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Abstract: This work is devoted to the construction and study of commutative gates for a two-qubit
quantum system. Using four-dimensional algebra developed by the Kazakh mathematician Abenov
M.M. all groups of commutative gates have been constructed, and among all states of a two-qubit
quantum system, unitary states with which a specific gate is connected have been identified. An
explicit type of gate is described that transfers a quantum system from one unitary state to another
unitary state. The proposed approach opens up new possibilities for the design of quantum algorithms
not only for two-qubit quantum systems, but also for n-qubit quantum systems.

Keywords: quantum computing; quantum algorithm; gate; unitary operator; four-dimensional
mathematics; abelian group

1. Introduction

Quantum computation, in a more strict fundamental understanding, is the movement of a point
in a 2n-dimensional complex space, where the initial and final positions of the point correspond to the
input and output of the computation.

Therefore, the process of quantum computation is nothing more than a linear transformation of a
2n - dimensional vector from a state | ψ > to | ϕ >.

Thus, the coordinates of vector | ψ > are the initial conditions, and the coordinates of vector | ϕ >

are the result of the computation - the output.
An ideal quantum computation is then one that performs a direct linear transformation from

| ψ > to | ϕ > in a single step - a singular transform, a single computation execution.
Ideal here means that there is no more efficient, in terms of computational power, computational

expense of the quantum computer’s work.
To make ideal quantum computation technically possible, it is necessary to find a group of unitary

matrices, the elements of which form a universal set of quantum gates for the direct transformation
from | ψ > to | ϕ >. As is known, quantum computations use quantum bits or qubits instead of
classical bits, which have two basis states | 0 > i | 1 >. All other states of a qubit are defined as a
linear combination of basis states with complex coefficients, that is

| ψ >= λ1 | 0 > +λ2 | 1 >, (1)

where λ1 ∈ C, λ2 ∈ C and | λ1 |2 + | λ2 |2= 1, C - being the space of complex numbers.
The basis states of a qubit | 0 > and | 1 > are also denoted using vectors (1, 0)T and (0, 1)T

respectively, where the index T denotes the transposition sign.
A two-qubit quantum system consists of two qubits and has four basis states | 00 >= (1, 0, 0, 0)T , |

01 >= (0, 1, 0, 0)T , | 10 >= (0, 0, 1, 0)T and | 11 >= (0, 0, 0, 1)T . Then, an arbitrary state of a two-qubit
quantum system can be written as [7,8]

| ψ >= λ1 | 00 > +λ2 | 01 > +λ3 | 10 > +λ4 | 11 >, (2)
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where λi ∈ C, i = 1, 2, 3, 4, and | λ1 |2 + | λ2 |2 + | λ3 |2 + | λ4 |2= 1. A similar record for an arbitrary
state of a two-qubit system looks like [7,8]

| ψ >= λ1


1
0
0
0

+ λ2


0
1
0
0

+ λ3


0
0
1
0

+ λ4


0
0
0
1

 =


λ1

λ2

λ3

λ4

 , (3)

i.e., any quantum state of a two-qubit quantum system is uniquely determined by the complex
amplitudes λ1, λ2, λ3, λ4.

Similarly, n-qubit quantum systems, consisting of n qubits, are defined. Such a system would
have 2n basis states and any of its states are determined as a linear combination of basis states with
complex amplitudes. In this work, we only consider two-qubit quantum systems, although all results
can in principle be generalized for an n-qubit quantum system. However, this would require the
development of the basics of 2n-dimensional mathematics with commutative multiplication. Here,
we rely on four-dimensional mathematics, the foundations of which were laid by the great Kazakh
mathematician Abenov M.M. [1].

Quantum computations consist in the sequential application of unitary U operators to the
quantum state of the quantum system, which are called gates. Unitary operators or gates applied to an
n-qubit quantum system are represented in the form of a matrix of size 2n × 2n. For example, unitary
operators for a two-qubit system have the form of a 4 × 4 matrix U:

U =


u11 + v11i u12 + v12i u13 + v13i u14 + v14i
u21 + v21i u22 + v22i u23 + v23i u24 + v24i
u31 + v31i u32 + v32i u33 + v33i u34 + v34i
u41 + v41i u42 + v42i u43 + v43i u44 + v44i

 , (4)

uij, vij ∈ R, i, j = 1, 2, 3, 4.

