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Abstract: Organic electrochemical transistors (OECTs) based on conducting polymers have attracted
significant attention in the field of biosensors. PEDOT:PSS and polyaniline (PANI) are representative
conducting polymers used for OECTs. While there are many studies on PEDOT:PSS, there are not so many
reports on PANI-based OECTs, and a detailed study to compare these two polymers has been desired. In this
study, we investigated the fabrication conditions to produce the best performance in the OECTs using the
above-mentioned two types of conducting polymers. Two main parameters were film thickness and film
surface roughness. For PEDOT:PSS, the optimal conditions for fabricating thin films were a spin-coating rate
of 3000 rpm and DI water immersion time of 18 hours. For PANI, the optimal conditions were a spin-coating
rate of 3000 rpm and DI water immersion time of 5 seconds, and adding dodecylbenzenesulfonic acid (DBSA)
was found to provide better OECT performances. The OECT performances based on PEDOT:PSS were superior
to those based on PANI in terms of conductivity and transconductance, but PANI showed excellence in terms
of film thickness and surface smoothness, leading to the good reproducibility of OECT performances.
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1. Introduction

Conducting polymers are expected to find applications in various industrial fields because of
their light weight, low cost, and flexibility [1]. They become conductive by either chemical or
electrochemical doping, which injects charge carriers into polymers [2]. Doping allows the
conductivity of polymers to be freely controlled, as well as other physical properties. Poly(3,4-
ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is one of the most studied conducting
polymers, and its applications in sensing and other technologies, such as pH sensors [3], glucose
sensors [4], and enzyme sensors [5], are in practical use [6].

PEDOT:PSS is usually dispersed as colloids in an aqueous solution, and the thin films can be
prepared by solution casting. It is known that the conductivity of PEDOT:PSS increases by nearly
two orders of magnitude by adding specific solvents, such as ethylene glycol, dimethyl sulfoxide,
and sorbitol [7]. When OECT applications are considered, PEDOT:PSS films must be crosslinked
because OECTs operate with aqueous electrolytes. Therefore, effective cross-linkers, such as (3-
glycidyloxypropyl)trimethoxysilane (GOPS), are used to make them insoluble in aqueous solutions
[8].

In addition to PEDOT:PSS, polyaniline (PANI) is a typical example of a conducting polymer.
One of the main characteristics of PANI is that the raw material, aniline, is relatively inexpensive
and oxidative polymerization is easy. Furthermore, it is known that the solubility in organic
solvents can be improved by using dopants, such as 10-camphorsulfonic acid (CSA) and
dodecylbenzenesulfonic acid (DBSA) [2]. Therefore, in recent years, PANI is expected to be applied
to the field of sensing [9]. On the other hand, it has been pointed out that the conductivity of PANI
is inferior to PEDOT:PSS. Therefore, the use of PANI in the development of biosensors with good
sensitivity and accuracy remains a challenge.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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There are many examples of OECTs based on conducting polymers [10-19]. However, further
research is needed to improve their performance for use in high-performance biosensors and
related technologies. In this study, OECTs based on two well-known conducting polymers,
PEDOT:PSS and PANI, were fabricated and their device performances and durability were
optimized. By comparing the two types of conducting polymers, we aim to discuss more optimal
conditions for OECTs using conducting polymers and especially the applicability of PANI-based
OECTs, because there are few precedents [20,21].

2. Materials and Methods

PEDOT:PSS (0.5-1wt% dispersion in water) was purchased from Sigma-Aldrich. Polyaniline
(PANI) was kindly supplied from the Idemitsu Co. Ethylene glycol was purchased from Kanto
Chemicals Co. (3-Glycidyloxypropyl)trimethoxysilane (GOPS) and dodecylbenzene sulfonic acid
(DBSA) were purchased from TCI. These chemicals were used to blend the PEDOT:PSS or PANI
solution. For the preparation, 150 uL (3%) of ethylene glycol, 12 uL (about 0.25%) of DBSA, and 50
tL (1%) of GOPS were mixed with 5 mL of the commercial PEDOT:PSS solution. First, ethylene glycol
and DBSA were added to PEDOT:PSS and stirred for 10 minutes with sonication. Then, 50 puL (1%)
of GOPS was added and stirred for 1 minute while being sonicated again. For PANI:DBSA, about
12uL of DBSA was mixed with 5 mL of PANI and stirred with sonication.

