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Abstract: Studies involving vortexes in hybrid superconducting devices and their interactions with

different components inside samples are important for reaching higher values of critical parameters

in superconducting materials. The vortex distribution on each side of a sample with different

fundamental parameters, such as temperature T, penetration depth λ, coherence length ξ, electron

mass m, and the order parameter Ψ, may help to improve the superconducting properties. Thus, in

this work, we used the modified Ginzburg–Landau theory to investigate a hybrid superconductor

(HS), as well as to provide a highly tunable and adjustable theoretical tool for theoretically explaining

the experimental results involving the HS in order to study the vortex behavior in superconductors

of mesoscopic dimensions with extreme differences among their fundamental parameters. Therefore,

we evaluated the influence of the HS on the vortex configuration and its effects on field-dependent

magnetization. The results show that when the applied magnetic field H was increased, the

diamagnetic response of the HS (Meissner effect) included additional jumps in magnetization, while

diamagnetism continued to increase in the sample. In addition, the differences among parameters

created an interface between both components, and two different magnitudes of supercurrent and

vortex sizes caused less degradation of the local superconductivity, which increased the upper critical

field. On the other hand, this type of HS with differences in parameters on both sides can be used

to control the vortex movement in the selected sample of the superconducting region with more

accuracy.

Keywords: Vortex; superconductivity; Ginzburg–Landau theory; magnetization; free energy

0. Introduction

Usually, the interconnection of materials at the quantum level with superconducting condensates

leads to a leakage of Cooper pairs through heterointerfaces, which is known as the proximity effect [1].

This procedure has become a route to the design of superconducting electronics and the engineering of

new quantum states, including the development of hybrid quantum devices, which have opened an

important area in research based on advances in fabricating nanostructures with highly controllable

accuracy, thus allowing their physical and electronic properties, as well as their power consumption,

to be manipulated and tailored. Research on hybrid superconducting structures, which are made up of

a superconductor and non-superconducting material, takes the proximity effect into account, as this

explains the correlations of adjacent non-superconducting layers [2–8]. The freedom in the design and

fabrication of the heterostructures of emergent two-dimensional (2D) materials [9,10] has opened the

possibility for research on the interactions of fundamental properties at the nanoscale. Such research

results show that is possible to control the critical temperature, critical magnetic field, and energy gaps

in selected regions as a result of the creation of tailored nanostructured superconductors with complex

superconductor materials for applications in quantum technology. These developments have allowed

new advances, including the superconducting proximity effect in epitaxial graphene induced by a

graphene–superconductor interface [11]. Numerical calculations have shown many effects that are

usually observed in nanostructured superconductors, and these result in complex vortex patterns when
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barriers or defects are included [12–15]. Additionally, the inclusion of anisotropies in superconducting

samples through variations in Tc in different layers of the sample leads to distinct vortex states and

free-energy curves [16–18], as well as new possibilities for non-conventional vortex structures [19].

These kinds of systems exhibit a variety of new and interesting phenomena with no counterparts

in conventional single-component superconductors [20]. Exotic vortex structures can emerge in a

two-component superconductor because of the different length scales ξi at which the Cooper-pair

density varies in each component [? ]. Two-dimensional superconductivity has been investigated to

find insights into a variety of quantum phenomena; the thermal evaporation and sputtering of metallic

films allow the study of most of the basic properties of 2D superconductors [21,22]. The methods for

fabrication, such as quantum phase transitions, open new discussions and opportunities for the study

of thin-film superconductors with thicknesses from 0.3 nm to 10 nm [23,24].

Previously, fabrication techniques such as molecular beam epitaxy accompanied by surface

or interface reconstruction processes and methods for the production of field-effect devices

and mechanical exfoliation were introduced into the field of 2D superconductors [25–27]; as

a result, crystallinity has been greatly improved, even in atomically thick samples. The

different phenomena associated with hybrid combinations with other superconductors have

shown relevant effects, such as the magnetic field-driven quantum phase transition that takes

place electrostatically in superconducting interfaces, among other effects [28,29]. In addition,

combinations with low-dimensional semiconductors offer a versatile ground for novel device concepts,

such as supercurrent transistors, sources of spin-entangled electrons, quantum computation, and

nano-SQUIDS. When a superconductor is coupled with another superconductor, very interesting

phenomena take place; both condensates interact with each other at the interface, and the supercurrent

can be modulated in this region. In this context, the modulated domain–wall superconductivity offers

the possibility of controlling the strength of superconductivity at will. The underlying physics behind

such hybrid devices ultimately rely on the superconductors that are selected for coupling.

In the present contribution, we study the fundamental properties and vortex matter of hybrid

superconducting samples made of two superconductors, in which each component is well known.

