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Abstract: SARS-CoV-2 infection can lead to life-threatening clinical manifestations. Patients with
cardiovascular disease (CVD) are at higher risk for severe courses of COVID-19. However, strategies to predict
the course of SARS-CoV-2 infection in CVD patients at the time of hospital admission are still missing. Here,
we investigated whether this prediction is achievable by prospectively analysing the blood immunophenotype
of 94 participants, including 20 uninfected and 37 acutely SARS-CoV-2-infected CVD patients and 37 healthy
donors, using a 36-colour spectral flow cytometry panel. Unsupervised data analysis revealed little differences
between healthy donors and CVD patients, whereas the distribution of the cell populations changed
dramatically in SARS-CoV-2-infected CVD patients. The latter had more mature NK cells, activated monocyte
subsets, central memory CD4* T cells, and plasmablasts but fewer dendritic cells, CD16* monocytes, innate
lymphoid cells, and CD8* T cell subsets. Moreover, we identified an immune signature characterised by
mucosal-associated invariant T (MAIT) cells, intermediate effector CD8* T cells, and natural killer T (NKT) cells
that is predictive for CVD patients with a severe course of COVID-19. Thus, intensified immunophenotype
analyses can help identify patients at risk of severe COVID-19 at hospital admission, improving clinical
outcomes through specific treatment.

Keywords: cardiovascular disease; SARS-CoV-2 infection; COVID-19; spectral flow cytometry; immuno-
response; immune signature

1. Introduction

Coronavirus disease 2019 (COVID-19) is a broad spectrum of clinical manifestations caused by
severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection. The severity of the
disease is related to risk factors such as age, sex, and pre-existing comorbidities that correlate with
the immune response during acute infection [1,2]. SARS-CoV-2 infection ranges from asymptomatic
to fatal courses. In patients recovering from a non-severe infection, the immune system responded to
SARS-CoV-2 infection with robust, broad-based, and transient regulatory features [3-6]. In contrast,
severe COVID-19 is characterised by hyperactivation of innate but also adaptive immune cells, an
exuberant cytokine response, and high titer of SARS-CoV-2 specific antibodies.

Common complications in hospitalised patients infected with SARS-CoV-2 include pneumonia,
sepsis, acute respiratory distress syndrome (ARDS), and respiratory failure [9-11]. The
pathophysiology of SARS-CoV-2 is characterised by an early production of pro-inflammatory
cytokines (e.g., tumour necrosis factor (TNF), IL-6, and IL-1), often resulting in hyperinflammation
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[12]. This so-called cytokine storm increases the risk of vascular hyperpermeability and, if persistent,
multi-organ failure and eventual death.

Patients with cardiovascular disease (CVD) are critically susceptible to more severe courses of
SARS-CoV-2 infection, which may lead to life-threatening complications like cardiac and pulmonary
damage as the most common complications [13,14]. For example, an enhanced pro-inflammatory and
pro-thrombotic immune response, characteristic of SARS-CoV-2-infected patients with pre-existing
CVD, can trigger myocarditis or acute coronary syndrome with subsequent congestive heart failure
[15-19]. Furthermore, CVD patients are prone to ARDS and progressive respiratory failure, along
with an increased risk of a pulmonary embolism due to infection-associated coagulopathy, which
may cause not only acute right heart failure but also disseminated intravascular coagulation [19].
These clinical scenarios explain the increased rate of unfavourable clinical outcomes like organ
failure, admission to the intensive care unit with rapidly progressive respiratory failure, and
mortality in CVD patients with SARS-CoV-2 infection.

CVD is characterised by alterations in inflammatory mediators like C-reactive protein (CRP),
pro-inflammatory cytokines and chemokines, platelet and monocyte activation, and enhanced
expression of adhesion molecules on endothelial and immune cells are critical players of
atherogenesis and -progression [20-22]. Up-regulation of the involved cytokines, chemokines, and
platelet activation recruits inflammatory cells like monocytes, macrophages, and dendritic cells to the
arterial wall, causing atherosclerotic lesions [21]. In addition, pro-inflammatory adaptive immune
cells like Thl and Th17 cells are also critically involved in CVD, especially myocardial infarction,
myocarditis, and heart failure [23-25]. Due to a chronically enhanced pro-inflammatory immune
response, patients with CVD are at risk for a severe course of COVID-19. However, strategies to
identify these high-risk patients with CVD early in COVID-19 are still lacking. Thus, there is still an
urgent clinical need to understand the complexity of the innate and adaptive immune system
dysfunctions that underlie severe or even fatal COVID-19 in this subgroup of CVD patients to
provide the best possible care upon hospitalisation and improve clinical outcomes. In the present
study, we aimed to identify the critical immune system components to predict a severe course of
COVID-19 in CVD patients. Accordingly, we performed in-depth analyses of innate and adaptive
immune cells and cytokines in the peripheral blood of SARS-CoV-2-infected or uninfected CVD
patients. Our study revealed that a complex but specific immune signature is associated with the
severity of COVID-19 in patients with CVD and can predict the course of the disease upon first
admission to the hospital.

2. Materials and Methods

2.1. Study design, participants, and assessment of clinical parameters

From March to April 2020, we prospectively studied a consecutive cohort of 94 participants at
the Department of Cardiology and Angiology of the University Hospital Tiibingen, Germany. Of
these, 37 consecutive patients with pre-existing CVD and symptomatic, acute SARS-CoV-2 infection
(CVD+SARS-CoV-2) were admitted to our emergency department. Twenty patients with pre-existing
stable CVD without any infections were matched for the group of CVD+SARS-CoV-2 patients. 37
healthy donors (HD) served as controls (Table 1 and Tables S1-2). All patients underwent clinical and
cardiac assessment, including echocardiography, electrocardiography, concomitant medication,
comorbidities, and blood sampling for routine laboratory parameters within 12 hours of admission.
SARS-CoV-2 infection was diagnosed by RNA detection from nasopharyngeal secretions with real-
time reverse transcriptase polymerase chain reaction. Pre-existing CVD was defined as stable
coronary artery disease, which had been determined by coronary angiography and diagnosed when
there was luminal stenosis of one or more coronary vessels >25-50% diameter before hospital
admission. Respiratory failure was defined by a Horovitz Index (HI) < 200mmHg [26].