The fabrication of OECTs was done with care to avoid contamination with impurities. First, the
surface of the electrode substrate was cleaned with DI water and made hydrophilic by irradiating it
with ozone plasma for 20 minutes. The commercial PEDOT:PSS solution was spin-coated onto the
surface-modified electrode. First, the rotation speed was set to 4000 rpm, and DI water was dropped
and rotated for 30 seconds to briefly clean the surface. After that, 75 uL of the PEDOT:PSS solution
was dropped and held without rotation for 100 seconds. Spin coating was then performed at a
constant rotation speed (1000-3000 rpm) for 40 seconds. After spin-coating was completed, it was
annealed at 135 °C for 1 hour to form a PEDOT:PSS film on the electrode. The electrode was immersed
in DI water (0~18 h) to remove impurities such as low molecular weight PEDOT and form the smooth
film surface. Coatings in unnecessary areas were removed by blowing water off the surface. The
prepared samples are summarized Table 1. In the case of PANI and PANI:DBSA, ozone plasma
irradiation was not performed and chloroform was used to clean the electrodes instead of DI water.
Other than these points, the same procedure was used for spin-coating, followed by annealing at 135
°C for 30 minutes. Immersing in DI water was performed only for 0 s and 5 s. The prepared samples
are summarized in Table 2.

Table 1. Fabrication conditions of OECTs based on PEDOT:PSS.

Spin-coating rate

Sample Immersion timeb
(rpm)>
P1000-5s 1000 5s
P1500-5s 1500 5s
P2000-5s 2000 5s
P2500-5s 2500 5s
P3000-5s 3000 5s
P2000-0s 2000 0Os
P2000-5min 2000 5min
P2000-15min 2000 15min
P2000-1h 2000 1h
P2000-18h 2000 18h

2 Spin-coating speed of the PEDOT:PSS solution. ® Time to soak the spin-coated films in DI water.
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Table 2. Fabrication conditions of OECTs based on PANI.

Sample Spin-coating rate (rpm)2 Immersion time?
PA1000-5s 1000 5s
PA1500-5s 1500 5s
PA2000-5s 2000 5s
PA2500-5s 2500 5s
PA3000-5s 3000 5s
PA1500-0s 1500 Os

PAD1500-5s 1500 5s
PAD3000-5s 3000 5s
PAD1500-0s 1500 Os

2 Spin-coating speed of the PANI solution. ® Time to soak the spin-coated films in DI water.

In the OECT measurements, conductivity and transconductance values were calculated from the
output and transfer characteristics. The electrodes used were L = 10 um and W = 2500 pm. In the
measurements of output characteristics, conductivities were calculated from the portion of the linear
region with a gate voltage of 0 V. The measurement conditions were set for Vo from 0 V to 1.5 V and
for Ve from 0 V to 2.0 V at 0.4 V intervals. For the measurement conditions of the transfer
characteristics of the PEDOT:PSS device, Ve was set from 2.2 V to -1.0 V and Vb was fixed at -0.6 V.
The transconductance that reached its peak due to the sudden change in drain current was replaced
by the value before or after the peak.

3. Results

3.1. Output characteristics

The output curves of PEDOT:PSS devices and PANI devices are shown in Figure 1 and Figure
3, respectively. In the case of PANI devices, the Vb was set in the range of 0 V to 0.6 V and the Vc was
measured from 0 V to 0.6 V at intervals of 0.1 V. The values of on-resistance, resistivity, and
conductivity were estimated from the OECT performances and are summarized in Figures 2 and 4
and Tables S1 and S52.

The output characteristics of the PEDOT:PSS-based devices were optimized by changing the
spin-coating rate. The results revealed that the resistance was higher than 1400 QO when PEDOT:PSS
films were prepared at the spin-coating rate of 1000 rpm and rinse time in DI water of 5 s (P1000-5s).
This was also the case for the spin-coating rate of 3000 rpm (P3000-5s). However, when the spin-
coating rate was 2000 rpm (P2000-5s), the lowest resistance value was obtained. On the other hand,
the device (P3000-5s) showed the highest conductivity of 18.1 S m-!. Conductivity increased with the
increasing spin-coating rate, which is most likely associated with the film thickness and morphology.
There is a previous study that PEDOT:PSS films crystallize when they are thermally annealed [10].
This implies that, the thicker the film, the less uniform the crystallized PEDOT, and the thicker the
films prepared at low spin-coating rates, the lower the conductivity. Overall, the film thickness is one
of the significant parameters to optimize the electrical properties. Thinning the film thickness
improves the calculated conductivity, but may increase resistance due to the decrease in channel area.
Therefore, a film thickness of about 150 nm is considered optimal.