The desired parameters of the components, as well as the geometry, type, and distribution of each

superconductor, are chosen. In our work, we modified the G-L formalism in order to study hybrid

superconducting samples; the interaction between the two densities of the superconductors and the

order parameters that occurred in the interface between the soft and wall domains were modulated

with high precision by using the fundamental parameters of each superconductor.

Figure 1. (Color online) Schematic representation of a hybrid superconducting system made of two

types of superconductors: S1 and S2. The lateral size of the superconducting sample is a = 400 nm,

and the width of the sample is d = 20 nm. Two cases are studied: 1. S1 and S2 are both type II

superconductors with the following parameters: a coherence length of ξ1(0) = 39 nm and ξ2(0) =

20 nm and a penetration depth λ1(0) = 52 nm and λ2(0) = 200 nm; 2. S1 is a type II superconductor

with the parameters ξ1(0) = 39 nm and λ1(0) = 52 nm, but S2 is a type I superconductor with the

parameters ξ2(0) = 120 nm and λ1(0) = 72 nm.

In Sec. 1, we show the derived G-L equations and the ratios of intrinsic parameters of

superconductivity, and this procedure is used in the calculations. In Sec. 2, we analyze the results
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obtained for hybrid samples with two superconducting components divided into two halves (Figure 1).

Further, we discuss the issues concerning the distribution and configuration of vortices in the sample,

as well as the phase of the order parameter, the density of the supercurrent, and magnetization. The

results are finally summarized in Sec. 3.

1. Materials and Methods

We consider an HS with a thickness d that is smaller than the two characteristic lengths for a

superconductor system in such a way that the system is effectively two-dimensional. In this study,

the two superconductors inside the sample are denoted as S1 and S2; the quantities are scaled to units

that depend on the parameters of S1. The theoretical G-L equations were obtained by minimizing the

following energy functional:

F = ∑
i=1,2

∫

dV[αi(0)

(

1 − T

Tci

)

|Ψ|2 + βi

2
|Ψ|4

+
1

2m∗
i

×
∣

∣

∣
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−i∇− 2e

c
A
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∣

∣

∣

∣

2

+
(H − Ha)2

8π
] (1)

where Ha denotes the applied magnetic field, H is the total local magnetic field, which includes the

response of the superconductor, and the index i represents either S1 or S2 depending on the location

inside the volume V. We include an additional component that scales the functional to the parameters

of S1 with the variables α1, β1, and m∗
1 . Now, by minimizing Eq. 1, we obtain the following for the

order parameter and vector potential:

− (1 − cTt)
1

cξ
ψ +

cλc2
m

cξ
|ψ|2ψ + (−i∇− A)2ψ = 0 (2)

js = κ2
1(∇×∇× (A − A0)) = cmℜ(ψ∗(−i∇− A)ψ), (3)

with the following boundary condition:

n. (−i∇− A)ψ|Ss
= 0, (4)

where the parameters are defined as cT = Tc,1/Tc,2, cξ = ξ2
2(0)/ξ2

1(0), cλ = λ2
2(0)/λ2

1(0), cm = m∗
1/m∗

2 ,

and t = T/Tc,1; in addition, cm, cλ, cξ , and cT are used. The above equations are given in dimensionless

form; distances are measured in units of ξ1(0) =
√

−h̄2/2mα1(0), the temperature is measured in

units of the critical temperature of S1 (Tc,1), the order parameter Ψ is measured in units of Ψ∞,1 =
√

−α1(0)/β1, the vector potential is measured in units of A0,1 = ch̄/2eξ2
1(0), the magnetic field is

measured in units of the upper critical field of S1, Hc2,1 = ch̄/2eξ2
1(0), and the free energy is measured

in units of F0 = α2
1(0)/β1. The region in the sample where an additional superconductor is included

to obtain a two-component superconducting thin film, which can be directly modeled by changing

the parameters cT , cξ , cλ, and cm. In other words, many types of two-component superconducting

systems can be studied by tuning the parameters with the desired precision. We solve the coupled GL

equations self-consistently by using the link variable approach for a finite-difference representation

of the order parameter and the vector on a uniform two-dimensional Cartesian grid (x, y). The order

parameter is calculated by using the first GL equation. The second GL equation is then used to find the

supercurrent, and by using the Fourier transform of the supercurrent, the vector potential is calculated;

this, again, is used as an input for the first GL equation until a convergent solution for both ψ and A is

found. The extended derivation of equations G-L can be detailed in Appendix A.
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2. Results and discussion

The two superconductors inside of the sample (S1 and S2) each denote half of the nanostructure;

the quantities are scaled to units that depend on the parameters of S1. The lateral size of the considered

square superconducting sample is a = 400 nm, and the width is d = 20 nm. This simulation includes

two kinds of type II superconductors for the two halves; we chose the following parameters in

superconductor 1 (S1) and superconductor 2 (S2): A coherence length of ξ1(0) = 39 nm and ξ2(0) = 20

nm; a penetration depth of λ1(0) = 52 nm and λ2(0) = 200 nm; a critical temperature of Tc1 = 9.25 K

and Tc2 = 8.0 K. In addition, the temperature used in the system was T = 6 K, and the parameters

were cξ= 0.26, cλ= 14.79, cT= 1.15, τ= 0.65, and cm= 1.