The inclusion criteria for our study were confirmed CVD with or without SARS-CoV-2 infection
and an age >18 years. Exclusion criteria were other viral or bacterial infections and malignancies. The
study was approved by the local ethics committee (240/2018BO2) and complied with the Declaration
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of Helsinki and the Good Clinical Practice Guidelines on the approximation of the laws, regulations,
and administrative provisions of the Member States relating to the implementation of good clinical
practice in the conduct of clinical trials on medicinal products for human use. Written informed
consent was obtained from each patient.

N terminal-pro-B-type natriuretic peptide (NT-pro-BNP, >300 ng/L), high sensitive troponin I
(hs TNIL >37 ng/L), and C-reactive protein (CRP, >0.5 mg/dL) were classified as elevated laboratory
markers of myocardial and inflammatory distress. Echocardiographic parameters included left and
right ventricular function, right ventricular dilatation, presence of tricuspid valve regurgitation, and
pericardial effusion according to current guidelines [27,28].

2.2. Isolation of peripheral blood mononuclear cells

Blood samples of patients with CVD (including SARS-CoV-2 infection) and HD were collected
in CPDA monovettes and were processed within 4 hours after blood collection. Peripheral blood
mononuclear cells (PBMCs) were isolated using SepMate tubes (Stem Cell Technologies) according
to the manufacturer's instructions by density gradient centrifugation. The blood was diluted 1:1 with
PBS, stacked on 15 mL Biocoll separation solution ((1,077 g/ml), Biochrom) in a 50 ml tube and
centrifuged at 1200 x g for 10 min without brake at room temperature. The clear supernatant
containing the PBMCs was decanted and washed three times with PBS+2% FCS. PBMCs were frozen
as aliquots of 1-2x107 cells/ml in RPMI1640 containing 20% FBS and 10% DMSO at -150°C until further
use.

2.3. Flow cytometry staining

PBMCs were thawed in a water bath at 37°C and added 10 ml RPMI (Sigma) containing 50 KU
DNasel (Merck). Cells were centrifuged at 400 x g for 5 minutes at room temperature. The
supernatant was discarded, and the cells were resuspended in 5 ml RPMI containing 200 KU DNasel
and incubated for 20 minutes at 37°C. The cell numbers were determined by trypan blue exclusion
using a Neubauer counting chamber. Cells were washed once with PBS, and 3x10¢ cells were stained
with LIVE/DEAD Fixable Blue Dead Cell Stain Kit (Thermo Fisher Scientific) according to the
manufacturer's instructions to exclude dead cells (final dilution 1:1000). All following washing and
incubation steps were performed with Cell Staining Buffer (BioLegend). Blocked Cells were
incubated with Human True StainFcX (BioLegend) at room temperature for 10 minutes to prevent
unspecific binding of antibodies to Fc receptors. After that, extracellular staining was performed for
1 hour at 4°C using the antibodies listed in Table S3, in a final volume of 100 ul containing 5 pl True-
Stain Monocyte Blocker (BioLegend) to block non-specific binding of fluorophores to monocytes.
Cells were washed twice with staining buffer, and at least 1.5x10¢ cells were acquired using an Aurora
(Cytek Bioscience) with the SpectroFlow software. Unmixing was performed in SpectroFlow using
cell- or bead-based single-stain controls and unstained cells for autofluorescence subtraction.

2.4. Flow cytometry staining

We performed a classical gating strategy (Figure 1) for quality control of the 36-color panel and
unsupervised data analysis described below using OMIQ software (Dotmatics, Boston, MA, USA).
First, the compensation and the scaling were set, followed by a subsampling to 1.5x10¢ events/sample.
FlowAI was run (flow rate: second fraction 0.1; alpha 0.01; and dynamic range: both limits with
negative value removal limit 1) including time, all fluorescent channels, and autofluorescence
followed by gating and subsampling on 1x10¢ flowAl passed cells/group (HD, CVD or CVD+SARS-
CoV2). The data were normalised using f{daNorm for all fluorescent channels, followed by adjusting
the scaling where needed and gating on and subsampling of living 5x105 CD45* cells per group.
Subsequently, dimensionality reduction analysis was performed using Uniform Manifold
Approximation and Projection (UMAP) to visualize the different sub-populations of the cells [29].
UMAP settings were as follows: all files used, all fluorescent parameters were used except Live/Dead,
CD45 and autofluorescence, Neighbors = 80, Minimum Distance = 0.7, Components = 2, Metric =
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Euclidean, Learning Rate = 1, Epochs =200, Random Seed = 5733, Embedding Initialization = spectral.
Following the UMAP analysis, FlowSOM algorithm [30] was run to cluster the data. FlowSOM
settings were as follows: all files used, clustering features CD16, CD11c, CD56, CD8, CCR7, CD123,
IgD, CD3, CD20, IgM, IgG, CD28, CD141, CD57, CD14, TCRys, CD25, CD4, CD27, CD1c, CD19,
CD127, HLA-DR, CD38, umap_1, umap_2, xdim =25, ydim =25, # of training iterations = 10, Distance
Metric = euclidian, consensus metaclustering with k = 100, Random Seed = 3919. A heatmap (Figure
1d) was generated with the metaclusters obtained from FlowSOM and clustered hierarchically using
the samples from HD with the medians of all surface markers except for LIVE/DEAD, CD45, and
autofluorescence with a euclidean row distance and a ward row leakage to assign the metaclusters
to the cell populations.

2.5. Determination of plasma levels of cytokines/chemokines (LEGENDPlex)

Two LEGENDPlex (Inflammation Panel 1 and Pro-inflammatory Chemokine Panel; BioLegend,
San Diego, California, USA) were performed to quantify the concentrations of several chemokines
and cytokines in human plasma. Sixty-nine frozen plasma samples were analysed, consisting of 27
HD, 15 CVD, and 27 SARS-CoV-2-infected CVD patients. The assays were performed according to
the manufacturer's manual. A FACS Lyric (BD Biosciences, Franklin Lakes, New Jersey, USA) was
used for the measurement. Data analysis was performed with the LEGENDPlex Data Analysis
Software (BioLegend, San Diego, California, USA).

2.6. Statistical analysis

Statistical analyses were performed with GraphPad Prism version 8.0.2 and R software version
4.0. We determined clinical and laboratory baseline characteristics in relation to measured immune
cell phenotypes, marker expression, and clinical outcome. Continuous variables are expressed as
median with standard deviation. All datasets were tested for normal distribution using the Shapiro-
Wilk normality test. Since all normality tests returned negative, data sets were compared using
multiple unpaired two-tailed Mann-Whitney U tests for two-group comparisons corrected for
multiple comparisons using false discovery rate. Three-group comparison were analysed using
Kruskal Wallis non-parametric test with Dunn's (Figures) or Bonferroni (Tables) post-tests.

