

Review

Not peer-reviewed version

Factors Contributing to Mosquito-Borne Disease: A Systematic Review in the Middle East and North Africa (MENA) Region

Abdullah Al-Manji , [Anak Agung Bagus Wirayuda](#) , [Rawaa Abubakr Abuelgassim Eltayib](#) , [Mohammed Al-Azri](#) , [And Moon Fai Chan](#) *

Posted Date: 20 November 2023

doi: 10.20944/preprints202311.1216.v1

Keywords: mosquito; MENA region; mosquito-borne disease; population at risk; climate; environment

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

Factors Contributing to Mosquito-Borne Disease: A Systematic Review in the Middle East and North Africa (MENA) Region

Abdullah Al-Manji, Anak Agung Bagus Wirayuda, Rawaa Abubakr Abuelgassim Eltayib, Mohammed Al-Azri and Moon Fai Chan *

Department of Family Medicine and Public Health, Sultan Qaboos University, Muscat, Oman; s132154@student.squ.edu.om (A.A.-M.); s128499@student.squ.edu.om (A.A.B.W.); rawaaqassim@gmail.com (R.A.A.E.); mhalazri@squ.edu.om (M.A.-A.)

* Correspondence: moonf@squ.edu.om; Tel.: +869 2414-1132; Muscat 123, Oman

Abstract: Mosquito-borne diseases (MBDs) are a group of illnesses transmitted by mosquitoes and can be caused by bacteria, viruses, or parasites. These diseases represent a significant global burden of infectious diseases, including morbidity and mortality. This systematic review delves into the multifaceted factors contributing to the spread of mosquito-borne diseases (MBDs) in the Middle East and North Africa (MENA) region. Following PRISMA guidelines, a thorough analysis of peer-reviewed articles from May 1990 to Jan 2023 was conducted, highlighting the interplay of population, environmental, disease, and mosquito factors in disease transmission and prevalence. The review incorporated 31 studies that revealed a complex relationship between various risk factors and the presence of MBDs. Significant associations were observed with age, certain occupations, environmental conditions such as rainfall and temperature, sanitation practices, specific pathogen variants, clinical symptoms, and *Aedes aegypti* mosquitoes. Conversely, gender, socioeconomic status, educational status, and certain sanitation-related factors showed inconsistent association with the spread of MBDs. The review underscores the need for targeted interventions, including vector control, improved sanitation, and educational campaigns to mitigate the spread of MBDs in the MENA region. This review could guide research studies to address data gaps and assist in developing effective surveillance programs in the MENA region. This work emphasizes the need for region-specific public health strategies and further research to understand and curb the burden of these diseases effectively.

Keywords: mosquito; MENA region; mosquito-borne disease; population at risk; climate; environment

1. Introduction

Mosquito-borne diseases (MBDs) are a group of illnesses transmitted by mosquitoes and can be caused by bacteria, viruses, or parasites [1]. These diseases represent a significant global burden of infectious diseases, including morbidity and mortality [2]. Mosquitoes, including malaria, dengue, West Nile virus, chikungunya, yellow fever, filariasis, tularemia, dirofilariasis, Japanese encephalitis, Saint Louis encephalitis, western equine encephalitis, eastern equine encephalitis, Venezuelan equine encephalitis, Ross River fever, Barmah Forest fever, La Crosse encephalitis, and Zika fever can transmit a variety of diseases. Some diseases have recently emerged or reemerged, emphasizing the importance of effective disease control strategies [2]. It should be noted that MBDs do not occur by chance; instead, a specific interaction of agent, host, mosquitoes, and environment is necessary for the disease to occur. Any changes in this interaction or the impact of external factors such as weather, urbanization, globalization, and socioeconomic status can lead to the introduction of MBDs in a new area, the expansion of an infected area, or the re-emergence of a previously infected area [2,3]. MBDs can be severe and even fatal, making it essential to protect individuals from mosquito bites [3].

