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Abstract: This paper investigates reachable set estimation and state-feedback controller design for

linear time-delay control system with bounded disturbances. First, by constructing an appropriate

Lyapunov-Krasovskii functional, we obtained a delay-dependent condition, which determed the

admissible bounding ellipsoid for the reachable set of the system we considered. Then, a sufficient

condition in form of liner matrix inequalities is given to solve the problem of controller design with

reachable set estimation. Finally, by minimizing the volume of the ellipsoid and solving the liner

matrix inequality, we obtain the desired ellipsoid and controller gain. A comparative numerical

example is given to verify the usefulness of our result.

Keywords: time-delay; ellipsoid; Lyapunov-Krasovskii functional; reachable set; linear matrix

inequalities

1. Introduction

The reachable set estimation of dynamic systems is an important research topic in control theory,

since it has a large number of applications in control systems with actuator saturation([12,14,16]),

peak-to-peak gain minimization [1] and aircraft collision avoidance[13]. The reachable set of a dynamic

system with bounded peak input is defined as the set of system state vectors in the presence of all

allowed input disturbances. Reachable set bounding was first considered in the late 1960s in the

context of state estimation and it has later received a lot of attention in parameter estimation [4]. Boyd

et al. researched the problem of reachable set estimation of linear systems without time-delay and got

an LMI condition for an ellipsoid that bounds the reachable set[2].

It is well kown the existence of time delay is extremely common in practice, such as aircraft,

chemical processes, long pipeline supply, belt transmission and extremely complex online analyzers in

various industrial systems. Usually the occurrence of time delay may lead to instability or performance

degradation of dynamic systems [9,13,19,26,29,30]. Therefore, extensive reseachers are devoted to

research reachable set estimation issue of dynamic systems with delay. During the past few decades,

there have been some excellent results related to the reachability set estimation of time-delay systems

[3,5,6,17,18,21,25,27–29,31–37].

In [5], based on the Lyapunov-Razumikhin method, Fridman and Shaked firstly investigated

the reachable set estimation of a linear system with time-varying delay and obtained a LMI criteria

of an ellipsoid bounding the set of reachable states. Kim applied Lyapunov-Krasovskii functional

to get an improved ellipsoidal bound of reachable set [17]. Nam and Pathirana employed the delay

decomposition technique to get a smaller reachable set bound [21]. Zuo et al. got a non-ellipsoidal

bound of a reachable set of linear time-delayed systems through the maximal Lyapunov functionals

and the Razumikhin method [35]. More recently, Zhang et al. investigated the reachable set estimation
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for uncertain nonlinear systems with time delay.[36] However, there are few works on the estimation

of reachable set for linear time-delayed control system with disturbances, thus which motivated us to

write this paper.

In this paper, we intend to design state feedback controller so that the reachable set of the

resulting closed-loop system is contained in an ellipsoid, and the admissible ellipsoid should be as

small as possible. The rest of this article is organized as follows. In section 2, in order to obtain

main result facilitately, some useful lemmas and preliminary knowledge are given. In section 3, First,

by constructing an appropriate Lyapunov-Krasovskii functional, we obtained a condition related

to delay-dependent, which determed the admissible bounding ellipsoid for the reachable set of the

system we considered. Then, a sufficient condition in form of liner matrix inequalities is given to solve

the problem of controller design with reachable set estimation.finally,by minimizing the volume of the

ellipsoid and solving the liner matrix inequality, we obtain the desired ellipsoid and controller gain. In

section 4, a comparative numerical example is given to verify the usefulness of the proposed methods.

The paper ends up with conclusions and references.

Notation

Throughout this paper, the notations are standard. Rn is the vector of real numbers, Rn×m is the

n × m real matrix, I is the identity matrix, 0 is the zero matrix,and AT presents the transpose of A. For

a matrix P, P > 0 denotes P is a symmetric positive definite matrix, also, xt(θ) = x(t + θ), θ ∈ [−h, 0],

and (⋆) in a matrix presents the symmetric part.