Note that if a certain matrix (4) is a two-qubit gate, then the Hermitian conjugate matrix to it

U∗ =


u11 − v11i u21 − v21i u31 − v31i u41 − v41i
u12 − v12i u22 − v22i u32 − v32i u42 − v42i
u13 − v13i u23 − v23i u33 − v33i u43 − v43i
u14 − v14i u24 − v24i u34 − v34i u44 − v44i

 (5)

is also a gate.
The main two-qubit gates, or binary operators, are SWAP, CNOT, CZ, represented by matrices

[4,8] 
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (6)

Note that two-qubit gates can be applied to any n-qubit quantum system (n ≥ 2), with any
two qubits from the n-qubit system selected to which the two-qubit gate is applied, and the identity
operator, which is defined by the unit matrix of the required dimension, is applied to the other qubits.

In addition to the gates indicated in (6), one can construct many different two-qubit gates, but a
general description of all possible two-qubit gates is absent. In the work [3], with the participation of
one of the authors, an Abelian group of commutating two-qubit gates was constructed. However, the
constructed group of gates is not complete, as none of the gates (6) belongs to the mentioned group.
This work is a continuation of [3], and here we have constructed all other commutative groups of
two-qubit gates, as well as defined the correspondence between quantum states and gates of two-qubit
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quantum systems, introduced the concept of a unitary state and shown the possibility of transitioning
in one step from any unitary state to any basis state, and also from any unitary state to any other
unitary state. The obtained results open up new possibilities for constructing quantum algorithms not
only for two-qubit quantum systems.

2. Four-Dimensional Number Spaces with Commutative Multiplication

In the study [2], all spaces of four-dimensional numbers R4 with commutative multiplication
are examined. There are, in total, six such spaces, denoted as M2, M3, M4, M5, M6, M7. To each
four-dimensional number Z = (z1, z2, z3, z4) ∈ R4 from any of these spaces, a certain 4 × 4 matrix M,
is associated, with its elements being the components of the four-dimensional number Z, and this
mapping is bijective. Moreover, this bijection is a homomorphism with respect to the multiplication
operation of four-dimensional numbers, meaning the group of matrices forms a commutative group
with identity. The results obtained in work [2] can be transferred to the case of four-dimensional
numbers Z ∈ C4. Retaining the same designations for the spaces Mj(j = 2, 3, ..., 7) describe the
necessary properties of these spaces for the case of complex-valued four-dimensional numbers. As
we will see below, in each of the spaces M2, ..., M7, there exist two groups of matrices corresponding
to one operation of commutative multiplication of four-dimensional numbers [2]. The operations of
addition X + Y and subtraction X − Y of four-dimensional numbers X ∈ C4 and Y ∈ C4 are defined
as component-wise addition and subtraction. The multiplication operation of four-dimensional
numbers can be defined in various ways, among which we are only interested in commutative
multiplication. All ways of defining commutative multiplication are given in [2], where for each
method, the corres-ponding space of four-dimensional numbers Mj(j = 2, 3, ..., 7) is defined. Without
going into details, we will go through these spaces and generalize the results needed for our purposes
to the case of complex-valued four-dimensional numbers.

Let’s consider the space M2, in which the multiplication of numbers X = (x1, x2, x3, x4) and
Y = (y1, y2, y3, y4) is defined as follows:

z1 = x1y1 + x2y2 − x3y3 − x4y4

z2 = x2y1 + x1y2 − x4y3 − x3y4

z3 = x3y1 + x4y2 + x1y3 + x2y4

z4 = x4y1 + x3y2 + x2y3 + x1y4

where Z(z1, z2, z3, z4) = X ·Y. If we set xj = aj + bji, yj = cj + dji, j = 1, 2, 3, 4, where i is the imaginary
unit, then this multiplication can be rewritten as

a1 + b1i
a2 + b2i
a3 + b3i
a4 + b4i

 ·


c1 + d1i
c2 + d2i
c3 + d3i
c4 + d4i

 =


e1 + g1i
e2 + g2i
e3 + g3i
e4 + g4i

 (7)

where
e1 = a1c1 + a2c2 − a3c3 − a4c4 − b1d1 − b2d2 + b3d3 + b4d4,
g1 = a1d1 + a2d2 − a3d3 − a4d4 + b1c1 + b2c2 − b3c3 − b4c4,
e2 = a1c2 + a2c1 − a3c4 − a4c3 − b1d2 − b2d1 + b3d4 + b4d3,
g2 = a1d2 + a2d1 − a3d4 − a4d3 + b1c2 + b2c1 − b3c4 − b4c3,
e3 = a3c1 + a4c2 − a1c3 − a2c4 − b3d1 − b4d2 − b1d3 − b2d4,
g3 = a3d1 + a4d2 + a1d3 + a2d4 + b3c1 + b4c2 + b1c3 + b2c4,
e4 = a4c1 + a3c2 + a2c3 + a1c4 − b4d1 − b3d2 − b2d3 − b1d4,
g4 = a4d1 + a3d2 + a2d3 + a1d4 + b4c1 + b3c2 + b2c3 + b1c4.
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One can readily verify that the multiplication of four-dimensional numbers defined in this way is
commutative. To the four-dimensional number X = (x1, x2, x3, x4) ∈ C4 we associate the matrix

M20(X) =


x1 x2 −x3 −x4

x2 x1 −x4 −x3

x3 x4 x1 x2

x4 x3 x2 x1

 . (8)

The mapping F : X → M20(X) is bijective and onto. Indeed, two different numbers X and Y correspond
to different matrices, and for any matrix in the form of (8), a corresponding four-dimensional number
from C4 can be found.

