, x» and xc waveforms also. In Figure 5a are described the stator currents and the
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detection variables xa, X» and xc variations in case of open-switch fault of the IGBT T: applied at time
t=0.6s. Instantly, the behavior of xa, xoand x.is not the same as in healthy operation mode. Indeed, Xa
lost its positive sequence, whereas x» and xc vary between 4 and -3.
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Figure 5. Time domain waveforms of three phase currents, sigmoid functions and detection fault
variables for: (a) Fault in Ty, (b) Fault in T1&T?, (¢) Fault in T1&T4.

Similar analysis has been done for open-switch fault of Tz and T2 (open phase fault), as presented
in Figure 5b. xa becomes equal to 0 and x» and X. are opposite and vary between 3 and -3. A third
fault case is analyzed considering an open-switch fault of T: and T« depicted out in Figure 5c. In this
case, Xa lost its positive sequence, xb lost its negative sequence and xc vary between 3 and -3. The
analysis of these three fault scenarios has shown for each open-switch fault, the detection variables
Xab,c have a specific feature, which make them suitable to be employed to achieve robust and reliable
open-switch fault detection algorithm for the studied electric drive system.

3. LSTM Approach for Fault Diagnosis

3.1. LSTM Structure

LSTM is an improved version of recurrent neural network (RNN), which has achieved
satisfactory performance in sequence learning and temporal modeling [36].

LSTM has a special structure, which allow solving the challenge of gradient vanishing or
explosion in a simple RNN since it replaces the iterative transformation in RNN with addition in the
calculation of hidden state [43]. The structure of an LSTM unit is illustrated in Figure 6.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 6. LSTM Network structure.
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LSTM mainly consists of three gates: forget gate f;, input gate i, and output gate o,.The forget
gate layerf,determines which information should be forgotten. The equation of the forget gate layer
can be expressed as:

fi=c(w.[h X |+b,) ()
where X, and h;_; represent respectively the input at the current time and the output at previous
time of the LSTM network. W, and by represent the weight and the bias of the forget gate layer. o is
the sigmoid function and [ ] represents the concatenate operation.

The input gate layer i;updates the cell state based on the input at the current time X, and the
output at previous time h,_,. The equations of the input gate can be described as:

i, =o(w.[h_.X,]+b,) (6)
¢ =tanh(w_[h_.X, ]|+b,) )

where X, and h,_, represent respectively the input at time the current time and the output at
previous time. Wjand b; are the weight and the bias of the sigmoid function in the input gate layer.
tanh is a hyperbolic tangent function, W, and b, are the weight and the bias of the tanh function in
the input gate layer.

The output gate layer o, selects information that should be the next output which depends on
the cell state c,. The equation of the output gate layer can be expressed as equation (8) with W, and
b, are the weight and the bias of the output gate layer.

0,=c(w,[h_X,]+b,) ®)
The cell state and the output (hidden) state at time step t are described by the following
equations:
Ct :f‘t*ct71+it*5t (9)
h, = tanh(c,)* o, (10)

3.2. Stacked LSTM (MLSTM)

A stacked LSTM is a deep LSTM that consists of multiple LSTM layers where each layer contains
multiple memory cells. The input of the first LSTM layer is the sequence data, and the input of other
LSTM layers is the hidden state of the previous LSTM layer. Therefore, the Stacked LSTM hidden
layers make the model deeper and more accurate. This type of network becomes a powerful method
for challenging sequence prediction problems. The structure of Stacked LSTM with n hidden layers
is shown as in Figure 7.
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Figure 7. Stacked LSTM structure.

3.3. Bidirectional LSTMSs (BiLSTM)

The Bidirectional LSTM is a recurrent neural network which combines two LSTMs together.
Unlike standard LSTM, the input flows in both directions forward or backward. In fact, this structure
allows the networks to have forward layer and backward layer which reverses the direction of the
input sequence flow. Applying the LSTM twice makes the prediction results more integrated and
leads to improve the accuracy of the model. On the other hand, it should be mentioned that BiILSTM
is a much slower model and requires more time for training. The BiLSTM architecture is presented
in Figure 8.

an
Jee)
P

[LSTM J+—

&

(LSTM!

