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Abstract: This work is devoted to the construction and study of commutative gates for a two-qubit
quantum system. Using four-dimensional algebra developed by the Kazakh mathematician Abenov
M.M. all groups of commutative gates have been constructed, and among all states of a two-qubit
quantum system, unitary states with which a specific gate is connected have been identified. An
explicit type of gate is described that transfers a quantum system from one unitary state to another
unitary state. The proposed approach opens up new possibilities for the design of quantum algorithms
not only for two-qubit quantum systems, but also for n-qubit quantum systems.

Keywords: quantum computing; quantum algorithm; gate; unitary operator; four-dimensional
mathematics; abelian group

1. Introduction

Quantum computation, in a more strict fundamental understanding, is the movement of a point
in a 2n-dimensional complex space, where the initial and final positions of the point correspond to the
input and output of the computation.

Therefore, the process of quantum computation is nothing more than a linear transformation of a
2" - dimensional vector from a state | > to | ¢ >.

Thus, the coordinates of vector | ¢ > are the initial conditions, and the coordinates of vector | ¢ >
are the result of the computation - the output.

An ideal quantum computation is then one that performs a direct linear transformation from
| > to | ¢ > in a single step - a singular transform, a single computation execution.

Ideal here means that there is no more efficient, in terms of computational power, computational
expense of the quantum computer’s work.

To make ideal quantum computation technically possible, it is necessary to find a group of unitary
matrices, the elements of which form a universal set of quantum gates for the direct transformation
from | ¢ > to| ¢ >. As is known, quantum computations use quantum bits or qubits instead of
classical bits, which have two basis states | 0 > u | 1 >. All other states of a qubit are defined as a
linear combination of basis states with complex coefficients, that is

[P >=A 0>+, 1>, 1)

where A; € C,A € Cand | A1 |> + | Ay |?= 1, C - being the space of complex numbers.

The basis states of a qubit | 0 > and | 1 > are also denoted using vectors (1,0)T and (0,1)T
respectively, where the index T denotes the transposition sign.

A two-qubit quantum system consists of two qubits and has four basis states | 00 >= (1,0,0,0)
01 >= (0,1,0,0)7,| 10 >= (0,0,1,0)T and | 11 >= (0,0,0,1)". Then, an arbitrary state of a two-qubit
quantum system can be written as [7,8]

T’|

| >=A1]00> 4217 |01 > +A3]10 > +A4 | 11 >, ()
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where \; € C,i =1,2,3,4,and | A1 |> + | A2 |> + | A3 | + | A4 |*= 1. A similar record for an arbitrary
state of a two-qubit system looks like [7,8]

1 0 0 0 M
0 1 0 0 Ao
=A A A A =
’1P>10+20+31+40 A | 3)
0 0 0 1 Ay

i.e.,, any quantum state of a two-qubit quantum system is uniquely determined by the complex
amplitudes A1, Ay, A3, Ay

Similarly, n-qubit quantum systems, consisting of n qubits, are defined. Such a system would
have 2" basis states and any of its states are determined as a linear combination of basis states with
complex amplitudes. In this work, we only consider two-qubit quantum systems, although all results
can in principle be generalized for an n-qubit quantum system. However, this would require the
development of the basics of 2"-dimensional mathematics with commutative multiplication. Here,
we rely on four-dimensional mathematics, the foundations of which were laid by the great Kazakh
mathematician Abenov M.M. [1].

Quantum computations consist in the sequential application of unitary U operators to the
quantum state of the quantum system, which are called gates. Unitary operators or gates applied to an
n-qubit quantum system are represented in the form of a matrix of size 2" x 2". For example, unitary
operators for a two-qubit system have the form of a 4 x 4 matrix U:

Uy +011i Up + 0120 U1z + 0131 Uig + V14l

y— | vt 0211: uxp + 0221: uz3 + 17231: U + 024l: , @)
Uzp + 031l Uzp + U3l U3z U331 Uzg + U3yl
Ug) + U411 Ugy + Vgol  Ugs + Vg3l Ugg + Vg4l

Ujj, jj € R, i,j =1,2,3,4.

Note that if a certain matrix (4) is a two-qubit gate, then the Hermitian conjugate matrix to it

U1 —o11i Upp — Ui U3y — 31l gy — Ugyd

U= | 2 Z?121: Uy — Z?221: uszp — 0321: Uy — Z)421: 5)
U1z — U131 U3 — Up3l  U33 — U331  U43 — V43l
U1y — U141 Upg —Upgl Usg — V34l Ugq — Vgyl

is also a gate.