Theorem 1. The set of all matrices in the form of (8) is closed with respect to the operations of
matrix addition, subtraction, multiplication, and multiplication by scalar. For the mapping F : X →
M20(X) the relationships F(X ± Y) = F(X)± F(Y), F(XY) = F(X)F(Y) hold for any X ∈ C4, Y ∈ C4.

The proof is conducted by direct verification.
Thus, there is a bijection between the space of four-dimensional numbers and the space of

matrices of the form (8), which preserves arithmetic operations, meaning the existing bijection is a
homomorphism. From Theorem 1, it also follows that the operation of matrix multiplication of the
form (8) is commutative.

It is further noted that if we multiply the j-th row and j-th column of matrix (8) by -1, we obtain
another matrix with the same properties as the matrix M20, that is, the statements of Theorem 1 remain
valid. Moreover, if we multiply the j-th row and three columns of matrix M20, with indexes not equal
to j, by -1, we also get a matrix corresponding to the multiplication of four-dimensional numbers (7)
and possessing the properties of matrix M20. The matrix transposed to M20 also possesses all the
properties of matrix M20. To describe such operations, let us denote by M(j,k)

20 , where j and k are one,
two, or three indices with values from 1 to 4, the matrix obtained by multiplying by -1 the rows with
numbers from index j and columns with numbers from index k. For example, M(24,134)

20 is a matrix
obtained from matrix M20 by multiplying the second and fourth rows by -1, and also by multiplying
the first, third, and fourth columns by -1. Let’s describe all possible operations that lead to matrices for
which the statements of Theorem 1 are valid. It is easy to verify that such operations are operations of
the following types: M(j,j)

20 , M(j,klm)
20 , M(klm,j)

20 , M(klm,klm)
20 , M(jk,jk)

20 , M(jk,lm)
20 , where j, k, l, m are pairwise

distinct indices with values from 1 to 4. In addition, the operation of transposing a matrix also does
not change its properties.

The number of different operations of the form M(j,j)
20 is four when j = 1, 2, 3, 4, respectively, we

get four new matrices:

M(1,1)
20 =


x1 −x2 x3 x4

−x2 x1 −x4 −x3

−x3 x4 x1 x2

−x4 x3 x2 x1

 M(2,2)
20 =


x1 −x2 −x3 −x4

−x2 x1 x4 x3

x3 −x4 x1 x2

x4 −x3 x2 x1

 ,

M(3,3)
20 =


x1 x2 x3 −x4

x2 x1 x4 −x3

−x3 −x4 x1 −x2

x4 x3 −x2 x1

 M(4,4)
20 =


x1 x2 −x3 x4

x2 x1 −x4 x3

x3 x4 x1 −x2

−x4 −x3 −x2 x1

 .

But as we can easily notice,

M(1,1)
20 (x1, x2, x3, x4) = M(2,2)

20 (x1, x2,−x3,−x4),

M(1,1)
20 (x1, x2, x3, x4) = M(3,3)

20 (x1,−x2, x3,−x4),

M(1,1)
20 (x1, x2, x3, x4) = M(4,4)

20 (x1,−x2,−x3, x4),
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that is, these matrices lie in one group. Similarly, it can be shown that the matrices from the groups
M(j,klm)

20 , M(klm,j)
20 , M(klm,klm)

20 , totaling 12 (4 in each group), lie in the same group. In addition, we
include in this group all transposed matrices of this group, as it is easy to check that they also lie in
this group. And the matrices from the groups M(jk,jk)

20 , M(jk,lm)
20 , totaling 12 (6 in each group) and the

transposed matrices to them, also lie in one group, but different from the first group. For example, the
matrices M(12,12)

20 and M(12,34)
20 respectively have the form:

x1 x2 x3 x4

x2 x1 x4 x3

−x3 −x4 x1 x2

−x4 −x3 x2 x1

 ,


−x1 −x2 −x3 −x4

−x2 −x1 −x4 −x3

x3 x4 −x1 −x2

x4 x3 −x2 −x1

 ,

from which it follows that M(12,12)
20 (x1, x2, x3, x4) = −M(12,34)