Figure 8. BiLSTM structure.

3.4. Evaluation Metrics

After building prediction models, there are several metrics can be used to evaluate the
performance of models and compare them.

3.4.1. Root Mean Square Error (RMSE)

The Root Mean Square Error (RMSE) are the most commonly used performance measures for
prediction tasks. The RMSE can be calculated by using (11).

RMSE =

(11)
where y;and y;are the prediction and the real output value, and n is number of data.
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3.4.2. Mean Absolute Error (MAE)

The MAE is the other criterion used to evaluate the model performance. The MAE is expressed
as (12).

13 A
MAE = _Z|3/i - Y

i (12)
3.4.2. Mean Absolute Percentage Error (MPAE)

The MPAE is one of the most common metrics used to measure the prediction accuracy of a
model and it is described as (13).

MPAE(® IV
(%) =— Z 2L =1x100
it Y (13)
The summation ignores observations where yi = 0. In general, the lower the MAPE value, the
more accurate the model is.
The last metric used in this paper to evaluate the performance of the proposed algorithm is the
accuracy of the prediction model that is expressed as:

Accuracy(%) =100 - MPAE (14)

3.5. Diagnostic Network Implementation and Validation

The proposed diagnosis method consists of BILSTM network with one hidden layer. The
BiLSTM-based network is adopted for the fault diagnosis, using the normalized diagnosis variables
xa, xb and xc of current sensor signals as input. Firstly, two-phase current signals collected by the
sensors installed between the inverter and the motor, respectively. Then, a normalization process is
applied to extract suitable features. Finally, the normalized input sensor data [xa xb xc] are put into
BiLSTM network.

The output of BILSTM network is a concatenation of the forward and backward hidden states.
The final output of the network contains 6 flags [T: T2 Ts T+ T5 Te] which represent the healthy or
faulty state of each power switch of the inverter that controls the IM. Each flag can take either the
value 1 to indicate that the desired power switch is infected, or the value 0 to indicate that the desired
switch is healthy. The proposed BILSTM enables to predict and identify 21 open circuit faulty states
and one normal state. The structure the fault diagnosis method based on BiLSTM network is
illustrated in Figure 9.

Neural Network

BiLSTM Structure

e i N Eqgs. (3)-(4)

\ 4

:

Figure 9. Structure of the fault diagnosis module based on BiLSTM network.

To train LSTM Network to work efficiently, the system requires a normal and faulty feature data.
For this, we have generated all possible single and multiple open-circuit fault scenarios. Thirty
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thousand samples are used as training data for each class of default, with a sampling time 10~*s. The
cost function used in the training process is the Root Mean Square Error (RMSE).

After many trials ranging from 10 to 100 as shown in Figure 10, the size of the hidden layer of
BiLSTM nleitwork is set as 100 units to make a tradeoff between accuracy and computation time.

[ T00units  S0unis  30unis 10w ] 0.7 I ‘;wuumts _ ouunits 30 tnits ;LUums |
Iy - - - 06
08 0.5
04 [
0.6
r 03

KIVIDE
LOSS

04 |
02 |
0

02

01 [

0,

0 200 400 600 80 1000 0 200 40 600 800 1000
Iteration Iteration

(a) (b)

Figure 10. (a) Evolution of the RMSE as a function of hidden layer size in training progress of BILSTM
Network, (b) Evolution of the Loss as a function of hidden layer size.

The maximum training epoch is set as 1000 to ensure that the error after training is small enough.
The BiLSTM model is trained using LSTM Matlab toolbox.
The parameters of the BILSTM models are summarized in Table 1.

Table 1. LSTM parameter.

