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Abstract: Availability and continuous operation under critical conditions are very important in 

electric machine drive systems. However, such systems, are suffering from several type of failures 

that affect the electric machine or the associated voltage source inverter. Therefore, fault diagnosis 

and fault tolerance are highly required. This paper presents a new robust deep learning-based 

approach to diagnosis multiple open-circuit fault in three phase two level voltage source inverter 

for induction motor drive applications. The proposed approach uses fault diagnosis variables 

obtained from sigmoid transformation of the motor stator currents. The open-circuit fault diagnosis 

variables are then introduced to a Bidirectional Long Short-Term Memory algorithm to detect the 

faulty switch(es). Several simulation and experimental results are presented to show the proposed 

fault diagnosis algorithm effectiveness and robustness. 

Keywords: Open-Circuit Fault; Induction Motor; Sigmoid Function; Bidirectional Long Short-Term 

Memory, Deep Learning 

 

1. Introduction 

Three phase pulse width modulated (PWM) voltage source inverters (VSI) have been widely 

used for grid connected converters or AC machines variable speed drives applications. For the most 

of these applications, high reliability and high availability are of utmost importance. Consequently, 

condition monitoring, fault detection and fault tolerant control of thee phase PWM VSIs are 

mandatory functions that should be added to the drive system’s controller [1,2]. 

Open-circuit fault is one of the most relevant faults that may affect induction motor speed 

variable drives [3]. This type of fault may affect multiple power semi-conductors. As discussed in 

[3,4], it introduces severe perturbations with a DC current injection and high oscillations of the 

electromagnetic torque and, in some cases, the electric drive must be shut down. Hence, it is 

important to diagnosis such type of fault. Open-circuit (OC) fault diagnosis issue has been discussed 

in several studies and different methods have been proposed [5–8]. They are generally classified as 

Model-based approaches [9–21] and signal-based approaches [26–30].  

Model-based fault diagnosis approaches, use the mathematical model of the electric machine 

and/or the model of the voltage source inverter. The main idea is to compare some estimated 

quantities obtained from the system’s model to the measured quantities. In most cases, electric 

machine currents [9–14] and voltage source inverter output voltages [15–20] are the estimated 

quantities. 

In healthy operation, measured and estimated quantities are almost the same. Hence, the 

estimation error converges to zero. When an open-circuit fault is affecting one or more power 

switch(es), the deviation of the estimation error is used to detect the fault and to identify the faulty 

switch(es).  

In [9,10], Jlassi et al. uses the current form factor (CFF) to detect open-circuit faults in permanent 

magnet synchronous machine (PMSM) drives for both generator and motor applications. The main 
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idea is to compare the CFF obtained from the measured currents to the CFF obtained from estimated 

currents based on state Luenberger observer. A similar approach is discussed in [11] to detect currents 

sensor and open-circuit fault in grid connected three level NPC inverters. In this study, the currents 

are estimated using a sliding mode observer. 

The current residual approach is proposed to diagnosis open-circuit faults in PMSM and 

induction motor drive systems are discussed in [12] and [13] respectively. 

Voltage based OC fault detection, had been discussed in [15–19]. To avoid the use of additional 

voltage sensors, which may increase the system’s cost, the output voltage of the VSI should be 

estimated. In [15], an OC fault diagnosis scheme is proposed based on voltage estimation for an 

induction machine drive system. A state estimator is used to estimate the phase voltage based on the 

induction machine model. The estimated voltage is compared the voltage obtained from the DC-link 

voltage and the inverter switching signals. The residual of the estimation error is used to detect the 

faulty switch(es). Nevertheless, this approach needs the use of low pass filters that need high tuning 

and introduce delays in the detection time. Freire et al., presents a similar approach applied to PMSM 

drive systems [16]. In [17], the calculated common mode voltage behavior is used to detect and locate 

OS faults in three phase two level inverters for induction machine drive system. 

Model based OC fault detection approaches had shown their effectiveness, but they need a good 

knowledge of the studied system’s model, they should be less sensitive to system’s parameters 

variations. Moreover, they required a robust fault detection threshold which makes them complex to 

be contructed. 

Rencently, with the increase of the use of model predictive control (MPC) in variable speed drive 

systems, some studies propose to use the motor prediction current errors to detect OC fault for PMSM 

drive systems [22–25]. Thanks to the robustness of MPC, the motor current prediction errors are very 

low in healthy operation mode. It has been shown that in case of OC faults, the motor current 

prediction errors increase allowing to detect and to identify the fault switch. 

Signal based methods are generally based on current analysis [26–30]. In [26], a single current 

sensor is employed to detect OS faults in PMSM drive system. The DC-link current sensor is used to 

reconstruct the motor stator currents. Then after, the normalized average value of the reconstructed 

current is used to detect the faulty switch. Sejir et al. [27], presents a current analysis-based algorithm 

to detect OS faults in PMSM drive systems. The fault detection variables use the interaction between 

two stator currents which allow to detect 27 types of OC faults and current sensor faults. Reference 

current errors are employed to detect OC faults in voltage source inverters [28]. However, this 

approach can only be used for closed loop controlled electric drives. 

More recently, intelligence artificial tools had become more attractive for fault diagnosis and 

fault classification issues [31–43]. Indeed, data driven approaches are only based on recorded data 

obtained from measured quantities instead of specific complex mathematical models. 