As an example, we chose the coherence length and penetration depth so that the difference

between both Ginzburg–Landau (GL) parameters in the sample was large in order to establish a

substantial difference between the components and appreciate the behavior of their physical quantities.

To begin with, the variation in the magnetization was analyzed in the hybrid heterostructure due to

the entrance of vortices into both superconducting components, as illustrated in Figure 2 (left). When

the vortices entered into the sample made with one superconducting component, this routinely led to

a decrease in the magnetization showing jumps, but the results in the HS showed that after one jump

in which the magnetization should have decreased, the Meissner effect still grew with the increase

in the applied magnetic field, and a new jump in magnetization took place. [See the snapshot of the

magnetization curve in Figure 2 (up) point (a) and (b)].
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Figure 2. (Color online) (Left) The curve represents the magnetization as a function of an applied

magnetic field H for a type II/type II superconducting square sample with a = 400 nm and a width of

d = 20 nm. (Right) Contour plots of the density of the superconducting order parameter for different

selected vortex states; the upper section of the simulated sample is S1, and the characteristic lengths

are ξ1(0) = 39 nm and λ1(0) = 52 nm, whereas the lower section is S2 with ξ2(0) = 20 nm, λ2(0) =

200 nm (first column), and the corresponding phase of the order parameter (second column).

Figure 2 (right) shows contour plots of the density of the superconducting order parameter for

different selected vortex states (first column) and the corresponding phase of the order parameter

(second column). The total angular momentum L through Ψ = ψexp(iLφ) was used to characterize

the vortex state. The effective angular momentum was L = ∆φ/2π; for each clockwise path going

from red to blue, a vortex was found: L = 1, 2, 3, .... Because L1 represents the number of vortices in S1,

we use L2 for S2. After nucleation at the sample surface, the superconducting order parameter |Ψ| was

trapped inside the hybrid sample, which had a flux of Lφ0, where φ0 is the quantum flux.

As seen in snapshot (a) of the first column of Figure 2 (right), which corresponds to the states

L1 = 0 and L2 = 2, the first vortex lines to enter penetrated the sample in S2. The increment in the

jump in magnetization was modified by the entrance of magnetic flux into the sample, which was

proportional to the size of the vortex. There was a large contribution to −M due to the entrance of

the vortex into S1 (L1 = 1 and L2 = 2) [see Figure 2(b)(right)]; this was also made clear by comparing

points (a) and (b) in Figure 2 (left). This behavior was confirmed when the next two states were

compared, as the state in S1 remained L1 = 1 while L2 = 4 [see Figure 2 (right) and (left) point (c)];

then, L1 = 2 and L2 = 3 [see Figure 2 (right) and (left) point (d)].

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 November 2023                   doi:10.20944/preprints202311.1272.v1

https://doi.org/10.20944/preprints202311.1272.v1


6 of 17

For the six points (a–f) of the magnetization curve that were selected, the entry of the magnetic

flux (Φ) and the variation in the magnetization (∆M) are given in Table 1. The range of the applied

magnetic field that was considered was from H = 0 to H = 0.268Hc2,1(0), where the magnetization

jumps were more pronounced [see the snapshot in Figure 2 (up)]. It was observed that points (b) and

(d) showed larger variations in the magnetization (−M); only one vortex penetrated into S1 from S2,

and the entry of flux (Φ) could represent this behavior [see Table 1]. Similar behaviors were observed

in points (e) and (f), where a single vortex also penetrated into S1, but at the same time, two vortices

penetrated S2, resulting in lower values of Φ than those of points (b) and (d). Although only one

vortex penetrated S1 in the transitions of (b)–(d) and (e)–(f), there were differences in the values of

∆M and Φ0 due to the number of vortices that penetrated S2, which reduced the internal values of the

superconducting condensate; therefore, the magnetization and magnetic flux were reduced [see Table

1].

Table 1. The vortex states in S1 and S2, the applied magnetic field H/Hc2,1(0), the entry of magnetic

flux Φ/Hc2,1(0)ξ
2
1 × 10−4 into the sample, and the variations in magnetization ∆M/Hc2,1 × 10−5 that

we obtained for the magnetization curve (Figure2). The superconducting square sample had a length

of a = 400 nm and a width of d = 20 nm. For S1, and the characteristics lengths were ξ1(0) = 39 nm

and λ1(0) = 52 nm; for S2, they were ξ2(0) = 20 nm and λ2(0) = 200 nm.

