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Abstract: The importance of radar-based human activity recognition increased significantly over
the last two decades in safety and smart surveillance applications due to its superiority towards
vision-based sensing in the presence of poor environmental conditions, like illumination, increased
radiative heat, occlusion, and fog. An increased public sensitivity for privacy protection, and the
progress of cost-effective manufacturing led to a higher acceptance and distribution. Deep learning
approaches proved that the manual feature extraction that relies heavily upon process knowledge can
be avoided by its hierarchical, non-descriptive nature. On the other hand, ML techniques based on
manual feature extraction provide a robust, yet empirical based approach, where the computational
effort is comparatively low. This review outlines the basics of classical ML- and DL-based human
activity recognition and its advances while taking recent progress of both categories into regard.
For every category, state-of-the-art methods are introduced, briefly explained and related works
summarized. A comparative study is performed to evaluate the performance and computational
effort based on a benchmarking data set to provide a common basis for the assessment of the
techniques’ degree of suitability.
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1. Introduction

In the last two decades, civil radar-based applications, as they are used for human sensing and
human activity recognition (HAR), have made significant progress. This has been triggered and
supported by the rapid development in semiconductor technologies in recent decades, in particular by
the drastic change in the concept of radar. Modern radar systems are highly integrated, i.e. the most
important circuits are housed on a single chip or a small circuit board.

The potential of radar-based sensing and recognition technologies has been discovered by a variety
of different scientific domains and was the target of numerous preceding and recent research. First
studies dealt with the detection of humans and recognition in indoor environments for application
regarding security [1-6]. Medical applications, i.e. monitoring of patients extended its applicability [7-13]
to sub-domains, e.g. vital sign detection. In addition, the latest developments of autonomous driving
have impressively shown the enormous potential of radar-based automotive human activity and security
applications, e.g. gesture recognition [14-25] and safety-oriented car assistance systems, e.g. fatigue
recognition [26] or occupant detection [27-32], especially of forgotten rear-seated or wrongly placed
infants or children, in order to prevent deaths due to overheating or overpowered airbags. In comparison
to the aforementioned application field, automotive-specific applications suffer excessively by different
environmental conditions due to the variation of light, temperature, humidity and occlusion. Further,
increasing demands for privacy-compliant smart home solutions, e.g. for the intelligent control of
heating [20] or the surveillance of elderly people in order to detect falls [9], have led to an unprecedented
technological pace.

Although the advantages of vision-based sensing and recognition technologies are undisputed,
there are many situations, where the drawbacks are severe, compared to radar-based technologies.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Sensing-related problems comprise lighting conditions (poor illumination), thermal conditions
(increased radiative heat), occlusion and atmospheric phenomena (fog, mirage). Besides those,
radar-based systems are independent of privacy-related conditions, since target information do not
rely explicitly on target shapes, but can be derived of microscale movements based on Micro-Doppler
signatures [33-38].

The radar-based recognition of human activities has been studied by numerous authors, where
classical Machine-Learning (ML) based techniques, e.g. k-Means [39], SVM [40-44] etc. as well as Deep
Learning-based (DL) approaches have been used [45-70]. In general, ML-based techniques rely on
shallow heuristically determined features that are characterized by simple statistical properties and
thus, depend on technological experience. Furthermore, the learning process is restricted to static data
and does not take long-term changes of the process data into consideration.

Deep Learning constitutes a subdomain of Machine Learning, where the methods applicability
do not depend on the suitability of hand-crafted features. Feature extraction highly relies on domain
knowledge and the the expertise of the user in particular. Instead, the deep learning approaches are
able to extract high-level, yet not fully interpretable information in a generalized approach, and due to
their structure, the underlying learning process can be designed to increase computational efficiency,
e.g. by parallelization.

This work addresses the recent progress of ML-based HAR methods in radar technology setting
and focuses on DL-based approaches, since those have proven to be a more generalized, long-term
oriented, and robust solutions for classification problems. One major contribution of this paper is to
provide the first comparative study of HAR methods using a common data base and a unified approach
for the application of the most common DL methods while focussing on key aspects: CNN-, RNN-
and CAE-based methods. The goal is to investigate the performance associated with computational
cost, i.e. the total execution time and the space complexity, i.e. the parametricity of those methods
under equal conditions in order to determine the suitability through comparison from which general
recommendations can be derived. Furthermore, a unified approach for the classification task using
different methods but a common preprocessing is proposed. The importance of careful preprocessing
of the input data is provided by two variational studies. In the first study, the lower color value limit
of the derived feature maps is varied and the impact on the accuracy is evaluated. This is important,
since the characteristic patterns rely strongly on the color range, where high thresholds are associated
with a higher degree of loss of important information, while low thresholds may contain redundant
information, which, regardless of the model, could increase the risk of overfitting. In the second study,
the impact of data compression of the feature maps on the accuracy is evaluated, since data reduction
leads to lower storage requirements and hence reduced costs for hardware or faster data transmission
rates for online systems.

The remaining sections are organized as follows: In Section 2, the basic principles of radar are outlined
and briefly explained. Then, common preprocessing techniques are presented in Section 3, whereas
Section 4 emphasizes on the recent progress of DL-based approaches after giving a short introduction. In
Section 5, a comparative study of the most successful approaches and state-of-the-art methods of both
preceding sections based on benchmark data are provided, where the performance, computational effort
and the space complexity is evaluated and discussed in Section 6. Finally, the paper closes by presenting
open research topics, derived by current gaps and challenging issues of the future.

2. Basic Principles

2.1. Radar-based Sensing

The underlying principle of the radar-based detection of targets, in general, is to emit and to
receive electromagnetic waves (RF signals), which contain information about the targets properties.
A common categorization of radar systems is to classify them into systems based on pulse radar or
continuous wave. Both categories have their individual applications with specific advantages and
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disadvantages with regard to distance resolution, velocity resolution, power consumption, technical
equipment, waveform generation, signal processing, etc.

2.2. Continuous Wave Radar

The main characteristic of Continuous Wave Radar systems (CW) is to emit a continuous
electromagnetic wave using a sine-waveform, where the amplitude and frequency remains constant
and to process the wave reflected by the target. Besides information about the reflectability, it contains
information about the target’s velocity due to the Doppler frequency shift. A common variant of this
technique are FMCW radar systems, whose waveform vary in the time-domain.

With regard to HAR, FMCW-based radar systems in the mm-wave domain have significant
advantages compared to CW radar as the suitability for human sensing has been proven by numerous
works in the last two decades [40-42,46,48,50,571:

¢ High sensitivity: For the detection of human motions, especially for the small-scale motions,
e.g. like breathing and gestures, a sensitivity close to the wavelength is required. This can be
achieved when a high center frequency combined with a high bandwidth (B) is used.

e Minimized danger of multipath propagation and interactions with nearby radar systems due to
the high attenuation of the mm-wave RF signal

¢ Distances and velocities of targets can be measured simultaneously, e.g. when triangular
modulation of the chirp signal combined with a related signal processing technique is used.

¢ Independence to thermal noise as the phase is the main carrier containing information about
targets distances

RF device (FMCW radar sensor)

vco N
(Controlled voltage (Power amplifier) == | Antenna
oscillator)
Transmitter
ADC A
(Analog/digital <= | Mixer | €=|| (ownoise | <@==|Antenna
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DSP

(Digital signal === RF signal
processor)

Figure 1. Schematic representation of a FMCW-based radar sensor.

FMCW radar generate a sinusoidal power-amplified RF signal (chirp) by a high-frequency
oscillating unit, where the frequency is varied linearly between two values fnin and fmax in
sawtooth-like pattern over a certain duration T, according to the following function:

df

fmax _fmin = E Ty (1)
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Figure 2.  Time-related characteristics of the chirp signal with sawtooth and triangular
shape modulation.

The constant K = df /dt = B/T; for 0 < t < T; determines the slope of generated signal, whereas
the frequency variation is determined by a linear function. This RF signal is emitted via the transmitting
antenna and the echo signal, which follows from the scattered reflection of the electromagnetic waves
on the objects, are received at the receiving antenna and low noise-amplified. A mixer processes both,
the transmitted and received signal, and generates a low-frequent beat signal, which, in the following,
is preprocessed and used for the analysis.