Parameter Value
Max training epochs 1000
Loss function optimizer Adam
(solver)

Initial learning rate 0.001
Loss function RMSE
Gradient Threshold 0.001
Hidden units 100

The principal of the proposed BiLSTM-based fault diagnosis method considering the data
detailed above is shown in following algorithm.

Algorithm 1: BILSTM-based Fault Diagnosis Algorithm
Step 1: Data set collection.
—  Fault detection variables [xa xb X¢]
— Faultflags [Ti1 T2 T3 T4 T5 Té]

Step 2: Parameter initialization

Step 3: Set BILSTM model.

X

s = f Wb
— Forward hidden layer output i : by =o(w, X, +w, i, +b,)

b b b by,b b
— Backward hidden layer output h, : h =o(w. X, +wh._; +b,)

— oS bpb
—  The model output y« Yy =wyhy +why+b,
Step 4: Train BiLSTM model.
Step 5: Return the network model (w,b).
Step 6: Test model. If the evaluation metrics are not satisfactory, then
adjust network parameters and go to Step 3.

After training, the performance and efficiency of our network were tested in a situation when
open-circuit switch fault occurs simultaneously on Ts and Te at t = 1s. Simulation results are shown
in Figure 11a,b.
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Figure 11. Simulation results (a) Test of BILSTM Network in the presence of Ts&Ts fault, (b) Validation
error of BiLSTM model.

It can be seen from the Figure 11b that the validation error value varies between -0.05 and 0.05
with a little increase when the fault begins to occur (t=1s), this demonstrates the efficiency of the
proposed model in the prediction of default class and the time when it occurs.

4. Simulation Results

The performances of the proposed open-switch fault detection approach are analyzed first
through simulations under Matlab/Simulink Software for a variable speed three phase induction
motor drive. In this section, the robustness of the proposed method, under speed/load torque
variations is studied first. In the second step, the effectiveness of the proposed approach to detect
single and multiple open-switch faults is presented.

4.1. Robustness under Operating Point Variations

The performances of the proposed fault diagnosis approach under motor speed and load torque
variations are presented in Figure 12 and Figure 13 respectively. In Figure 12 are presented the
variations of the stator currents, motor speed, the detection variables and the output of the BILSTM
network (T1—Ts fault flags), when the motor speed varies from 1200 to 1500 rpm at time t = 1s with
no load. The detection variables maintain the same behavior during steady state operation as well as
during transient state. Finally, all fault flags remain at low levels equal to 0. Figure 13 describes the
same variables in case of torque load change from ON.m to 3 N.m at time t = 1s with motor speed
equal to 1000 rpm. Here again, all fault flags remain at 0 value and no false alarm has been triggered.
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Figure 12. Simulation results for speed variation from 1200 to 1500rpm without load.
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Figure 13. Simulation results for load variation from 0 to 3N.m under a speed of 1000rpm.

4.2. Open-Switch Fault Detection

Figure 14 shows the time domain waveforms of the three phase currents for a single fault in the
power switch T1, under 4 N.m as load torque and a 800 rpm as rotor speed. When the open-switch
fault of IGBT Tiis applied in t = 1 s, the positive half-cycle of the phase current i: is eliminated.
Consequently, the diagnostic variable xalost is positive sequence and becomes varies between the
values -4 and 0 whereas the other both diagnostic variables x» and X makes the values between -3
and 4. As a result, the identification fault flag of T1increase immediately to 1 after 4 ms of the fault
occurrence, corresponding to 10% of the motor currents fundamental period.
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Figure 14. Simulation results for a fault in T1under a speed of 800 rpm and a load torque of 4 N.m.