Point L1 L2 Φ ∆M

(a) 0 2 2.32 0.455

(b) 1 2 4.67 0.893

(c) 1 4 1.91 0.364

(d) 2 3 3.76 0.715

(e) 3 4 2.574 0.522

(f) 4 6 2.571 0.489

One consequence of simulating a superconductor system with two superconducting samples is

that it is necessary to obtain two upper-critical magnetic fields: H2,1(0) and H2,2(0). These values are

determined in a superconductor system by using the following equation:

H2(0) =
H2,2(0)√

2κ2

=

ξ2
1

ξ2
2

H2,1(0)
√

2κ2

(5)

For S1, we obtained H2 = 0.268H2,1, while for S2, we obtained H2 = 0.530H2,1; thus, S1 would

reach its normal state before S2, which implied that one half of the hybrid superconductor would

behave as a metal in the normal bonded state, with the other half still being in the superconducting

state. This is similar to the behavior of a superconductor sample with Newman boundary conditions.

This was reflected in the behavior of the magnetization curve [Figure 2(left)], where from point (g) to

approximately point (k) was the section in which the peaks corresponded to the magnetization for

one superconductor. In addition, we calculated (third critical field) H3(0) = 0.8962H2(0), which was

related to the surface superconductivity, from the relation H3(0) = 1.69H2(0). We noticed that the

curve continued to decline beyond the value of H3 from point (k) in the magnetization curve until it

reached zero. This reflected the existence of regions in the superconducting state in the sample did not

display the typical surface superconductivity. From point (k), one can expect that the magnetization

curve [Figure 2(left)] would continue with the same inclination and reach the normal state at H2, which

would be less than that reached in this case of H2 ≈ 2.5H2(0).

How do the vortex states look in a hybrid superconducting sample with a square geometry? High

values of the order parameter |Ψ|2 are indicated by red regions, whereas lower values are indicated by

blue regions. It is known that the coherence length is the scale of the characteristic length over which
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|Ψ|2 is normalized, and it is related to the size of the vortex core. Therefore, it is intuitive that the size

of the vortices will change when they penetrate from one superconductor into another, as shown in

the following figures depicting vortex states.

Figure 2 (right) (a–f) shows the density of the order parameter for vortex states with different

values of L1 and L2 in each superconductor. For L2 = 2 and L1 = 0, the entry of the first vortex took

place in S2 at H = 0.083Hc2,1, as shown in Figure2 (right) (a). These vortices penetrated through the

component with a lower value of |Ψ|2. In the next state [Figure2 (right) (b)], L = 1 in S1 and L = 1

in S2, which meant that one new vortex penetrated S2, and one vortex did the same in S1 from S2 at

H = 0.125Hc2,1.

In this state, the biggest variations in the magnetization and entry of flux were reached [Table

1 (b)]. For L2 = 4 and L1 = 1, there were two more vortices in S2 that joined the others close to the

boundary between the two components. Once the vortices penetrated S2, they moved away from the

screening currents in its boundary, but the vortices could not reach the middle of the sample due to the

screening currents of S1. Additionally, despite the vortex states of L2 = 4 and L1 = 1 [Figure2(right)(c)],

only two vortices penetrated S2, as in the states of L2 = 2 and L1 = 1 [Figure2(right)(b)]; the variations

in the magnetization and flux were minor in comparison with those of the states in [Figure2(right)(b)]

[see Table 1].

Figure 3 (g–k) displays the transitions from point (g) at H = 0.332Hc2,1 to (k) at H = 0.875Hc2,1

[Figure 2(up)]. Because the size of the vortices in S1 was larger than that of the vortices in S2, taking

into account that the vortex radii were dependent on the coherence length (ξ1(0) = 39 nm and ξ2(0) =

20 nm), S1 reached the normal state before S2 did [see Figure 3 (l)]. Then, vortex entry from S1, which

already achieved the normal state, into S2 occurred; this increased the number of vortices inside it [see

Figure 3(m)]. In contrast, a superficial condensate was obtained in S1 [see Figure 3(n)], and finally, this

was found only in the corners of S2 [see Figure 3(o)] until the total normal state was reached.
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Figure 3. (g-i) (Color online) Contour plots of the superconducting order parameter for selected vortex

states that show that the vortices move from S1 to S2 with larger values of the applied magnetic field

when considering the case analyzed in Figure 2 to follow the evolution of the behavior of the vortex

state. Snapshots (l–o) show contour plots of the superconducting order parameter for selected vortex

states; these show the vortices that correspond to the lower jumps in the magnetization curve. The

simulation corresponds to a type II/type II superconducting square sample with a = 400 nm and a

width of d = 20 nm. The characteristic lengths for S1 are ξ1(0) = 39 nm and λ1(0) = 52 nm, and for S2,

they are ξ2(0) = 20 nm and λ2(0) = 200 nm.