The as-cast films were immersed in DI water to obtain the optimized surface morphology. The
immersion time in DI water was thus one of the parameters to achieve high-performance OECTs. The
device based on the as-cast film (’2000-0s) gave the lowest resistance and highest conductivity. The
conductivity decreased from P2000-0s to P2000-15min, but slightly increased when the immersion
time was prolonged to 1 h (P2000-1h). The conductivity of the device (P2000-18h) was comparable to
that of P2000-5s. The purpose of immersing the films in DI water was to obtain a better film surface
by partially dissolving oligomers and impurities. However, the conductivity of the device (P2000-5s)
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was indeed lower than that of P2000-0s. This result suggested that the as-cast film is sufficient for
OECT applications.
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Figure 1. Output curves of OECTs based on PEDOT:PSS: a) P1000-5s, b) P1500-5s, c¢) P2000-5s, d)
P2500-5s, €) P3000-5s, f) P2000-0s, g) P2000-5min, h) P2000-15min, i) P2000-1h, and j) P2000-18h.
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Figure 2. Film thicknesses of PEDOT:PSS OECTs at various spin-coating rates with the immersion
time of (a) 0 s and (b) 5 s. The on-resistance and conductivity values at (a) various spin-coating rates
with the constant immersion time of 5 s and (b) various immersion times with the constant spin-
coating rate of 2000 rpm.

The output characteristics of the PANI-based OECTs showed efficient conductivities, although
the devices prepared at the larger spin-coating rates had higher on-resistance. The disadvantage of a
thinner film is that the channel bandwidth to be stored is considerably narrower, resulting in a lower
conductivity. This effect also reduces the durability against potential difference loading between the
source and drain electrodes. Specifically, the drain voltage could be applied up to about 1 V for
PA1000-5s. However, in the PA3000-5s, the operation became unstable at around 0.6 V, and the drain
current sharply dropped. For the film thickness, considering this issue, 3000 rpm is the upper limit
of the spin-coating rate under the measurement conditions.

The immersion in DI water resulted in a decrease in the conductivity even after about 5 seconds
of immersion. As for the film thickness, the surface was somewhat scraped by immersion, resulting
in a thin film. However, the conductivities of the devices prepared at the high spin-coating rates were
large, suggesting oxidation of the films. Therefore, this immersion operation in water was found to
be unsuitable for PANL

Similar to PANI, the conductivities of the PANI:DBSA devices with higher spin-coating rates
were higher. When PAD1500-5s with DBSA was compared with PA1500-5s without DBSA, PAD1500-
5s had higher on-resistance and thinner films. In addition, the conductivity was slightly improved by
increasing the spin-coating rate. When PAD3000-5s and PA3000-5s were compared, the conductivity
was similar. Comparing PAD1500-0s and PA1500-Os, the conductivity of PAD1500-0s was
considerably lower. Since it was reported that the addition of DBSA to PANI decreases conducting
and other related properties, the conductivity of PANI:DBSA without DI water washing was lower
than that of the corresponding PANI film [22]. However, since the addition of DBSA most likely
improved water resistance and chemical endurance, the conductivity increased when washed with
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DI water. This is because the negative impact of DI water immersion is considerably smaller than that
of the PANI film.
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Figure 3. Output curves of OECTs based on PANI and PANI:DBSA: a) PA1000-5s, b) PA1500-5s, c)
PA2000-5s, d) PA2500-5s, ) PA3000-5s, f) PA1500-0s, g) PAD1500-5s, h) PAD3000-5s, and i) PAD1500-
0s. PA and PAD represent PANI and PANI:DBSA, respectively.
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Figure 4. Film thicknesses of PANI OECTs at various spin-coating rates with the immersion time of
(@) 0 s and (b) 5 s. (c) Film thicknesses of PANI:DBSA OECTs at various spin-coating rates with the
immersion time of 5 s. The on-resistance and conductivity values of (d,f) PANI and (e,g) PANI:DBSA
at (d,e) various spin-coating rates with the constant immersion time of 5 s and (f,g) various immersion
times with the constant spin-coating rate of 1500 rpm.

3.2. Transfer characteristics

The transfer curves and transconductance of the PEDOT:PSS devices are shown in Figures 5 and
6, respectively. The highest transconductance of 0.280 mS was obtained for P1500-5s when the spin-
coating rate was optimized. The next highest value was 0.276 mS for P2500-5s, and the other three
types had the maximum transconductance in the range of 0.260~0.270 mS. The error from the average
value of the maximum transconductance was within +0.01 mS, indicating that the maximum
transconductance hardly changes as the film thickness changes.