20 (x1, x2, x3, x4), but from M(12,12)
20 it is

impossible to obtain M(1,1)
20 or another matrix from the first group. Thus, there are two groups of

matrices that are closed with respect to the operations of addition, multiplication, and these operations
are commutative. Any matrix from the corresponding group can be taken as a representative of these
groups. As a representative of the second group, we take the matrix M20, and as a representative of
the first group, we take, for example, the matrix M(1,1)

20 , which we denote by M21:

M21(X) =


x1 −x2 x3 x4

−x2 x1 −x4 −x3

−x3 x4 x1 x2

−x4 x3 x2 x1

 (9)

Thus, to each four-dimensional number X ∈ C4 two matrices M20 and M21 can be associated,
that is, to define two mappings, F20 : X → M20(X) and F21 : X → M21(X), which are bijective and
onto. The products of matrices from one class are closed with respect to the operations of addition and
multiplication, and the multiplication operation corresponds to the multiplication of four-dimensional
numbers (7).

Note. Other transformations M(j,k)
20 of the matrix M20 can be considered and used to build unitary

operators.
Now, let us consider the space M3, where the multiplication operation of four-dimensional

numbers X = (x1, x2, x3, x4) and Y = (y1, y2, y3, y4) is defined as follows [2]:

z1 = x1y1 − x2y2 + x3y3 − x4y4

z2 = x2y1 + x1y2 + x4y3 + x3y4

z3 = x3y1 − x4y2 + x1y3 − x2y4

z4 = x4y1 + x3y2 + x2y3 + x1y4

where Z = (z1, z2, z3, z4) = X · Y. A detailed exposition of the algebra and analysis over the
four-dimensional space of real numbers M3 is presented in monograph [1]. To the four-dimensional
number X = (x1, x2, x3, x4) ∈ C4 we associate the matrix

M30(X) =


x1 −x2 x3 −x4

x2 x1 x4 x3

x3 −x4 x1 −x2

x4 x3 x2 x1

 . (10)

The mapping F30 : X → M30(X) is bijective and onto. Indeed, two different numbers X and Y
correspond to different matrices, and for any matrix of form (10), one can find the corresponding
four-dimensional number from C4. For the matrix M30 and the mapping F30 , the statements of

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 November 2023                   doi:10.20944/preprints202311.1280.v1

https://doi.org/10.20944/preprints202311.1280.v1


6 of 13

Theorem 1 hold true. Similarly to the previous case, by considering transformations of the form
M(j,j)

30 , M(j,klm)
30 , M(klm,j)

30 , M(klm,klm)
30 , M(jk,jk)

30 , M(jk,lm)
30 , where j, k, l, m are pairwise distinct indices with

values from 1 to 4, we find that there exist two groups of matrices corresponding to the commutative
multipli-cation in the space M3 and satisfying the conditions of Theorem 1. One group is represented
by the matrix (10), and the other group by the following matrix M31(X):

M31(X) =


x1 x2 −x3 x4

−x2 x1 x4 x3

−x3 −x4 x1 −x2

−x4 x3 x2 x1

 .

Similarly, for the space M4, with commutative multiplication [2]

z1 = x1y1 − x2y2 − x3y3 + x4y4

z2 = x2y1 + x1y2 + x4y3 + x3y4

z3 = x3y1 + x4y2 + x1y3 + x2y4

z4 = x4y1 − x3y2 − x2y3 + x1y4

we obtain two groups of matrices M40(X) and M41(X):

M40(X) =


x1 −x2 −x3 x4

x2 x1 x4 x3

x3 x4 x1 x2

x4 −x3 −x2 x1

 , (11)

M41(X) =


x1 x2 x3 −x4

−x2 x1 x4 x3

−x3 x4 x1 x2

−x4 −x3 −x2 x1

 .

Proceeding with similar reasoning and corresponding calculations for spaces M5, M6, M7, , the
multiplication operations of which are defined respectively as [2]

z1 = x1y1 − x2y2 − x3y3 + x4y4

z2 = x2y1 + x1y2 − x4y3 − x3y4

z3 = x3y1 − x4y2 + x1y3 − x2y4

z4 = x4y1 + x3y2 + x2y3 + x1y4

,

z1 = x1y1 − x2y2 + x3y3 − x4y4

z2 = x2y1 + x1y2 − x4y3 − x3y4

z3 = x3y1 + x4y2 + x1y3 + x2y4

z4 = x4y1 − x3y2 − x2y3 + x1y4

,

z1 = x1y1 + x2y2 − x3y3 − x4y4

z2 = x2y1 + x1y2 + x4y3 + x3y4

z3 = x3y1 − x4y2 + x1y3 − x2y4

z4 = x4y1 − x3y2 − x2y3 + x1y4

,
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we determine the corresponding groups of matrices satisfying the conditions of Theorem 1 for the
indicated commutative multiplication operations:

M50(X) =


x1 −x2 −x3 x4

x2 x1 −x4 −x3

x3 −x4 x1 −x2

x4 x3 x2 x1

 , (12)

M51(X) =


x1 x2 x3 −x4

−x2 x1 −x4 −x3

−x3 −x4 x1 −x2

−x4 x3 x2 x1

 ,

for the space M5,

M60(X) =


x1 −x2 x3 −x4

x2 x1 −x4 −x3

x3 x4 x1 x2

x4 −x3 −x2 x1

 , (13)

M61(X) =


x1 x2 −x3 x4

−x2 x1 −x4 −x3

−x3 x4 x1 x2

−x4 −x3 −x2 x1

 ,

for the space M6,

M70(X) =


x1 x2 −x3 −x4

x2 x1 x4 x3

x3 −x4 x1 −x2

x4 −x3 −x2 x1

 , (14)

M71(X) =


x1 −x2 x3 x4

−x2 x1 x4 x3

−x3 −x4 x1 −x2

−x4 −x3 −x2 x1

 ,

for the space M7. Note that the foundations of the four-dimensional space of real numbers M5 can be
found in works [5,6].

A careful examination of the obtained matrices reveals that

M20(x1, x2, x3, x4) = M71(x1,−x2,−x3,−x4),
M30(x1, x2, x3, x4) = M61(x1,−x2,−x3,−x4),
M40(x1, x2, x3, x4) = M51(x1,−x2,−x3,−x4),
M50(x1, x2, x3, x4) = M41(x1,−x2,−x3,−x4),
M60(x1, x2, x3, x4) = M31(x1,−x2,−x3,−x4),
M70(x1, x2, x3, x4) = M21(x1,−x2,−x3,−x4).

This implies that there are in fact six independent groups of matrices corresponding to the six
spaces of four-dimensional numbers Mj, (j = 2, 3, ..., 7). As such matrices, we shall take M20, M30, M40,
M50, M60 and M70, defined by equations (8), (10) - (14). Each of these matrices is bijective to the space
of four-dimensional complex-valued numbers, closed with respect to the multiplication operation, and
forms an abelian group with respect to the matrix multiplication operation. Moreover, as evident from
the construction, no other abelian groups of matrices exist.
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3. Commutative groups of two-qubit gates

In the previous section, we constructed six abelian groups of matrices with elements formed from
the components of a four-dimensional number. Based on these matrices, it is possible to construct gates
for two-qubit quantum systems; in other words, under certain additional conditions, the constructed
matrices transform into unitary operators. Let us formulate the corresponding conditions.

Theorem 2. Let X = (x1, x2, x3, x4) ∈ C4. Let the components of the complex numbers xj =

uj + vji(j = 1, 2, 3, 4) satisfy the conditions:

ρ0 ≡ ∑4
j=1(u

2
j + v2

j ) = 1,
ρ21 ≡ u1u2 + u3u4 + v1v2 + v3v4 = 0,
ρ22 ≡ u1v3 + u2v4 − u3v1 − u4v2 = 0
ρ23 ≡ u1v4 + u2v3 − u3v2 − u4v1 = 0.

(15)

Then the matrix M20(X) is a two-qubit gate.
Proof. The system (15) is consistent and has an infinite number of solutions. Consider the

Hermitian conjugate matrix M∗
20 to the matrix M20:

M∗
20 =


u1 − v1i u2 − v2i u3 − v3i u4 − v4i
u2 − v2i u1 − v1i u4 − v4i u3 − v3i
−u3 + v3i −u4 + v4i u1 − v1i u2 − v2i
−u4 + v4i −u3 + v3i u2 − v2i u1 − v1i

 ,

and multiply it by the matrix M20:

M20 · M∗
20 =


ρ0 2ρ21 −2ρ22i −2ρ23i

2ρ21 ρ0 −2ρ23i −2ρ22i
2ρ22i 2ρ23i ρ0 2ρ21

2ρ23i 2ρ22i 2ρ21 ρ0

 .

Using relations (15) we obtain that M20 · M∗
20 = E, where E is the identity matrix of size 4 × 4, hence

M20 is a unitary matrix.
Thus, when conditions (15) are met, the group of matrices M20(X) forms a commutative group of

gates for a two-qubit quantum system.
Corollary 1. The group of commutative gates with real elements is of the form

RM20 =


u1 u2 −u3 −u4

u2 u1 −u4 −u3

u3 u4 u1 u2

u4 u3 u2 u1

 ,

where
∑4

j=1 u2
j = 1,

u1u2 + u3u4 = 0.
(16)

Corollary 2. The group of commutative gates with purely imaginary elements is of the form

IM20 =


v1i v2i −v3i −v4i
v2i v1i −v4i −v3i
v3i v4i v1i v2i
v4i v3i v2i v1i

 ,
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where
∑4

j=1 v2
j = 1,

v1v2 + v3v4 = 0.