Figure 4 shows the characteristics curves of the vorticity as a function of the applied magnetic field.

The numbers of vortices in each component of the hybrid superconducting sample were N1 (S1) and

N2 (S2). As a result of the presence of two superconductors in the same sample, the vortex transitions

followed distinct dynamics in each case, but when following the curves for each component, we found

that the number of vortices in S2 increased and decreased, while that in S1 only increased. The number

of vortices was the same in both components for several values of H [see Figure 4(c) (inset)] in the

state where N2 = 8 and N1 = 8. Therefore, the values of the order parameters in both components

behaved similarly for a certain range of values of H. Finally, as is more clearly shown in the inset of

Figure 4 (d), it is interesting to note the inversion of the curves and, with it, the variation in the number

of vortices on each side of the hybrid superconductor, as evidenced in the state where N2 = 10 and

N1 = 14 at H = 0.512Hc2,1. Here, the number of vortices was lower in S2 than in S1, and N1 always

grew. This result was because the superconducting condensate depreciated almost everywhere in

S1; the screening currents decreased, causing a greater increase in the number of vortices in S1 that

penetrated from S2.
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Figure 4. (Color online) The curve represents the vorticity as a function of the applied magnetic field H

for a type II/type II superconducting square sample with a = 400 nm and a width of d = 20 nm. The

characteristic lengths for S1 are ξ1(0) = 39 nm and λ1(0) = 52 nm, and those for S2 are ξ2(0) = 20 nm

and λ2(0) = 200 nm.

Figure5 shows the behavior of the supercurrent density, and the size of the vortices in each

component can be observed.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 November 2023                   doi:10.20944/preprints202311.1272.v1

https://doi.org/10.20944/preprints202311.1272.v1


10 of 17

Figure 5. (a-g)(Color online) The corresponding simulation of the behavior of the supercurrent for

different selected vortex states in a type II/type II superconducting square sample with a = 400 nm

and a width of d = 20 nm. The characteristic lengths for S1 were ξ1(0) = 39 nm and λ1(0) = 52 nm,

and those for S2 are ξ2(0) = 20 nm and λ2(0) = 200 nm.

Figure5 (a–g) shows the vector plots (blue arrows) of the supercurrent in the superconducting

square with two components for the states at H = 0.02Hc2,1, H = 0.083Hc2,1, H = 0.167Hc2,1,

H = 0.263Hc2,1, H = 0.688Hc2,1, H = 1.035Hc2,1, and H = 1.713Hc2,1, respectively. In Figure 5(a),

it is clear that the supercurrent in the sample flowed clockwise, but it changed its magnitude in S1

and S2, thus proving the existence of two kinds of components in the same sample under the same

applied magnetic field. Therefore, it was possible to see that the current was larger in S1 than in S2,

and this explained why the vortex entry occurred in S2 first. The size of the current is indicated by

the length of the arrows flowing counterclockwise around the vortex in the center. Figure 5 (b) and

(c) show the differences between the sizes of the currents around the vortices in S1 and S2, which are

directly related to the quantization flux in each component; they are also reflected in the variations in

the measurement of the magnetization in the sample [see Figure2] when the vortex penetrated into S1

from S2.

Now, a hybrid system is considered in which the parameters were selected to simulate a type II

superconductor and a type I superconductor; the size of the superconducting sample was a = 400 nm

and d = 20 nm. The following parameters were chosen for S1 and S2: a coherence length of ξ1(0) =

39 nm and ξ2(0) = 120 nm, a penetration depth of λ1(0) = 52 nm and λ2(0) = 72 nm, and a critical

temperature of Tc1 = 9.25 K and Tc2 = 8.0 K. The temperature used in the system was T = 6 K, and

the parameters were cξ= 9.46, cλ= 1.91, cT= 1.15, τ= 0.65 and cm= 1. In this analysis, we are interested

in the magnetization behavior of a hybrid superconductor when one of the halves (S2) is a type I

superconductor, while S1 retains the same parameters. In addition, in this case, the profile of the

magnetization in response to the applied magnetic field variations is not typical.