In [31,32], a Fast Fourrier Transform (FFT) algorithm is used to extract open-circuit fault features 

from motor current [31] or inverter’s output line-to-line voltage [32]. Then, a fast-learning technology 

is applied to diagnosis the faulty switch(es). Xia et al. [33] presents a transferrable data driven 

algorithm for open-circuit switch fault diagnosis in three phase inverters. Deep learning-based 

approach for open switch fault diagnosis of three phase PWM converters is discussed in [34]. 

Currents behavior in healthy and faulty operation modes are analyzed for fault features extraction.   

Recently, Long Short-Term Memory Network (LSTM) networks have became more and more 

attractive in fault diagnosis issues due to their high accuracy over other fault diagnosis techniques 

[36–43]. The effectiveness of the method is confirmed in [36] where it is used to detect multiple open-

circuit switch faults of the back-to-back converter in doubly-fed induction generator (DFIG)-based 

wind turbine systems. Similar approach has been used to diagnosis open-circuit faults in multilevel 

converters [37–39]. LSTM approach is applied for diagnosing faults in Electric Vehicles [40,41] and 

for motor electrical fault [42] and mecanical fault diagnosis [43].  

To deal with the above mentioned issues, this paper proposes a Bidirectional Long Short-Term 

Memory (BiLSTM) based algorithm to diagnosis open-circuit power semiconductor faults in three 

phase PWM voltage source inverter for an induction motor drive system. The proposed method is 
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able to achieve accurate diagnosis of single and multiple open-circuit faults without any extra 

hardware requirements. Only already measured induction motor stator currents are used. To keep 

the fault diagnosis method free from load torque and motor speed variations, the induction motor 

stator currents are normalized using the sigmoid function. Then, three fault detection variables are 

defined and introduced to the BiLSTM network to identify the faulty switch(es). Moreover, the 

BiLSTM network does not need to set any fault detection threshold which increases the accuracy and 

the effectiveness of the proposed approach. 

The rest of the paper is organized as follows: Section 2 presents the fault detection variables and 

analysis the fault features. Section 3 describes the BiLSTM network and the fault diagnosis algorithm. 

The simulation results are presented in Section 4 and the performances of the proposed approach are 

experimentally analyzed in Section 5. Finally, conculsions are drawn in Section 6. 

2. Fault Features Analysis  

The structure of the three-phase induction motor drive system is depicted out in Figure 1. The 

two level VSI is composed of six IGBTs (T1 → T6) and their anti-parallel diodes. Under healthy 

operation conditions, the induction motor stator currents are expressed as: 

a m

b m

a m

i t I t

2i t I t
3

4i t I t
3

( ) sin( )

( ) sin( )

( ) sin( )

ω
πω

πω

 =
 = −


= −

                                 (1) 

where Im is the induction motor stator current amplitude and ɷ is the synchronous electrical 

pulsation. When an open circuit fault occurs, it produces distortion of the stator currents with the 

increase of their amplitude, electromagnetic torque oscillation and excess heat which can lead to 

motor failure [3]. Hence, the motor current measurement can be used to pinpoint open-circuit faults. 
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Figure 1. Structure of 2L-3Φ VSI fed IM system. 

Motor current based open-circuit fault methods should be less sensitive to motor paramters 

mismatch or operating point variations. Therefore, the normalization of the motor current 

measurement is required. In this way, several approaches have discussed by the literature where the 

Park Vector’s Modulus = +2 2

dq d q
i i i in [23], the maximum absolute value of the motor phase 

currents { }a b c
i i imax , ,  in [27] and the average absolute values of the motor phase currents 

{ }=n n a b c
i

, ,
 in [28] are proposed as normalization tools. Although these methods give good results, 

they also require additional computational effort and prior knowledge of the motors parameters to 

ensure a real-time normalization of diagnosis variables which increases computation time and 

decreases the performance of the OC fault methods. 

In this work, the main idea is to apply the sigmoid function to motor currents for the 

normalization process. The sigmoid function of the real variable x, F(x), is defined as:  
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where λ is a positive real. In Figure 2, is presented the sigmoid function of the sinusoidal variable x. 

It can be seen that F(x) vary between ±1 and has the same period as the variable x. The impact of the 

positive real λ on the dynamic of F(x) is depicted out in Figure 2. More λ is higher more F(x) variation 

is faster. 

 

Normalization

 

 

Figure 2. Sigmoid function for different coefficient values λ. 

where xm is the amplitude of the current signal x(t). 

However, the sampled currents are not smooth, which involve the notch due to the PWM and 

noise due to measurement in the actual current sampling process of the motor drive system. As result, 

the chattering problem appears in normalized function that it can be seen during the zero crossing of 

the current signal as shown in Figure 3a. To analyze this feature, take the positive current half period 

as an exemple: the current can be divided into two zones according to the zero-crossing of current 

signal. Zone1 is the chattering area since the current drop in this zone is soo small. Zone 2 is the no-

chattering area due to enough current drop. Therefore, this problem makes it difficult, if not 

impossible, to detect occured faults during this time.  

 
(a) 

 
(b) 

Figure 3. Current normalization method: (a) with chattering problem, (b) without chattering 

problem. 