Theorem 3. Let X = (x1, x2, x3, x4) ∈ C4. Let the components of the complex numbers xj = uj + vji(j =
1, 2, 3, 4) satisfy the conditions:

ρ0 ≡ ∑4
j=1(u

2
j + v2

j ) = 1,
ρ31 ≡ u1u3 + u2u4 + v1v3 + v2v4 = 0,
ρ32 ≡ u1v2 − u2v1 + u3v4 − u4v3 = 0
ρ33 ≡ u1v4 − u2v3 + u3v2 − u4v1 = 0.

(17)

Then the matrix M30(X) is a two-qubit gate.
The proof is analogous to the proof of Theorem 2.
This theorem coincides with Theorem 1 from work [3]. Analogous to Corollary 1 and Corollary 2

to Theorem 2, we can write the forms of gates with real and imaginary elements for the matrix M30.
Similarly, we consider matrices M40, M50, M60 and M70 and list the corres-ponding conditions for

their unitarity.
Theorem 4. Let X = (x1, x2, x3, x4) ∈ C4. Let the components of the complex numbers xj =

uj + vji(j = 1, 2, 3, 4) satisfy the conditions:

ρ0 ≡ ∑4
j=1(u

2
j + v2

j ) = 1,
ρ41 ≡ u1u4 + u2u3 + v1v4 + v2v3 = 0,
ρ42 ≡ u1v2 − u2v1 − u3v4 + u4v3 = 0
ρ43 ≡ u1v3 − u2v4 − u3v1 + u4v2 = 0.

(18)

Then the matrix M40(X) is a two-qubit gate.
Theorem 5. Let X = (x1, x2, x3, x4) ∈ C4. Let the components of the complex numbers xj =

uj + vji(j = 1, 2, 3, 4) satisfy the conditions:

ρ0 ≡ ∑4
j=1(u

2
j + v2

j ) = 1,
ρ51 ≡ u1u4 − u2u3 + v1v4 − v2v3 = 0,
ρ52 ≡ u1v2 − u2v1 + u3v4 − u4v3 = 0
ρ53 ≡ u1v3 + u2v4 − u3v1 − u4v2 = 0.

(19)

Then the matrix M50(X) is a two-qubit gate.
Theorem 6. Let X = (x1, x2, x3, x4) ∈ C4. Let the components of the complex numbers xj =

uj + vji(j = 1, 2, 3, 4) satisfy the conditions:

ρ0 ≡ ∑4
j=1(u

2
j + v2

j ) = 1,
ρ61 ≡ u1u3 − u2u4 + v1v3 − v2v4 = 0,
ρ62 ≡ u1v2 − u2v1 − u3v4 + u4v3 = 0
ρ63 ≡ u1v4 + u2v3 − u3v2 − u4v1 = 0.

(20)

Then the matrix M60(X) is a two-qubit gate.
Theorem 7. Let X = (x1, x2, x3, x4) ∈ C4. Let the components of the complex numbers xj =

uj + vji(j = 1, 2, 3, 4) satisfy the conditions:

ρ0 ≡ ∑4
j=1(u

2
j + v2

j ) = 1,
ρ71 ≡ u1u2 − u3u4 + v1v2 − v3v4 = 0,
ρ72 ≡ u1v3 − u2v4 − u3v1 + u4v2 = 0
ρ73 ≡ u1v4 − u2v3 + u3v2 − u4v1 = 0.

(21)
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Then the matrix M70(X) is a two-qubit gate.
Thus, we have defined 6 groups of two-qubit gates that are closed with respect to the operation

of matrix multiplication and within each group, the gates commute with each other. It is clear that
each group contains a continuum of gates. It is easy to see that gates from different groups are not
commutative, although their product is also a gate. That is, if we apply gates from one of these
groups to the state of a (two-qubit) quantum system in sequence, then we ultimately obtain a gate
from the same group, in other words, any number of sequentially applied gates from one group
Mj, (j = 20, 30, 40, 50, 60, 70) can always be replaced by a single gate from the same group, and the
order of application of these gates is not important. Since any quantum algorithm is essentially the
product of a sequence of gates, it can be reduced to a sequence of applications of two-qubit gates, each
taken from the different specified 6 groups (provided that all the gates of the algorithm belong to the
specified groups).