In the present case, the first vortex state was obtained (L2 = 1 and L1 = 0) [Figure 6 (a)] at

H = 0.036Hc2,1, but as in the previous case, the magnetization did not decrease after reaching its first

vortex entrance. For the two next vortex states—L2 = 2 with L1 = 0 at H = 0.063Hc2,1 and L2 = 2 with

L1 = 0 at H = 0.088Hc2,1—the curve showed an increase in the magnetization [Figure 6 (b-c)]. At the

same time, the peaks shown in (a–c) displayed a decrease in magnetization until the top of the curve

was reached. It is clear that the increase in magnetization was due to S1, while vortices that penetrated

S2, which still increased with every step of H, as a consequence of the magnetization did not start to

decay with the entry of the first vortex into S2, but following peaks were reduced because of every

vortex that penetrated S2. As a result of this, it was shown that the thin hybrid superconductor made

of type I/type II compounds displayed unconventional magnetic properties that have no counterparts

in single-component systems.
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Figure 6. The curve represents the magnetization as a function of the applied magnetic field H for a

type II/type I superconducting sample. The size of the superconducting sample is a = 400 nm and d =

20 nm. The following parameters are chosen for S1 and S2: a coherence length of ξ1(0) = 39 nm and

ξ2(0) = 120 nm and a penetration depth of λ1(0) = 52 nm and λ2(0) = 72 nm.

In points (d–g) of Figure 6, the number of vortices entering S1 was L1 + 1, and a similar situation

occurred in points (b,d–f) of Figure 2. However, in the case of the type II/type II sample, there were

peaks between these points; therefore, the magnetization curve shows the changes due to the entry

of vortices into S2. Nevertheless, this did not occur in our case with the type I/type II sample; the

changes were not noticeable because the magnetization dropped off faster in S2 than in S1, where a

normal state was reached at H = 0.124Hc2,1 and H = 0.530Hc2,1, respectively. Additionally, superficial

superconductivity remained in the sample until the value of the applied magnetic field reached

H = 0.896Hc2,1.

This behavior was related to the parameters that were selected to simulate S1 and S2 in the same

sample; this can be explained with Eq. 2. In this case, 1/cλ = 1.91 and 1/cm = 1.0, which meant

that ψ2
∞,2 was lower than ψ2

∞,1; therefore, as in the previous section for the case of the type II/type II

sample, transitions with large variations in the magnetization curve were produced in S1, whereas

small variations were produced in S2. For the six selected points (a–g) on the magnetization curve, the

vortex states in S1 (L1) and S2 (L2), the entry of magnetic flux, and the variations in the magnetization

(∆M) are given in Table 2. It is noticeable that the values of the entry of flux (Φ0) at points (a–c) in

Figure6 showed a reduction in the peaks of the magnetization curve, whereas at point (d), ∆M and Φ0

grew again; then, these quantities decreased once again [see points (d–g) in Table 2]. Points (a–c) in

Figure 7 show the vortex configuration that was obtained for a very strong type I superconductor (S2)

in one half, whereas the other half was occupied by a type II superconductor (S1). With low fields, we

observed a configuration of vortices in only S2, which was indicative that the value of the supercurrent
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was lower than that in S1 [see Figure 7(a)]. A value of ξ2 that was larger than that of λ2 was selected

for the simulation of the type I superconductor in this sample, and ξ2 is why the size of vortices

increased, thus allowing fewer vortices in S2 in comparison with the case of the type II/type II sample.

In consequence, the superconductivity quickly depreciated in S2, as can be seen in the first column in

Figure7(c), where there were only three vortices. The number of vortices can be noticed in the second

column of the phase of the order parameter in the same figure. This depreciation could also be noticed

in the diminution of the supercurrent in S2, which was represented by arrows in this simulation; these

disappeared in some regions of the sample, which implied that these regions were in the normal state

[see Figure 7, third column]. Moreover, in Figure7, it is noticeable that the magnetization increased

despite the entry of vortices into the sample, and the first three peaks decreased. This behavior of the

magnetization curve can be explained by the snapshots of the supercurrent because, as the applied

magnetic field increased, it significantly decreased in S2, while in S1, it still contributed to the increase

in magnetization.

Table 2. The vortex states in S1 and S2, the applied magnetic field H/Hc2,1(0), the entry of magnetic

flux Φ0/Hc2,1(0)ξ
2
1 × 10−4 into the sample, and the variations in magnetization ∆M/Hc2,1 × 10−5 that

we obtained for the magnetization curve shown in Figure 6 (points (a–g)). The size of the considered

superconducting sample was a = 400 nm and d = 20 nm. The following parameters were chosen for S1

and S2: a coherence length of ξ1(0) = 39 nm and ξ2(0) = 120 nm and a penetration depth of λ1(0) =

52 nm and λ2(0) = 72 nm.