To reduce the chattering effect of the sigmoid function, the normalization function of the 

induction motor stator current is modified and expressed as below:  
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where xh is the minimum value of signal x(t) that avoid the chattering problem. Figure 3b shows the 

output of the modified normalization function where it is forced to be zero during the zero-crossing 

of the current signal. Sowhen ≤
h

x t x( ) , the fault occurring during [t1; t2] can be detected 

immediately in [t2; t3] by the proposed algorithm, but the fault occurring during [t3; t4] must wait for 

the second chance for diagnosis in the next cycle. 

By applying Equation (3) to the stator currents of the induction motor, we obtain the variations 

of the sigmoid variables Fa, Fb and Fc of the stator currents ia, ib and ic as presented in Figure 4a. 

Accordingly, three fault diagnosis indictors χa, χb and χc are defined as: 

a a b c

b b c a

a c a b

2F F F

2F F F

2F F F

χ
χ
χ

 = − −
 = − −
 = − −

                                (4) 

The variations of the induction motor stator currents, their respective sigmoid functions and the 

fault diagnosis indicators for one period of the stator currents are depicted out in Figure 4b. The fault 

detection variables have similar behavior of the motor stator currents with the same period and a 

phase shift between them equal to 2π/3. Moreover, they vary between ±4. It should be noted that the 
variations of the fault detection variables are independent from motor speed or load torque.  

 
(a) 

 
(b) 

Figure 4. Time domain waveforms of three phase currents, sigmoid functions and detection fault 

variables in healthy mode. 

When an open-switch fault occurs, it affects the stator currents waveforms and then after Fa, Fb 

and Fc and χa, χb and χc waveforms also. In Figure 5a are described the stator currents and the 
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detection variables χa, χb and χc variations in case of open-switch fault of the IGBT T1 applied at time 

t=0.6s. Instantly, the behavior of χa, χb and χc is not the same as in healthy operation mode. Indeed, χa 

lost its positive sequence, whereas χb and χc vary between 4 and -3.  
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(c) 

Figure 5. Time domain waveforms of three phase currents, sigmoïd functions and detection fault 

variables for: (a) Fault in T1, (b) Fault in T1&T2, (c) Fault in T1&T4. 

Similar analysis has been done for open-switch fault of T1 and T2 (open phase fault), as presented 

in Figure 5b. χa becomes equal to 0 and χb and χc are opposite and vary between 3 and -3. A third 

fault case is analyzed considering an open-switch fault of T1 and T4 depicted out in Figure 5c. In this 

case, χa lost its positive sequence, χb lost its negative sequence and χc vary between 3 and -3. The 

analysis of these three fault scenarios has shown for each open-switch fault, the detection variables 

χa,b,c have a specific feature, which make them suitable to be employed to achieve robust and reliable 

open-switch fault detection algorithm for the studied electric drive system.  

3. LSTM Approach for Fault Diagnosis 

3.1. LSTM Structure 

LSTM is an improved version of recurrent neural network (RNN), which has achieved 

satisfactory performance in sequence learning and temporal modeling [36]. 

LSTM has a special structure, which allow solving the challenge of gradient vanishing or 

explosion in a simple RNN since it replaces the iterative transformation in RNN with addition in the 

calculation of hidden state [43]. The structure of an LSTM unit is illustrated in Figure 6. 
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Figure 6. LSTM Network structure. 
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LSTM mainly consists of three gates: forget gate 𝑓𝑓𝑡𝑡, input gate 𝑖𝑖𝑡𝑡 and output gate 𝑜𝑜𝑡𝑡.The forget 

gate layer𝑓𝑓𝑡𝑡determines which information should be forgotten. The equation of the forget gate layer 

can be expressed as: 

t f t 1 t f
f w h X b( . . )σ −=   +                           (5) 

where 𝑋𝑋𝑡𝑡 and ℎ𝑡𝑡−1 represent respectively the input at the current time and the output at previous 

time of the LSTM network. 𝑊𝑊𝑓𝑓 and 𝑏𝑏𝑓𝑓 represent the weight and the bias of the forget gate layer. 𝜎𝜎 is 

the sigmoid function and [ ] represents the concatenate operation. 

The input gate layer 𝑖𝑖𝑡𝑡updates the cell state based on the input at the current time 𝑋𝑋𝑡𝑡 and the 

output at previous time ℎ𝑡𝑡−1. The equations of the input gate can be described as: 

( )t i t 1 t i
i w h X b. .σ −=   +                    (6) 

    
t c t 1 t c

c w h X btanh( . . )−=   +                           (7) 

where 𝑋𝑋𝑡𝑡  and ℎ𝑡𝑡−1  represent respectively the input at time the current time and the output at 

previous time. 𝑊𝑊𝑖𝑖and 𝑏𝑏𝑖𝑖 are the weight and the bias of the sigmoid function in the input gate layer. 

tanh is a hyperbolic tangent function, 𝑊𝑊𝑐𝑐 and 𝑏𝑏𝑐𝑐 are the weight and the bias of the tanh function in 

the input gate layer. 

The output gate layer 𝑜𝑜𝑡𝑡  selects information that should be the next output which depends on 

the cell state 𝑐𝑐𝑡𝑡. The equation of the output gate layer can be expressed as equation (8) with 𝑊𝑊𝑜𝑜 and 𝑏𝑏𝑜𝑜 are the weight and the bias of the output gate layer. 