The main two-qubit gates, or binary operators, are SWAP, CNOT, CZ, represented by matrices

[4,8]
1000 1000 100 O
0010 0100 010 0 ©)
0o1o00]'fooo1]"]0oo01 0
0001 0010 000 -1

Note that two-qubit gates can be applied to any n-qubit quantum system (n > 2), with any
two qubits from the n-qubit system selected to which the two-qubit gate is applied, and the identity
operator, which is defined by the unit matrix of the required dimension, is applied to the other qubits.

In addition to the gates indicated in (6), one can construct many different two-qubit gates, but a
general description of all possible two-qubit gates is absent. In the work [3], with the participation of
one of the authors, an Abelian group of commutating two-qubit gates was constructed. However, the
constructed group of gates is not complete, as none of the gates (6) belongs to the mentioned group.
This work is a continuation of [3], and here we have constructed all other commutative groups of
two-qubit gates, as well as defined the correspondence between quantum states and gates of two-qubit
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quantum systems, introduced the concept of a unitary state and shown the possibility of transitioning
in one step from any unitary state to any basis state, and also from any unitary state to any other
unitary state. The obtained results open up new possibilities for constructing quantum algorithms not
only for two-qubit quantum systems.

2. Four-Dimensional Number Spaces with Commutative Multiplication

In the study [2], all spaces of four-dimensional numbers R* with commutative multiplication
are examined. There are, in total, six such spaces, denoted as M, M3, M4, M5, Mg, M7. To each
four-dimensional number Z = (z1, 2,23, 24) € R* from any of these spaces, a certain 4 x 4 matrix M,
is associated, with its elements being the components of the four-dimensional number Z, and this
mapping is bijective. Moreover, this bijection is a homomorphism with respect to the multiplication
operation of four-dimensional numbers, meaning the group of matrices forms a commutative group
with identity. The results obtained in work [2] can be transferred to the case of four-dimensional
numbers Z € C*. Retaining the same designations for the spaces M;(j = 2,3,...,7) describe the
necessary properties of these spaces for the case of complex-valued four-dimensional numbers. As
we will see below, in each of the spaces Mj, ..., My, there exist two groups of matrices corresponding
to one operation of commutative multiplication of four-dimensional numbers [2]. The operations of
addition X + Y and subtraction X — Y of four-dimensional numbers X € C* and Y € C* are defined
as component-wise addition and subtraction. The multiplication operation of four-dimensional
numbers can be defined in various ways, among which we are only interested in commutative
multiplication. All ways of defining commutative multiplication are given in [2], where for each
method, the corres-ponding space of four-dimensional numbers M;(j = 2,3, ..., 7) is defined. Without
going into details, we will go through these spaces and generalize the results needed for our purposes
to the case of complex-valued four-dimensional numbers.

Let’s consider the space M, in which the multiplication of numbers X = (x1,x2, x3,x4) and
Y = (y1,Y2,¥3,y4) is defined as follows:

Z] = X1Y1 + X2Y2 — X3Y3 — X4l4
Zp = XaY1 + X1Y2 — X4Y3 — X3Y4
Z3 = X3Y1 + XaY2 + X1Y3 + X2Ya
Z4 = XglY1 + X3Y2 + XoY3 + X1V4

where Z(z1,22,23,24) = X - Y. If we set xj =aj+bji,y; = cj+dji,j = 1,2,3,4, where i is the imaginary
unit, then this multiplication can be rewritten as

a1 + byi c1+dyi e; + g1t
ap + byi . ¢+ dyi _ ey + Qi @)
as + bsi c3 + dai e3 + g3i
ag + byi Cq + dyi eq + Qai

where
e1 = a101 +axCo — asc3 — AyCq — bydy — bpdy + bads + bydy,
Q= a1d1 + apxdy — azds — agdy + bycy + bpcy — bacy — bycy,
€y = a1Cy + AxC1 — A3C4 — A4C3 — bldz — bzdl + b3d4 + b4d3,
g2 = aydy + azdy — azdy — agds + byca + by — byey — bycs,
e3 = a3C1 +a4Cy — a1C3 — ACqy — bzdy — bydy — byds — brdy,
3= azdq + agdy + aydsz + apdy + bycq + bgcyp + bics + bacy,
e4 = a4C1 + azcy + arcs + aycqy — bady — bady — bods — bydy,
84 = agdy + azdy + axds + aydy + bycq + bzca + bacs + bycy.
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One can readily verify that the multiplication of four-dimensional numbers defined in this way is
commutative. To the four-dimensional number X = (x1,xp, x3,x4) € C* we associate the matrix