The performance of the proposed algorithm regarding the diagnosis of an open-phase fault is
depicted in Figure 15. Firstly, a single open-circuit fault in IGBT T is introduced at a time ¢ = 1 s, for
a speed of 1400 rpm and a load torque equal to 3 N.m. The faulty IGBT is detected when the T fault
flag switches from 0 to 1 at a time ¢ = 1.003 s, corresponding to an interval of 14% of motor currents
fundamental period. When the second fault, in IGBT T, is added at a time t = 1.5 s, the behavior of
the fault diagnostic variables automatically changes. Regarding all diagnostic variables for this kind
of situation (open-phase fault), the first diagnostic variable xa becomes equal to 0 and the other
diagnostic variables xp and x. takes the values of -3 and 3. Hence, the open-phase fault is detected
when both T1 & T2 fault flags changes from 0 to 1, 4 ms after the fault occurrence, which corresponds
to 19% of the motor currents fundamental period.

,.-.l..,'.'.w,w,..w.w.u,'...'.'...',w,',em»mum muanm‘uo,mnum‘wn,wu‘, __________________

hbblorpwe bbbliompus bdbicmnwa

Figure 15. Simulation results for a fault in T1and T2 under a speed of 1400 rpm and a load torque of 3
N.m.
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The steady state performance of the proposed IA algorithm for both open-switch fault in the VSI
is presented in Figure 16. Firstly, an open-circuit fault in IGBT Ti is applied at a time t =1 s, under a
speed of 1200 rpm and a load of 3 N.m. The faulty IGBT is localized by switching state of the T: fault
flag that changes from 0 to 1 at t = 1.004s, in an interval of 10% of the fundamental period. When the
second fault in IGBT Tsis added in time equal to 1.5 s, the first diagnostic variable xa maintain its
negative sequence but the second diagnostic variable x» changes its behavior by losing its negative
sequence to vary between 0 and 4 whereas y.becomes varies between -3 and 3. For this state, the T
fault flag needs a 3.5 ms as a time delay to switch from 0 to 1 to denote that an open-circuit fault is
occurred in power switch T4 The detection time of the fault equal to 8.75% of currents fundamental
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Figure 16. Simulation results for a fault in Tiand Taunder a speed of 1200 rpm and a load torque of 3
N.m.

5. Experimental Results

The performances of the proposed open-crcuit fault diagnosis method arde performed on a 3kW
prototype. The experimental test bench shown in Figure 17 comprises a three-phase voltage source
inverter (SEMIKRON) fed by a 3kW PV array, and an induction motor coupled with a PMSG. A
Digital signal processor (DSP-Dspace1104) is used for the motor drive system control. Two Hall-effect
current sensors (LEM LA55P) are used for motor phase currents sensing. A Keithley (DT9834) data
acquisition module with a 16-bit resolution Analog input and sample rate 500kS/s throughput is used
for recording the test results. A fault gate generator box is used to generate an IGBT opening fault.

doi:10.20944/preprints202311.1353.v1


https://doi.org/10.20944/preprints202311.1353.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 November 2023 doi:10.20944/preprints202311.1353.v1

17

The idea is to switch the PWM signal input of the gate driver to zero in the fault case. The mechanical
load can be done with the help of the PMSG coupled to the PD3 rectifier and a variable resistive load.

!
<« PD3 :
M rectifier |

Load
Resistors

Fault/gates —Current
generator=—sensors

Figure 17. Experimental test bench.

5.1. Robustness under Operating Point Variations

The experimental results, reported in Figure 18, show the time-domain waveforms of the phase
currents and the IGBTs fault flags used for open-circuit fault diagnosis in the VSI. In this evaluation,
a fast transient process is conducted by a step of speed from 700 to 1000 rpm under no load for the
first test and under a 60% of rated load torque for the second test. Figure 19 provides the experimental
results when the 3®-IM operates at a mechanical rotor speed equal to 1000 rpm. The transient states
consist in applying to the IM two-step transitions of the load torque from 0 to 60% of rated load torque
and then from 60% to 0% of rated load torque. For the diagnostic variables, even though transient
states are observed, they present the same behavior that correspond to a healthy operation mode of
the VSI. Regarding the outputs LSTM network, all fault flags maintain at the 0 values. The obtained
results confirm the high performance and robustness of the proposed FDI approach under load and
speed change according to simulation results.
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Figure 18. Experimental results for speed variation from 700 to 1000 rpm with: (a) no load, (b) 60% of

rated torque.
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Figure 19. Experimental results for load variation under a speed of 1000rpm: (a) from 0 to 60% of
rated torque, (b) from 60% to 0% of rated torque.