( )t o t 1 t o
o w h X b. .σ −=   +                    (8)                                 

 

The cell state and the output (hidden) state at time step t are described by the following 

equations: 

t t t 1 t t
c f c i c* *−= +                       (9) 

t t t
h c otanh( ) *=                      (10) 

3.2. Stacked LSTM (MLSTM) 

A stacked LSTM is a deep LSTM that consists of multiple LSTM layers where each layer contains 

multiple memory cells. The input of the first LSTM layer is the sequence data, and the input of other 

LSTM layers is the hidden state of the previous LSTM layer. Therefore, the Stacked LSTM hidden 

layers make the model deeper and more accurate. This type of network becomes a powerful method 

for challenging sequence prediction problems. The structure of Stacked LSTM with n hidden layers 

is shown as in Figure 7. 
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Figure 7. Stacked LSTM structure. 

3.3. Bidirectional LSTMs (BiLSTM) 

The Bidirectional LSTM is a recurrent neural network which combines two LSTMs together. 

Unlike standard LSTM, the input flows in both directions forward or backward. In fact, this structure 

allows the networks to have forward layer and backward layer which reverses the direction of the 

input sequence flow. Applying the LSTM twice makes the prediction results more integrated and 

leads to improve the accuracy of the model. On the other hand, it should be mentioned that BiLSTM 

is a much slower model and requires more time for training. The BiLSTM architecture is presented 

in Figure 8. 

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

t 1y − ty t 1y +

t 1X − tX t 1X +
 

Figure 8. BiLSTM structure. 

3.4. Evaluation Metrics 

After building prediction models, there are several metrics can be used to evaluate the 

performance of models and compare them.  

3.4.1. Root Mean Square Error (RMSE) 

The Root Mean Square Error (RMSE) are the most commonly used performance measures for 

prediction tasks. The RMSE can be calculated by using (11). 

( )
n

2

i i
i 1

1
RMSE y y

n
ˆ

=

= −∑
                        (11) 

where 𝑦𝑦�𝑖𝑖and 𝑦𝑦𝑖𝑖are the prediction and the real output value, and n is number of data.  
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3.4.2. Mean Absolute Error (MAE) 

The MAE is the other criterion used to evaluate the model performance. The MAE is expressed 

as (12). 

=

= −∑
n

i i
i 1

1
MAE y y

n
ˆ

                        (12) 

3.4.2. Mean Absolute Percentage Error (MPAE) 

The MPAE is one of the most common metrics used to measure the prediction accuracy of a 

model and it is described as (13). 

=

−
= ×∑

n
i i

i 1 i

y y1
MPAE 100

n y

ˆ
(%)

           (13) 

The summation ignores observations where yi = 0. In general, the lower the MAPE value, the 

more accurate the model is. 

The last metric used in this paper to evaluate the performance of the proposed algorithm is the 

accuracy of the prediction model that is expressed as: 

= −Accuracy 100 MPAE(%)
              (14) 

3.5. Diagnostic Network Implementation and Validation 

The proposed diagnosis method consists of BiLSTM network with one hidden layer. The 

BiLSTM-based network is adopted for the fault diagnosis, using the normalized diagnosis variables 

χa, χb and χc of current sensor signals as input. Firstly, two-phase current signals collected by the 

sensors installed between the inverter and the motor, respectively. Then, a normalization process is 

applied to extract suitable features.  Finally, the normalized input sensor data [χa χb χc] are put into 
BiLSTM network. 

The output of BiLSTM network is a concatenation of the forward and backward hidden states. 

The final output of the network contains 6 flags [T1 T2 T3 T4 T5 T6] which represent the healthy or 

faulty state of each power switch of the inverter that controls the IM.  Each flag can take either the 

value 1 to indicate that the desired power switch is infected, or the value 0 to indicate that the desired 

switch is healthy. The proposed BILSTM enables to predict and identify 21 open circuit faulty states 

and one normal state. The structure the fault diagnosis method based on BiLSTM network is 

illustrated in Figure 9. 
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Figure 9. Structure of the fault diagnosis module based on BiLSTM network. 

To train LSTM Network to work efficiently, the system requires a normal and faulty feature data. 

For this, we have generated all possible single and multiple open-circuit fault scenarios. Thirty 
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thousand samples are used as training data for each class of default, with a sampling time 10−4s. The 

cost function used in the training process is the Root Mean Square Error (RMSE).  

After many trials ranging from 10 to 100 as shown in Figure 10, the size of the hidden layer of 

BiLSTM network is set as 100 units to make a tradeoff between accuracy and computation time. 

  
(a) (b) 

Figure 10. (a) Evolution of the RMSE as a function of hidden layer size in training progress of BiLSTM 

Network, (b) Evolution of the Loss as a function of hidden layer size. 

The maximum training epoch is set as 1000 to ensure that the error after training is small enough. 

The BiLSTM model is trained using LSTM Matlab toolbox. 

The parameters of the BiLSTM models are summarized in Table 1. 

Table 1. LSTM parameter. 