Observation. We have constructed all commutative groups of two-qubit gates. If we consider other
transformations of matrices Mn, with indices (n = 20, ..., 70), in the form M(j,k)

n , where j and k are one,
two, or three indices with values from 1 to 4 that do not satisfy the assertions of Theorem 1, then we can
also obtain groups of unitary operators that fulfill the corresponding conditions (15), (17) - (21). These
gates are not commutative and are not closed with respect to multiplication. Nonetheless, investigating
their properties and relationships with the commutative groups that have been constructed is a relevant
task. These are the directions for future research.

In the case of an n−qubit quantum system, a quantum algorithm typically consists of a sequence
of single-qubit (unary), two-qubit (binary), three-qubit (ternary), and other multi-qubit gates. In this
context, sequentially applied two-qubit gates can be simplified or reduced due to the commutativity
and closure of these operators within the described groups.

4. Unitary States of Quantum Systems

An arbitrary state of a two-qubit quantum system is specified as in expressions (2) or (3). The
ultimate purpose of any quantum algorithm is to transform the state of the quantum system into a
state suitable for solving the given problem. Therefore, the task of finding a gate that transitions the
quantum system from one specified state to another is of significant importance. Let us consider this
task for a two-qubit quantum system, which can be generalized to an n-qubit system.

Definition. The state of a two-qubit system Λ = (λ1, λ2, λ3, λ4)
T is called a unitary state if the

components of complex numbers λj = uj + vji (j = 1, 2, 3, 4) satisfy at least one of the conditions (15),
(17) - (21).

Note that all basis states of quantum systems are unitary since they fulfill all the listed conditions.
Furthermore, only those states, called quasi-basis states, satisfy all conditions (15), (17) - (21)
simultaneously.

Definition. Quantum states of the following forms Λ = (λ, 0, 0, 0)T , Λ = (0, λ, 0, 0)T , Λ =

(0, 0, λ, 0)T , Λ = (0, 0, 0, λ)T , where λ ∈ C, | λ |= 1 are called quasi-basis states.
Evidently, all basis states are quasi-basis states.
Theorem 8. The state of a two-qubit system Λ = (λ1, λ2, λ3, λ4)

T satisfies all conditions (15), (17) -
(21) simultaneously if and only if Λ is a quasi-basis state.

The proof is straightforwardly achieved by concurrently solving system (15), (17) - (21).
From the previously proven Theorems 1 - 7, it follows that each unitary state of a two-qubit

system corresponds to at least one unitary matrix. Moreover, if the state is a quasi-basis state, then it
corresponds to no fewer than six gates. Unitary states play a crucial role in the construction of quantum
algorithms since for them we can explicitly specify a gate that transitions the quantum system from
one specified state to another.

Remark. When we say that each unitary state corresponds to at least one unitary matrix,
not exactly one matrix, we imply that in addition to commutative unitary matrices, there exist
non-commutative unitary matrices whose elements satisfy the same conditions (15), (17) - (21). Since
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we are only considering commutative gates here, the matrices corresponding to unitary states are only
matrices M20, ..., M70 and the corresponding unitary states are denoted by S2(X)− S7(X). That is,
S2(X) - unitary states satisfying condition (15), S3(X) - unitary states satisfying condition (17), and so
on, U7(X) - unitary states satisfying condition (21),

Theorem 9. Let Λ = (λ1, λ2, λ3, λ4)
T — be a unitary state of the two-qubit quantum system from

Sj, where j = 2, ...7. Then, for any quasi-basis state B, among the unitary matrices M10j(Λ), there exists
a matrix G, such that GΛ = B.

Proof. Let us prove the theorem for j = 2 as an example. The matrix M20, corresponding to the
unitary state Λ is of the form (8)

M20(Λ) =


u1 + v1i u2 + v2i −u3 − v3i −u4 − v4i
u2 + v2i u1 + v1i −u4 − v4i −u3 − v3i
u3 + v3i u4 + v4i u1 + v1i u2 + v2i
u4 + v4i u3 + v3i u2 + v2i u1 + v1i

 ,

where uj + vji = λj (j = 1, 2, 3, 4) satisfy conditions (15). Consequently,

M−1
20 (Λ) =


u1 − v1i u2 − v2i u3 − v3i u4 − v4i
u2 − v2i u1 − v1i u4 − v4i u3 − v3i
−u3 + v3i −u4 + v4i u1 − v1i u2 − v2i
−u4 + v4i −u3 + v3i u2 − v2i u1 − v1i

 .