A linear chirp signal that can be defined within the interval 0 < t < T; by

st(t) = Ate(2”f0t+7r1<t2)j o
is emitted and mixed with its received echo signal to provide the IF signal
siE(t) = AtAre(2nf0td+27thdtfnKtﬁ)j o

which, in the following, is preprocessed and used for the calculation of the feature maps.

In general, human large-scale kinematics, e.g. the bipedal gait, are characterized by complex
interconnected movements, mainly of the body and the limbs. While the limbs have oscillating velocity
patterns, the torso can be characterized by transitional movement solely.

According to the Doppler effect, moving rigid-body targets induce a frequency shift in the carrier
signal of coherent radar systems that is determined in its simplest form by

20 T
fo= -2t @
c
where v is the relative velocity between the source and the target and fr the frequency of the transmitted
signal. While the torso induces more or less constant Doppler frequency shifts, the limbs produce

oscillating sidebands, which are referred to as micro-Doppler signatures [33]. In the joint time-frequency
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plane, these micro-Doppler signatures have distinguishable patterns, which make them suitable for
ML-based classification applications. An example of can be found in Figure 3.

Figure 3. Micro-Doppler signature (spectrogram) of a walking person (from [5]).

Micro-Doppler signatures are derived by time-dependent frequency-domain transformations.
The first step is to transform the raw data of the beat signal to a time-dependent range distribution,
referred to as the time-range distribution R(m,n) by the fast Fourier transform (FFT), where m is the range
index and #n the slow time index (time index along chirps).

While the Fourier-transformation is unable to calculate the time-dependent spectral distribution
of the signal, the short-time Fourier transform (STFT) is a widely used method for the linear time-varying
analysis that provides a joint time-frequency plane. In the time-discrete domain, it is defined by the
sum of the signal values multiplied with a window-function, which is typically the Gaussian function
to provide the Gabor transform:

X(m, f) = i x[njwln — m]e 12 ()

n=—oo

Applied to the time-range distribution matrix R(n, m), the time-discrete STFT can be computed by:
N—1 ‘
STFT(p/f) = 2 R[m,l/l]’w[n _ P]e*]ZT[fn/N (6)
n=0

The spectrogram, also referred to as Time-Doppler Spectrogram (DT), is derived from the squared
magnitude of the STFT:

spectrogram{x()} (m, f) = | X(m, f)|? @)

Besides the STFT of the time-range distribution matrix, a FFT using a sliding window along the
slow time dimension obtains time-specific transformation in the time-frequency domain, which are
called range-Doppler distributions (RD).

A modification of the FMCW radar is the Chirp Sequence Radar [71]. It facilitates the unambiguous
measurement of range R and relative velocity v, simultaneously, even in the presence of multiple
targets. To do this, fast chirps of short duration are applied. The beat signals are processed in a
twodimensional FFT to provide measurement of both variables by frequency measurements in the
time domain ¢ and the short-time domain k instead of a frequency and phase measurement, as it is the
case for the regular FMCW radar. This method reduces the correlation between range and relative
velocity and improves the overall accuracy.
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2.3. Pulse radar

While the CW-based radar and its subclasses rely on moving targets to create micro-Doppler
signatures, pulse radar is able to gather range information of non-moving targets, e.g. human postures
by applying short electromagnetic pulses. A modification, which combines principles from both, CW
and pulse radar, is pulse-Doppler radar.

In pulse radar, the RF signal is generated by turning on the emitter for a short period of time while
switching to the receiver after turning of the emitter and listening for the reflection. The measuring
principle is based on the determination of the round-trip time of the RF signal, which has to meet
specific requirements with regard to the maximum range and range resolution that are determined
by the pulse repetition frequency (PRF) or, alternatively, the interpulse period (IPP) and the pulse width
(Tp), respectively. A variant of pulse radar is Ultra-Wideband (UWB) radar, which is characterized by
low-powered signals and very short pulse widths, which leads to a more precise range determination
while having a drawback with regard to the Signal-to-Noise Ratio (SNR).

The reflected RF signals contain intercorrelated information about the target and its components,
i.e. human limbs as well as the surrounding environments by scattering effects in conjunction with
multipath propagation. Due its high resolution, small changes in human postures create different
measurable changes in the shape of the reflected signal. Using sequences of preprocessed pulse
signatures, specific activities can be distinguished between each other and used as features for the
setup of classification models.

In [70], the authors developed and investigated a time-modulated UWB radar system to detect
adult humans inside a building for security purposes. In contrast to static detection, [44] used the a
bistatic UWB radar to collect data of eight coarse-grained activities for human activity classification.
The data were collected at the center frequency of 4.7 GHz with a resolution bandwidth (RBW) of 3.2 GHz
and a RBF of 9.6 MHz, which were reduced in dimensionality by the Principal Component Analysis
(will be explained in the next chapter) and used within a classification task based on Support Vector
Machine (SVM) after a manual feature extraction using the histogram of principal components for a
short time window.

2.4. Preprocessing

In general, returned radio signals suffer from external incoherent influences, i.e. clutter and noise,
and are therefore unsuitable for the training of machine-learning based classification methods. In
addition to this aspect concerning the data quality, the success as well as the performance of classification
methods depends on the data representation, the data dimensionality and the information density. Thus,
it is necessary to apply signal processing techniques in order to enhance the data properties prior to
the training and classification. The next subsection give a brief description of settled preprocessing
methods.

2.4.1. Clutter

Radio signals reflected by the ground lead to a deterioration of data quality in general as it
contains information unrelated to the object or the task. The difficulty for the determination and
removal depends strongly on the situational conditions.

In static environments, the clutter can be removed by simply subtracting the data containing
the relevant object from the data that were collected previously, where the object was missing [44].
Nevertheless, quasi-static or dynamic environments are characterized by changing conditions as they
occur for mobile applications, storage areas etc. can affect the data.

Numerous works that emerged in the latest years, based their work on different approaches, e.g.
sophisticated filters using eigenimages derived by Singular Value Decomposition (SVD) for filtering,
combinations between Principal Component Analysis (which will be explained in Subsection E) as
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well as filtering in the wavenumber domain using predictive deconvolution, Radon transform or f-k
filtering [74,75].

2.4.2. Denoising

One of the major problems for machine learning applications is called overfitting. It occurs when
the model has a much higher complexity or degree of freedom with regard to the input data that was
used for training. It leads to a perfect fitting to the training data but fails when other data, i.e. for
testing, are considered.

To overcome this lack of generalization, when other factors can be excluded (e.g. the amount of
data is sufficient), denoising is one the techniques to improve the accuracy. Using Low-pass filters,
convolutional filters or model-based filters are the most common methods to reduce noise, which may
mislead the algorithm to learn patterns that do not refer to the process itself.

Apart from that, adding noise may increase the robustness. In [61], Denoising Autoencoders (DAE)
are used, where noise is added to the input data that leads to an overall increase of the models
generalization ability. The most common method is to add isotropic Gaussian noise to the input data [62].
Another way is to apply masking noise or salt-and-pepper-noise, which means that a certain fraction of the
input data is set to zero or changed to its corresponding maximum or minimum value, respectively [62].

2.4.3. Normalization

As the amplitudes of the target signatures depend substantially on the distance between sensor
and the target, the normalization of the data is required in order to maintain consistent statistical
properties, e.g uniform SNR, which are required for the training of ML models.

2.4.4. Data Reduction

The Principal Component Analysis (PCA) is a common method used for the reduction of the data
dimensionality, which is beneficial for algorithms to learn efficiently [40]. Its main idea is to preserve
the maximum variance of the data while projecting them onto a lower dimensional hyperplane using
the first eigenvectors, called the principal components, where every predominant subset of principal
components defines a plane, which is orthogonal to the following principal component (see Figure 4).

range (kx3)

X3

Figure 4. Data distribution in 3D space and projection onto axes of principal components.