Parameter Value 

Max training epochs 1000 

Loss function optimizer 

(solver) 

Adam 

Initial learning rate  0.001 

Loss function RMSE 

Gradient Threshold 0.001 

Hidden units 100 

The principal of the proposed BiLSTM-based fault diagnosis method considering the data 

detailed above is shown in following algorithm. 

Algorithm 1: BiLSTM-based Fault Diagnosis Algorithm 

Step 1: Data set collection.  

− Fault detection variables [χa χb χc] 

− Fault flags [T1 T2 T3 T4 T5 T6] 

Step 2: Parameter initialization 

Step 3: Set BiLSTM model. 

− Forward hidden layer output 
f

t
h

: 
σ −= + +f f f f f

t x t x t 1 h
h w X w h b( )

 

− Backward hidden layer output 
b

t
h

: 
σ −= + +b b b b b

t x t h t 1 h
h w X w h b( )

 

− The model output yt: 
= + +f f b b

t y t y t y
y w h w h b

  

Step 4: Train BiLSTM model. 

Step 5: Return the network model (𝑤𝑤, 𝑏𝑏). 

Step 6: Test model. If the evaluation metrics are not satisfactory, then 

adjust network parameters and go to Step 3. 

After training, the performance and efficiency of our network were tested in a situation when 

open-circuit switch fault occurs simultaneously on T5 and T6 at t = 1s. Simulation results are shown 

in Figure 11a,b. 
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(a) 

 
(b) 

Figure 11. Simulation results (a) Test of BiLSTM Network in the presence of T5&T6 fault, (b) Validation 

error of BiLSTM model. 

It can be seen from the Figure 11b that the validation error value varies between -0.05 and 0.05 

with a little increase when the fault begins to occur (t=1s), this demonstrates the efficiency of the 

proposed model in the prediction of default class and the time when it occurs.  

4. Simulation Results 

The performances of the proposed open-switch fault detection approach are analyzed first 

through simulations under Matlab/Simulink Software for a variable speed three phase induction 

motor drive. In this section, the robustness of the proposed method, under speed/load torque 

variations is studied first. In the second step, the effectiveness of the proposed approach to detect 

single and multiple open-switch faults is presented. 

4.1. Robustness under Operating Point Variations 

The performances of the proposed fault diagnosis approach under motor speed and load torque 

variations are presented in Figure 12 and Figure 13 respectively. In Figure 12 are presented the 

variations of the stator currents, motor speed, the detection variables and the output of the BiLSTM 

network (T1→T6 fault flags), when the motor speed varies from 1200 to 1500 rpm at time t = 1s with 

no load. The detection variables maintain the same behavior during steady state operation as well as 

during transient state. Finally, all fault flags remain at low levels equal to 0. Figure 13 describes the 

same variables in case of torque load change from 0N.m to 3 N.m at time t = 1s with motor speed 

equal to 1000 rpm. Here again, all fault flags remain at 0 value and no false alarm has been triggered. 
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Figure 12. Simulation results for speed variation from 1200 to 1500rpm without load. 
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Figure 13. Simulation results for load variation from 0 to 3N.m under a speed of 1000rpm. 

4.2. Open-Switch Fault Detection 

Figure 14 shows the time domain waveforms of the three phase currents for a single fault in the 

power switch T1, under 4 N.m as load torque and a 800 rpm as rotor speed. When the open-switch 

fault of IGBT T1 is applied in t = 1 s, the positive half-cycle of the phase current ia is eliminated. 

Consequently, the diagnostic variable χa lost is positive sequence and becomes varies between the 

values -4 and 0 whereas the other both diagnostic variables χb and χc makes the values between -3 

and 4. As a result, the identification fault flag of T1 increase immediately to 1 after 4 ms of the fault 

occurrence, corresponding to 10% of the motor currents fundamental period.  
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Figure 14. Simulation results for a fault in T1 under a speed of 800 rpm and a load torque of 4 N.m. 

The performance of the proposed algorithm regarding the diagnosis of an open-phase fault is 

depicted in Figure 15. Firstly, a single open-circuit fault in IGBT T1 is introduced at a time t = 1 s, for 

a speed of 1400 rpm and a load torque equal to 3 N.m. The faulty IGBT is detected when the T1 fault 

flag switches from 0 to 1 at a time t = 1.003 s, corresponding to an interval of 14% of motor currents 

fundamental period. When the second fault, in IGBT T2, is added at a time t = 1.5 s, the behavior of 

the fault diagnostic variables automatically changes. Regarding all diagnostic variables for this kind 

of situation (open-phase fault), the first diagnostic variable χa becomes equal to 0 and the other 

diagnostic variables χb and χc takes the values of -3 and 3. Hence, the open-phase fault is detected 

when both T1 & T2 fault flags changes from 0 to 1, 4 ms after the fault occurrence, which corresponds 

to 19% of the motor currents fundamental period. 