Categorical data are presented as total numbers and proportions and were analysed by chi-
squared test. Correlation calculations between two parameters were performed by Spearman rank
correlation coefficient r.

To summarise, correlations of essential parameters in CVD patients with and without SARS-
CoV-2 infection matrices were generated using Rstudio "Corrplot," displaying correlations of
cytokines with or without cell populations from the unsupervised data analysis. Spearman's @ is
coloured, and colour intensity and size are plotted proportionally to correlation coefficients. The
"CombiROC" package [31,32] (http://combiroc.eu/) was used in Rstudio to determine the optimal
combination of cell populations to differentiate mild from severe or moderately SARS-CoV-2-infected
CVD patients. Orthogonal partial least-square discriminant analysis (OPLS-DA) [33] was performed
using the “MetaboAnalyst” package in RStudio. Comparisons were considered statistically
significant if the two-sided p-value was <0.05 (* < 0.05; ** < 0.01; *** < 0.001; **** < 0.0001).

3. Results

3.1. Clinical characteristics of patients with cardiovascular disease and symptomatic acute SARS-CoV-2
infection

We prospectively studied a cohort of 94 participants from February to April 2020. This cohort
consisted of 20 patients with pre-existing CVD and 37 with pre-existing CVD and symptomatic acute
SARS-CoV-2 infection. 37 HD served as controls. The baseline characteristics and demographics of
the overall cohort are given in Table 1. The population's median age was 58 (IQR 42-74) years, and
45 (47 .9%) patients were men. Detailed information on every subgroup of the cohort is given in Table
S1. Out of 37 CVD+SARS-CoV-2 patients, 20 showed respiratory failure with HI < 200 mmHg, while


http://combiroc.eu/
https://doi.org/10.20944/preprints202311.1289.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 November 2023

doi:10.20944/preprints202311.1289.v1

5

11 (29.7%) were admitted to the ICU due to progressive respiratory, circulatory, or multi-organ
failure. CVD+SARS-CoV-2 patients were further stratified by their ISARIC-WHO-4C-Mortality-Score
into a group of expected mild, moderate, or severe course of COVID-19, patients' characteristics
stratified by ISARIC-WHO-4C-Mortality-Score are depicted in Table S2 (https://isaric4c.net/risk/).
Patients with expected mild COVID-19 were significantly younger (p=0.016) than those with an
expected moderate or severe disease course. Interestingly, cardiovascular risk factors were equally

distributed among the three groups, whereas laboratory parameters like lymphocyte count, CRP, and

interleukin-(IL-)6 levels showed significant alterations.

Table 1. Baseline characteristics of the patient population at study entry (n =94).

Parameters All patients (n=94)
Clinical characteristics

Age (y) 58 (42-74)
Male 45 (47.9)
BMI (kg/m?) 25 (22-28.2)
ICU admission 11 (11.7)
ARDS

mild 19 (20.2)
moderate 8 (8.5)
severe 5(5.3)
Horovitz Index

HI > 300 mmHg 70 (74.5)
HI 201 - 300 mmHg 4 (4.3)
HI 101 - 200 mmHg 11 (11.7)
HI <100 mmHg 9(9.6)
High flow 02 Therapy 5(5.3)
Mechanical ventilation 8 (8.5)
Vasopressor 6 (6.4)
Lymphocyte count at Nadir (1000/pl) 0.8 (0.6-1.2)
Bacterial Co-Infection 14 (14.9)
Dialysis 5(5.3)
Acute hepatic injury 4 (4.3)
Symptoms on admission

Cough 18 (19.1)
Dyspnea 18 (19.1)
Fever 20 (21.3)
Cardiovascular risk factors

Arterial hypertension 43 (45.8)
Dyslipidemia 30 (31.9)
Diabetes mellitus 11 (11.7)
Current smokers 11 (11.7)
Obesity 21 (22.3)
Atrial fibrillation 14 (14.9)
Chronic kidney disease 7(7.4)
COPD 3(3.2)
Malignoma 8 (8.5)
NYHA

1 10 (10.6)
2 2(2.1)

3 2(2.1)
Parameters of echocardiography

Left ventricular hypertrophy 22 (23.4)
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Right ventricular function 3(3.2)
Right ventricular dilatation 13 (13.8)
PE 17 (18.1)
Bilateral nodular opacities 19 (20.2)
Ground-glass opacities 9(9.6)
Peribronchial thickening 2(2.1)
Focal consolidations 9 (9.6)
Venous congestion 6 (6.4)
Atelectasis 1(1.1)
Parameters of electrocardiography
Heart Rate (bpm) 76 (67-84)
Systolic blood pressure (mmHg) 140 (130-151.3)
Heart Rhythm
Sinus rhythm 85 (90.4)
Atrial fibrillation 4 (4.3)
PM 1(1.1)
SVT 1(1.1)
Laboratory parameters and biomarkers
Leukocytes (1000/pL) 6925 (5120-8715)
Lymphocytes (1000/pL) 1315 (705-1977)
Hb (g/dL) 13.3 (12.1-13.9)
Platelets (1000/uL) 224.5 (166.8-297.3)
INR (%) 1(1-1.1)
PTT (s) 24 (22-27)
D-Dimer (ug/dL) 0.8 (0.6-1.8)
Creatinine (mg/dL) 0.8 (0.7-1)

GFR-MDRD (ml/m?)
Sodium (mmol/L)

79.8 (52.8-101.8)
139 (137-140)

CRP (mg/dL) 1(0.1-3.3)
PCT (ng/mL) 0.1 (0.1-0.2)
IL-6 24.3 (8.7-34.5)
hs TNI (ng/dL) 7.5 (3-18)
NT-pro-BNP (ng/L) 202 (95.3-887.3)
CK (U/L) 100 (66-175)
AST (U/L) 24 (16.8-39)
ALT (U/L) 22 (16-41)
LDH (U/L) 211 (171-276)
HbAlc (%) 6 (5.5-6.4)
Concomitant cardiac medication at study entry

Oral anticoagulation 11 (11.7)
ACE-I or ARB 36 (38.3)
Diuretics 15 (16.0)
Calcium channel blockers 12 (12.8)
Beta-blockers 23 (24.5)
Statins 29 (30.9)
ASA 23 (24.5)
P2Y12 inhibitors 5(5.3)