Due to its increased numerical stability, the Singular Value Decomposition (SVD) is a typical method
for the calculation of the principal components V = vy ... 0y

X =usv’ 8)
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To obtain a reduced dataset, the first m principal components, where the cumulated explained
variance ratio exceeds a certain target threshold, are selected to form a matrix, which is multiplied by
the original data matrix:

Xred =XV (9)

2.4.5. Whitening

Closely related to the normalization, whitening refers to a more generalized method, where a
transformation is applied to input data so that the diagonal elements of the covariance matrix are all
ones (also called sphering). This method reduces the correlation between the input data and improves
the efficiency of the learning algorithm. The most common methods in connection with that are the
Principal component analysis (PCA), the Zero-Phase Component Analysis Whitening (ZCA) and the Cholesky
Decomposition [72,73].

The Prinicipal Component Analysis is the most popular procedure for decorrelating data, which
can be used to reduce the dimensionality of data while the variance of data is maximized. With regard
to twodimensional data structures, like e.g. images, this is achieved by determining the covariance
matrix, which is decomposed using the SVD into two orthogonal matrices U, VT and one diagonal
matrix S, where the diagonal matrix contains the eigenvalues. Taking only the first n components of
the eigenvector matrix along with their corresponding eigenvalues it is possible to obtain a compressed
version of the original image. Here, it is used to compute the conversion matrix Wpca, which can be
multiplied with the original matrix to achieve decorrelation:

T = Cov(X) = USV"T (10)
Weca = (S+1e)"'/2U" (11)
Xpca = WpeaX (12)

The small constant €, which is usually around 1.0 - 1072 is inserted to avoid large coefficients that are
caused by the reciprocal of very small eigenvalues. The zero-phase transformation

Wyca = U(S+1e)~V2Uu” (13)
Xzca = WzeaX (14)

is a whitening procedure, where the transformation leads to uncorrelated data with, in contrast to
the PCA, unit variances and is computed using the PCA and an additional multiplication with the
eigenvector matrix U.

2.5. Feature Engineering

In general, the selection and extraction of features during feature engineering is crucial for the
success of machine learning applications. The term selection refers to the identification of strongly
influencing measurable properties with regard to the mathematical task while extraction deals with
the dimensionality reduction when using compositions of features. For example, in [40], the PCA
is used to determine the histogram of the most influencing PC for given time window, from which
the mean and variance are used as features. Another example is [37], where the number of discrete
frequency components are determined using spectrograms that contain micro-Doppler signatures,
which provides useful information about the location of small-scale motions.

Classical techniques, e.g. Linear Regression, Decision Trees, Random Forests, k-Nearest Neighbor,
etc. rely heavily on handcrafted feature engineering, which implies a certain experience and
domain-knowledge, while DL methods use algorithms that select useful features automatically, which,
as a main drawback are hardly interpretable by humans and indirectly evaluable.
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2.6. Challenges

Besides the numerous convincing applications of machine-learning methods to human activity
recognition, there are still topics that haven’t been investigated yet or at least, have only been
partially addressed. In general, these challenges can be divided into source-related problems and
methodological problems that are presented in the following subsections.

The first source-related problem deals with the fact that related works pursue different aspects of
human activity recognition and rely on own data acquisition, which is depending on the activities the
authors focus. Different data sets with varying activities of different scale constitute a major problem,
as the condition for comparability is simply not given, e.g. [40-42,48,50,53,57,59] use coarse-grained
activities for their investigation while [26,46] use fine-grained activities as a basis for their works.
Especially, the last point states a problem, since the movements are linked to weaker micro-Doppler
signatures in terms of power.

Another problem is that many activities of both degrees of fineness classes have a certain similarity,
which has been proven, e.g. by [40], where data collected from coarse-grained activities were used for
a SVM-base binary classification problem and activities like punching were confused with running.

Among other factors, every activity has its unique micro-Doppler signature, so machine
learning-based classification models are trained to distinguish between the specific activities, but not
for the transitions between them, which leads to performance losses especially for online applications.

Human activities can be broadly classified into two main categories: Coarse-grained and
fine-grained activities. For constant configurations regarding data acquisition, this leads to different
magnitudes and distributions of local variations, which lead to a different classification accuracy.

As humans have individual physical properties due to genetics, age, sex, fitness, disabilities,
consequences of illnesses or surgeries, etc., which change over time, the datasets will also have
variances in the amplitude or time-domain, which leads to individual, temporal micro-Doppler
signatures.

In general, micro-Doppler signatures contain information of the person activity characteristics.
Besides the difficulties mentioned above, the complexity of the classification task is severely affected
by the number of subjects, when the classification is not broken down to subordinate, composite
classification tasks based on datasets for every single individual. This problem is exacerbated by
different activities being performed simultaneously.

Many human activities consist of sequential, subdivided activities, e.g. lifting a blanket, rotating
from the horizontal into a sitting position and standing up is connoted with the wake up process. As
the whole sequence is required to form the dataset for that specific activity, the segmentation plays an
important role for the data preprocessing.

As single activities lead to similar data sets for each repetition, the complexity of the classification
task is increased when the data sets are collected from concurrent activities. Signatures containing
smeared patterns lead to data sets with ambiguous characteristics of high variance.

Models for classification problems rely on large amounts of data for the training and validation,
which require a consistent annotation. While for experimental conditions this is not the case, data
collection from public sources for an adaptive online application have to be labelled.

Due to clutter, the data quality is strongly degraded by the presence of nearby objects, which
reflect fractions of the emitted power to the receiver by multipath propagation. For mitigation, data
from the environment are collected and used for the preprocessing. For mobile applications, this is a
crucial topic as the surroundings do not remain constant.

The handcrafted selection of significant unique features is one of the major problems of classical
machine learning classification problems, as this requires time consuming efforts to find distinguishable
patterns in the data, so that the risk for the confusion of similar activities is significantly reduced.

Data used for the training are collected by repeating executions of planned activities by multiple
subjects, e.g. running, jumping, sitting etc. Unplanned, uncomfortable actions, e.g. falling, are much
rarer events, which leads to unequal class batch sizes.
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3. Review of Methods

3.1. Support Vector Machine

The numerically optimized and generalized method was developed by Boser, Guyon and Vapnik in
the nineties [49] while the basic algorithm behind Support Vector Machines (SVM) was introduced
by Vapnik and Chervonenkis in the early sixties [51]. With regard to its application to classification
tasks, the main idea is to introduce hyperplanes using a so-called kernel-trick, which maps points in a
nonlinear way into a higher-dimensional space, so that the margin between those and the hyperplanes
is maximized increasing their separability. Its suitability to human activity recognition classification
tasks and great potential was confirmed by numerous authors.

In [40], a bistatic UWB radar system working at 4.3 GHz has been used to obtain datasets of
time-based signatures of human interaction with the radar signal to train SVM based on the one vs. one
method for the classification of seven activities that have been performed by eight subjects: walking,
running, rotating, punching, crawling, standing still and a transition between standing and sitting.
The data was significantly reduced by 98.7 % using the PCA, where the main 30 coefficients have
been selected. The classification accuracy reached only 89.88 % due to difficulties resulting from the
confusion as certain activities have similar micro-Doppler signatures.

In a recent study, Pesin, Lousir and Haskou [42] studied radar-based human activity recognition
using a sub-6GHz and a mmWave FMCW radar system. Based on SVD, three-dimensional features,
consisting of the minimum, maximum and the mean function of the matrix X, were derived from
range-time-power signatures and used for the training of a Medium Gaussian SVM, which was applied
to classify three different activities (walking, sitting, falling). With an average classification accuracy of
89.8 % for the mmWave radar system as well as 95.7 %, it was shown that radar systems with a higher
resolution do not necessarily lead to a better classification.

3.2. Convolutional Neural Networks

Since their introduction in the 1980s by Yann LeCun, Convolutional Neural Networks (CNN) gained
importance in science, especially in the signal processing domain. As for other scientific fields, e.g.
computer vision or speech recognition, the application of CNN has been carried for human activity
recognition by numerous works in the last decades [40,41,48].