 

 

 

Figure 15. Simulation results for a fault in T1 and T2 under a speed of 1400 rpm and a load torque of 3 

N.m. 
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The steady state performance of the proposed IA algorithm for both open-switch fault in the VSI 

is presented in Figure 16. Firstly, an open-circuit fault in IGBT T1 is applied at a time t = 1 s, under a 

speed of 1200 rpm and a load of 3 N.m. The faulty IGBT is localized by switching state of the T1 fault 

flag that changes from 0 to 1 at t = 1.004s, in an interval of 10% of the fundamental period. When the 

second fault in IGBT T4 is added in time equal to 1.5 s, the first diagnostic variable χa maintain its 

negative sequence but the second diagnostic variable χb changes its behavior by losing its negative 

sequence to vary between 0 and 4 whereas χc becomes varies between -3 and 3. For this state, the T4 

fault flag needs a 3.5 ms as a time delay to switch from 0 to 1 to denote that an open-circuit fault is 

occurred in power switch T4. The detection time of the fault equal to 8.75% of currents fundamental 

period. 

 

 

 

Figure 16. Simulation results for a fault in T1 and T4 under a speed of 1200 rpm and a load torque of 3 

N.m. 

5. Experimental Results 

The performances of the proposed open-crcuit fault diagnosis method arde performed on a 3kW 

prototype. The experimental test bench shown in Figure 17 comprises a three-phase voltage source 

inverter (SEMIKRON) fed by a 3kW PV array, and an induction motor coupled with a PMSG. A 

Digital signal processor (DSP-Dspace1104) is used for the motor drive system control. Two Hall-effect 

current sensors (LEM LA55P) are used for motor phase currents sensing. A Keithley (DT9834) data 

acquisition module with a 16-bit resolution Analog input and sample rate 500kS/s throughput is used 

for recording the test results. A fault gate generator box is used to generate an IGBT opening fault. 
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The idea is to switch the PWM signal input of the gate driver to zero in the fault case. The mechanical 

load can be done with the help of the PMSG coupled to the PD3 rectifier and a variable resistive load. 

 

Figure 17. Experimental test bench. 

5.1. Robustness under Operating Point Variations 

The experimental results, reported in Figure 18, show the time-domain waveforms of the phase 

currents and the IGBTs fault flags used for open-circuit fault diagnosis in the VSI. In this evaluation, 

a fast transient process is conducted by a step of speed from 700 to 1000 rpm under no load for the 

first test and under a 60% of rated load torque for the second test. Figure 19 provides the experimental 

results when the 3Φ-IM operates at a mechanical rotor speed equal to 1000 rpm. The transient states 

consist in applying to the IM two-step transitions of the load torque from 0 to 60% of rated load torque 

and then from 60% to 0% of rated load torque. For the diagnostic variables, even though transient 

states are observed, they present the same behavior that correspond to a healthy operation mode of 

the VSI. Regarding the outputs LSTM network, all fault flags maintain at the 0 values. The obtained 

results confirm the high performance and robustness of the proposed FDI approach under load and 

speed change according to simulation results.  
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(b) 

Figure 18. Experimental results for speed variation from 700 to 1000 rpm with: (a) no load, (b) 60% of 

rated torque. 
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(b) 

Figure 19. Experimental results for load variation under a speed of 1000rpm: (a) from 0 to 60% of 

rated torque, (b) from 60% to 0% of rated torque. 

5.2. Open-Switch Fault Detection 

To further examine the practicality of the proposed method, several tests are performed under 

fault conditions. The first test is conducted when the fault occurs in phase b, resulting from an open-

switch fault of IGBT T4. In this test, the operating point of the motor is fixed, respectively, at Ω = 
780rpm and Tem = 50% of rated load torque. The time-domain waveforms of three phase stator 

currents, the dignostic variables χabc and the T1…6 fault flags behavior are reported in Figure 20. Firstly, 

the 3Φ-IM operates free whitout any fault. In this case, the diagnostic variables present the behavior 

that correspond to the healthy state of the VSI. At t = 3.605 s, an open-circuit fault is occured into the 

IGBT T4 of the second leg inverter leg by fixing its switching signal in « 0 » state. As a result, the 

negative half-cycle of the current ib is cutted and is now limited to only flow in the positive direction, 

while other currents (ia and ic) undergo a light deformation and flow in negative and positive 

directions. Consequently, the behavior of three diagnostic variables χa,b,c is not yet the same as in 

healthy operation mode. Indeed, χb lost its negative sequence to vary between 0 and 4, whereas χa 

and χ,c vary between -4 and 3. As a result, the fault flag correponding to the infected IGBT T4 takes 

immediately the value of 1 at t = 3.609 s, taking a time delay equal to 12% of the fundamental current 

period. 

 
 

 

Figure 20. Experimental results for a fault in T3 under a speed of 780 rpm and 50% of rated torque. 

0 1 2 3 4 5

0

1

T1 Fault Flag

0 1 2 3 4 5

0

1

T3 Fault Flag

0 1 2 3 4 5

0

1

T4 Fault Flag

0 1 2 3 4 5

0

1

T5 Fault Flag

0 1 2 3 4 5

0

1

T6 Fault Flag

0 1 2 3 4 5

0

1

T2 Fault Flag

3.2 3.4 3.605 3.8 4
Time (s)

-5

-3

-1
0
1

3

5

i a
b
c

 (
A

)

i
a

i
b

i
c

Open T
4

3 3.5 4 4.5

0

1

T1 Fault Flag

3 3.5 4 4.5

0

1

T2 Fault Flag

3 3.609 4 4.5

0

1

T4 Fault Flag

3 3.5 4 4.5

0

1

T5 Fault Flag

3 3.5 4 4.5

0

1

T6 Fault Flag
3 3.5 4 4.5

0

1

T3 Fault Flag

-4
-3
-2
-1
0
1
2
3
4

a

-4
-3
-2
-1
0
1
2
3
4

b

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
Time (s)

