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Abstract: Background and Objectives: Since the protective role of ghrelin against high glucose-induced retinal 
damage was not yet explored, we aimed to investigate the serum levels of total ghrelin (TG), its acylated (AG) 
and des-acylated (DAG) forms in diabetic retinopathy (DR) patients. Moreover, the correlation between serum 
ghrelin and neutrophil elastase (NE) levels, enhancing the risk of microhemorrhages, was investigated; 
Materials and Methods: Serum markers were determined by Enzyme-Linked Immunosorbent Assays in 12 non-
diabetic subjects (CTRL), 15 diabetic patients without DR (Diabetic), 15 patients with non-proliferative (NPDR) 
and 15 patients with proliferative DR (PDR); Results: TG and AG serum levels were significantly decreased in 
NPDR (P < 0.01 vs Diabetic) and in PDR patients (P < 0.01 vs NPDR). AG serum levels were inversely associated 
with DR progression (r = -0.83, P < 0.01), serum neutrophils percentage (r = -0.74, P < 0.01) and serum NE levels 
(r = -0.73, P < 0.01). These were significantly increased in NPDR (P < 0.01 vs Diabetic) and PDR (P < 0.01 vs PDR) 
groups, positively correlating with DR progression (r = 0.86, P < 0.01). Conclusions: The reduction of circulating 
AG and its association with the increased risk of microhemorrhages could be considered a novel marker for 
DR progression.  

Keywords: diabetic retinopathy; ghrelin; neutrophils; neutrophil extracellular traps 
 

1. Introduction 

Diabetic retinopathy (DR) represents the main cause of blindness, especially in industrialized 
countries, with a significant impact on health care costs [1]. Although intravitreal injections of anti-
VEGF drugs and steroids seem to be effective for the management of both Non-Proliferative (NPDR) 
and Proliferative (PDR) DR forms [2,3], DR detection is still a challenge since it requires complex and 
expensive equipment, along with well trained technicians [4]. Therefore, the identification of new 
systemic biomarkers correlated to the stage of the disease, and involved in its evolution, could be a 
useful novel tool to predict or early identify NPDR and to slow its progression to PDR [5]. 
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To this regard, ghrelin is a peptide hormone produced by gut that beyond its role as an 
orexigenic signal [6], mediates anti-apoptotic, autophagic and anti-inflammatory effects at the level 
of the eye structures, as for example in the epithelial cells of the lens membrane [7], and in the retina 
[8]. Interestingly, previous preclinical studies reproducing DR in vitro and in vivo have shown that 
ghrelin reduces retinal angiogenesis, apoptosis and inflammation induced by high glucose through 
the activation of the ghrelin receptor [9,10]. A receptor known as growth hormone secretin receptor 
1a (GHSR-1a) and characterized by its higher affinity to acylated form of ghrelin compared to the 
des-acylated one [11]. Through this receptor, ghrelin is able to promote the apoptosis of neutrophils 
[12,13], leukocytes highly involved in inflammation and endothelial damage during DR evolution, 
contributing to DR complications with the extrusion of neutrophil extracellular traps (NETs) [14]. A 
process called NETosis, worsened by hyperglycemia [15,16] and exacerbated in DR patients [17,18]. 
Thus, ghrelin could impact the progression of DR through a cross-talk with neutrophils and the 
related risk of NETosis process in diabetic patients. 

Therefore, the present study aimed to evaluate in humans whether there are putative changes 
in total levels of serum ghrelin and/or its acylated/des-acylated forms during different phases of DR, 
and whether they correlate with clinical signs and serum elastase levels, indicative of NET formation 
[19] and vascular damage [15,19,20]. 