Convolutional Neural Networks are architectures that consist of stacked neural layers of
certain functional types. The basis is formed by sequences of Convolutional layers and pooling layers.
Convolutional layers are sets of convolutional filters, which connect neurons of the current layer with
local sections (receptive fields) of the previous layer or input layer (see Figure 5). The filters apply a
convolution based on the size of the receptive fields, the stride and the weights to the neurons of the
previous layers, which is called feature extraction, in order to create feature maps using activation functions,
e.g. ReLU, sigmoid, tanh etc. Feature maps contain information about the most active neurons with
regard to the specific filter. The two-dimensional discrete convolutional is applied using the following
general formula

Sli,jl = (I« K)[i,j] = Y_) _I[i 4+ m,j+ n] - K[m,n] (15)

m n

where K is the kernel along with the indices m, n and I is the input or preceding layer with the indices
i, j, accordingly.
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Figure 5. Convolutional layers.

The determination of the weights of a filter is the main task of the learning process and in
contrast to fully-connected networks (FCN), this structure reduces the amount of weights and therefore
the computational effort significantly and preserves a certain degree of generalization. Pooling
layers perform a subsampling task in order to reduce the amount of information and therefore the
computational load and to increase the degree of invariance towards slight variations of the data of
previous layer. The most common pooling layer types are the maximum pooling layer and average pooling
layer, where the first one selects the neuron of the highest value within its specific receptive field and
the latter takes the average value of all neurons of the receptive field of the previous layer. At the end,
fully connected layers connect the neurons that contain the results of the convolutional process to the
neurons of the output layer of a classification task by flattening. The degree of generalization can be
increased by inserting dropout layers, which reduce the number of neurons.

Seyfioglu, Ozbayoglu and Giirbiiz [53] applied multiclass SVM, AE, CNN and CAE to classify
12 aided and unaided, coarse-grained human activites. Using a 4.0 GHz CW radar system to create
spectograms, domain-specific features, e.g. cadence velocity diagrams (cvd) among non-domain
features, e.g. cepstral coefficients, LPC and DCT were derived. The sample sizes ranges from 50
(sitting) to 149 (wheelchair) for each class. The CAE-based approach achieved the highest accuracy of
94.2 %, followed by the CNN (90.1 %), the AE (84.1 %) and multiclass SVM (76.9 %).

Singh et al. [48] used time-distributed CNN enhanced by bidirectional LSTM to classify five
human full-body activities, consisting of boxing, jumping, jacks, jumping, squats and walking,
based on mm-wave radar point clouds. The data set was collected via a commercial-of-the-shelf
FMCW radar system in the 76-81 GHz frequency range that is capable of estimating the target
direction. The data set consists of 12,097 samples for training, 3,538 for testing and 2,419 for validation,
where each sample consists in a voxelized representation with a dimensionality of 60 x 10 x 32 x 32.
Among the other ML-based methods applied (SVM, MLP, Bidirectional LSTM), the achieved accuracy
of 90.47 % is the highest. However, the main drawback of this method is the increased memory
requirement for the voxelized representation of target information, which is not a concern when using
micro-Doppler signatures.

Besides Stacked Autoencoders and Recurrent Neural Networks, Jia et al [41] applied CNN to
a data set that has been collected by a FMCW radar system working at 5.8 GHz. The dataset was
used to build features based on compressed data of the dimensionality 32 x 32 x 3 for range-time,
Doppler-time amplitude and phase, and cadence velocity diagram [41]. The data were collected from
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83 participants performing six activities, consisting of walking, sitting down, standing up, picking
up an object, drinking and falling, which were repeated thrice to deliver 1,164 samples in total. An
accuracy of 92.21 % was achieved for the CNN using Bayes optimization, while the SAE yielded
91.23 %. The SVM-based approach yielded 95.24 % after a feature adaptation using SBS while the
accuracy of the CNN was improved to 96.65 % by selecting handcrafted features.

Huang et al. [63] used a combination between a CNN and a Recurrent Neural Network (LSTM)
model as a feature extractor from point-cloud-based data and a CNN to extract features from
range-Doppler maps. Outputs from both models were merged and fed into a FCN-based classifier
to classify the inputs into 6 activities, consisting of in place actions, e.g. boxing, jumping, squatting,
walking, and high-knee-lifting. The results show a high a very high accuracy of 97.26 %, which is
higher than using the feature extraction methods in separate approaches.

In [64], a CNN-model was developed using two parallel CNN-networks whose outputs are fused
into a FCN for classification (DVCNN). This approach along with an enhanced voxelization method
led to high accuracies, which are 98 % for fall detection and 97.71 % for activity classification.

Chakraborty et al. [65] used open-source pre-trained DCNN, i.e. MobileNetV2, VGG19, ResNet-50,
InceptionV3, DenseNet-201 and VGG16 to train with an own provided dataset (DIAT- yRadHAR) that
consists of 3,780 micro-Doppler images comprising different coarse-grained military-related activities,
e.g. boxing, crawling, jogging, jumping with gun, marching, and grenade throwing. An overall
accuracy of 98 % proved the suitability of transfer learning for HAR.

3.3. Recurrent Neural Networks

Since the works of Rumelhart, Hinton as well as Williams [77] and Schmidhuber [76], Recurrent
Neural Networks (RNN) and derivates, i.e. Long-Short Term Memory Networks have been widely applied
in the fields of natural sciences and economics. In contrast to CNN, which are characterized as neural
networks working in a feedforward manner since their outputs are depending strictly on the inputs,
RNN have the ability to memorize their latest states, which make them suitable for the prediction of
temporal or ordinal sequences of arbitrary lengths. They consist of interconnected layers of neurons,
which use the current inputs and the outputs of the previous time steps to compute the current
outputs with shared weights allocated to the inputs and outputs separately using biases and nonlinear
functions. By stacking multiple RNN layers, a hierarchy is implemented, which allows the prediction
of more complex time-series.

An exemplary structure of a RNN is presented in Figure 6. In the left part, the network
architecture is presented in a general notation, while in the right part its temporal unrolled (or
unfolded) presentation is illustrated, where each column represents the same model, but for a different
point in time. The current input x; is required to update the first hidden state /i of the node i, where
i and t denotes the node index and the time instance, respectively, along with the previous state of
the same node using the weighting matrices U, W' and a nonlinear activation function for the output.
Then, the output of the node is passed to the next hidden state /™! as an input using the weighting
matrix V’. Last but not least, the models output is obtained using another nonlinear activation function.
This leads to a structure of interlinked nodes that are able to memorize temporal patterns, where the
number of nodes determines the memorability.

Besides their enormous potential for the prediction of complex time series, RNN suffer from two
main phenomena, called unstable gradients and vanishing gradients, which limits their capabilities. The
first phenomenon occurs when a complex task affords many layers, which lead due to the accumulation
of increasingly growing products to exploding gradients while the second refers to the problem that the
cells, due to their limited structure, tend to reduce the weights of the earliest inputs and states.
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Figure 6. Stacked RNN: Generalized structure and temporal unrolled variant.

3.4. Long-Short Term Memory (LSTM)

In 1997, Hochreiter and Schmidhuber [78] introduced LSTM cells, which have been investigated
and enhanced by additional works of Graves, Sak, Zaremba [80-82]. In contrast to the RNN, Long
Short-Term Memory networks are efficient in managing longer sequences and able to reduce the
problems that lead to the restricted use of simple RNN. A LSTM cell contains short-term and long-term
capabilities, which enables the memorization and recognition of the most significant inputs using three
gate controllers (see Figure 7).
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| . Ct
| KJ\ |
| |
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Figure 7. Standard respresentation of a Peephole Long Short-Term Memory cell.