Values are n (%) or median and interquartile range (IQR). ACE - Angiotensin Converting Enzyme. Afib — atrial

fibrillation. ALT — alanine amino-tranferase. ARB — Angiotensin II receptor blockers. ARDS — Acute respiratory

distress syndrome. ASA — Acetylsalicylic acid. AST — aspartate-aminotransferase. BMI — body mass index. CAD

— coronary artery disease. CK — creatinine kinase. COPD — chronic obstructive pulmonary disease. CVD —

cardiovascular disease. CRP — C-reactive protein. GFR-MDRD - glomerular filtration rate. Hb — hemoglobin. HI
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— Horovitz Index. hs TNI - high sensitive Troponin I. ICU — Intensive care unit. INR - international normalized

ratio. LDH - lactate dehydrogenase. NT-pro-BNP — N-terminal pro-brain natriuretic peptide. NYHA — New York

Heart Association. PCT — procalcitonin. PM — Pacemaker. PTT — partial thromboplastin time. SARS-CoV-2 —

severe acute respiratory syndrome coronavirus-2. SVT — supraventricular tachycardia.

3.2. Characterization of immune cell subsets in peripheral blood using a 36-color spectral flow cytometry

panel

Frozen peripheral blood mononuclear cells (PBMCs) from the described patient cohort were
stained with a 36-color antibody panel (Figure S1) related to a previously published panel [34] and
measured with a spectral flow cytometer to characterize all common immune cell subsets (Figure 1a).
Data analysis was performed classically by manual gating (Figure S2) as well as by unsupervised
analysis using Uniform Manifold Approximation and Projection (UMAP) [29] for dimensionality
reduction followed by clustering using self-organised map (FlowSOM) [30] (Figure 1c). Already in
the UMAP visualisation differences were seen between the concatenated files of the different cohort

groups (Figure 1b).
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Figure 1. UMAP dimensional data analysis of PMBCs using a 36-color antibody panel. (a)
Experimental design (b) High-dimensional data analysis of PBMCs from healthy donors (HD, 37),
patients with cardiovascular disease (CVD, 20), and patients with CVD and SARS-CoV-2 infection
(CVD + SARS-CoV2 patients, 37) displayed in two UMAP dimensions. The density plots show
concatenated events from all of the indicated samples. (c) 40 FlowSOM clusters projected onto two
UMAP dimensions. The overlay plot shows concatenated events from all samples. FlowSOM clusters
were assigned to depicted cell populations based on their marker expression (see heatmap in (d)). (d)
Hierarchically clustered heatmap displaying the marker expressions of manually labelled 40
FlowSOM clusters from 37 concatenated HD samples. The marker expression intensity is displayed
on a scale from white (low) to blue (high). Each column's max and min are mapped to this scale, so
the values change between markers; consequently, the scale is labelled with —and + to indicate relative
magnitude.

FlowSOM clustering was performed with 100 metaclusters (MCs) to identify cell populations
with lower abundance, such as cDC1. 13 of these 100 MCs were excluded for further analysis as the
percentage of cells in these MCs was less than 0.01. FlowSOM clustering in combination with UMAP
plots displaying the expression of one lineage marker on the colour-coded x-axis (Figure S3) and a
clustered heatmap showing the median expression of the analysed markers (Figure 1d) was used to
assign the obtained 87 clusters to distinct cell populations (Figure 1c). Finally, the 36-colour staining
followed by unsupervised data analysis revealed the discrimination of 40 manually assigned specific
cell populations reflecting the manual gating strategy. These cell populations include B cell (lilac),
CD4+ (orange) and CD8* T cell (blue), NK cell (green), monocyte (pink), and dendritic cell subsets
(cDCs, violet), innate lymphoid cells (ILCs, light green) and MAIT cells (turquoise) as well as
basophils (yellow) and also neutrophils (purple).

3.3. SARS-CoV2-infected CVD patients showed significant differences in the distribution and the phenotype
of immune cell populations compared to uninfected CVD patients

Next, we assessed the differences in the abundance of the 87 MCs obtained by FlowSOM
(annotated to 40 different cell populations as described in Figure 1) in PBMCs from HD and CVD
patients with and without SARS-CoV2 infection (Figure S4). Comparison of HD and uninfected CVD
patients revealed a reduced frequency of clusters assigned to y6 T cells, MAIT cells, naive CD8* T
cells, early-like effector memory CD4* T cells (CD4* early-like Tem), CD4-CD8- T cells, and naive B cells
in CVD patients. In contrast, clusters representing more innate inflammatory cells like CD14*
monocytes, neutrophils, mature NK cells, and CD8* central memory T cells (CD8* Tem) were increased
in frequency in CVD patients compared to HD (Figure S5).

During symptomatic, acute SARS-CoV-2 infection in hospitalised CVD patients, we observed
significant changes in their immune signature compared to uninfected CVD patients, particularly a
more significant proportion of mature NK cells (MC33), CD14*CD16* monocytes (MC11, MC35),
activated populations of CD14*CD45RA* monocytes (MC27, MC50, MC63), CD4* Tem cells (MC97)
expressing CD38*, CD8* early Tem cells (MC60) expressing HLA-DR*CD38PD-1* as well as
plasmablasts (MC31, MC39) (Figure 2B). In contrast, reduced proportions of ILCs (MC62), dendritic
cell subsets cDC1 (MC14) and cDC2 (MC13), CD16* monocytes (MC23, MC34), less activated/mature
CD14* monocytes (MC28, MC45, MC59), as well as CD4*CD8* T cells (MC76), naive, central memory,
and early effector-memory CD8* T cells (MC67, MC68, MC61) and CD4* Tregs (MC100) were observed
in SARS-CoV2-infected compared to uninfected CVD patients (Figure 2). To complement our
unsupervised analysis, we applied manual gating (Figure 52) for immune cell subsets contributing
to SARS-CoV-2 infection. Similar to the unsupervised data analysis results, we found increased
numbers of CD14*CD16* intermediate monocytes and plasmablasts and, although not found in the
unsupervised data analysis, increased numbers of CD4* Temra cells in SARS-CoV2-infected CVD
patients (Figure S6). The numbers of ILCs, dendritic cell subsets pDCs, cDC1, and ¢DC2 (not
statistically significant), CD16* monocytes, as well as naive, central memory, and early effector-
memory CD4* and CD8* T cells and CD4* Tregs, were reduced in SARS-CoV-2-infected compared to
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uninfected CVD patients. Moreover, fewer T helper 17 (Tni7) and follicular T helper (Tm) cells and 6
T cells were detected upon SARS-CoV-2 infection.