X1 X2 —X3 —X4

X2 X1 —X4 —X3

Mp(X) = (8)

X3 X4 X X2
X4 X3 X2 X1

The mapping F : X — Mj(X) is bijective and onto. Indeed, two different numbers X and Y correspond
to different matrices, and for any matrix in the form of (8), a corresponding four-dimensional number
from C* can be found.

Theorem 1. The set of all matrices in the form of (8) is closed with respect to the operations of
matrix addition, subtraction, multiplication, and multiplication by scalar. For the mapping F : X —
Moo (X) the relationships F(X £ Y) = F(X) &+ F(Y), F(XY) = F(X)F(Y) hold for any X € C* Y € C%.

The proof is conducted by direct verification.

Thus, there is a bijection between the space of four-dimensional numbers and the space of
matrices of the form (8), which preserves arithmetic operations, meaning the existing bijection is a
homomorphism. From Theorem 1, it also follows that the operation of matrix multiplication of the
form (8) is commutative.

It is further noted that if we multiply the j-th row and j-th column of matrix (8) by -1, we obtain
another matrix with the same properties as the matrix Mpo, that is, the statements of Theorem 1 remain
valid. Moreover, if we multiply the j-th row and three columns of matrix M0, with indexes not equal
to j, by -1, we also get a matrix corresponding to the multiplication of four-dimensional numbers (7)
and possessing the properties of matrix M;0. The matrix transposed to M0 also possesses all the
properties of matrix M;0. To describe such operations, let us denote by Mg]o'k), where j and k are one,
two, or three indices with values from 1 to 4, the matrix obtained by multiplying by -1 the rows with
numbers from index j and columns with numbers from index k. For example, M§%4’134) is a matrix
obtained from matrix M>0 by multiplying the second and fourth rows by -1, and also by multiplying
the first, third, and fourth columns by -1. Let’s describe all possible operations that lead to matrices for
which the statements of Theorem 1 are valid. It is easy to verify that such operations are operations of
the following types: Méjo’j ), Méjo’klm), M%lm’j ), Mgglm'klm), M%k’jk), Mé{)k’lm), where j, k, [, m are pairwise
distinct indices with values from 1 to 4. In addition, the operation of transposing a matrix also does
not change its properties.

The number of different operations of the form Mgo’] ) is four when j = 1, 2, 3, 4, respectively, we
get four new matrices:

X1 —X2 X3 X4 X1 —X2 —X3 —X4
11 -X x —X4 —X 2,2 —X x X X
M = 2 M I Y 2 mom x|
—X3 X4 X1 X2 X3 —X4 X1 X2
—X4 X3 X2 X1 X4 —X3 X2 X1
X1 X2 X3 —X4 X1 X2 —X3 X4
33 X X X —X 44 x X —X X
Méo ) _ 2 1 4 3 Méo ) _ 2 1 4 3
—X3 —X4 X1 —X2 X3 X4 X1 —X2
X4 X3 —X2 X1 —X4 —X3 —X2 X1

But as we can easily notice,

1,1 2,2
M%O ;(xlfxz, X3,X4) = M%O ;(xlfxzr —X3, —Xg),
11 33
M%g) 1) (xlr X2, X3, X4) = M%g 4) (xll —X2, X3, *X4),
My (x1, X2, %3, X4) = My (X1, —X2, —X3,X4),
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that is, these matrices lie in one group. Similarly, it can be shown that the matrices from the groups
Méjo’klm), Mgalm’] ), Mgﬁlm’klm), totaling 12 (4 in each group), lie in the same group. In addition, we

include in this group all transposed matrices of this group, as it is easy to check that they also lie in
this group. And the matrices from the groups Méjok’] k), M%k’lm), totaling 12 (6 in each group) and the
transposed matrices to them, also lie in one group, but different from the first group. For example, the

matrices Mg)z,u) and M%Z’M) respectively have the form:

X1 X2 X3 Xg —X1 —Xp —X3 —X4

X2 X1 X4 X3 —X2 —X1 —Xg4 —X3

—x3 —x4 x1 x2 |’ x3 x4 —x1 —x2 |’