5.2. Open-Switch Fault Detection

To further examine the practicality of the proposed method, several tests are performed under
fault conditions. The first test is conducted when the fault occurs in phase b, resulting from an open-
switch fault of IGBT Ta. In this test, the operating point of the motor is fixed, respectively, at Q) =
780rpm and Tem = 50% of rated load torque. The time-domain waveforms of three phase stator
currents, the dignostic variables xabcand the Ti.. fault flags behavior are reported in Figure 20. Firstly,
the 3®-IM operates free whitout any fault. In this case, the diagnostic variables present the behavior
that correspond to the healthy state of the VSI. At t =3.605 s, an open-circuit fault is occured into the
IGBT T of the second leg inverter leg by fixing its switching signal in « 0 » state. As a result, the
negative half-cycle of the current i is cutted and is now limited to only flow in the positive direction,
while other currents (ix and i) undergo a light deformation and flow in negative and positive
directions. Consequently, the behavior of three diagnostic variables yauc is not yet the same as in
healthy operation mode. Indeed, x» lost its negative sequence to vary between 0 and 4, whereas xa
and x. vary between -4 and 3. As a result, the fault flag correponding to the infected IGBT T4 takes
immediately the value of 1 at t =3.609 s, taking a time delay equal to 12% of the fundamental current
period.
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Figure 20. Experimental results for a fault in Tsunder a speed of 780 rpm and 50% of rated torque.
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The second test correspond now an open-phase fault involving two IGBTs in the same inverter
leg (T1and T2). Figure 21 presents the experimental results of the output-inverter currents together
with the diagnostic variables used for FDI in the VSI and the outputs BILSTM network. However, the
motor speed and the load torque are, respectively, fixed at (3 = 990rpm and Tem= 50% of rated load
torque. The fault is introduced into the first inverter leg a at t = 1.378 s, by keeping the switching
signals of both IGBT simultaneously in « OFF » state. In this case, current i»becomes equal to zero
over the whole current cycle while the other currents maintain their sinusoidal shapes but oscillating
in phase oposition between -4 A and 4 A. As soon as the fault occurs, the diagnostic variable xatakes
the value of zero and the other diagnostic variables x» and xcare opposite and vary between 3 and -3.
As learned in offline condition, the diagnostic algorithm based on LSTM network makes a decision
that the fault is an open-phase involving the first inverter leg a. As a result, the open-phase fault
identification is achieved at t = 1.387 s by incresing the both T1 & T fault flags to 1, taking a time delay
equal to 30% of the fundamental current period.
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Figure 21. Experimental results for a double fault in T1and T2under a speed of 990 rpm and 50% of
load.

The last test that presents the performance of the proposed algorithm regarding the diagnosis of
a double fault in the power switches T2 & T:is depicted in Figure 22. In this case of faulty condition,
the 3®-IM runs under a speed of 1000 rpm and no load. The fault is occured between the time 2.54 s
and 6.4 s. During this time, current i. loses its negative half-cycle and current ivloses its positive half-
cycle whereas the current ic be sligthly deformed but maintain its sinusoidal form. Immediatly, the
both diagnostic variables xa and x» lost their negative and positive sequences, respectively, while the
variable Xcbecomes varies between -3 and 3. As consequence, the FDI approch reply imediatly by
taking the T2 & Ts fault flags the value of 1 between the time of 2.544 s and 6.405 s. The detection time
of fault condition correspond to 16% of the motor currents fundamental period.
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Figure 22. Experimental results for a double fault in T2and T3under a speed of 1000 rpm and no
load.

These results illustrate the effectiveness of the proposed approach for detecting open-circuit
faults in all operating conditions of the drive.