In addition to changes in the proportion of immune cells, we also observed phenotypical
changes in SARS-CoV-2-infected CVD patients compared to uninfected CVD patients (Figure S7). In
particular, an overall activation of innate immune cells was observed. For example, CD38, CD95, and
CCRS5 expression were significantly increased on NK cell subsets of SARS-CoV-2-infected CVD
patients. Plasmacytoid DCs, important in viral infections due to their type I interferon response [35],
also showed a significantly more activated phenotype by increased CCR7, CD38, and CD95
expression. Similar effects were observed for basophils and innate lymphocyte cells (ILCs) with
increased CXCR3 or CD45RA, CD28, and CD25 expression.

In contrast, the cDC subsets from SARS-CoV-2-infected CVD patients showed less expression of
HLA-DR and CD38 but increased expression of CCR5, CCR7, CD11b, CD45RA, and IgG (cDC2s)
(Figure S7), indicating cellular activation and migration, but also an association with a reduced
antigen presentation capacity. Regarding the monocyte clusters, we observed an increased migratory
and activated phenotype in SARS-CoV-2-infected CVD patients, determined by the high expression
of CCR7 in all monocyte subsets. However, monocyte subsets from these patients revealed a less
activated phenotype than their uninfected CVD counterparts, shown by significantly less expression
of HLA-DR, CD38, CD11b (on CD14* monocytes), and CD45RA. Most strikingly, we found an
enhanced expression of the thrombin receptor CD141 on monocyte clusters from SARS-CoV-2-
infected patients, possibly aiming toward impaired blood coagulation [36].

doi:10.20944/preprints202311.1289.v1
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Figure 2. Differences between immune cell populations of CVD patients compared to SARS-CoV2-
infected CVD patients. (a) Volcano plot comparing the frequency of cells in 87 FSOM clusters from
CVD and SARS-CoV2-infected CVD patients using edgeR. Significant different clusters are depicted
in green used in B-D. (b) UMAP overlay plot shows concatenated events from the two groups of A.
(c) Clustered heatmap displaying the frequency of cells in the FSOM clusters from concatenated
samples from CVD (upper row) and SARS-CoV2-infected CVD patients (lower row). The frequency
is displayed per row on a scale from white (low) to blue (high). (d) Box plots show the abundance of
the depicted MC with assigned cell populations of the individual samples from CVD and SARS-
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CoV2-infected CVD patients. Data were analysed using multiple Mann-Whitney non-parametric tests
with a false discovery rate. Significant differences between the two patient cohorts are marked with
stars (* > 0.05; ** > 0.01; *** > 0.001; *** > 0.0001). MC, metacluster.

Concerning the adaptive immune cell populations, a more inhibitory phenotype was observed
in SARS-CoV2-infected CVD patients compared to uninfected (Figure S7). The only exception was
the plasmablasts. Plasmablasts revealed reduced expression of the apoptotic marker CD95 combined
with increased CD38 expression, indicating a more functional and long-living phenotype upon
SARS-CoV2 infection. Similar to DCs, a phenotype with decreased activation was observed in the B-
cell subsets of SARS-CoV2-infected CVD patients. This was evidenced by lower CD38, HLA-DR,
CCR6, CD45RA, and IgD expression. CD8* and most CD4* T cell subsets showed an overall increase
in CD38 expression, indicating activation upon SARS-CoV2 infection. However, the inhibitory
molecule PD-1 on the cell surface of CD8* naive CD4* and CD8* Tem cells, CD4+* Tregs, and HLA-
DR*CD8* activated T cells was increased, which was accompanied by less expression of the co-
stimulatory molecule CD28 on CD8* T cell subsets. CXCR3 expression was also reduced on several
CD4+ and CD8* T cell subsets of SARS-CoV-2-infected compared to uninfected CVD patients. The
latter two observations hint towards an impaired migratory capacity and full T cell activation of CD4*
and CD8* T cell subsets. In summary, our data show an infection-induced activation of innate
immune cells in combination with reduced numbers and inhibitory phenotypes of DCs and adaptive
immune cells in infected compared to uninfected CVD patients.

3.4. Chemokine and cytokine profiling showed significant differences between SARS-CoV-2-infected and
uninfected CVD patients

In addition to spectral flow cytometry, 25 common cytokines and chemokines were analysed in
plasma samples from HD and CVD patients without and with SARS-CoV-2 infection, the latter being
further subdivided into groups with expected mild and severe course of COVID-19 based on the
ISARIC-WHO-4C-Mortality-Score. In line with other studies, the pro-inflammatory cytokines IL-6
and IL-18 were significantly increased in the plasma of SARS-CoV-2-infected compared to uninfected
CVD patients and HD (Figure S8A) [37,38]. Furthermore, IL-6 was also elevated in CVD patients
compared to HD and significantly increased in severe compared to mild SARS-CoV2-infected CVD
patients (Figure S8A&B). Interestingly, TNF, IL-1b, IL-12p70, IL-23, and IL-33 were lower in SARS-
CoV-2-infected CVD patients than uninfected CVD patients and HD, indicating impaired T helper
cell differentiation in this subgroup. In contrast, the chemokines CCL2 and the CXCR3 ligands
CXCL9, CXCL10, and CXCL11 were markedly elevated during SARS-CoV-2 infection. Differences
between mildly and severely affected CVD patients were observed, particularly a significant increase
of IL-6 and IL-8, whereas CCL17, responsible for the recruitment of T cells [39], was significantly less
abundant in severely infected CVD patients (Figure S8B). Correlation analysis revealed that
predefined cell clusters and chemokine/cytokine profiling showed significant associations among the
subgroup of SARS-CoV-2-infected CVD patients and CVD patients without any infections, as
depicted in Figure S8C.

3.5. An immune signature of SARS-CoV-2-infected CVD patients is associated with the severity of COVID-
19

SARS-CoV-2-infected CVD patients were classified by their ISARIC WHO 4C-Mortality-Score
on the day of admission into three subgroups of an expected mild (4C-Score <4), moderate (4C-Score
4-8), or severe (4C-Score 29) course of COVID-19. To determine an association between the immune
signature and the severity of COVID-19, we analysed the abundance and alterations of immune cell
populations in the peripheral blood of CVD patients with expected mild, moderate, or severe course
of COVID-19 as described above.