The input gate controls which fraction of the main layer output using the input is used for the
memory. For Peephole Convolutional LSTM, which is a variation of the standard Peephole LSTM to
be suitable for processing images, it is calculated using the current input x;, the previous short-time
memory /1;_1 and the past long-time memory c;_1 that are multiplied with the corresponding weighting
matrices Wy ;, Wy, ;, and W, ; using matrix multiplication or element-wise multiplication (denoted as *
and o, respectively) and passed to a nonlinear function along with a bias term (see Eq. 17). In contrast
to the input gate, the forget gate defines the fraction of the long-term memory that has to be deleted.
Similarly, the input and both memory inputs are multiplied with the matrices W, ¢, Wj, r, and Wy ¢,
respectively, and added to another bias term, prior to being passed to the same nonlinear activation


https://doi.org/10.20944/preprints202311.1347.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 November 2023 doi:10.20944/preprints202311.1347.v1

14 of 31

function (see Eq. 16). This forms the basis for the updates of the memory states, where the current
long-time memory c; (or cell state) is calculated as the sum of the previous long-time memory c;_
being weighted by the forget gate and the new candiate for the cell state, which is the tanh-activated
linear combination of the weighted input and the previous short-time memory being weighted by
the input gate (see Eq. 18). Finally, the output gate determines the part of the long-term memory that
is used for the current output y; and as the short-term memory for the next time step. For this, the
current short-time memory of the LSTM-cell is calculated by the tanh-activated current long-time
memory c; weighted by the output gate, which itself is calculated using the current input, the past
short-time state and the current long-time memory state (see Egs. 19 and 20).

ft=0(xtx Wy +h 1 %Wy r+crq0Wr+bp) (16)
i = o (xe* Wy + 1% Wy +cp10 Wei +b;) (17)
ct = frocp—q +ipotanh(xp x Wy e + g % Wy o + be) (18)
ot = 0 (xt * Wyo + 1% Wy o +ct 0 Weo + bo) (19)
hy = o o tanh(c;) (20)

Vandermissen et al. [46] used a 77 GHz FMCW radar to collect data of nine subjects performing
12 different coarse- and fine-grained activities, namely, events and gestures. Using sequential
range-Doppler and micro-Doppler maps, five different neural network types, consisting of LSTM,
1d-CNN-LSTM, 2d-CNN, 2d-CNN-LSTM and 3d-CNN, have been investigated using the 1,505 and
2,347 samples for events and gestures, respectively, with regard to performance, modality, optimal
sample length and complexity. It was shown that the 3d-CNN resulted in an accuracy of 87.78 % for
the events and 97.03 % for the gestures.

Cheng et al. [57] derived a method for through-the-wall classification and focussed on the problem
of unknown temporal allocation of activities during recognition, which has a significant impact on the
accuracy. By employing Stacked LSTMs (SLSTM) embedded between two fully connected networks
(FCN) and using randomly cropped training data within the Back Propagation Through Random Time
(BPTRT) method for the training process, an average accuracy of 97.6 % was achieved for the recognition
of four different coarse-grained activities (punching three times, squat and pick up an object, stepping
in place, raise hands into horizontal position).

In [59], a SFCW radar system was employed to produce spectrograms for multiple frequencies
collecting data of 11 subjects that were performing six different activities with transitions. By comparing
single-frequency LSTM and Bi-LSTM with their multi-frequency counterparts, it was shown that the
classification performance was significantly higher, resulting in 85.41 % and 96.15 % for the accuracy.

Due to their ability to memorize even longer temporal sequences, what applies for a wide range of
human activities, LSTM networks are in general suitable for radar-based HAR as long as the limitations
are considered. The limits that RNN also have to deal with, i.e. the numerical problems with the
determination of gradients, set up constrains to the sample lengths of input data [46]. Moreover, in
comparison to other techniques, LSTM require a high memory bandwidth, which can be a major
drawback for online applications if hardware with limited resources is used [79].

3.5. Stacked Autoencoder

For a variety of applications, dense or compressed representations of input data using unlabeled
data are required to reduce the dimensionality based on an automatic extraction of significant features.
Autoencoders and modifications of those have proven their suitability for a variety of fields, especially
in the image processing domain. A basic Autoencoder (AE) consists of an encoder, which determines a
latent representation of the input data in one hidden layer of much lower dimensionality (codings), and
the decoder, which reconstructs the inputs based on these codings. Using Stacked Autoencoders (SAE)
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that have multiple symmetrically-distributed hidden layers (stacking) the capability to cover inputs,
which require complex codings, can be extended (see Figure 8).
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Figure 8. Example of a stacked autoencoder.

Jokanovic et al. [8] used SAE for the feature extraction and a softmax regression classifier for fall
detection. Besides the positive effect of the proposed preprocessing method, the results show a good
accuracy of 87 % accuracy.

Jia et al. [41] used SAE, besides SVM and CNN, to evaluate the performance using multidomain
features, i.e. range-time (RT), Doppler-time (DT) and Cadence Velocity Diagram (CVD) maps based on
the open dataset [35] and an additional dataset. It could be shown that for different feature fusions
CNN was the most robust method, followed by the SAE and lastly SVM.

3.6. Convolutional Autoencoder

When useful features of images found the basis for an application, Convolutional Autoencoders
(CAE) are better suited than SAE due to their capability of retaining spatial information. The high-level
structure equals that of a simple Autoencoder, namely the sequence of an encoder and a decoder, but
in this case, both parts contain CNN (see Figure 9).

Convolutional part Deconvolutional part
(Encoder) (Decoder)

/

Conv.,| | MaxPool. | [MaxPool. | [Flatten| | Unpool. | |Unpool. | |Deconv., | [Reconstructed
input

RelLu || Conv., Conv., Deconv., Deconv., Relu,
ReLu RelLu Relu RelLu Softmax

Figure 9. Example of a Convolutional Autoencoder.

Campbell and Ahmad [56] pursued an augmented approach, where a Aonvolutional Autoencoder
was used for a classification task using local-feature maps for the convolutional part while the whole
signature is for a multi-headed attention part (MHA). The MHA is an aggregation of single-attention
heads, each head being a function of the three parameters query, key and value. The dataset
was established by using a 6 GHz Doppler radar to collect data from five subjects based on the
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coarse-grained activities fall, bend, sit and walk [56], where each activity was repeated six times. The
study was carried out for different training and test split sizes. From the results, it was derived that
the attention-based CAE required less data for training than the standard CAE of up to three layers
and achieved an accuracy of 91.1 % for the multi-headed attention using a multi-filter approach.

A comprehensive overview over key articles with regard to their radar technology domain, data,
classification method, and achieved results is provided in the Table A1, which can be found in the
Appendix A.

3.7. Transformers

In 2017, Vaswani et al. introduced a new deep learning model, called transformer, whose
purpose was to enhance encoder-decoder models [66]. Originally derived for sequence-to-sequence
transductions, e.g. in Natural Language Processing (NLP), transformers gained importance in other fields,
too, e.g. image processing due to their ability to process patterns as sequences in parallel, to capture
long-term relationships and, therefore, to overcome the difficulties that CNN and RNN-based models
have. They consist of multiple encoder-decoder sets, where the encoder is a series of a self-attention
layer and a feed forward neural network, while the decoder has an additional layer, the encoder-decoder
attention layer, which helps to highlight different positions while generating the output.

Self-attention mechanisms are the basis of transformers. In the first step, they compute internal
vectors (Query, Key, and Value) based on the products of input vectors and weighting matrices, which
are then used for the calculation of scores after computing the dot products between the query vectors
and the key vector of all other input vectors. The scores can be interpreted as the focus intensity. Using
the softmax function after a normalization, the attention is calculated as the weighted sum of all value
vectors. The weighting matrices are the entities that are tuned during to training. Using multiple
(Multihead) self-attention mechanisms (MHSA) in parallel, it is possible to build deep neural networks
with complex dependencies.

Transformer have been applied in radar-based human activity as well. In [67], a transformer
was trained as an end-to-end-model and used for the classification of seven coarse-scaled tasks, i.e.
standing, jumping, sitting, falling, running, walking, and bending. In comparison with the two other
benchmark networks, the accuracy was the highest with 90.45 %. Focussing on making transformers
more lightweight, in [68], another novel transformer was developed and evaluated based on two
different datasets of participants performing five activities, e.g. boxing, waving, standing, walking,
and squatting with an accuracy of 99.6 % and 97.5 %, respectively. Huan et al. introduced another
lightweight transformer [69], which used a feature pyramid structure based on convolution, which
was combined with self-attention mechanisms. The average accuracy for the public and own dataset
was 91.7 % and 99.5 %, respectively.