—X4 —X3 X2 X1 X4 X3 —X2 —X1
from which it follows that M%z’lz)(xh Xp,X3,X4) = —Mgéz’34)(x1,x2, X3,X4), but from M%Z’lz) it is
impossible to obtain Méé’l) or another matrix from the first group. Thus, there are two groups of

matrices that are closed with respect to the operations of addition, multiplication, and these operations
are commutative. Any matrix from the corresponding group can be taken as a representative of these
groups. As a representative of the second group, we take the matrix My, and as a representative of

the first group, we take, for example, the matrix M%’l), which we denote by Mj;:
o X2 X3 X4
—X2 X1 —X4 —X
Ma(X)= | 0t ©)

—X3 X4 X1 X2
—X4 X3 X2 X1

Thus, to each four-dimensional number X € C* two matrices My and My; can be associated,
that is, to define two mappings, Fy : X — My(X) and F»; : X — Mjy;(X), which are bijective and
onto. The products of matrices from one class are closed with respect to the operations of addition and
multiplication, and the multiplication operation corresponds to the multiplication of four-dimensional
numbers (7).

Note. Other transformations ngo'k) of the matrix My can be considered and used to build unitary
operators.

Now, let us consider the space M3, where the multiplication operation of four-dimensional

numbers X = (x1,x2,x3,%4) and Y = (y1,Y2,Y3,Ya) is defined as follows [2]:

Z1 = X1Y1 — X2Y2 + X3Y3 — X4Y4
Zp = X2Y1 + X1Y2 + X4Y3 + X3Y4
Z3 = X3Y1 — X4Y2 + X1Y3 — X2V4
Z4 = X4Y1 + X3Y2 + X2Y3 + X1Y4

where Z = (z1,2p,23,24) = X-Y. A detailed exposition of the algebra and analysis over the
four-dimensional space of real numbers Mj is presented in monograph [1]. To the four-dimensional
number X = (x1, X2, x3,x4) € C* we associate the matrix

X1 —X2 X3 —X4
X2 X1 X4 X3
X3 —X4 X1 —X2
X4 X3 X2 X1

Mzo(X) = (10)

The mapping F3 : X — M;z(X) is bijective and onto. Indeed, two different numbers X and Y
correspond to different matrices, and for any matrix of form (10), one can find the corresponding
four-dimensional number from C*. For the matrix M3y and the mapping F3p , the statements of
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Theorem 1 hold true. Similarly to the previous case, by considering transformations of the form
Méjo’j ), Méé’klm), Mé’gm’j ), Méglm’klm), Mg{)k’jk), Méék’lm), where j, k, I, m are pairwise distinct indices with
values from 1 to 4, we find that there exist two groups of matrices corresponding to the commutative
multipli-cation in the space M3 and satisfying the conditions of Theorem 1. One group is represented
by the matrix (10), and the other group by the following matrix M3; (X):

X1 X2  —X3 X4
M3 (X) = T
—X3 —X4 X1 —X2

—X4 X3 X2 X1
Similarly, for the space My, with commutative multiplication [2]

Z] = X1Y1 — X2lY2 — X3Y3 + X4Y4
Zp = XaY1 + X1Y2 + X4Y3 + X3Y4
Z3 = X3Y1 + X4Y2 + X1Y3 + X2Y4
Z4 = X4Y1 — X3Y2 — X2Y3 + X1Y4

we obtain two groups of matrices My (X) and My (X):

X1 —X2 —X3 X4
X X X X

Mgp(x)=| 2 "t 4 S (11)
X3 X4 X1 X2

X4 —X3 —X2 X1

X1 X2 X3 —X4
—X2 X1 X4 X3
—X3 X4 X1 X2
—X4 —X3 —X2 X1

My (X) =

Proceeding with similar reasoning and corresponding calculations for spaces Ms, Mg, My, , the
multiplication operations of which are defined respectively as [2]

Z1 = X1Y1 — X2Y2 — X3Y3 + X4l4
Zp = XoY1 + X1Y2 — X4Y3 — X3Y4
Z3 = X3Y1 — X4lY2 + X1Y3 — X2Ya
Z4 = X4Y1 + X3Y2 + X2Y3 + X1Y4