-4
-3
-2
-1
0
1
2
3
4

c

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 November 2023                   doi:10.20944/preprints202311.1353.v1

https://doi.org/10.20944/preprints202311.1353.v1


 20 

 

The second test correspond now an open-phase fault involving two IGBTs in the same inverter 

leg (T1 and T2). Figure 21 presents the experimental results of the output-inverter currents together 

with the diagnostic variables used for FDI in the VSI and the outputs BiLSTM network. However, the 

motor speed and the load torque are, respectively, fixed at Ω = 990rpm and Tem = 50% of rated load 

torque. The fault is introduced into the first inverter leg a at t = 1.378 s, by keeping the switching 

signals of both IGBT simultaneously in « OFF » state. In this case, current ia becomes equal to zero 

over the whole current cycle while the other currents maintain their sinusoidal shapes but oscillating 

in phase oposition between -4 A and 4 A. As soon as the fault occurs, the diagnostic variable χa takes 

the value of zero and the other diagnostic variables χb and χc are opposite and vary between 3 and -3. 

As learned in offline condition, the diagnostic algorithm based on LSTM network makes a decision 

that the fault is an open-phase involving the first inverter leg a. As a result, the open-phase fault 

identification is achieved at t = 1.387 s by incresing the both T1 & T2 fault flags to 1, taking a time delay 

equal to 30% of the fundamental current period.  

  

 

Figure 21. Experimental results for a double fault in T1 and T2 under a speed of 990 rpm and 50% of 

load. 

The last test that presents the performance of the proposed algorithm regarding the diagnosis of 

a double fault in the power switches T2 & T4 is depicted in Figure 22. In this case of faulty condition, 

the 3Φ-IM runs under a speed of 1000 rpm and no load. The fault is occured between the time 2.54 s 

and 6.4 s. During this time, current ia loses its negative  half-cycle and current ib loses its positive half-

cycle whereas the current ic be sligthly deformed but maintain its sinusoidal form. Immediatly, the 

both diagnostic variables χa and χb lost their negative and positive sequences, respectively, while the 

variable χc becomes varies between -3 and 3. As consequence, the FDI approch reply imediatly by 

taking the T2 & T3 fault flags the value of 1 between the time of 2.544 s and 6.405 s. The detection time 

of fault condition correspond to 16% of the motor currents fundamental period. 
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Figure 22. Experimental results for a double fault in T2 and T3 under a speed of 1000 rpm and no 

load. 

These results illustrate the effectiveness of the proposed approach for detecting open-circuit 

faults in all operating conditions of the drive. 

5.3. Performance Evaluation and Comparaison 

The proposed fault diagnosis method is applied to a 3Φ-induction motor system for certain 

faults: T1, T2, T3, T4, T5, T6, T1&T2, T3&T4 and T5&T6. About 1500 testing samples of each fault are used 

to validate the performance of the proposed BiLSTM-based method and other comparison methods 

involving standard LSTM, stacked LSTM (MLSTM) and Feed Forward Neural Network (FFNN). 

These networks structures are engaged as comparison methods to prove the efficiency and the 

robustness of the proposed method. The FFNN and LSTM are trained with 100 units in one hidden 

layer, on the other hand the MLSTM models are trained with 50 units in each hidden layer. The 

training parameters of the BiLSTM model are considered for the other network structures. The 

different methods were tested in a situation when OC fault occurs at t = 0.5s. Table 2 presents the 

RMSE, MAE, time detection and the accuracy of each model.  
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Table 2. Performance evaluation for each method. 

 

Faulty 

Switch 

FFNN LSTM MLSTM (3 layers) BiLSTM 

RMSE MAE Td (ms) Accuracy(%) RMSE MAE Td (ms) Accuracy(%) RMSE MAE Td (ms) Accuracy(%) RMSE MAE Td (ms) Accuracy(%) 

T1 0.2073 0.1268 1 32.9996 0.0142 0.0093 11.5 97.8281 0.0150 0.0101 11 97.5032 0.0135 0.0095 3.45 98.2613 

T2 0.2002 0.1241 1.1 34.4586 0.0209 0.0128 21 96.5231 0.0207 0.0137 23 95.7970 0.0192 0.0128 5.2 96.5596 

T3 0.1915 0.1222 1 34.8000 0.0186 0.0116 23 96.5823 0.0174 0.0094 24 96.8548 0.0178 0.0116 6 97.3394 

T4 0.1977 0.1241 1 33.5121 0.0160 0.0105 16 97.3179 0.0157 0.0102 13.5 97.5014 0.0146 0.0099 4.88 97.9273 

T5 0.1983 0.1235 1 33.8192 0.0167 0.0107 21 97.3560 0.0192 0.0121 24 95.1774 0.0158 0.0098 2.5 98.1525 

T6 0.2061 0.1242 1 33.6194 0.0162 0.0102 12 97.4939 0.0149 0.0092 13 97.0993 0.0132 0.0089 4.02 97.8641 

T1&T2 0.1369 0.0935 1 74.1148 0.0250 0.0109 14 98.5637 0.0300 0.0132 17 98.1124 0.0220 0.0105 2.57 98.8193 

T3&T4 0.1242 0.0775 1 75.8453 0.0244 0.0112 24 98.2274 0.0270 0.0126 19 96.8244 0.0253 0.0109 4.66 98.3066 

T5&T6 0.1304 0.0796 1 76.2560 0.0302 0.0092 10 99.3372 0.0278 0.0101 16 99.2203 0.0302 0.0101 3.75 99.4112 

Mean 0.1769 0.1108 1.0111 47.7139 0.0202 0.0107 16.94 97.6922 0.0208 0.0111 17.83 97.1211 0.019 0.0104 4.11 98.07 