4. Comparative Study

As the investigation of performance of recently investigated DL-based approaches is obtained
by individual studies, which rely mainly on differing data sets, this paper attempts to enforce
comparability by establishing a common basis using the same dataset for a variety of DL methods.
In the first study, all models are trained and evaluated using the same dataset and good practical
knowledge. An additional study is conducted to highlight the importance of a careful preprocessing,
i.e. the adjustment of color value limits of the feature maps using threshold filtering, where the lower
limit is varied using three different offsets, i.e. -30, -50, and -70 with regard to the maximum color
value, and the influence on the classification accuracy is investigated. A second study is conducted
where the influence of compression on the feature maps on the accuracy of the selected models is
investigated for three compression ratios.
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4.1. Methodology

The methodology is expressed through a flowchart that describes the basic procedure (see
Figure 10). In the first step of the preprocessing, the dataset is used to generate the images containing
the feature maps, i.e. time-Doppler maps. After scaling and trimming, the color levels are adapted. In
order to reduce dimensionality, the colors are converted to grayscale. Using compression, the image
size is reduced. Whitening is performed to decorrelate the data without reducing the dimensionality.
Hereafter, the dataset is split into training, validation and test data sets. In the model setup, the model
for the classifier is defined and, depending on the model architecture, an additional model for the
pretraining is defined, if necessary. The procedure closes with the evaluation of the model. Since the
classes are balanced, the performance metrics accuracy, recall and the confusion matrix are suitable for
evaluation.

Parameter definition

Feature map generation (STFT)

Scaling

Trimming

Color level adaption
Color conversion

Compression

Whitening

Normalization

PREPROCESSING

Dataset splitting

Model setup
Layer setup

Loss function definition

Compilation

|
(RNN (LSTM, GRU), CNN | CAE)

MODELLING

Figure 10. Unified procedure flowchart.
4.2. Dataset

In this study, the open dataset Radar signatures of human activities [35] will be used, which was
lately the basis by Zhang et al. [83] to produce hybrid maps and to train the CNN architectures LeNet-5
and GoogLeNet for classification and benchmarking using transfer learning, respectively. Jiang et al. [54]
used this dataset for a RNN-based classification using a LSTM-based classifier, which achieved an
average testing accuracy of 93.9 %. Jia et al. [41] used this dataset for the evaluation of SVM-based
classification with varying kernel functions achieving accuracies between 88 % and 91.6 %.

The dataset consists of a total of 1,754 data samples, stored as .dat files, which contain raw
complex-valued radar sensor data of 72 subjects in the age of 21 to 88 who are performing up to six
different activities, i.e. drinking water (index 0), falling (index 1), picking up object (index 2), sitting
down (index 3), standing up (index 4), and walking (index 5) [35] (See Table 1). The data were collected
using a 5.8 GHz Ancortek FMCW radar, which has a chirp duration of 1 ms, a bandwidth of 400 MHz,
and a sample time of 1 ms. Each file, which is either about 7.5, 15 or 30 MB in size, contains the sampled
intermediate radar data of one particular person performing one activity at a specific repetition.
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Table 1. Contents of open dataset radar signatures of human activities [35].

No. Date Number of Number of Number of Number of
files activities subjects repetitions
1 Dec. 2017 360 6 20 3
2 Mar. 2017 48 6 4 2
3 Jun. 2017 162 6 9 3
4 Jul. 2018 288 6 16 3
5 Feb. 2019 306 6 17 3
6 Feb. 2019 301 5 20 3
7 Mar. 2019 289 5 20 3

It must be noted that there is a class imbalance. The activity class falling (index 1) consists of a
total of 196 sample images, while the others have 309 or 310 sample images.

4.3. Development Platform

The study was conducted using an Intel Core i7-1165G7 processor that is accompanied by an Intel
Iris Xe graphics card. The embedded graphics card is capable of using 96 execution units at 1,300 MHz.
16 GB of total workspace is available.

The methods were developed using Python-based open source development plattforms and APIs,
i.e. TensorFlow, Keras, and scikit-learn, among basic toolboxes, e.g. numpy, pandas and others.

4.4. Data Preprocessing

The data was converted to Doppler-time maps in the JPEG-format using a Python script that was
developed considering the hosted MATLAB file. The function transforms the sampled values of the
raw radar signal into a spectrogram. In the first step, the data is used to calculate the range profile over
time using a FFT. Then, a fourth-order Butterworth filter is applied and the spectrogram is calculated
using a second Fourier-tranformation being applied on overlapping time-specific filtering windows,
i.e. Hann window. Subsequently, the spectrograms are imported in the Python-based application and
transformed to images of 224 x 224 x 3 px in size after scaling. Trimming the edges and adapting the
color levels is important to remove weak interfering artifacts and to highlight characteristical patterns,
caused by frequency leakage or non-optimized windowing. In the next step, they are converted to
grayscale images to reduce dimensionality, since the color channels do not contain any additional
information in this case. A compression using a truncated SVD is applied to reduce data size while the
main information is kept.

Walking Sitting down Standing up

F{01.122017 P: 361 Act: walking | No: 01 (1P38AV1RO1.da

| No: 02 (3P36AU3R02.dat)

FL01.122017 1 P:36  Act:standing up
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Picking up object
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Figure 11. Images of Micro-Doppler signatures (spectrograms) for six actvities (from [5]).
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Using the ZCA method, the images are whitened. Dimensionality reduction is discarded to avoid
significant loss of information. As the colors values range from 0 to 255, a normalization is applied
afterwards that scales the values from 0 to 1 in order to improve the performance.

4.5. Model Setup

For the assessment, a variety of models out of three deep learning classes were implemented:
Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and Convolutional
Autoencoders (CAE) with fully-connected networks.

The CNN model consists of three instances of 2D Aonvolutional layer, where each of them is
followed by maximum pooling layer and a dropout layer. Hereafter, the network closes with a flattening
layer for implementing vectorization and connecting to two fully-connected layers (see Figure 12). It
was implemented based on the Keras Sequential API using the layer functions Input, Conv2D, MaxPooling,
Dropout, Flatten, and Dense, the optimizers SGD and Adam as well as the loss function Categorical
Crossentropy from the packages keras.layers, keras.optimizers, and keras.losses, respectively.

Max. Pooling Max. Pooling | | Fully-Connected Fully-Connected
+ Dropout + Dropout + RelU + Softmax
Rate: 0.4 Rate: 0.4 Units: 256

\ .

|
Input: Image 2D-Conv. + RelU 2D-Conv. + RelU | | 2D-Conv. + RelU Max. Pooling Output: Class
242x242x3 Filters: 8 Filters: 16 Filters: 32 + Dropout 1.6

Kernel: 3x3 Kernel: 3x3 Kernel: 3x3 Rate: 0.4
Stride: 1 Stride: 1 Stride: 1
Padding: valid Padding: valid Padding: valid

Figure 12. Selected CNN structure.

The increasing number of filters of each Convolutional layer helps to build up hierarchical features
and to prevent overfitting since the first layers capture low-level information while the last ones reach
a higher level of abstraction but higher complexity and becoming smaller to enforce generalization.
The 3-by-3-kernel of stride 1 without padding is required to halve the dimensions of the feature maps
until the smallest size is reached that produces good results, which is 28 x 28. The values for the
penalty function of the regularizers for the kernel, bias, and activity are set to be 1.0 - 1072, 1.0 - 1074,
and 1.0 - 1075, which are good empirical values to start with. The activation function was selected
to be Rectified Linear Units (ReLU) for faster learning. The comparably average dropout rate of 0.4 is
well-suited for this network, since the aforementioned regularizers must be taken into account. The
first downstream FCN, which consists of 212 nodes and is connecting the last maximum pooling layer
with the output FCN, is used for the classifier. It is required to transform the spatial features of the
feature maps into complex relationships. The output FCN has six nodes, each one representing one
class and using a Softmax activation function for determining the probability of class assignment for
the input image.

RNN models were realized by networks of simple RNN, LSTM, Bidirectional LSTM as well as
Gated Recurrent Units (GRU), which are implemented based on the Keras Sequential model, too, using
the layer functions SimpleRNN, LSTM, GRU, Bidirectional, and Dense from the package keras.layers.