2. Problem statement and preliminaries

Consider the following linear time-delay control system with bounded disturbances:

{

ẋ(t) = Ax(t) + Dx(t − d(t)) + Bu(t) + Ew(t);

x(t) ≡ 0, t ∈ [−h, 0]
(1)

where x(t) ∈ R
n is the state vector, u(t) is the control vector, A ∈ R

n×n, D ∈ R
n×n, B ∈ R

n×n and

E ∈ R
n×m, A, D, B and E are constant matrices ; w(t) ∈ R

m is the disturbance satsfying

wT(t)w(t) ≤ w2
m (2)

and d(t) is time-varying delay satisfying

0 ≤ d(t) ≤ h,
∣

∣ḋ(t)
∣

∣ ≤ u ≤ 1 (3)

where wm, d and u are constants.

In this paper, based on the modify Lyapunov-Krasovskii functional, which is used for exponential

stability analysis in[20,24], we intend to design state feedback controller K, G, that is u(t) = Kx(t) +

Gx(t − d(t)), such that the reachable set of closed-loop system

ẋ(t) = (A + BK)x(t) + (D + BG)x(t − d(t)) + Ew(t) (4)

is bounds by an ellipsoid ε(P, 1) :

ε(P, 1) =
{

x ∈ R
n : xT Px ≤ 1; P > 0

}

(5)

The reachable set of system (4) is denoted as follows:

Rx = {x(t) |x(t) and w(t) satis f y (2) and (3), t ≥ 0}

The following three useful lemmas are given to obtain main result facilitately.
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Lemma 2.1. [22]The following relation is known as the Leibniz rule

d

dt

∫ a(t)

b(t)
f (t, s) ds = ȧ(t) f [t, a(t)]− ḃ(t) f [t, b(t)] +

∫ a(t)

b(t)

δ

δt
f (t, s) ds

Lemma 2.2. [7] For any constant matrix Q = QT
> 0 , we have

d(t)
∫ t

t−d(t)
f T(s)Q f (s) ds ≥ [

∫ t

t−d(t)
f (s) ds]TQ[

∫ t

t−d(t)
f (s) ds]

Lemma 2.3. [2] Let Q be a symmetric positive definite matrix. For any matrices P, S with appropriate

dimensions, where P = PT , then
[

P S

ST Q

]

> 0

if and only if P − SQ−1ST
> 0 .

Lemma 2.4. [2] Let V(x(0)) = 0 and wT(t)w(t) ≤ w2
m, if V̇(xt) + αV(xt)− βwT(t)w(t) ≤ 0, α > 0, β >

0, then we have V(xt) ≤
β
α w2

m, ∀t > 0.

3. Main results

Theorem 3.1. For given scalars h, u > 0, if there exist matrices L, H ∈

R
1×n, M, P̃, R̃, S̃, W̃, X̃, Ỹ, Z̃, R̂, Ẑ, Z̆ ∈ R

n×n with M, R̃, S̃, W̃, X̃ > 0 and a scalar α > 0 such that

they satisfy the following matrix inequalities:















Φ11 DM + BH − Ỹ MAT + LT BT + Z̆ + αM E Ỹ

⋆ −(1 − u)e−αhS̃ + u2W̃ MD + HT BT − Z̆ 0 0

⋆ ⋆ − 1
h e−αhR̂ + αẐ E Z̆T

⋆ ⋆ ⋆
−α
w2

m
0

⋆ ⋆ ⋆ ⋆ −W̃















≤ 0 (6)

[

M − P̃ Ỹ

⋆ Z̃ + 1
h e−αhS̃

]

≥ 0 (7)

where Φ11 = AM + BL + MAT + LT BT + αM + Ỹ + ỸT + S̃ + hR̃.

Then the reachable sets of the system (4) is bounded by an ellipsoid ε(P, 1) defined in (5). At this point, the

state feedback gain is K = LM
−1

, G = HM
−1

.