On the other hand, the immersion time in DI water showed a different behavior. The maximum
transconductance increased with immersion time short enough to momentarily wash the surface and
decreased with longer immersion time. The maximum value gradually increased with continued
immersion for a longer period. Two sets of data, P2000-0s and P2000-5min, showed maximum values
well below 0.20 mS. Therefore, it is likely that the transconductance is affected by the surface
condition of the film due to the immersion in DI water.
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Figure 5. Transfer curves of the PEDOT:PSS devices: a) P1000-5s, b) P1500-5s, c) P2000-5s, d) P2500-
5s, ) P3000-5s, f) P2000-0s, g) P2000-5min, h) P2000-15min, i) P2000-1h, and j) P2000-18h.

a ) 0.40 b) 0.40

035 035

030 030

025 ¢ 025
oy 7z

£ 020 £ 020
&

015 0.15

0.10 0.10

005 005

0.00 0.00

P-1000-5s P-1500-55 P-2000-55  P-2500-5s  P-3000-5s & & & S N &
& " o & & &
6 2 & & b &
Q Q B & Q ¥
< P

Figure 6. Transconductance of the PEDOT:PSS devices at (a) various spin-coating rates and (b) various
immersion times in DI water.
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For PANI, the Vc was set from 1.5V to 0 V, and the Vb was fixed at -0.2 V. The transfer curves
and transconductance of the PANI devices are shown in Figures 7 and 8, respectively. In the case of
PANI, the maximum transconductance increased with increasing spin-coating rates, with PA3000-5s
having the highest value of 0.0154 mS. This may be because of the improved surface morphology of
the film. However, as the spin-coating rate increased, the gate voltage durability of the PANI film
caused an issue. The highest applied voltage durability was 2.0 V for PA1000-5s, which tended to
gradually decrease as the film became thinner. Samples of PANI films were prepared at spin-coating
rates of 3500 and 4000 rpm, and measurements were attempted under the same conditions. However,
the attempted measurement conditions did not provide data from which the transconductance could
be calculated. This trend was also true for PANLI:DBSA, with PAD3000-5s being higher than
PAD1500-5s, at 0.0325 mS. Furthermore, when compared with and without the addition of DBSA,
the maximum transconductance more than doubled with the addition of DBSA. Similar to the PANI
film, we prepared the PANI:DBSA film at 4000 rpm, but the transconductance could not be
calculated.

When the PANI films were immersed in DI water, the transconductance values were higher than
those of the films that were not immersed. The surface morphology of the film is thought to have a
significant impact. PANI:DBSA films also improved the maximum transconductance by a factor of 2

Or more.
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Figure 7. Transfer curves of the devices based on PANI and PANI:DBSA: a) PA1000-5s, b) PA1500-
5s, c) PA2000-5s, d) PA2500-5s, e) PA3000-5s, f) PA1500-0s, g) PAD1500-5s, h) PAD3000-5s, and i)
PAD1500-0s.
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Figure 8. Transconductance of the PANI and PANI:DBSA devices at (a) various spin-coated rates and
(b) various immersion times in DI water.

3.3. Surface morphology

The surface morphology of the spin-coated films was observed by atomic force microscopy
(AFM). Samples were prepared by spin-coating the polymer solutions on a glass substrate using the
same procedure as for an electrode substrate, and the center area of the glass substrate was observed.
The PEDOT:PSS samples observed were P1000-5s, P2000-5s, P3000-5s, P2000-0s, P2000-5min, P2000-
15min, and P2000-18h. The images in the range of 1pum? are shown in Figure 9. The surface roughness
of the samples is shown in Figure 11 and summarized in Table S3.

The surface morphology of P2000-5s was rougher than that of P1000-5s. In comparison, P3000-
5s had a slightly smoother surface. When the films were not immersed in DI water, the film surfaces
were slightly smoother than those immersed shortly. Thus, immersion in DI water for short periods
of time may slightly degrade the film surface. However, the longer the immersion time in DI water,
the smoother the surface became. As a consequence, P2000-18h had the smoothest surface.

Figure 9. AFM images of PEDOT:PSS films: a) P1000-5s, b) P2000-5s, c) P3000-5s, d) P2000-0s, €) P2000-
5min, f) P2000-15min, and g) P2000-18h.