The number of nodes of the first part, which is the recurrent network, was uniformely set to 128,
which leads to good results and prevents overfitting. For activation, the hyperbolic tangent function
(tanh) was selected, which is associated with bigger gradients and, in comparison with sigmoid function,
faster training. Each network is followed by a fully-connected layer to establish the complex nonlinear
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relationships that is required to connect the time-specific memory with the classes. Using a softmax
function for activation, the probabilities are outputted for each class.

The autoencoder-based model architecture is implemented based on the CAE (see Figure 13). In
contrast to the aforementioned implementation, it uses the Keras functional API, which is more flexible,
as it allows branching and varying numbers of inputs and outputs. The branching option is required to
define the encoder and decoder part independently from each other, since it requires two consecutive
training sessions. The first training (pretraining) is performed on the complete autoencoder model that
consists of the encoder part and the decoder part, to train the feature-extracting capabilities. After that,
the trained weightings and biases are transferred to a separate model that consists of the encoder part
and a FCN, which implements the classifier, to output the class probabilities.

Input: Image Max. Pooling Max. Pooling ZP-Conv. + RelU
242x242x3 Size: 2x2 Latent Size: 2x2 Filters: 16
Pad.: valid vector Pad.: valid Kernel: 3x3
Stride: 1
\ A Padding: same
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A IS ~4 . i 242x242:3
' S
\

4s 1
ﬂ, Encoder || Decoder
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Figure 13. Selected CAE-based structure.

4.6. Training

Using a percentage of 70 % for the size of the training subset on the total training dataset, the
training was carried out based on cross-validation using batches of 32 samples for up to 300 epochs.
For the validation, a percentage of 20 % was defined, hence 10 % of the data set remain for the test
subset. The model-specific numbers of parameters are listed in Table 2.

Depending on the network, the optimizer was either based on the Stochastic Gradient Descent
algorithm (SGD) or Adam (adaptive moment estimation) using individual and optimized learning rates
for every network, varying between 1073 and 1074

Table 2. Number of parameters for the investigated methods.

Method Trainable Non-trainable Total

CNN 4,853,174 0 4,853,174
LSTM 494,086 0 494,086
Bi-LSTM 988,166 0 988,166
GRU 371,718 0 371,718
CAE 25,691,910 94,144 25,786,054

5. Results

For the evaluation of the performance, the standard ML scores accuracy, recall, precision, F1-score
were selected. Due to the class imbalance, i.e. unequal sample size between the activity falling (index 1)
and the others, the measures accuracy, recall, and precision will tend to have slight errors, which is
of subordinate relevance, since the relations are of main interest. The F1-score has the robustness to
overcome this issue, since it compensates the tendency of the recall to underestimate and the precision
to overestimate using the harmonic mean calculated from both. The two additionally provided
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scores macro-averaged Matthew Correlation Coefficient (MCC) and Cohen Kappa are robust against class
imbalance, too, and, along with the Fl-score, they form the basis for the assessment. The MCC,
which has its origin in the binary classification, can be used to evaluate the classifier performance
in a multiclass classification task, when a one-vs-all strategy is pursued. In this case, the classifier
performance is computed using the average of the performance of every classifier, where each one
can only classify a sample as belonging to the class assigned or, conversely, as belonging to any of the
remaining classes. The Cohen Kappa measures the degree of agreement of different classifiers, where
in this case, the probabilities of agreement between the classifiers in a one-vs-all strategy along with
the probabilities for a random-driven agreement are considered.

The metrics of the results of the classification studies are listed in Table 3. The learning curves,
consisting of the loss and accuracy function, as well as the resulting confusion matrices are displayed
in the Figures 14-18.

Table 3. Performance results and execution time of validation for the investigated methods.

Method  Accuracy Precision Recall F1 =~ MCC CohenKappa Total execution

% % % % % % time /s
CNN 88.0 89.7 88.0 879 86.0 91.0 3,251
LSTM 82.3 85.6 829 83.0 80.1 855 2,966
Bi-LSTM  86.3 88.7 86.3 86.8 837 90.2 10,780
GRU 82.3 82.6 82.3 82.0 788 86.0 2,569
CAE 81.7 84.2 81.7 825 781 781 7,349
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Figure 14. Loss and accuracy during training and confusion matrix for CNN-based classification.
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Figure 15. Loss and accuracy during training and confusion matrix for LSTM(RNN)-based
classification.
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Figure 16. Loss and accuracy during training and confusion matrix for Bi-LSTM(RNN)-based

classification.
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Figure 17. Loss and accuracy during training and confusion matrix for GRU(RNN)-based classification.
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Figure 18. Loss and accuracy during training and confusion matrix for CAE-based classification.

The learning curves of CNN (Figure 14) show a moderate learning pace with decreasing variance
and likeliness of sudden spikes that are likely to appear when using the Adam optimizer. The
decreasing gap between the training and validation curves indicate the absence of overfitting. From
the confusion matrix, it is observable that there is a higher probability for the network to confuse the
activity picking up objects with drinking, while the other tasks remain unaffected.

The RNN-based networks show varying performances. The LSTM network has similar learn
curves with regard to learning pace and generalization and the confusion matrix shows the same issue
like the CNN. The learning curves of the Bi-LSTM have a significant faster convergence but suffer from
higher variances, as the confusion is significantly smaller with regard to the aforementioned models.
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The GRU network shows a higher tendency towards overfitting with comparably small variances in
the accuracy progress. Last but not least, the CAE network shows the biggest tendency to overfitting
and, besides to the confusion between tasks 0 and 2, there is an increased risk for confusing tasks 0
(drinking) with 4 (standing up).

The influence of the color levels of the feature maps on the performance is shown in Figure 19. The
variational study was carried out for all models, where the lower limit of the color limits was varied using
the offsets -30 (least details), -50, and -70 (most details) with regard to the maximum color value. Here,
CAE and CNN show the best performance and higher robustness towards color level variations while
the RNN-based methods are strongly affected with the GRU showing the strongest effects. The results
indicate that the color levels have a great impact on the classification accuracy. Considering the stochastic
effects of the training, in this study, the optimum lies probably between -50 and -70.

Accuracy by lower limit of color value
120

N gru B bi-Istm H cae
s Istm EEE on

100 4

Accuracy

Max-30 Max-50 Max-70

Figure 19. Accuracy by different lower color value limits used for threshold filtering for the
selected models.
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Figure 20. Accuracy by different compression ratios of the input data for the selected models.

The influence of compression ratio of the feature maps on the performance is shown in Figure 19.
Using three different compression ratios, i.e. 100 %, 67 %, and 50 %, the study was carried out for
all models. According to the results, the performance of all models except the GRU shows a high
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robustness towards information loss caused by compression with the CAE achieving the best results,
followed by the CNN and the Bi-LSTM. In practice, this means that even with a halfed data size the
models are able to reach a similar performance. It must be taken into account that the model-specific
performance deviations for the investigated cases are caused by the stochastic property of the learning
algorithm and the dataset batching process.

From the results, we can confirm that the CNN-based classification has better performance in
comparison to the investigated RNN-based methods. The reason for this is that the derived feature
maps of the CNN have the ability to extract locally-distributed spatial features in a hierarchical manner
and, therefore, to recognize typical patterns, whereas the RNN-based methods memorize temporal
sequences of single features. This ability applies for the CAE, too, but the tendency for overfitting is
much higher, so that tuning, e.g. through better regularization, is necessary. For the underlying type of
input, namely images, the RNN-based networks are suboptimal due to the lack of scalability and the
absence of memorizing spatial properties.

Further, it could be revealed that the classification of coarse-grained activities leads to better
results. Higher magnitudes of the reflected radar signal, which are assigned to large-scale movements,
lead to distinct characteristic properties in the micro-Doppler maps, which improve the performance.

6. Discussion

According to the metrics of the validation, all models provided acceptable results for the
same dataset that indicated their overall suitability for this application with different performances.
In addition, the learning curves of all models were convergent, but indicated different levels of
smoothness and generalization. Further, it could be confirmed that the misclassification for all models
was the highest between the activities drinking (index 0) and picking up objects (index 2).