5.3. Performance Evaluation and Comparaison

The proposed fault diagnosis method is applied to a 3®-induction motor system for certain
faults: T1, Tz, T3, Ts, Ts, Te, T1& T2, T3& T4 and T5&Te. About 1500 testing samples of each fault are used
to validate the performance of the proposed BiLSTM-based method and other comparison methods
involving standard LSTM, stacked LSTM (MLSTM) and Feed Forward Neural Network (FFNN).
These networks structures are engaged as comparison methods to prove the efficiency and the
robustness of the proposed method. The FFNN and LSTM are trained with 100 units in one hidden
layer, on the other hand the MLSTM models are trained with 50 units in each hidden layer. The
training parameters of the BiLSTM model are considered for the other network structures. The
different methods were tested in a situation when OC fault occurs at t = 0.5s. Table 2 presents the
RMSE, MAE, time detection and the accuracy of each model.
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Table 2. Performance evaluation for each method.

Faulty FFNN LSTM MLSTM (3 layers) BiLSTM

Switch RMSE | MAE | Ta(ms) | Accuracy(%) RMSE | MAE | Ta(ms) | Accuracy(%) RMSE | MAE | Ta(ms) | Accuracy(%) RMSE | MAE | Ta(ms) Accuracy(%)
T: 0.2073 | 0.1268 1 32.9996 0.0142 | 0.0093 115 97.8281 0.0150 | 0.0101 11 97.5032 0.0135 | 0.0095 3.45 98.2613
T2 0.2002 | 0.1241 1.1 34.4586 0.0209 | 0.0128 21 96.5231 0.0207 | 0.0137 23 95.7970 0.0192 | 0.0128 52 96.5596
Ts 0.1915 | 0.1222 1 34.8000 0.0186 | 0.0116 23 96.5823 0.0174 | 0.0094 24 96.8548 0.0178 | 0.0116 6 97.3394
T 0.1977 | 0.1241 1 33.5121 0.0160 | 0.0105 16 97.3179 0.0157 | 0.0102 13.5 97.5014 0.0146 | 0.0099 4.88 97.9273
Ts 0.1983 | 0.1235 1 33.8192 0.0167 | 0.0107 21 97.3560 0.0192 | 0.0121 24 95.1774 0.0158 | 0.0098 2.5 98.1525
Ts 0.2061 | 0.1242 1 33.6194 0.0162 | 0.0102 12 97.4939 0.0149 | 0.0092 13 97.0993 0.0132 | 0.0089 4.02 97.8641
T1&T: 0.1369 | 0.0935 1 74.1148 0.0250 | 0.0109 14 98.5637 0.0300 | 0.0132 17 98.1124 0.0220 | 0.0105 2.57 98.8193
T3&T: 0.1242 | 0.0775 1 75.8453 0.0244 | 0.0112 24 98.2274 0.0270 | 0.0126 19 96.8244 0.0253 | 0.0109 4.66 98.3066
Ts&Ts 0.1304 | 0.0796 1 76.2560 0.0302 | 0.0092 10 99.3372 0.0278 | 0.0101 16 99.2203 0.0302 | 0.0101 3.75 99.4112
Mean 0.1769 | 0.1108 1.0111 47.7139 0.0202 | 0.0107 16.94 97.6922 0.0208 | 0.0111 17.83 97.1211 0.019 0.0104 4.11 98.07

The bold values represent optimum evaluation metrics
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Figure 23 shows MAE evolution in a situation when open-circuit switch fault happens on T1&T2
at t = 0.5s. This metric is illustrated for the BILSTM and the other comparison methods.
—LSTM —MLSTM - BiLSTM —FFNN

NN

Figure 23. MAE evolution when open-circuit switch fault happens on T1&T> for the BILSTM and the
other comparison methods.