2. Results 

2.1. Characteristics of DR Patients 

57 patients (31 males and 26 females) were enrolled in this study and divided in the following 
four groups, based on ocular evaluations and DR clinical diagnosis:  

I. Non-diabetic subjects with absence of ocular pathologies (N = 12)  - CTRL group; 

II. Diabetic patients without DR signs (N = 15 ) - Diabetic group; 

III. Diabetic patients with diagnosis of non-proliferative DR (N = 15) - NPDR group; 

IV. Diabetic patients with diagnosis of proliferative DR (N = 15) - PDR group; 

Differences in age or diabetes duration were not observed in diabetic groups. Conversely, PDR 
patients exhibited significantly higher glycaemic levels compared to Diabetic and NPDR groups 
(both P < 0.05) (Table 1).  

Table 1. Clinical characteristics of CTRL, Diabetic, NPDR and PDR groups. 

 CTRL Diabetic NPDR PDR 

Female (N) 6 7 7 6 
Male (N) 6 8 8 9 
Mean age (years ± SD) 64.2 ± 9 65.5 ± 6 69.9 ± 7 70.1 ± 5 
Age range (years) 54-74 58-74 52-82 65-77 
Type I diabetes (%) NA 25 42 57 
Type II diabetes (%) NA 75 58 43 
Mean diabetes duration 
(years ± SD) 

NA 6.0 ± 0.8 6.8 ± 1 7.8 ± 1.1 

Mean time from DR 
diagnosis 
(years ± SD) 

NA NA 2.6 ± 0.2 3.1 ± 0.4 

Glycaemia (mg/dl) 
normal range (70-100 mg/dl) 

82 ± 15 140.2 ± 25** 142.4 ± 20** 200 ± 25°^ 

Neutrophils (%± SD)   
normal range (40-70%) 

43.9 ± 2 45.4 ± 4 50.8 ± 5°° 61.2 ± 3°°^^ 

NA: not applicable; CTRL: non-diabetic subjects with absence of ocular pathologies (N = 12); Diabetic: diabetic 
patients without DR signs (N = 15); NPDR: diabetic patients with diagnosis of non-proliferative DR (N = 15); 
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PDR: diabetic patients with diagnosis of proliferative DR (N = 15 ). ** P < 0.01 vs CTRL; ° P < 0.05 vs Diabetic; ^ 
P < 0.05 vs NPDR. Control, Diabetic, NPDR, PDR. 

Moreover, neutrophils percentage significantly increased in NPDR patients compared to 
Diabetic group (P < 0.01). This was even more elevated in PDR patients (P < 0.01 vs NPDR) (Table 1), 
although the values for all the 4 clinical groups were in the normal range.  

2.2. Serum Ghrelin Levels in DR Patients 

Serum total ghrelin (TG) was significantly decreased in Diabetic group compared to CTRL 
subjects (CTRL: 1056+146 pg/mL; Diabetic: 925+86 pg/mL, P < 0.05 vs CTRL). A reduction in serum 
TG levels, although not significant in comparison with Diabetic, was detected also in NPDR group 
(NPDR: 861+126 pg/mL, P > 0.05 vs Diabetic), while it was significant in PDR patients compared to 
Diabetic group (PDR: 807+127 pg/mL, P < 0.05 vs Diabetic) (Figure 1A). 

 

Figure 1. Serum levels of (A) total ghrelin (TG, pg/mL ± SD), (B) acylated ghrelin (AG, pg/mL ± SD) 
and (C) des-acylated ghrelin (DAG, pg/mL ± SD) in non-diabetic subjects with absence of ocular 
pathologies (N = 12, CTRL); diabetic patients with no signs of diabetic retinopathy (N = 15, Diabetic); 
diabetic patients with non-proliferative diabetic retinopathy (N = 15, NPDR) or proliferative 
retinopathy (N = 15, PDR); ** P < 0.01 vs CTRL; ° P < 0.05 and °°P < 0.01 vs Diabetic; ^ P < 0.05 vs 
NPDR. 