Comparing the frequencies of cells in the above-defined 87 MC from patients with mild and
severe or moderate and severe courses of COVID-19 revealed 19 significantly different MCs among
the groups (Figure 3a, Figure S9). These comprised reduced frequencies of neutrophils (MC8, MC16),

doi:10.20944/preprints202311.1289.v1
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MAIT cells (MC65, MC69) [40], CD14* monocytes expressing high levels of HLA-DR (MC12, MC28),
and IgG*CD95* B cells (MC25) in severe compared to mild SARS-CoV-2-infected CVD patients. In
contrast, a more significant proportion of mature NK cells (MC26, MC32), CD45RA*CD14* monocytes
(MC50), CD8*NKT cells (MC55), and several CD4* and CD8* T cell subsets, including CD4-CD8HLA-
DR* T cells (MC49), naive CD4* T cells expressing CCR6 and CXCR3 (MC85), central memory (MC79),
and effector subsets (MC51, MC87, MC74; Figure 3). Interestingly, the percentage of CD14*HLA-DR*
monocytes expressing high levels of HLA-DR (MC12, MC28), as well as that of CD8* Tem (MC51) cells,
was reduced in severe compared to moderate SARS-CoV-2-infected CVD patients (Figure 3). In
addition to severity-dependent changes in the percentage of immune cell populations in SARS-CoV-
2-infected CVD patients, there were differences in the expression pattern of immune markers
depending on disease severity (Figure S10). For example, CD19 was significantly less expressed on
MC represent naive and memory B cells (MC1, MC2, MC3, MC4, MC19, MC20, MC25, MC21) in
SARS-CoV-2-infected CVD patients with a severe compared to mild and/or moderate course,
indicating less B cell receptor signalling [41]. Similarly, CD16 expression was lower on neutrophils
(MC7), CD14*(MC12), CD14+*CD16* (MC11, MC18), CD16* monocytes (MC37), mature NK cells (MC6,
MC33), NKT cells (MC41) as well as on CD8* Tem and Temra cells (MC51, MC52, MC40, MC46) and
CD4+ Tem cells (MC79) from CVD patients suffering from severe COVID-19 compared to those with a
mild course, indicating less antibody-dependent cellular toxicity and thereby less killing of virus-
infected cells (ADCC #). Accordingly, CD14*CD16* monocytes from severe SARS-CoV2-infected
CVD patients express less HLA-DR on their surface (MC38). The chemokine receptor CXCR3, which
is generally upregulated on activated NK and T cells*?, had lower expression levels on immune cells
from CVD patients with a severe course of COVID-19 namely on neutrophils (MC8), mature NK cells
(MC32; MC33), MAIT cells (MC65) and several clusters representing CD4* naive, Tem and Tem cells
(MC85, MC93, M(C73, MC79, MC95, MC86). CD127 (IL7Ra) was significantly less expressed by ILCs
(MC62) and CD4*CD8* T cells (MC76) from CVD patients with severe SARS-CoV-2 infection as
compared to those with mild infection (Figure S10). In contrast, the latter showed more CCR7
expression (MC76), indicating an altered function of these cells. Furthermore, CD16* monocytes
(MC23), naive CD4* and CD8* T cells (MC84, MC93, MC67) from CVD patients with a severe course
of infection, expressed higher levels of CD95 and CD161 (MC84, MC70), combined with lower levels
of CD28 expression at least on naive CD4* T cells (MC85). CD16* monocytes (MC23), naive CD4+ T
cells (MC92), and CD4-CD8HLA-DR* T cells (MC49) expressed higher levels of CD141 (Figure S10).

In summary, severe SARS-CoV-2 infection resulted in fewer innate immune cells. Interestingly,
although an increased proportion of NK cells, CD4* and CD8* T cell subsets were observed in CVD
patients with severe COVID-19, their expression of functional markers like CD16 and CXCR3 was
impaired, indicating an altered immune response in this subgroup.
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Figure 3. Differences between immune cell populations in mild, moderate, and severe SARS-CoV2-
infected CVD patients. (a) Volcano plots comparing the frequency of cells in the 87 FSOM clusters
from mild (10), moderate (20), and severe (7) SARS-CoV2-infected CVD patients using edgeR.
Significant different clusters are depicted in green and used in B-D. (b) UMAP overlay plot shows
concatenated events from the three groups of a. (c) Clustered heatmap displaying the frequency of
cells in the FSOM clusters from concatenated samples from severe (upper row), moderate (middle
row) and mild SARS-CoV2-infected CVD patients (lower row). The frequency is displayed per row
on a scale from white (low) to blue (high). (d) Box plots show the abundance of the depicted MC with
assigned cell populations of the individual samples. Data were analysed using the Kruskal-Wallis
non-parametric test with Dunn's post-test. Significant differences between the patient cohorts are
marked with stars (* > 0.05; ** > 0.01; *** > 0.001).
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3.6. Immune signature is predictive of severity and the course of SARS-CoV-2 infection in patients with pre-
existing cardiovascular disease

Next, we looked for an immune signature that has the potential to predict the course of infection
at hospital admission. We decided to use a combination of cell populations obtained through
unsupervised data analysis that may provide a clear indication of disease progression through a
single analysis method. To do this, we first compared the number of cells within different immune
cell subpopulations in CVD patients with mild and severe courses as well as moderate and severe
courses of SARS-CoV-2 infection (Figure 4a). Higher numbers of neutrophils, MAIT cells, and
IgG+CD95* B cells were found in mild-infected SARS-CoV-2 CVD patients. In contrast, the numbers
of NKT cells, plasmablasts, CD4CD8HLA-DR* T cells, and CD4* Temra cells were higher in severely
infected SARS-CoV-2 CVD patients (Figure 4a). When comparing moderately and severely infected
patients, only the intermediate effector CD8* T cells, CD8* NKT cells, and ¢cDC2 were higher in
moderately SARS-CoV-2-infected CVD patients (Figure 4a&b).