Figure 24 shows the RMSE evolution for each faults (T1,12,T3,T4,T5,T¢) in a situation when open-
circuit fault happens on T1&7T> at t = 0.5s. The RMSE is illustrated for the BiLSTM and the other

comparison methods.
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Figure 24. Performance evolution: RMSE evolution for each faults (T1,T2,T3,T4,T5,Ts) when open-circuit
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switch fault happens on T1&T> for the BiILSTM and the other comparison methods.

According to Table 2, the RMSE The RMSE and AME values of BiLSTM method converge
towards 0 which explain its high prediction accuracy in fault detection and identification 98.07%.
This percentage is better than the accuracy reported by FFNN and classic LSTM networks. Moreover,
BiLSTM detection time of fault condition varies between 2.5ms and 6ms which correspond to 12-30%
of the motor currents fundamental period. Consequently, The BiLSTM approach can identify and
predict accurately and quickly various faults scenarios.

Moreover, appending additional layers for a classic LSTM network does not greatly improve the
performance of the detection model since the LSTM and the MLSTM have the same accuracy 97%,
but it increases the calculation time. In addition, there is not a big difference in the fault detection
time which can reach up to 24ms.

On the other hand, the FENN is the fastest for fault detection because the detection time is
around I1ms but it has the lowest accuracy 48%. To prove the robustness of the BILSTM network, the
proposed method is tested for several faults in different operating points by varying the motor speed
and the rated torque. The results are shown in Figures 18-22. In all cases, the method based on
BiLSTM ensures the best performance. This again demonstrates the effectiveness and the robustness
of the proposed Method.

Consequently, the BILSTM model can be used for the effective open-circuit fault detection in a
3®-induction motor-based drive system.

Table 3 presents a comparative analysis of the proposed fault diagnosis technique, specifically
for OC faults, against techniques previously used for IGBT faults, with a particular emphasis on
detection time and accuracy. The detection time is evaluated in relation to the fundamental current


https://doi.org/10.20944/preprints202311.1353.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 November 2023 doi:10.20944/preprints202311.1353.v1

24

period. The data in Table 3 clearly shows that most of the techniques require at least 50% of the
fundamental period for diagnosis. Moreover, the table illustrates that the proposed method for OC
faults demonstrates strong performance across the evaluated parameters, indicating its effectiveness
in a comparative context, rather than a direct comparison of the fault diagnosis methods themselves.

Table 3. Comparative study.

DETECTION
REFERENCE METHOD ACCURACY (%)
TIME"
System model based Sliding Mode
Maamouri et al. [13] 20% --
Observer (SMO)
Predictive current errors and Fuzzy
Gmati et al. [23] 12-75% --
Logic approach
Chen et al. [28] Output line voltage residuals 5-83% --

Online data-driven based Random
Gou et al. [31] 110% 98.83%
vector functional link (RVFL)

Machine learning based
Xia et al. [33] 100% 96.76%
transferrable data-driven method

Classification open circuit faults

Xue et al. [36] 12% 94%
based LSTM network
Prediction open circuit faults based
Proposed approach 12-30% 98.08%
BiLSTM network

*: % of the current fundamental period.

6. Conclusions

This paper proposed a new BiLSTM based approach that aims to detect and localize open-circuit
faults in three phase two level VSI for induction motor drive systems. The proposed method uses
only the measured induction motor stator currents. In order to keep the proposed fault diagnosis
approach free from load torque and/or motor speed variations, the motor stator currents are
normalized through sigmoid function. Then after, three detection variables Xa xv and xchave been
defined and sent to the BiLSTM network to localize the faulty switch(es). The performances of the
proposed algorithm have been analyzed through simulations and experiments and have shown:

i- The robustness of the proposed fault diagnosis algorithm to load torque and motor speed
variations and all switches fault flags remain at their respective low levels.

ii- The accuracy and capability of the proposed algorithm to diagnosis single and multiple open-
circuit power switch faults. Moreover, the detection time is acceptable since that it is less than on
stator current period.

In the next step, the aibility of the proposed method to detect current sensor faults and to
discriminate them from open-circuit faults.
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