Similarly, serum acylated ghrelin (AG) was significantly decreased in Diabetic group compared 
to CTRL subjects (CTRL: 275±93 pg/mL; Diabetic: 171 ±31 pg/mL, P < 0.01 vs CTRL). A further 
significant reduction was evident in NPDR patients compared to Diabetic group (NPDR: 115 ±24 
pg/mL, P < 0.05 vs Diabetic), with the lowest serum AG levels detected in PDR sera (PDR: 63±32 
pg/mL, P < 0.01 vs NPDR) (Figure 1B). Conversely, serum des-acylated ghrelin (DAG) was not 
differentially modulated in our clinical setting (CTRL: 800±182 pg/mL; Diabetic: 926±165 pg/mL; 
NPDR: 917±248 pg/mL; PDR: 990±193 pg/mL) (Figure 1C).  

2.3. Serum AG/DAG Ratio and Its Correlation with Retinal Abnormalities in DR Patients 
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Consequently, AG/DAG ratio was significantly decreased in Diabetic patients (0.23 ± 0.05, P < 
0.01 vs CTRL) compared to CTRL group (0.35 ± 0.1). A progressive significant reduction of AG/DAG 
ratio was evident also in NPDR (0.16 ± 0.04, P < 0.05 vs Diabetic CTRL) and PDR (0.08 ± 0.04, P < 0.01 
vs Diabetic and P < 0.05 vs NPDR) patients (Figure 2A).  

 

Figure 2. (A) Serum AG/DAG ratio ± SD in non-diabetic subjects with absence of ocular pathologies 
(N = 12, CTRL); diabetic patients with no signs of diabetic retinopathy (N = 15, Diabetic); diabetic 
patients with non-proliferative diabetic retinopathy (N = 15, NPDR) or proliferative retinopathy (N = 
15, PDR); (B) Representative retinography images  of CTRL (normal retinal vasculature), Diabetic ( 
slight irregularity of the caliber and vessel course, without DR signs) NPDR (multiple 
microhemorrhages, microaneurysms and exudates in the macular region) and PDR groups (multiple 
microhemorrhages with extensive fibrovascular proliferation along the superior temporal vascular 
arch); (C) Pearson correlation coefficient (r = -0.83) and significance level (P < 0.01) for the correlation 
of AG/DAG ratio and DR progression in the 4 study groups. ** P < 0.01 vs CTRL; ° P < 0.05 and °°P < 
0.01 vs Diabetic; ^ P < 0.05 vs NPDR. 

The decrease of AG/DAG was paralleled by an increase of microhemorrages, microaneurysms 
and exudates detected in NPDR and PDR patients respectively by retinography . Indeed, CTRL 
subjects evidenced a normal retinal vasculature without abnormalities and Diabetic patients showed 
a slight irregularity of the caliber and vessel course without DR classic signs (Figure 2B). Conversely, 
NPDR patients evidenced multiple microhemorrhages (1- ≥ 20), microaneurysms and exudates in the 
four retinal quadrants, while PDR group showed retinal neovascularization, and/or extensive 
fibrovascular proliferation, or vitreous/preretinal hemorrhages. This increase of retinal abnormalities 
identifying DR progression was significantly inversed correlated with serum AG/DAG ratio (r = -
0.83, P < 0.01) (Figure 2C). Therefore, since the modulation of AG/DAG ratio in DR patients was due 
to serum AG changes, this was considered for further correlations. 

2.4. Serum Neutrophil Elastase (NE) Levels in DR Patients and Its Association with Serum AG 

Serum AG were inversely associated in DR patients with serum neutrophils percentage (r = -
0.74, P < 0.01) (Figure 3A). 
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Figure 3. (A) Pearson correlation coefficient (r) and significance level (P) for the correlation of 
neutrophils percentage (%) with serum AG levels (pg/mL ± SD; r = -0.74, P < 0.01) and (B) with serum 

NE levels (ng/mL ± SD; r = 0.80, P < 0.01) in non-diabetic subjects with absence of ocular pathologies 
(N = 12, CTRL); diabetic patients with no signs of diabetic retinopathy (N = 15, Diabetic); diabetic 
patients with non-proliferative diabetic retinopathy (N = 15, NPDR) or proliferative retinopathy (N = 
15, PDR); (C) Serum NE levels (ng/mL ± SD) in the 4 groups; * P < 0.05 and ** P < 0.01 vs CTRL; °°P < 
0.01 vs Diabetic; ^^ P < 0.01 vs NPDR; (D) Pearson correlation coefficient and significance level for the 
correlation of serum NE levels (ng/mL ± SD) with DR progression (r = 0.86, P < 0.01) and (E) with 

serum AG levels (pg/mL ± SD; r = -0.73, P < 0.01). 