After screening for the most relevant differentially abundant immune cell populations in the
different patient groups, we used these to search for biomarker combinations to identify subjects at
high risk of developing severe COVID-19. This search was performed using the recently published
CombiROC package [31,32]. Since moderately infected CVD patients may also develop a potentially
dramatic course of infection and long-term, we also looked for a combination of cell populations that
could distinguish this group from the cohort with a mild course. Thus, we used three settings for
combined biomarker search: comparisons of (1) mild versus severe (Figure 4c), (2) mild versus
moderately (Figure S11A), and (3) mild versus moderately and severely (Figure 4c) infected CVD
patients. Using CombiROC for the first comparison revealed that a combination of only three cell
populations, namely MAIT cells, intermediate effector CD8* T cells and, NKT cells predicts a severe
course of SARS-CoV-2-infected CVD patients on hospital admission with a sensitivity and specificity
of 1 (pink line) (Figure 4c & Table S4). The two other comparisons, (2) and (3), did not give quite as
good results. (Figure 4c & Tables S5-56), whereas a combination of 7 cell populations was necessary
in both cases. The distinction between a moderate and a mild course of infection should be possible
considering CD4* Temra, CD8* and CD8- NKT cells, CD8*HLA-DR*CD38* T cells, IgG*CD95* B cells,
neutrophils, and plasmablasts. In the case of predicting a mild compared to a moderate or severe
infection course, a combination of CD4* Temr,, CD8*HLA-DR*CD38* T cells, IgG*CD95* B cells,
neutrophils, plasmablasts, cDC1, and NKT cells is necessary.
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Figure 4. Correlation of immune cell abundance with disease severity. (a) Volcano plot comparing
the cell frequencies of 40 assigned cell populations (from Figure 1) from mild (10), moderate (20), and
severe (7) SARS-CoV2-infected CVD patients using edgeR. Significantly different cell populations are
depicted in green and used in (b) & (c). (b) UMAP overlay plot shows concatenated events from the
3 groups of (a). (c) CombiROC analysis comparing significantly different cell populations (from (a))
from patients with mild and severe (left) or mild and the combination of moderate and severe course
of infection (right). (d) OPLS-DA comprising immune cell populations and cytokine/chemokine
plasma levels of patients with SARS-CoV2 infection. Dots represent single study subjects and are
coloured by disease severity (with mild = blue, moderate = yellow, severe = red points). X- and Y-axis
shows the T score and percentage of explained variance.

Correlation analyses were performed between the patient groups' most relevant differentially
abundant immune cell populations (see Figure 4a) and the corresponding cytokine/chemokine
plasma levels. Uninfected CVD patients were characterised mainly by negative correlations, e.g.,
cDCl1s with IFN-a, IL-10, IL-12p70, TNF or CD8*HLA-DR*CD38* T cells with CXCL10 (Figure S11B).
In contrast, SARS-CoV-2-infected CVD patients showed negative correlations of CD8*HLA-
DR+CD38* T cells with CCL5 or cDC2s with CXCL10, IFN-y, and IL-10 as well as positive correlations
like naive B cells and plasmablasts with CXCL9, IL-10, and IL-18, or IFN-a with IgG*CD95* B cells,
naive B cells, and CD8+ NKT cells (Figure S11B). Mildly SARS-CoV-2-infected CVD patients showed
positive cell correlations with CCL2, CXCL10, CXCL9, IFN-o, IFN-y, and IL-10, but negative
correlations of cDC1 and ¢cDC2 with CXCL10 and IFN-a (Figure S11C). Significantly fewer and less
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pronounced correlations were observed in patients with moderate SARS-CoV2 infection. More
correlations were generally observed again in the case of a severe SARS-CoV2 infection. Here,
positive correlations of naive B cells, plasmablasts, CD8* NKT cells, and neutrophils with CCL2, IFN-
o, IFN-y, IL-17, and IL-6 dominated (Figure S11C). Moreover, orthogonal partial least-squares
discriminant analysis (OPLS-DA) score plots were performed using immune cell populations and
cytokine/chemokine plasma levels from SARS-CoV-2-infected CVD patients (Figure 4d). Good
between-group variance of patients with mild (blue) compared to severe infection (red) points out a
major impact of altered immune signatures on the clinical course of the disease.

In summary, using high-resolution flow cytometry, we identified an immune cell combination
consisting of MAIT cells, intermediate effector CD8* T cells, and NKT cells, stratifying CVD patients
at high risk for severe SARS-CoV2 infection on the day of hospital admission.

4. Discussion

Our study identified a characteristic immune signature of patients with CVD and acute,
symptomatic SARS-CoV-2 infection. In contrast to previous investigations, we focussed on patients
with pre-existing CVD, who are at high risk of developing progressive cardiopulmonary failure due
to the infection [13-15]. To our knowledge, this is the first analysis to associate a specific immune
signature of CVD patients with SARS-CoV-2 infection with the expected severity of COVID-19 during
the disease. Here, we identified key immune system components critical to predicting a severe course
of COVID-19 in our patient cohort through in-depth analyses of innate and adaptive immune cells
[9,10]. Most other studies that have examined immune cell populations in the blood in SARS-CoV-2
infection have included an all-comers cohort of patients and did not stratify their analyses by
concomitant comorbidities and, particularly, by the presence of CVD [4,5,8,44—49]. Furthermore,
these studies did not consider the expected severity of COVID-19 through associations with
established risk scores, which is another strength of our study.

CVD is characterised by an augmented systemic inflammation triggering atherogenesis and -
progression and is regulated by platelet and monocyte activation and the secretion of pro-
inflammatory mediators, which play a crucial role in cell adhesion and migration [23]. Consistent
with and in addition to previous studies, we observed changes in the frequencies of innate immune
cells like CD14* monocytes, neutrophils, mature NK cells, and MAIT cells, as well as the adaptive
immune cells CD4*CD8*, CD8* naive and central memory T cells, y8 T cells, early-like effector
memory CD4* T cells, and naive B cell subsets in CVD patients compared to HD [21,25,48-52].
Moreover, IL-6 levels were increased in CVD patients compared to HD. Thus, a chronic pro-
inflammatory response in CVD patients might influence their immune signature compared to HD,
leading to a more pronounced immune response to viral infections such as SARS-CoV-2.