Z1 = X1Y1 — X2Y2 + X3Y3 — X4l4
Zp = XoY1 + X1Y2 — X4Y3 — X3Y4
Z3 = X3Y1 + X4Y2 + X1Y3 + X2Y4
Z4 = X4Y1 — X3Y2 — X2Y3 + X1Y4

Z1 = X1Y1 + X2lY2 — X3Y3 — X4la
Zp = XoY1 + X1Y2 + X4Y3 + X3Y4
Z3 = X3Y1 — X4lY2 + X1Y3 — X2Y4
Z4 = X4l1 — X3Y2 — X2Y3 + X1Y4
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we determine the corresponding groups of matrices satisfying the conditions of Theorem 1 for the
indicated commutative multiplication operations:

for the space Ms,

for the space M,

Mso(X) =

X1
—xy
—x3
—x4

X1
X
Mego(X) = >

X4

X1
—xy
—x3
—x4

Mz(X) =

—X
Mn(X) = _xi

—xy
X1
—x4
X3

X2
X1
—x4
X3

—X
X1
X4

—x3

X2

X1

X4
—x3

X2
X1
—x4
—x3

—xy
X1
—x4
—x3

—x3
—x4
X1
X2

X3

_x4

X1
X2

X3
—x4
X1
—xy

_x4

X1

—x3
X4
X1

—x,

X3
X4
X1

X4
—x3
—xy

X1

, (12)

—x4

—x3

—xo
X1

—x4
—x3
X2
X1

, (13)

X4
—x3
X3
X1

—x4
X3
—xy
X1

, (14)

X4
X3
—x
X1

for the space My. Note that the foundations of the four-dimensional space of real numbers M5 can be

found in works [5,6].

A careful examination of the obtained matrices reveals that

Mpo(x1, X2, X3, X4)
M3 (x1, %2, X3, X4)
Myo(x1, %2, X3, X4)
Mso(x1, X2, X3, X4)
Mo (x1, X2, X3, X4)
Mzo(x1, %2, X3, X4)

Mz1(x1, —X2, —X3, —X4),
Me1(x1, —x2, —x3, —x4),
M5 (x1, —X2, —X3, —X4),
My1(x1, —X2, —X3, —X4),
M3 (x1, —X2, —X3, —X4),
My (x1, —x2, — X3, —x4)

This implies that there are in fact six independent groups of matrices corresponding to the six

spaces of four-dimensional numbers M;, (j=23,.,

7). As such matrices, we shall take Mpy, M3z, My,

Msp, Mgy and My, defined by equations (8), (10) - (14). Each of these matrices is bijective to the space
of four-dimensional complex-valued numbers, closed with respect to the multiplication operation, and
forms an abelian group with respect to the matrix multiplication operation. Moreover, as evident from
the construction, no other abelian groups of matrices exist.
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3. Commutative groups of two-qubit gates

In the previous section, we constructed six abelian groups of matrices with elements formed from
the components of a four-dimensional number. Based on these matrices, it is possible to construct gates
for two-qubit quantum systems; in other words, under certain additional conditions, the constructed
matrices transform into unitary operators. Let us formulate the corresponding conditions.

Theorem 2. Let X = (x1,x2,x3,%4) € C%. Let the components of the complex numbers Xj =
uj+ v]-i(j =1,2,3,4) satisfy the conditions:

po =YL (1 +07) =1,
021 = Uiy + uzuy + 0103 +v3v4 = 0, (15)
P22 = U103 + upvy — uzv, — ugvy =0
023 = U104 + Up03 — U3V — Ugvy = 0.

Then the matrix My (X) is a two-qubit gate.
Proof. The system (15) is consistent and has an infinite number of solutions. Consider the
Hermitian conjugate matrix M3, to the matrix M:

Uy — vl Up — Upl U3 — V30 Ug — V4l
Uy — vl Uy — 01l Uy — U4l U3z — V3l
—Uz+0v3i —uUg+ 040 Uy — VL Up — Vol
—Ug +0v4i —uz+0v3i Uy — Uyl U] — Vqi

*
My, =

and multiply it by the matrix Moo:

o 2021 —2020 —2p23i
2021 po 20231 —2p20i
20001 20231 po 2021
20031 2020 202 £0

My - M3y =

Using relations (15) we obtain that My - M3, = E, where E is the identity matrix of size 4 x 4, hence
My is a unitary matrix.

Thus, when conditions (15) are met, the group of matrices Mpy(X) forms a commutative group of
gates for a two-qubit quantum system.