As expected, this positively correlated with serum NE levels (0.80, P < 0.01) (Figure 3B). Indeed, 
serum NE was significantly increased in Diabetic group compared to CTRL subjects (CTRL: 0.85±0.3 
ng/mL; Diabetic: 1.6±0.4 ng/mL, P < 0.05 vs CTRL) (Figure 3C). Moreover, NPDR patients showed 
serum NE levels significantly elevated compared to Diabetic group (NPDR: 2.2±0.4 ng/mL, P < 0.01 
vs Diabetic), with the highest value reached in PDR patients (PDR: 2.9±0.6 ng/mL, P < 0.01 vs NPDR) 
(Figure 3C). A strong positve correlation was observed between serum NE levels with DR 
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progression (r = 0.86, P < 0.01) (Figure 3D), while a significant inverse association was evident 
between serum NE and AG (r = -0.73, P < 0.01) (Figure 3E).  

3. Discussion 

Ghrelin, often referred to as the “hunger hormone”, mediates several functions beyond its effects 
on appetite, food intake, body weight and adiposity [7]. Indeed, once acylated by the ghrelin-O-acyl 
transferase (GOAT), the 28-aa Ser3 AG binds with high affinity to the G-protein coupled receptor 
GHSR1-a on central neurons and peripheral cells [21–23]. On these, ghrelin acts by increasing energy 
intake [24,25], improving cardiac functions [26,27], reducing muscle atrophy [28,29], promoting bone 
mass or formation [30,31] and through this receptor it promotes the apoptosis of neutrophils [12,13], 
leukocytes highly involved in inflammation and endothelial damage during DR evolution.  

Noteworthy, diabetic retinopathy is a complication of diabetes that damages retinal blood 
vessels [32]. The typical microvascular alterations that characterize this disease arise with a 
predictable progression and this allows serious damage to vision to be prevented. Indeed, if 
neglected, diabetic retinopathy can cause severe vision loss or even blindness [33]. In the NPDR early 
stage, vascular occlusion and dilation occur; subsequently the condition evolves into PDR, with the 
growth of new blood vessels on the retinal surface, a process known as neovascularization [33]. At 
the basis of these changes in the retina there is a wide range of mediators, some pro-proliferative, 
others anti-proliferative. Among these is ghrelin, a peptide hormone whose endogenous levels can 
be compromised by pathologies such as diabetes, that seems to have anti-proliferative effects. In fact, 
previous studies have found a reduced circulating ghrelin concentration in type 2 diabetes [34–36], 
both in the early stages and advanced stages with complications [37,38]. In line with this evidence, 
here it is indirectly confirmed the protective role of ghrelin in DR since diabetic patients have 
decreased serum levels of total ghrelin compared to non-diabetic patients, especially those with 
progression from the NPDR to PDR. However, the novelty of the research with respect to previous 
one resides in the fact that of the two known isoforms of the total ghrelin, acylated and des-acylated, 
the acylated form follows the reduction trend shown by the total ghrelin. Conversely, serum des-
acylated ghrelin was not differentially modulated in the present clinical context, despite it is the main 
form secreted in physiological conditions, with an AG/DAG ratio of 1:10 [39,40]. An explanation for 
this may reside in the fact that diabetes impairs the expression of enzymes that rapidly deacylates 
AG, such as acyl protein thioesterase 1 which normally deacylates AG [41,42]. This in line with a 
recent study showing that serum AG seems to be related to elevated blood glucose levels in diabetic 
obese patients, while DAG seems to be involved in excess body fat mass in the same clinical setting 
[43]. More specifically, the present study evidenced that changes of serum TG in DR patients are due 
to AG constant decrement in NPDR and PDR patients. Particularly, serum AG levels decreased 
significantly in NPDR and PDR patients and showed a strong negative correlation with DR evolution 
Therefore, in line with the novel clinical applications suggested for AG in Alzheimer’s and 
Parkinson’s Disease [44], lipodystrophy [45], reproductive toxicity in cancer patients [46] and heart 
failure [47], serum AG could be considered a sensitive peripheral marker of clinical progression of 
DR. 