Proof. To prove this theorem, let us consider the following Lyapunov-Krasovskii function candidate:

V(xt) = V1(xt) + V2(xt) + V3(xt) (8)

where

V1(xt) = xT(t)Px(t)

V2(xt) =
∫ t

t−d(t)
e−α(s−t)[xT(s)Sx(s) + (h − t + s)xT(s)Rx(s)] ds

V3(xt) =
[

xT(t) ηT(t)
]

[

X Y

⋆ Z

] [

x(t)

η(t)

]

η(t) =
∫ t

t−d(t)
x(s) ds
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and P, S, R, X, Y, Z are symmetric matrices with appropriate dimensions. First, we prove that V(xt) in

(8) is a good Lyapunov-Krasovskii functional candidate. For t − d(t) ≤ s ≤ t and 0 ≤ d(t) ≤ h, we can

get e−h ≤ e−d(t) ≤ es−t ≤ 1 and 0 ≤ h − d(t) ≤ h − t + s ≤ h. In the light of the Lamma 2.2, we have

V2(xt) ≥
∫ t

t−d(t)
e−α(s−t)xT(s)Sx(s) ds ≥

1

h
e−αhηT(t)Sη(t)

therefore

V2(xt) + V3(xt) ≥
[

xT(t) ηT(t)
]

[

X Y

⋆ Z + 1
h e−αhS

] [

x(t)

η(t)

]

If
[

X Y

⋆ Z + 1
h e−αhS

]

≥ 0 (9)

then we have V2(xt) + V3(xt) ≥ 0.

hence
{

V(xt) = V1(xt) + V2(xt) + V3(xt) ≥ V1(xt) = xT(t)Px(t),

V(xt) = 0, when x(s) = 0, ∀s ∈ [t − d(t), t].
(10)

which shows V(xt) in (8) is a good L-K functional.

Next, according to Lemma 2.1, we obtain the following time-derivatives:

d

dt
V1(xt) = 2xT(t)P[(A + BK)x(t) + (D + BG)x(t − d(t)) + Ew(t)] (11)

d

dt
V2(xt) = xT(t)(S + hR)x(t)− (1 − ḋ(t))e−αd(t)xT(t − d(t))Sx(t − d(t))

− (1 − ḋ(t))e−αd(t)(h − d(t))xT(t − d(t))Rx(t − d(t))

−
∫ t

t−d(t)
e−α(s−t)xT(s)Rx(s) ds − αV2(xt)

≤ xT(t)(S + hR)x(t)− (1 − u)e−αhxT(t − d(t))Sx(t − d(t))

−
1

h
e−αhηT(t)Rη(t)− αV2(xt) (12)

d

dt
V3(xt) = 2

[

xT(t) ηT(t)
]

[

X Y

⋆ Z

] [

ẋ(t)

(x(t)− x(t − d(t))

]

+ 2ḋ
[

xT(t) ηT(t)
]

[

Y

Z

]

x(t − d(t))

≤ 2
[

xT(t) ηT(t)
]

[

X Y

⋆ Z

] [

(A + BK)x(t) + (D + BG)x(t − d(t)) + Ew(t)

x(t)− x(t − d(t))

]

+
[

xT(t) ηT(t)
]

[

Y

Z

]

W−1
[

YT ZT
]

[

x(t)

η(t)

]

+ u2xT(t − d(t))Wx(t − d(t)) (13)
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where we used the relation that 2aTb ≤ aTW−1a + bTWb, W > 0 and the constraints (2) and (3) in the

derivation of the inequality (13).

Through (9) and (11)-(13), we obtain

V̇(xt) + αV(xt)− βwT(t)w(t)

≤ ξT
t











Ω +











YT

0

ZT

0











W−1
[

YT 0 ZT 0
]











ξt

:= ξT
t Ψξt

where

ξT
t = [xT(t) xT(t − d(t)) ηT(t) wT(t)]