Corollary 1. The group of commutative gates with real elements is of the form

Uiy Uy —U3z —Uy
RM20 _ U Uy —Ug —U3
Uz Uy U u !
3 4 1 2

Ug Uz Up U

where P
Z]‘:1 uj =1,

(16)
Uy + uzuy = 0.

Corollary 2. The group of commutative gates with purely imaginary elements is of the form

Uli Uzi —Z)3i —U4i
M Uyl vyl —U4l  —U3i
20 = . . . .
v3i v4i Uvyi Uoi !

Z)4i Z)3i Z)zi Uli
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where .
Zj:1 U]- =1,
0102 + v304 = 0.

Theorem 3. Let X = (x1, X2, x3,%4) € C*. Let the components of the complex numbers Xj=uj+vji(j =
1,2,3,4) satisfy the conditions:

o0 =Xh, (2 +7) = 1,

031 = Uiz + gy + 0103 + 004 = 0,
032 = U102 — U201 + U304 — U4V3 = 0
033 = U104 — UU3 + U3V — U4V = 0.

(17)

Then the matrix M3y (X) is a two-qubit gate.

The proof is analogous to the proof of Theorem 2.

This theorem coincides with Theorem 1 from work [3]. Analogous to Corollary 1 and Corollary 2
to Theorem 2, we can write the forms of gates with real and imaginary elements for the matrix Ms.

Similarly, we consider matrices Myg, Msg, Mgp and My and list the corres-ponding conditions for
their unitarity.

Theorem 4. Let X = (x1,x2,x3,%4) € C%. Let the components of the complex numbers Xj =
uj + v]-i(j =1,2,3,4) satisfy the conditions:

po =L (1 +07) =1,
041 = Uiy + Ugus + v104 + vpv3 = 0,
042 = U0y — UpV] — U3V4 + Ugv3 =0
043 = U103 — Up0y — U301 + Uy = 0.

(18)

Then the matrix Myo(X) is a two-qubit gate.
Theorem 5. Let X = (x1,x0,x3,%4) € C*. Let the components of the complex numbers x; =
uj + vji(j =1,2,3,4) satisfy the conditions:

0o = 23-1:1(11]2 + 012) =1,
051 = Uiy — UpUz + 0104 — V03 = 0,
052 = U102 — Up01 + U3y — Uugv3 =0
053 = U103 + U0y — Uz — Ugvp = 0.

(19)

Then the matrix Mso(X) is a two-qubit gate.
Theorem 6. Let X = (x1,x,x3,x4) € C* Let the components of the complex numbers x; =
uj + vji (j =1,2,3,4) satisfy the conditions:

Po = 2?:1 (“]2 + U]2) =1,
Pe1 = UTU3 — UlUy + 0103 — V04 = 0,
062 = U Uy — Up0] — U3V4 + Ugv3 =0
063 = U104 + UpU3 — UzVy — Ugvy = 0.

(20)

Then the matrix Mgo(X) is a two-qubit gate.
Theorem 7. Let X = (x1,x,x3,x4) € C% Let the components of the complex numbers Xj =
uj +vji(j = 1,2,3,4) satisfy the conditions:

po=Yjq(uf +07) =1,
071 = Uiy — uzuy + 0103 — v3v4 = 0,
P72 = U103 — U0y — U3V + Uy =0
073 = U104 — Up03 + UzUy — Ugvy = 0.

(21)
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Then the matrix Myy(X) is a two-qubit gate.

Thus, we have defined 6 groups of two-qubit gates that are closed with respect to the operation
of matrix multiplication and within each group, the gates commute with each other. It is clear that
each group contains a continuum of gates. It is easy to see that gates from different groups are not
commutative, although their product is also a gate. That is, if we apply gates from one of these
groups to the state of a (two-qubit) quantum system in sequence, then we ultimately obtain a gate
from the same group, in other words, any number of sequentially applied gates from one group
M;, (j = 20,30,40,50,60,70) can always be replaced by a single gate from the same group, and the
order of application of these gates is not important. Since any quantum algorithm is essentially the
product of a sequence of gates, it can be reduced to a sequence of applications of two-qubit gates, each
taken from the different specified 6 groups (provided that all the gates of the algorithm belong to the
specified groups).