From the mechanistic point of view, the changes of AG in DR evolution mirrored the changes 
and behavior of neutrophils, where ghrelin and its receptor are expressed [48,49]. Indeed, here it is 
demonstrated an increase of neutrophils percentage in DR stages, which negatively correlates with 
serum AG levels. During DR, neutrophils play a very important role in microangiopathy occurrence 
and progression, as well as in the endothelial cell wall inflammatory processes [14,50], since they 
secrete proteolytic enzymes involved in endothelial damage [14]. This latter leads to chronic 
inflammation which exacerbates microvascular complications, contributing to DR progression 
[14,51]. Indeed, DR patients are characterized by high serum neutrophil count [52], with a higher 
neutrophil-lymphocyte ratio [52–54]. This correlating with DR severity in clinical settings [55–57]. So, 
to our knowledge this is the first evidence of a possible endogenous crosstalk between AG and 
neutrophils for the development and progression of DR. On another note, it is well known that acting 
on these immune cells, ghrelin exerts anti-inflammatory effects by reducing their migration and 
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infiltration [13,58–61]. Similarly, ghrelin has been shown to promote neutrophil apoptosis [12,60,61], 
overall favoring the resolution of inflammation in several diseases, such as arthritis, sepsis and 
respiratory pathologies [13,58,62–64].  

The progression of diabetes and diabetic retinopathy (DR) has recently been linked to elevated 
levels of neutrophil elastase (NE) in circulation, a protein found within the granules of neutrophils. 
Studies have shown that levels of NE are higher in both type-1 and type-2 diabetic patients when 
compared to individuals without diabetes [15], along with PDR patients compared to NPDR group 
[17]. Particularly, NE generally reflects the neutrophil count and contributes to DR pathological 
vascular permeability [15,19,20]. Moreover, NE is one of the constituents of NETs, along with 
histones, DNA, fibers and several proteins such as NE, myeloperoxidase (MPO), cathepsin G, 
cathelicidin and proteinase 3 (PR3) [65]. NETs are a sort of physical barrier against pathogens [66,67] 
organized by apoptotic netrophils also implicated in the pathology associated with a growing 
number of immune-mediated conditions [68] and in a process called NETosis. NETosis is induced in 
an organ in response to endogenous danger signals that must be tightly regulated to prevent 
excessive tissue damage during acute inflammation or chronic inflammatory and autoimmune 
disease [68]. Among the other, NETs can occlude the vasculature by promoting thrombosis and 
obstruct important organ areas. Both diabetes and DR progression seem to be characterized by NETs 
enhanced formation and release [15,17]. In line with this evidence, it is found here a positive 
correlation between the increase of neutrophils in the two DR stages analyzed and the serum NE 
levels. These were increased in both groups with higher levels in PDR patients compared to NPDR 
patients. Serum NE levels were positively correlated with DR progression, by evidencing a higher 
risk of NETs formation, which strongly impact the occurrence of thrombosis and hemorrhages 
[69,70], two of the PDR hallmarks [71]. Furthermore, for the first time it is shown here an inverse 
correlation between serum NE and AG in DR patients. Therefore, it could be hypothesized that the 
physiological role of AG in diabetes and uncomplicated retinopathy is to promote neutrophil 
apoptosis, consequently reducing the risk of NET formation and complications of PDR. 