Point L1 L2 H Φ ∆M

(a) 0 1 0.038 4.328 0.824

(b) 0 2 0.063 2.363 0.450

(c) 0 3 0.088 0.493 0.094

(d) 1 3 0.110 4.242 0.807

(e) 2 5 0.161 4.164 0.792

(f) 3 7 0.211 3.430 0.653

(g) 4 9 0.260 2.689 0.512

As shown in Figure 7, it was possible to approximate the position of the vortex in each component

of the phase of the order parameter at the endpoint, which is shown by a change from blue to red in

the figure. If the figures of the superconducting current density are overlaid with the corresponding

phase of the order parameter, they must match the center of the vortex and the endpoint of the phase

(see Figure 7, second column). The relevant results of the inclusion of a type I superconductor in the

sample show that the value of H at which the first entry of a vortex into S1 occurred could be modified

by choosing the correct S2 for the other half. This possibility offers multiple options for controlling the

magnetization, as well as the inputs of vortices, in a hybrid superconductor for the specific design of

superconducting electronic devices.
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Figure 7. (a-c) (Color online) Contour plots of the density of the superconducting order parameter for

different selected vortex states (first column), the phase of the order parameter (second column), and

the supercurrent corresponding to the first three vortex states in the sample (third column). The size

of the considered superconducting sample is a = 400 nm and d = 20 nm. The following parameters

are chosen for S1 and S2: a coherence length of ξ1(0) = 39 nm and ξ2(0) = 120 nm and a penetration

depth of λ1(0) = 52 nm and λ2(0) = 72 nm.

3. Conclusions

In summary, we presented a theoretical Ginzburg–Landau (GL) study of a hybrid heterostructure

made of two superconducting components. Novel and rich magnetization curves, the density of the

supercurrent, and the vortex configurations in a type II/type II sample and a type I/type II sample

were discussed; both kinds of samples can be engineered with proper choices of the constituent

components by tuning the type II and type I properties to influence the transitions of vortex matter.

The proposed superconducting system is, in many ways, peculiar and different, as the competing

interactions in each component are related to the choice of the ratio for their characteristic lengths (cλ,

cξ), critical temperatures (cT), and electron mass (cm). Our superconducting system is controllable

and allows for convenient vortex imaging and the detection of transitions between phases by using

experimental methods. Moreover, this system opens a further research direction involving the study of

three- dimensional systems with novel two-component configurations by using weak links or magnetic

materials between them, thus making our system a very interesting testbed for a plethora of new

phenomena.
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Appendix A. Theoretical Approach

In this section, we describe a numerical approach for solving the coupled Ginzburg-Landau (GL)

equation. The numerical approach is based in the link variable for vector potential which are used to

discretize the two GL equations on a rectangular latticeand solve them self-consistently. The second

GL equation is solved using the Fast Fourier tansformation, being a Poisson-type equation.

Appendix A.1. Dimensionless formulas in Ginzburg-Landau theory

Appendix A.1.1. Dimensionless form of the free energy functional in a hybrid system

In order to make the GL equations dimensionless,scaling quantities will be chosen. Since our

sample contains two types of superconducting material, one of component has to be chosen to base

the units on. The component to be use as a base component can be arbitrary although later some

aspects need to take into account with regard to making this choice. In this work we will denote the

two superconductors as S1 and S2, and all the the quantities will be in units depending solely on the

parameters of S1.

F = ∑
i=1,2

∫

dV[αi(0)

(

1 − T

Tci

)

|Ψ|2 + βi

2
|Ψ|4

+
1

2m∗
i

×
∣

∣

∣

∣

(

−i∇− 2e

c
A

)

Ψ

∣

∣

∣

∣

2

+
(H − Ha)2

8π
] (A1)

With H the response of the superconductor on the applied magnetic field (Ha), α(0) < 0, where the

index i represents either S1 or S2 depending on the location inside the volume V. The GL equations

will be scaled to the parameters of S1, with variables α1, β and m∗
1 . Distance will be in measured in

units of ξ1(0) =
√

−ℏ2/2m∗
1α1(0), the temperature in units of the critical temperature of S1 (Tc,1), the

order parameter Ψ units of Ψ∞, 1 =
√

−α1(0)/β1,the vector potential in units of A0,1 = cℏ/2eξ1(0),

the magnetic field in units of the upper critical field of S1, Hc2,1 = cℏ/2eξ2
1(0) and the free energy in

units of F0 = α2
1(0)/β1. This is done by transforming the variables as follows:

r −→ ξ1(0)r
′,

∇ −→ 1
ξ1(0)

∇′,

Ψ(r) −→ Ψ∞,1ψ(r′),
A −→ A0,1A′,
H −→ Hc2,1H′,
V −→ ξ3

1(0)V
′,

F −→ F0ξ3
1(0)F′,

Working on A1 we obtain the expression for for free energy in the following form:

F =
∫

dV[−
(

1 − T

Tc,i

)

αi(0

α1(0
|Ψ|2 + 1

2

βi

β1
Ψ|4 − ℏ2

2m∗
1ξ2

1(0)α1(0)
|(−i∇− A)Ψ|2

+
H2

c2,1

F0

(H − Ha)2

8π
] (A2)