Then

M−1
20 (Λ)Λ =


u2

1 + u2
2 + u2

3 + u2
4 + v2

1 + v2
2 + v2

3 + v2
4

2(u1u2 + v1v2 + u3u4 + v3v4)

2(u1v3 − u3v1 + u2v4 − u4v2)i
2(u1v4 − u4v1 + u2v3 − u3v2)i

 =


1
0
0
0

 ,

by virtue of conditions (15). Similarly, it can be shown that M−1
20 (B)B = (1, 0, 0, 0)T , whence

M20(B)(1, 0, 0, 0)T = B. Now, by applying gate M−1
20 (Λ) to state Λ first, and then gate M20(B)

we obtain M20(B)M−1
20 (Λ)Λ = B. That is, the gate G = M20(B)M−1

20 (Λ) transitions the state Λ into
the quasi-basis state B. The proof for other values of j is conducted analogously.

The theorem is proven.
Remark. There are several gates G, the existence of which is asserted in Theorem 9. We could

have transitioned to the quasi-basis state B not through the basis state (1, 0, 0, 0)T but, for example,
through the basis state (0, 1, 0, 0)T , and so forth.

Corollary. Let Λ1 and Λ2 be two unitary states from Sj. Then there exists a gate from the Abelian
group M10j, that transitions the state of the quantum system from Λ1 to Λ2.

The proof is conducted absolutely analogously to the proof of Theorem 9.
Thus, we have explicitly described a gate that translates any unitary state into any quasi-basis

state, including any basis state within a specific group of unitary states Sj(j = 2, ..., 7 and vice versa.
From Theorems 8 and 9, the following important result easily follows.

Theorem 10. Let Λ1 and Λ2 be two unitary states of a two-qubit quantum system. Then there
exists a gate G, which translates the quantum system from state Λ1 to state Λ2 in one step.

Proof. The proof follows from Theorems 9 and 8. According to Theorem 9, if the state Λ1 lies in
the group Sj for some j, then there is a unitary matrix G1 from the group M10j, which translates the
system into some quasi-basis state Λ. According to Theorem 8, the state Λ belongs to all groups Sj for
all j = 2, ..., 7. Now, by Theorem 9, we can translate the system from state Λ into state Λ2 using some
matrix G2 from the group M10k, where Sk is the group in which the state Λ2 is located. Then the gate
G2G1 translates the system from state Λ1 into state Λ2 in one step. Moreover, we can explicitly write
the matrices G1 and G2.

The theorem is proven.
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In this way, we have divided all possible states of a two-qubit quantum system into two classes:
unitary and non-unitary. Unitary states include all quasi-basis states (and thus all basis states) and play
an important role in the construction of quantum algorithms. Theorem 10 allows transitioning from
any unitary state to any other unitary state in one step, and the gate of this transition can be explicitly
described, and there are infinitely many such gates (since there are infinitely many quasi-basis states).
If the solution to a certain quantum problem is represented as a non-unitary state, there is always a
unitary state that lies as close as desired to this non-unitary state [1]. This gives us the possibility of
searching for an approximate solution to the problem of finding a gate that translates the quantum
system from any state to any other state.

5. Conclusion

This work has considered an important class of quantum states called unitary states and has
solved the problem of finding a gate that translates a two-qubit quantum system from one unitary state
to any other unitary state. If the initial and final states are not unitary, then the proposed approach
can generally be used to approximate the solution to the problem of finding a gate that translates the
system from one state to any other arbitrary state. However, that is the subject of future research.

The paper focuses on commutative two-qubit gates and leaves without consideration
non-commutative two-qubit gates, which have the form of matrices similar to matrices Mj, where j =
20, 30, ..., 70. Investigating the properties of such gates and their interrelationships with commutative
gates is of great practical interest for the development of quantum algorithms. Constructing all
non-commutative groups of two-qubit gates makes the picture more complete.

In this context, the question of the completeness of the constructed groups (commutative and
others) of two-qubit gates is interesting, namely, whether it is possible to describe the action of any
unitary operator with any degree of accuracy using the constructed gates.

The results obtained can be extended to the case of n-qubit systems, but for this, it is necessary
to develop an algebra of 2n-dimensional mathematics, similar to four-dimensional mathematics.
However, for the practical application of such developments, it is important to have ready-made
libraries, for example, in Python, that allow performing computations of multidimensional algebra.

All these issues, in our opinion, can be resolved using the apparatus of multidimensional
mathematics. In general, the apparatus of multidimensional commutative algebra not only opens
new possibilities for the existing mathe-matical model of quantum computing but may also give
a new impetus to the development of a differential mathematical model of quantum computing,
because in multidimensional mathematics with commutative multiplication, it is possible to effectively
develop integral and differential calculus, as has been done for the four-dimensional case [1,2,6].
Four-dimensional mathematical analysis has allowed for new approaches to solving complex
three-dimensional non-stationary problems for systems of partial differential equations [9,10].
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