Ω =











φ11 (P + X)(D + BG)− Y (A + BK)TY + Z + αY (P + X)E

⋆ −(1 − u)e−αhS + u2W (D + BG)TY − Z 0

⋆ ⋆ − 1
h e−αh + αZ YTE

⋆ ⋆ ⋆
−α
w2

m











and φ11 = (P + X)(A + BK) + (A + BK)T(P + X) + α(P + X) + Y + YT + S + hR. If Ψ ≤ 0, by

applying the Lamma 2.3, we get















Φ11 M(D + BG)− Y (A + BK)TY + Z + αY ME Y

⋆ −(1 − u)e−αhS + u2W (D + BG)TY − Z 0 0

⋆ ⋆ − 1
h e−αh + αZ YTE Z

⋆ ⋆ ⋆
−α
w2

m
0

⋆ ⋆ ⋆ ⋆ −W















≤ 0 (14)

where M = P + X, Φ11 = M(A + BK) + (A + BK)T M + αM + Y + YT + S + hR. Define N1 =

diag(M−1; M−1; Y−1; I; M−1), Pre- and post-multiplying the inequality (14) by N1 and NT
1 , and

defining M = M−1, L = KM−1, H = GM−1, X̃ = M−1XM−1, Ỹ = M−1YM−1, R̃ = M−1RM−1, Z̃ =

M−1ZM−1, S̃ = M−1SM−1, W̃ = M−1WM−1, Z̆ = M−1ZY−1, R̂ = Y−1RY−1, Ẑ = Y−1ZY−1, the

following inequality is derived:















Φ11 DM + BH − Ỹ MAT + LT BT + Z̆ + αM E Ỹ

⋆ −(1 − u)e−αhS̃ + u2W̃ MD + HT BT − Z̆ 0 0

⋆ ⋆ − 1
h e−αhR̂ + αẐ E Z̆T

⋆ ⋆ ⋆
−α
w2

m
0

⋆ ⋆ ⋆ ⋆ −W̃















≤ 0 (15)

where M = (P + X)−1, Φ11 = AM + BL + MAT + LT BT + αM + Ỹ + ỸT + S̃ + hR̃. Thus, if inequality

(15) holds, we have

V̇(xt) + αV(xt)−
α

w2
m

wT(t)w(t) ≤ 0

which means, by the Lemma 2.4, that V(xt) = V1(xt) + V2(xt) + V3(xt) ≤ 1. since V2(xt) + V3(xt) ≥ 0

from inequality (9), therefore, we get V1(xt) = xT(t)Px(t) ≤ 1. Following a similar line, we need to

convert conditon (9) into
[

M − P Y

⋆ Z + 1
h e−αhS

]

≥ 0 (16)
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Define N2 = diag(M−1; M−1) , Pre- and post-multiplying the inequality (16) by N2 and NT
2 , the

following inequality is derived:
[

M − P̃ Ỹ

⋆ Z̃ + 1
h e−αhS̃

]

≥ 0 (17)

This completes the proof. This implies that the reachable sets of closed-loop system in (4) is bounded

by the ellipsoid ε(P, 1) defined in (5), and the desired state-feedback controller can be obtained as

K = LM
−1

, G = HM
−1

.

Remark 3.1 In order to get the ‘smallest’ possible bound for the reachable set, we introduce the

method in [5,17]. That is, maximise δ subject to δI ≤ P, which can be transformed to the following

optimisation problem for a scalar δ > 0 :











min δ̄ , (δ̄ = 1
δ )

s.t

[

δ̄ I

I P

]

≥ 0
(18)

Then ,define N3 = diag(I; M), Pre- and post-multiplying inequality (18) by N3 and NT
3 ,and defining

P̃ = MPM, the following inequality is derived:











min δ̄ , (δ̄ = 1
δ )

s.t

[

δ̄ M

M P̃

]

≥ 0
(19)

Therefore, we get the ‘smallest’ possible bound for the reachable set of system (4), by solving the

following optimisation problem for a scalar δ > 0 :

min δ̄ , (δ̄ = 1
δ )

s.t











(a)

[

δ̄ M

M P̃

]

≥ 0

(b) (6), (7)or(15), (17)

(20)

Remark 3.2 In [17],for given scalars h, u > 0, if there exist matrices P, S, R, W, X, Y, Z ∈ R
n×n with