Observation. We have constructed all commutative groups of two-qubit gates. If we consider other
transformations of matrices M,,, with indices (n = 20, ...,70), in the form M,(j ’k), where j and k are one,
two, or three indices with values from 1 to 4 that do not satisfy the assertions of Theorem 1, then we can
also obtain groups of unitary operators that fulfill the corresponding conditions (15), (17) - (21). These
gates are not commutative and are not closed with respect to multiplication. Nonetheless, investigating
their properties and relationships with the commutative groups that have been constructed is a relevant
task. These are the directions for future research.

In the case of an n—qubit quantum system, a quantum algorithm typically consists of a sequence
of single-qubit (unary), two-qubit (binary), three-qubit (ternary), and other multi-qubit gates. In this
context, sequentially applied two-qubit gates can be simplified or reduced due to the commutativity
and closure of these operators within the described groups.

4. Unitary States of Quantum Systems

An arbitrary state of a two-qubit quantum system is specified as in expressions (2) or (3). The
ultimate purpose of any quantum algorithm is to transform the state of the quantum system into a
state suitable for solving the given problem. Therefore, the task of finding a gate that transitions the
quantum system from one specified state to another is of significant importance. Let us consider this
task for a two-qubit quantum system, which can be generalized to an n-qubit system.

Definition. The state of a two-qubit system A = (A1, A2, A3,A4)7 is called a unitary state if the
components of complex numbers Aj=uj+ v]-i (j =1,2,3,4) satisfy at least one of the conditions (15),
(17) - 21).

Note that all basis states of quantum systems are unitary since they fulfill all the listed conditions.
Furthermore, only those states, called quasi-basis states, satisfy all conditions (15), (17) - (21)
simultaneously.

Definition. Quantum states of the following forms A = (A,0, 0,007, A = (0,A4,0,0)7, A =
(0,0,1A,0)7, A = (0,0,0,A)T, where A € C,| A |= 1 are called quasi-basis states.

Evidently, all basis states are quasi-basis states.

Theorem 8. The state of a two-qubit system A = (A1, Ay, A3, A4)T satisfies all conditions (15), (17) -
(21) simultaneously if and only if A is a quasi-basis state.

The proof is straightforwardly achieved by concurrently solving system (15), (17) - (21).

From the previously proven Theorems 1 - 7, it follows that each unitary state of a two-qubit
system corresponds to at least one unitary matrix. Moreover, if the state is a quasi-basis state, then it
corresponds to no fewer than six gates. Unitary states play a crucial role in the construction of quantum
algorithms since for them we can explicitly specify a gate that transitions the quantum system from
one specified state to another.

Remark. When we say that each unitary state corresponds to at least one unitary matrix,
not exactly one matrix, we imply that in addition to commutative unitary matrices, there exist
non-commutative unitary matrices whose elements satisfy the same conditions (15), (17) - (21). Since
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we are only considering commutative gates here, the matrices corresponding to unitary states are only
matrices My, ..., Myy and the corresponding unitary states are denoted by S(X) — S7(X). That is,
S»2(X) - unitary states satisfying condition (15), S3(X) - unitary states satisfying condition (17), and so
on, Uy(X) - unitary states satisfying condition (21),

Theorem 9. Let A = (A1, A2, A3,A4)T — be a unitary state of the two-qubit quantum system from
S;, where j = 2,..7. Then, for any quasi-basis state B, among the unitary matrices Myo;(A), there exists
a matrix G, such that GA = B.

Proof. Let us prove the theorem for j = 2 as an example. The matrix My, corresponding to the
unitary state A is of the form (8)

ur+o1i Up+ Ui —uUz —U3i  —Uy — U4l
Uy + Ui U+ V1L —Ug — Vgl —Uz — V30
Uz +v3i  Ug+vgi Uy + 010 Uy + voi
Uy 4040 uz+v3l Uy + 0ol Uy + v1i

Moo (A) =

where u; +v;i = A; (j = 1,2,3,4) satisfy conditions (15). Consequently,

Uy — vl Up — Uyl U3 — U3l Uy — U4l

-1 o Uy — Uzi uy — U]i Uy — U4i Uz — Ugi
My, (A) = , . . .
—U3+ 031 —Uyg+UV40 U — V1 Uy — VI
—uUy +v4i —uUz 030 Up — Vi Uy — Uyl
Then 2 2 2 24,2022 .2 4 2
uy + us +usz+ug + o7 +0; + 053 +0; 1
ML (A)A _ 2(141142 + 0102 + Uzuyg + ’032)4) _ 0
20 2(u1v3 — Uz0q + Uy — UgD2)i 0|’
2(u1vq — ugvy + Upvz — Uzv2)i 0

by virtue of conditions (15). Similarly, it can be shown that M2_01 (B)B = (1,0,0,0)T, whence
M2(B)(1,0,0,0)T = B. Now, by applying gate M,,'(A) to state A first, and then gate Ma(B)
we obtain Mao(B) M,y (A)A = B. That is, the gate G = My(B)M,,' (A) transitions the state A into
the quasi-basis state B. The proof for other values of j is conducted analogously.