In summary, our data show an infection-induced activation of innate immune cells combined
with reduced numbers and inhibitory phenotypes of DCs and adaptive immune cells in infected
compared to uninfected CVD patients. Consistently with other studies, we show, for example, fewer
non-classical monocytes in peripheral blood. These cells were shown to migrate to the site of organ
injury, where they maintain the inflammatory processes within cardiac or pulmonary tissue
[44,46,48,50]. As previously reported, we detected a more significant proportion of mature NK cells,
CD14*CD16* intermediate monocytes, activated populations of CD14*CD45RA* monocytes,
CD4*HLA-DR*CD38* and CD8* early Tem cells expressing HLA-DR*CD38PD-1+ cells, as well as
plasmablasts upon SARS-CoV-2 infection [4,5,8,44,46,47]. In contrast, reduced numbers of ILCs,
dendritic cell subsets cDC1 and c¢DC2, less activated/mature CD14* monocytes, and CD8* T cell
subsets were observed in SARS-CoV-2-infected compared to uninfected CVD patients [4,5,8,45,46,51].

Furthermore, we describe phenotypical changes in SARS-CoV-2-infected compared to
uninfected CVD patients characterised by an overall higher expression of CD38 on plasmablasts,
monocyte, NK cell, and T cell subsets [44,46,47] and lower expression of HLA-DR on DCs, CD14* and
CD14*CD16* monocytes [4,44,46,50,52]. Moreover, as described for NK cells [4], less CD16 was
expressed on neutrophils, monocyte subsets, NKT cells, CD8*, and CD4* T cell subsets from CVD
patients with severe COVID-19 compared to those with a mild infection. These data point towards
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reduced antibody-dependent cellular cytotoxicity (ADCC), thereby less killing of virus-infected cells
[42]. In contrast to Georg et al., we did not detect CD16* activated T cells in severely infected SARS-
CoV-2 CVD patients [53]. This may be due to differences in the cohorts (all-comers versus CVD
patients) and medication before blood collection (Partial medication such as antibiotics or steroids
compared to no medication in our study).

Consistent with another study, we found increased expression of the thrombin receptor CD141
on monocyte clusters from SARS-CoV-2-infected CVD patients [46]. CD141 reduces blood
coagulation, which, among other mechanisms, may be an additional explanation for thromboembolic
complications, especially in CVD patients and COVID-19 [36,46,54].

Plasmablasts and B cell subsets revealed a more inhibitory phenotype evidenced by reduced
CD19 cell surface expression in SARS-CoV-2-infected CVD patients. In contrast, the latter was
severity-dependent, indicating less B-cell receptor signalling [8,41].

In addition to other studies, we found that the remaining pDCs, regulating the type I interferon
response [35], also showed a significantly more activated phenotype along with basophils and ILCs
in SARS-CoV-2-infected CVD patients. pDCs and cDC subsets from SARS-CoV-2-infected CVD
patients revealed a more migratory phenotype evidenced by their increased expression CCR7. In
contrast, the chemokine receptor CXCR3, which is generally upregulated on activated NK and T cells
[43], was less expressed on neutrophils, mature NK cells, MAIT cells, and several CD4* T cell subsets,
implicating an impaired migratory capacity of these immune cells. In addition, the ligands for
CXCR3, namely CXCL10 and CXCL11, were highly increased upon SARS-CoV-2 infection but also in
several other viral infections and correlated with disease severity [5]. Thus, one explanation for the
reduced CXCR3 expression on many immune cells is downregulation upon ligand binding [56].
Moreover, naive CD4* and CD8* T cells from severely infected CVD patients expressed higher levels
of CD95 than those from mild-infected ones, indicating an impaired activation due to CD95-mediated
inhibition of T-cell receptor signalling [57].

CVD patients with pre-existing cardiac and vascular dysfunction may benefit from intensified
heart failure and anti-thrombotic therapy before progression to respiratory failure [4]. Since there is
currently limited causal therapy for SARS-CoV-2 infection, early identification and treatment of
prognostically relevant comorbidities are critical to prevent a fatal course triggered by the disease.
We performed CombiROC analyses to predict the expected severity of COVID-19 at first patient
contact based on a specific immune signature analysed by flow cytometry. These analyses showed
that a combination of only three immune cells detected in the blood at hospital admission (NKT cells,
MAIT cells, and intermediate CD8* effector T cells) is sufficient to distinguish CVD patients with mild
from those with a severe course of infection.

Including characteristic findings in high-risk CVD patients, such as the specific immune
signature, may improve the performance and generalizability of the 4C Mortality Score. This specific
immune signature was independently associated with the severity of COVID-19 as determined by
the ISARIC WHO 4C mortality score. In addition, there were no confounding factors in the OPLS-
DA analysis, such as the comorbidities described above, suggesting that the immune signature may
serve as an additional and objective tool for more intensive risk assessment of CVD patients with
COVID-19 and increased risk of severe disease progression or infection-related disadvantages or
complications, respectively. The ISARIC-WHO-4C mortality score is an easy-to-use, well-validated
risk calculator for stratifying patients [58]. However, the data collection of typical cardiovascular
comorbidities such as hypertension, previous coronary artery disease, myocardial infarction, and
stroke was not included in detail [59]. Therefore, the risk assessment should be further improved for
SARS-CoV-2 positive patients with pre-existing CVD, especially for very early stages of the viral
infection. Here, we show that a pre-specified, objective analysis of the immune signature can identify
CVD patients with an altered immune response at risk for severe courses of viral infections upon first
admission or even at asymptomatic stages. These high-risk CVD patients could benefit from
intensified monitoring and early anti-inflammatory treatment strategies, thereby preventing long-
term ICU treatment or fatal outcomes. Another advantage of the immune signature is good
discrimination between mild and severe courses of COVID-19 by an objective laboratory method that

doi:10.20944/preprints202311.1289.v1
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is not dependent on the sometimes hard-to-assess, sometimes poorly-defined clinical parameters
associated with unfavourable outcomes.

Nevertheless, the study has some limitations. Although we have studied a relatively large cohort
of CVD patients with and without SARS-CoV-2 infection and HD, the number of patients with severe
courses is limited. We analysed circulating immune cells and their phenotype, more precise PBMCs.
Therefore, we lose a large part of the neutrophil granulocytes in the analysis, which is crucial for
distinguishing between the fatal and non-fatal outcomes of the disease [44]. While knowledge of
peripheral immune cells is essential for understanding pathogenic and protective immune responses
to SARS-CoV-2 infection, it does not cover the immune response at the infection site.

5. Conclusions

Our study revealed that a specific immune signature is associated with the severity of COVID-
19 in patients with CVD and can predict the course of the disease upon first admission to the hospital.
The early determination of the immune signature might enable the treating clinicians to provide the
best possible pharmacological and device-based care upon hospitalisation and improve clinical
outcomes.
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