The bold values represent optimum evaluation metrics 
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Figure 23 shows MAE evolution in a situation when open-circuit switch fault happens on T1&T2 

at t = 0.5s. This metric is illustrated for the BiLSTM and the other comparison methods. 

 

Figure 23. MAE evolution when open-circuit switch fault happens on T1&T2 for the BiLSTM and the 

other comparison methods. 

Figure 24 shows the RMSE evolution for each faults (T1,T2,T3,T4,T5,T6) in a situation when open-

circuit fault happens on T1&T2 at t = 0.5s. The RMSE is illustrated for the BiLSTM and the other 

comparison methods. 

 

Figure 24. Performance evolution: RMSE evolution for each faults (T1,T2,T3,T4,T5,T6) when open-circuit 

switch fault happens on T1&T2 for the BiLSTM and the other comparison methods. 

According to Table 2, the RMSE The RMSE and AME values of BiLSTM method converge 

towards 0 which explain its high prediction accuracy in fault detection and identification 98.07%. 

This percentage is better than the accuracy reported by FFNN and classic LSTM networks. Moreover, 

BiLSTM detection time of fault condition varies between 2.5ms and 6ms which correspond to 12-30% 

of the motor currents fundamental period. Consequently, The BiLSTM approach can identify and 

predict accurately and quickly various faults scenarios. 

Moreover, appending additional layers for a classic LSTM network does not greatly improve the 

performance of the detection model since the LSTM and the MLSTM have the same accuracy 97%, 

but it increases the calculation time. In addition, there is not a big difference in the fault detection 

time which can reach up to 24ms. 

On the other hand, the FFNN is the fastest for fault detection because the detection time is 

around 1ms but it has the lowest accuracy 48%. To prove the robustness of the BiLSTM network, the 

proposed method is tested for several faults in different operating points by varying the motor speed 

and the rated torque. The results are shown in Figures 18–22. In all cases, the method based on 

BiLSTM ensures the best performance. This again demonstrates the effectiveness and the robustness 

of the proposed Method. 

Consequently, the BiLSTM model can be used for the effective open-circuit fault detection in a 

3Φ-induction motor-based drive system. 

Table 3 presents a comparative analysis of the proposed fault diagnosis technique, specifically 

for OC faults, against techniques previously used for IGBT faults, with a particular emphasis on 

detection time and accuracy. The detection time is evaluated in relation to the fundamental current 
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period. The data in Table 3 clearly shows that most of the techniques require at least 50% of the 

fundamental period for diagnosis. Moreover, the table illustrates that the proposed method for OC 

faults demonstrates strong performance across the evaluated parameters, indicating its effectiveness 

in a comparative context, rather than a direct comparison of the fault diagnosis methods themselves. 

Table 3. Comparative study. 

REFERENCE METHOD 
DETECTION 

 TIME*  
ACCURACY (%) 

Maamouri et al. [13] 
System model based Sliding Mode 

Observer (SMO) 
20% -- 

Gmati et al. [23] 
Predictive current errors and Fuzzy 

Logic approach 
12-75% -- 

Chen et al. [28] Output line voltage residuals 5-83% -- 

Gou et al. [31] 
Online data-driven based Random 

vector functional link (RVFL) 
110% 98.83% 

Xia et al. [33] 
Machine learning based 

transferrable data-driven method 
100% 96.76% 

Xue et al. [36] 
Classification open circuit faults 

based LSTM network 
12% 94% 

Proposed approach  
Prediction open circuit faults based 

BiLSTM network 
12-30% 98.08% 

*: % of the current fundamental period. 

6. Conclusions 

This paper proposed a new BiLSTM based approach that aims to detect and localize open-circuit 

faults in three phase two level VSI for induction motor drive systems. The proposed method uses 

only the measured induction motor stator currents. In order to keep the proposed fault diagnosis 

approach free from load torque and/or motor speed variations, the motor stator currents are 

normalized through sigmoid function. Then after, three detection variables χa, χb and χc have been 

defined and sent to the BiLSTM network to localize the faulty switch(es). The performances of the 

proposed algorithm have been analyzed through simulations and experiments and have shown: 

i- The robustness of the proposed fault diagnosis algorithm to load torque and motor speed 

variations and all switches fault flags remain at their respective low levels. 

ii- The accuracy and capability of the proposed algorithm to diagnosis single and multiple open-

circuit power switch faults. Moreover, the detection time is acceptable since that it is less than on 

stator current period. 

In the next step, the aibility of the proposed method to detect current sensor faults and to 

discriminate them from open-circuit faults. 
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