The theorem is proven.

Remark. There are several gates G, the existence of which is asserted in Theorem 9. We could
have transitioned to the quasi-basis state B not through the basis state (1,0,0, O)T but, for example,
through the basis state (0,1,0, 0)T, and so forth.

Corollary. Let Aj and A; be two unitary states from S;. Then there exists a gate from the Abelian
group Mjg;, that transitions the state of the quantum system from A; to As.

The proof is conducted absolutely analogously to the proof of Theorem 9.

Thus, we have explicitly described a gate that translates any unitary state into any quasi-basis
state, including any basis state within a specific group of unitary states S;(j = 2, ...,7 and vice versa.
From Theorems 8 and 9, the following important result easily follows.

Theorem 10. Let A; and Aj be two unitary states of a two-qubit quantum system. Then there
exists a gate G, which translates the quantum system from state A to state A, in one step.

Proof. The proof follows from Theorems 9 and 8. According to Theorem 9, if the state A lies in
the group §; for some j, then there is a unitary matrix G; from the group Mjp;, which translates the
system into some quasi-basis state A. According to Theorem 8, the state A belongs to all groups S; for
all j =2,...,7. Now, by Theorem 9, we can translate the system from state A into state A, using some
matrix Gy from the group Mg, where Sy is the group in which the state A; is located. Then the gate
GG translates the system from state A into state A in one step. Moreover, we can explicitly write
the matrices G; and Gj.

The theorem is proven.
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In this way, we have divided all possible states of a two-qubit quantum system into two classes:
unitary and non-unitary. Unitary states include all quasi-basis states (and thus all basis states) and play
an important role in the construction of quantum algorithms. Theorem 10 allows transitioning from
any unitary state to any other unitary state in one step, and the gate of this transition can be explicitly
described, and there are infinitely many such gates (since there are infinitely many quasi-basis states).
If the solution to a certain quantum problem is represented as a non-unitary state, there is always a
unitary state that lies as close as desired to this non-unitary state [1]. This gives us the possibility of
searching for an approximate solution to the problem of finding a gate that translates the quantum
system from any state to any other state.

5. Conclusion

This work has considered an important class of quantum states called unitary states and has
solved the problem of finding a gate that translates a two-qubit quantum system from one unitary state
to any other unitary state. If the initial and final states are not unitary, then the proposed approach
can generally be used to approximate the solution to the problem of finding a gate that translates the
system from one state to any other arbitrary state. However, that is the subject of future research.

The paper focuses on commutative two-qubit gates and leaves without consideration
non-commutative two-qubit gates, which have the form of matrices similar to matrices M;, where j =
20,30, ..., 70. Investigating the properties of such gates and their interrelationships with commutative
gates is of great practical interest for the development of quantum algorithms. Constructing all
non-commutative groups of two-qubit gates makes the picture more complete.

In this context, the question of the completeness of the constructed groups (commutative and
others) of two-qubit gates is interesting, namely, whether it is possible to describe the action of any
unitary operator with any degree of accuracy using the constructed gates.

The results obtained can be extended to the case of n-qubit systems, but for this, it is necessary
to develop an algebra of 2n-dimensional mathematics, similar to four-dimensional mathematics.
However, for the practical application of such developments, it is important to have ready-made
libraries, for example, in Python, that allow performing computations of multidimensional algebra.

All these issues, in our opinion, can be resolved using the apparatus of multidimensional
mathematics. In general, the apparatus of multidimensional commutative algebra not only opens
new possibilities for the existing mathe-matical model of quantum computing but may also give
a new impetus to the development of a differential mathematical model of quantum computing,
because in multidimensional mathematics with commutative multiplication, it is possible to effectively
develop integral and differential calculus, as has been done for the four-dimensional case [1,2,6].
Four-dimensional mathematical analysis has allowed for new approaches to solving complex
three-dimensional non-stationary problems for systems of partial differential equations [9,10].
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