P, S, R, W > 0 and a scalar α > 0 such that they satisfy the following matrix inequalities:















Φ11 (P + X)D − Y ATY + Z + αY (P + X)E Y

⋆ −(1 − u)e−αhS + u2W DTY − Z 0 0

⋆ ⋆ − 1
h e−αh + αZ YTE Z

⋆ ⋆ ⋆
−α
w2

m
0

⋆ ⋆ ⋆ ⋆ −W















≤ 0 (21)

[

X Y

⋆ Z + 1
h e−αhS

]

≥ 0 (22)

where Φ11 = (P + X)A + AT(P + X) + α(P + X) + Y + YT + S + hR.

To find the ‘smallest’ bound for the reachable set, one may propose a simple optimisation problem.

That is, maximise δ subject to δI ≤ P, which can be transformed to the following optimisation problem

for a scalar δ > 0 :
min δ̄ , (δ̄ = 1

δ )

s.t











(a)

[

δ̄ I

I P

]

≥ 0

(b) (21), (22)

(23)
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Remark 3.3 If we let B = 0, K = 0 and G = 0 in (6),(7) of Theorem 3.1, the condition becomes

the condition in [17], also (20) becomes (23) in Remark 3.2, in this respect, the conclusion can be seen as

an extension of [17].

4. Numerical example

In this section, A example is given to illustrate our proposed approach. The simulation is carried

out using Matlab and the LMI, a package for specifying and solving linear matrix inequalities.

Consider the linear state-delayed control system (1) with the following parameters

A =

[

−2 0

0 −0.9

]

, D =

[

−1 0

−1 −1

]

, B =

[

1

1

]

, E =

[

−0.5

1

]

, wm = 1

By solving optimization problem (20), we get the sizes of the ellipsoidal bound of a reachable set

for various u when h = 0.70 and h = 0.75. These results are summarized in the following Tables 1 and

2, and are compared to the previous results in [17].

Table 1. Computed δ̄’s in Example 1 for 0 ≤ d(t) ≤ 0.7,
∣

∣ḋ(t)
∣

∣ ≤ u ≤ 1.

u

Method 0 0.1 0.2 0.3 0.4 0.5 0.6

[17] 2.2586 2.4970 2.8497 3.4355 4.5384 7.0915 16.8263
Theorem 3.1 1.4571 1.6372 1.8905 2.2702 2.9171 4.2496 8.1427

As we can see in the above table 1, when h = 0.7, u = 0.6, our results greatly reduce the size of

the ellipsoid. At this point, the state feedback gain is K = [−0.5209 − 1.3698], G = [0.9414 − 0.4495].

Table 2. Computed δ̄’s in Example 1 for 0 ≤ d(t) ≤ 0.75,
∣

∣ḋ(t)
∣

∣ ≤ u ≤ 1

u

Method 0 0.1 0.2 0.3 0.4 0.5 0.6

[17] 2.5077 2.8071 3.2462 3.9935 5.4419 8.9945 25.1048
Theorem 3.1 1.6222 1.8417 2.1363 2.5992 3.4134 5.1046 10.4056

It is obvious that the results of this paper are better than the autonomous systems in [17], which

verifies the effectiveness of the proposed method.

5. Conclusion

In this paper, we deal with the problem of reachable set estimation and state-feedback controller

design for linear time-delay control system with bounded disturbances. Firstly, by constructing an

appropriate L-K functional, we obtained a delay-dependent condition, which determed the admissible

bounding ellipsoid for the reachable set of the system we considered. Secondly, a sufficient condition

in form of liner matrix inequalities is given to solve the problem of controller design with reachable set

estimation.finally, by minimizing the volume of the ellipsoid and solving the liner matrix inequality,

we obtain the desired ellipsoid and controller gain. A comparative numerical example shows that the

results of this paper are better than the autonomous systems in [17], which verifies the effectiveness

of the proposed method. Due to the limitation of controller design, the conclusion of this paper is

conservative.
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