By using the fact that ξi(0) =
√

−ℏ2/2m∗
i α(0) and that κ2

1 = H2
c2,1/8πF0 = m2c2β − 1/8πℏ2e2,

we get the following form for free energy of our system:

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 November 2023                   doi:10.20944/preprints202311.1272.v1

https://doi.org/10.20944/preprints202311.1272.v1


15 of 17

F =
∫

dV[−
(

1 − Tc,1

Tc,i

T

Tc,i

)

m∗
1

m∗
i

ξ2
1(0)

ξ2
i (0)

|Ψ|2 − 1

2

(

m2
1

m2
i

)2
λ2

i (0)

λ2
1(0)

ξ2
1(0)

ξ2
i (0)

+

m∗
1

m∗
i

|(−i∇− A)Ψ|2 + κ2
1(H − Ha)

2] (A3)

Next, variable t = T/T∗
1 and ratios cT = Tc,1/Tc,2, cλ = λ2

2(0)/λ2
1(0), cξ = ξ2

2(0)/ξ2
1(0) and cm =

m∗
1/m∗

2 are defined. Eq. A3 now takes the form:

F =
∫

dV[−(1 − cTt
cm

cξ
)|Ψ|2 + 1

2

cλc2
m

cxi
|Ψ|4 + cm |(−i∇− A)Ψ|2 + κ2

1(H − Ha)
2] (A4)

where cm, cξ , cλ and cT are equal 1 inside S1 material.

Appendix A.2. Derivation of GL equations in a hybrid system

Appendix A.2.1. First GL equation

An infinitesimal change of order parameter δψ with which the free energy should remain invariant

(δF = 0), i.e.

δF =
∫

Vs

dV[−(1 − cTt)
cm

cξ
ψδψ∗ +

cλc2
m

cξ
|Ψ|2ψδψ∗ + cm(Πψ) · (Π∗δψ∗)] + c.c. = 0 (A5)

We introduced the canonical momentum operator Π = −i∇− A. The last term of Eq. A5 can

be simplify by using the relationship ∇ · (cv) = v · ∇c + c∇ · v where c is a scalar, but also taking

into account the Gauss’s theorem,(
∫

∇ · N =
∮

dSn · N, with n the unit vector perpendicular to the

surface), we get:

δF =
∫

Vs

dVδψ∗[−(1 − cTt)
cm

cξ
ψ +

cλc2
m

cξ
|Ψ|2ψ + cmΠ

2ψ] = i
∮

dS[n · Πψ] + c.c. = 0. (A6)

The fact that this equation must hold for arbitrary δψ∗ means tha the terms between brackets

have to be 0. This leads to the first GL equation:

−(1 − cTt)
1

cξ
ψ +

cλ

cξ
|ψ|2ψ + Π2ψ = 0, (A7)

where cm = 1 and the boundary condition:

n · Πψ|Ss
(A8)

Appendix A.2.2. Second GL equation

In order to derive the second GL equation, the vector potential will be varied by δA. The part of

free energy containing the magnetic field then gives:

FM(A + δA) =
∫

dV
[

cm|(Π − δA)ψ|2 + κ2
1(∇× (A + δA − A0))

2
]

(A9)
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We considered H = ∇× A and Ha = ∇× A0 where Ha is the applied magnetic field. Now, since

FM(A + δA) ≈ F(A) + δF we can separate the terms that are linear in δA to find δF:

δF =
∫

dV
[

cm(−δA(ψ∗
Πψ))− δA(ψΠ

∗)ψ∗)) + 2κ2
1(∇× (A − A0))(∇× δA)

]

=
∫

dV
[

−2cmδAR(ψ∗
Πψ) + 2κ2

1(∇× (A − A0)) · (∇× δA)
]

(A10)

The second part of Eq.A10 can be rewritten by using the Stock’s theorem (∇(a × b) = b · (∇×
a)− a · (∇× b)), as

δF =
∫

dV
[

2κ2
1(∇(δA × (∇× (A − A0)) + δA · (∇×∇× (A − A0)))

]

(A11)

The first part of Eq. A12 can be modified into a surface integral using Gauss’s theorem. Since the

surface lies at infinity, A = A0 thus the contribution of the surface integral vanishes. The variation of

the free energy becomes:

δF = 2
∫

dVδA
[

−cmR(ψ
∗
Πψ) + κ2

1(∇×∇× (A − A0))
]

= 0 (A12)

This equation should hold for arbitrary δA. This can only be the case if the term between square

brackets is zero. This yields the second Ginzburg-Landau equation:

js = cmR(ψ
∗
Πψ) = κ2

1(∇×∇× (A − A0)) (A13)

where js is the supercurrent, induced in the superconductor, in response to the applied magnetic

field. The equation can be further reduced after choosing the Coulomb gauge ∇ · (A − A0) = 0.
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