In conclusion, the data presented suggest that circulating ghrelin and its acylated form could be 
potential markers for the progression of diabetic retinopathy since associates itself to reduced 
circulating neutrophils activation and reduced NETs formation during the progression of DR from 
NPDR to PDR. However, it's important to acknowledge the limitations of this study, including the 
small sample size of patients, the absence of consistent follow-up, and the lack of a direct cause-and-
effect study on ghrelin. Bearing these constraints in mind, it's still plausible to consider ghrelin 
monitoring as a potentially valuable approach in the proactive prevention of DR progression. 

4. Materials and Methods 

4.1. Clinical Design 

This study was performed at the Eye Clinic of the University of Campania “Luigi Vanvitelli” 
(Naples, Italy), with all its procedures adhering to the Declaration of Helsinki and Good Clinical 
Practice guidelines. The study was approved by the ethic committee of the University of Campania 
“Luigi Vanvitelli” (protocol number 42 DEC, 30-1-2019 and protocol number 0003239/i, 01-02-2023). 
The patients were enrolled after a basal examination, needed to obtain the written informed consent 
and to evaluate the adherence to the following inclusion criteria: I) Age of at least 46 years; II) 
Duration of diabetes of at least 4 years; III) Clinical diagnosis of NPDR or PDR by medical history 
and ocular fundus examination; IV) Hypoglycemic therapy with Sodium-Glucose Cotransporter 2 
inhibitors [72]. Patients with body mass index higher than 30 kg/m2 (obese patients), uncontrolled 
diabetes, other severe diabetic complications (ketoacidosis/nephropathy), recent or systemic infection 
and recent cardiovascular diseases were excluded. Furthermore, patients using lipid-lowering agents 
or immunosuppressive, steroidal and non-steroidal anti-inflammatory drugs (NSAIDs) were not 
enrolled, as well as patients receiving intravitreal steroids/anti-Vascular Endothelial Growth Factors 
(VEGFs) , and argon laser coagulation or vitrectomy in the last 6 months. 
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4.2. DR Diagnosis 

DR diagnosis was performed by obtaining the patient’s medical history and by performing 
ocular fundus examination. DR stages were determined by the number of intraretinal microvascular 
abnormalities, microaneurysms, haemorrhages and retinal neovascularization, according to the 
American Academy of Ophthalmology Retina-Vitreous Panel [73]. Retinography analysis was 
performed by using Topcon Engineering.   

4.3. Serum Samples Collection and Analysis of Serum Markers 

Sterile dry vacutainer tubes were used to obtain fasting venous blood samples from the enrolled 
patients. Within 2 hours from sampling, blood was incubated at 20°C for 30 minutes before being 
centrifuged at 4°C for 15 minutes at 3000 rpm, to have serum samples as supernatants. Their aliquots 
were stored at -80°C for subsequent analysis of serum markers, performed at the Pharmacology 
Section of University of Campania “Luigi Vanvitelli”) by Enzyme-Linked Immunosorbent Assays 
(ELISAs). Serum AG, total ghrelin (TG) and NE levels were assessed by using commercial ELISAs 
according to the manufacturers’ instructions (respectively, EH2601 Human Acylated Ghrelin ELISA 
Kit, FineTest – Wuhan, China; EH0355 Human Ghrelin ELISAS Kit, FineTest – Wuhan, China; 
BMS269 Human PMN-Elastase ELISA Kit, Invitrogen – Waltham, MA, USA). Serum DAG levels were 
calculated by subtracting AG from TG [74].  

4.4. Statistical Analysis 

Prism 6.0 (GraphPad, San Diego, CA) software was used for both statistical analysis and graph 
design. One-way analysis of variance (ANOVA), followed by Tukey multiple comparison post hoc 
test, was used for the determination of differences between groups. The strength of association 
between 2 quantitative variables was evaluated by Pearson correlation analysis. A P-value < 0.05 was 
considered significant. 
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