The surface morphology of the PANI films was also observed using AFM. The samples observed
were PA1500-5s, PA3000-5s, PA1500-0s, PAD1500-5s, PAD3000-5s, and PAD1500-0s. Images in the
1um? range are shown in Figure 10. The surface roughness of the samples is shown in Figure 11 and
summarized in Table 54.

Regarding the surface morphology of the PANI films, the surface roughness of both 1um?and
10pm? became smoother by increasing the spin-coating rate. When immersed in DI water, the surface
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roughness decreased by nearly 0.2 nm, indicating that the surface became smoother. In PANI:DBSA,
comparing PAD1500-5s and PAD3000-5s, the surface roughness at 10um? was smoother on PAD1500-
5s. However, PAD-3000-5s was smoother at 1pum?. The sample without DI water rinse had a slightly
rougher surface at 1um? but much smoother results in the 10 pm? range. This may be due to the

possibility that the samples with DBSA were more prone to mottling of the surface morphology due
to washing.

Figure 10. AFM images of the PANI and PANI:DBSA films: a) PA1500-5s, b) PA3000-5s, c) PA1500-
0s, d) PAD1500-5s, €) PAD3000-5s, and f) PAD1500-0s.
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Figure 11. Surface roughness (Ra) of the PEDOT:PSS films at (a) various spin-coating rates and (b)
various immersion times in DI water and the PANI and PANI:DBSA films at (c) various spin-coating
rates and (b) various immersion times in DI water.
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4. Discussion

From the above results, the best OECT performance for PEDOT:PSS was obtained at a spin-
coating rate of 2000 rpm and immersion in DI water for 18 hours. For PANI, the best performance
was obtained by adding DBSA, spin-coating at 3000 rpm, and washing the surface with DI water for
a short time of about 5 seconds.

On-resistance and conductivity were higher for PEDOT:PSS, and conductivity was about 16
times higher than that of PANI, partly due to its thinner film. The maximum transconductance was
13 times higher for PEDOT:PSS. These results indicate that PEDOT:PSS considerably outperforms
PANI in terms of performance as an OECT. This is thought to be because the presence of PSS
considerably improved the oxidation resistance of the PEDOT:PSS film, allowing the formation of a
relatively wide flow path even when the films are thin.

However, the uniformity of film thickness and the smoothness of the film surface are superior
for PANL. In terms of film thickness, PEDOT:PSS showed a large difference in thickness depending
on the location, whereas PANI showed a fairly uniform film thickness at 1um?. Considering that
PEDOT:PSS required various preparations to fabricate OECTs, PANI is superior in that better
morphology films can be easily formed in a shorter time. The surface of the PANI film was relatively
easy to scrape, resulting in a large surface roughness value at 10um?2. In this regard, further surface
smoothness and performance improvement can be expected by establishing a uniform cleaning
method with DI water.

5. Conclusions

In this study, OECTs were fabricated using PEDOT:PSS and PANI, and their performances were
evaluated. Regarding the optimization of fabrication conditions, in the case of PEDOT:PSS, a polymer
film with a thickness of 150 nm was obtained by spin-coating at 3000 rpm and immersion in DI water
for 18 hours, based on the uniformity inside the film and the smoothness of the surface.

For PANI, the OECT performances and film surface morphology studies revealed that doping
with DBSA improves the carrier concentration. Based on the effect of film surface smoothness, it was
also found that the optimal conditions for PANI doped with DBSA were a spin-coating rate of 3000
rpm and surface washing with DI water for about 5 seconds, resulting in a polymer film with a
thickness of 0.84 um. The conductivity and maximum transconductance tended to increase with the
increasing spin-coating rate, and further improvement in values may be expected by increasing the
spin-coating rate higher than 3000 rpm. However, the higher oxidation rate and the shrinkage of
channels formed by thinning and the associated decrease in current and voltage tolerance had a
greater impact, resulting in less stable OECT and less reliable data.

The basic performance of the PEDOT:PSS-based OECT is higher than that of the PANI-based
OECT, and this is the reason why there are many PEDOT:PSS-based OECT studies. On the other
hand, PANI is superior in terms of the smoothness of the polymer film, and research on biosensors
using the PANI-based OECT is expected in the future.

Supplementary Materials: The following supporting information can be downloaded at:
www.mdpi.com/xxx/s1, Table S1: OECT characteristics based on PEDOT:PSS; Table S2: OECT characteristics
based on PANI; Table S3: Surface roughness data of PEDOT:PSS films; Table S4: Surface roughness data of
PANI films.
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