The results show that CNN are more suitable structures for the given task compared to the RNN
variants, i.e. LSTM, Bi-LSTM, GRU due to their ability to memorize spatial features, while the learning
curve tends to show sudden jumps during the first third of the training followed by a smooth and
gradually improving progress. It is remarkable that the training and validation curves of both, CNN
and LSTM networks, have significant differences while their metrics lie within the same region.

Despite the observation that every consecutive run of the training led to slightly different curves,
especially the continuity during the first 100 epochs, the variance of the validation accuracy was the
highest for Bi-LSTM networks, while the training and validation curves had a very steep slope during
the same period. Only the GRU network was able to provide a better continuity, but it showed a higher
tendency for overfitting during the last epochs.

Further, the overall performance is lower compared to the results given in the aforementioned
literature, which suggests that a more intensive hyperparameter tuning for the network setup or
the image generation could improve the results. Another option could be a more sophisticated
preprocessing for the generation of the samples that enhances task-specific patterns details while
setting condition to the model structure and increasing the overall training time.

7. Conclusion

In this paper, several DL-based approaches that were in the focus of the radar-based human
activity recognition have been reviewed and evaluated. This is performed using a common dataset in
order to evaluate performance using different metrics while relating to the computational cost, which
is represented by the overall execution time. The target was to establish a basis using the same data set
for the comparison that assists in selecting the appropriate method with regard to performance and
computational cost.

Besides the proposed measures, i.e. model improvement and sample refinement, the application of
further DL methods, e.g. Autoencoder variants (SAE, CVAE) as well as Generative Adversarial Networks
(GAN) and variants, e.g. Deep Convolutional Generative Adversarial Networks (DCGAN) or combinations
of different methods would broaden the knowledge base. By evaluating additional aspects like
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requirements around sample space or computational space during training, the parametricity of the
models, or aspects relating to the execution like the ability to distribute and parallelize the operations
among multiple computers, new criteria for the selection of the most appropriate DL method could be
introduced.

Abbreviations
The following abbreviations are used in this manuscript:
API Application Programming Interface

BPTRT Back Propagation Through Time
Bi-LSTM  Bidirectional LSTM

CAE Convolutional Autoencoder

CNN Convolutional Neural Network
CVAE Convolutional Variational Autoencoder
CVvD Cadence Velocity Diagram

DAE Denoising Autoencoders

DCGAN  Deep Convolutional Generative Adversarial Network
DCP Depth-wise Separable Convolution
DL Deep Learning

DT Doppler-Time

FCN Fully-Connected Network

FFT Fourier Transform

FMCW Frequency-Modulated Continuous Wave
GAN Generative Adversarial Network
GRU Gated Recurrent Unit

HAR Human Activity Recognition

MCC Matthew Correlation Coefficient
MHSA Multi-Headed Self Attention

ML Machine Learning

MLP Multi-Layer Perceptron

LSTM Long-Short Time Memory

PCA Principal Component Analysis
PRF Pulse Repetition Frequency

RA Range-Azimuth

RD Range-Doppler

RDT Range-Doppler-Time

RE Range-Elevation

ReLU Rectangular Linear Unit

RF Radio Frequency

RNN Recurrent Neural Network

RT Range-Time

SAE Stacked Autoencoder

SGD Stochastic Gradient Descent

SNR Signal-to-Noise Ratio

STFT Short-Time Fourier Transform
SVD Singular Value Decomposition
SVM Support Vector Machine

UWB Ultra-Wideband Radar

ZCA Zero-Phase Component Analysis
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Appendix A
Table A1l. Radar classes and echo signals used for coarse-grained HAR.
Ref. Year Radar Center Features Dataset, Activities Class. Process. Max. accuracy
type freq./GHz samples model (%)
[40] 2010 FMCW 43 Time-based Own; 40 Walk, run, rotate, SVM PCA 89.99
RF per class punch, crawl,
signatures (5 0f 7) standing still,
transition (standing
/ sitting)
[53] 2018 CW 4.0 DT, CVetc. Own; Walk, jog, limp, CAE - 94.2
50-149 walk + cane, walk
+ walker, walk +
crutches, crawl,
creep, wheelchair,
fall, sit, falling
(chair)
[471 2018 CW 24.0 DT Own; [RadID] DCNN - 94.2

50-149
[48] 2019 FMCW  76.0-81.0 Range-velocitypemwer-angboximgump (jacks), SVM PCA  SVM: 6374,
(MMACctivitjgmp, squats, walk  (with (for MLP:  80.34,

Train.: RBF), SVM)  Bi-LSTM:
12,097; MLP, 88.42, CNN +
Test: LSTM, Bi-LSTM: 90.47
3,538; CNN +
Valid.: LSTM
2,419;
[41] 2020 FMCW 5.8 RT, RD, Own; 249 Walk, sit down, SVM, SBS SVM:  95.24,
amplitude / perclass stand up, pick up SAE, SAE: 91.23,
phase, CV obj., drink, fall CNN CNN: 96.65
[46] 2020 FMCW 77.0 RDT Own; Events: enter room, CNN, n.a. Event-related:
Events: leave room, sit CNN + 97.03,
1,505; down, stand up, LSTM Gesture-related:
Gestures: clothe, unclothe; 87.78
2,347 Gestures: drum,

shake, swipe 1/r,
thumb up/down

[56] 2020 CW 6.0 RD Own; 900 fall, bend, sit, walk CAE n.a. 91.1
per class
[57] 2020 FMCW 1.6-2.2 RT Own; box, squat and pick, FCN-SLSTMECN  97.6

Training: step in place, raise
704, Test: both hands (into

160 horiz. pos.)
[42] 2021 FMCW <6.0, RT Own; n.a. Walking, sitting, SVM, SVD 95.7
76.0-81.0 falling Bagged (sub-6GHz),
Trees 89.8
(mmWave)
[59] 2021 SFCW 1.6-2.2 DT Own; 66 Step in place, walk Uni-LSTM, n.a. Uni-LSTM:
(for each (swinging arms), Bi-LSTM 8541 (avg.);
301 data throw, walk, bend, Bi-LSTM: 96.15
points) crawl (avg.)
[50] 2021 FMCW 5.8 RT,RD, DT Own; Walk, sit down, 1D-CNN-LSTM, 1D-CNN-LSTM:
Training: stand up, pick up 2D-CNN, 71.24 (avg.;
1,325, obj., drink, fall multidomain RT), 90.88
Test: 348 approach (DT); 2D-CNN:
(MDFradar) 89.16 (RD),
MDEFR.: 94.1

(RT,DT,RD)



https://doi.org/10.20944/preprints202311.1347.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 November 2023 doi:10.20944/preprints202311.1347.v1

27 of 31
Table A2. Radar classes and echo signals used for coarse-grained HAR.
Ref. Year Radar Center Features Dataset, Activities Class. Process. Max.
type freq./GHz samples model accuracy
(%)
[63] 2022 FMCW  76.0-81.0 RD Own; 17 Boxing, jumping, CNN, - 97.26

Persons; squatting, walking, CNN-LSTM
20 s / circling, high-knee
activity  lifting
[64] 2022 FMCW  60.0-640 3D  Point Own; 4 Walking,  Sitting CNN - 98.0
Clouds persons.; down, lying down
10 min. / from sitting, sitting
activity up from lying down,
falling, recuperating
from falling
[65] 2022 FMCW 60.0-64.0 3D Point Own; Boxing, crawling, DCNN - 98.0
Clouds 3,870 jogging, jumping
with gun, marching,
grenade throwing
[67] 2023 FMCW  60.0-640 3D  Point Own; 5 Standing, jumping, MM-HAT MHSA 90.5

Clouds persons.;  sitting, falling, (own
running, walking, network)
bending
[68] 2023 FMCW 60.0-64.0 RA,RD,RE Own; 5 Boxing, waving, DyLite- DSC 98.5
persons; standing, walking, RADHAR
2,000 squatting (own
network)
[69] 2023 FMCW 79.0 DT Own; 10 Walking back and LH-ViT - 99.5

persons  forth, sitting in a (own
chair, standing up, network)
picking up object,
drinking, falling
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