As per the Centers for Disease Control and Prevention [4], the Middle East and North Africa (MENA) region comprises 25 countries. These include Afghanistan, Algeria, Bahrain, Djibouti, Egypt, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Pakistan, Palestine, Qatar, Saudi

Arabia, Somalia, Sudan, Syria, Tunisia, Turkiye, United Arab Emirates, and Yemen. Historically, those countries in the MENA region have experienced outbreaks of MBDs, since the 19th century. A systematic study conducted in 2016 by Humphrey et al. [5] identified several factors influencing these outbreaks. They concluded that the epidemiology of dengue remains poorly characterized despite increasing reports of outbreaks and transmission in new areas. They found significant heterogeneity in published studies' distribution, quality, and quantity, which informs future research and surveillance priorities for the MBD in the MENA region. A more recent systematic review of MBD in North Africa was reported by Nebbak et al. [6] in 2022. They found that 26 species are involved in circulating seven MBDs in North Africa. While other reviews examine the impact of MBD on individual Arabic [7] or African [8] countries, these do not delve into the determinants of MBD spread in the whole MENA region.

Aryaprema et al. [9] conducted a recent systematic review on mosquito control worldwide in 2023. They highlighted the importance of adequate lead time to initiate control interventions and the associated surveillance characteristics, which could guide better surveillance programs to prevent the spread of MBDs. However, no systematic review has been conducted to investigate the factors influencing the spread of MBDs in the MENA region. This review could guide research studies to address data gaps and assist in developing effective surveillance programs in the MENA region.

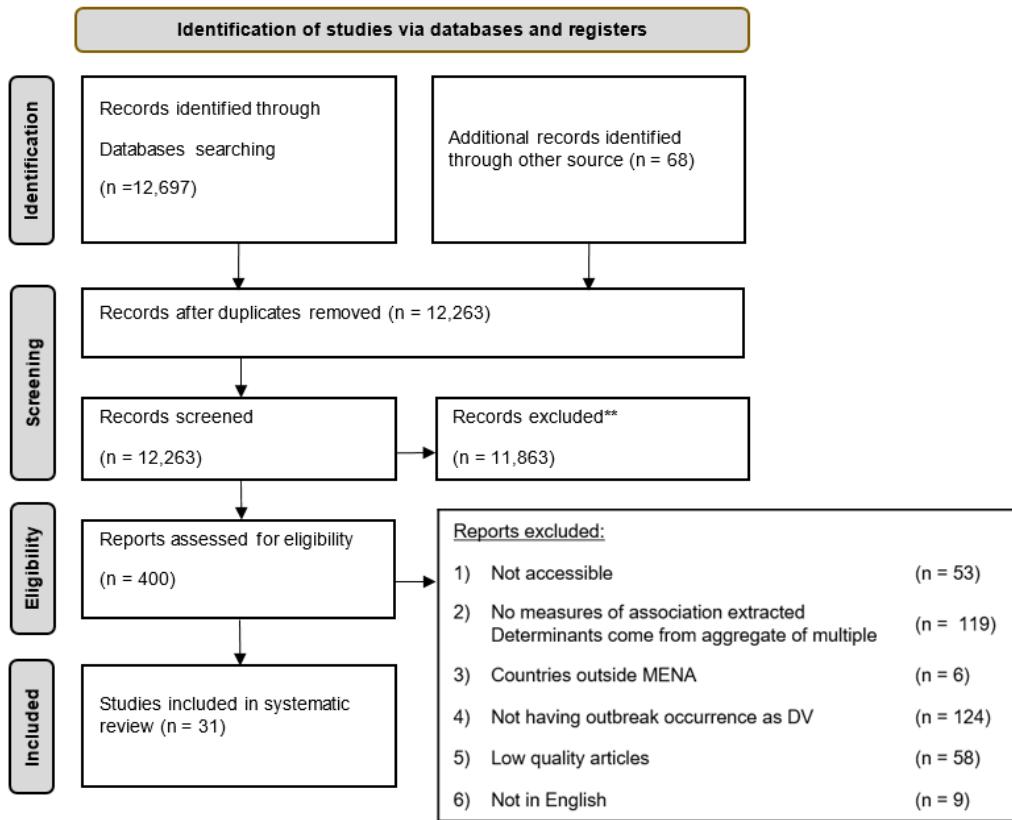
2. Materials and Methods

2.1. Search Strategies

We adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in our search [10]. Our search encompassed several prominent citation and abstract databases, including PubMed/MEDLINE, Scopus, Google Scholar, Embase, and the Cochrane Library. The search focused on peer-reviewed English publications published between May 1990 and Jan 2023. The following keywords were used in the search.

- (Mosquito OR Mosquito-borne disease (MBD)) AND (MBD outbreaks OR MBD risk factors) AND (Middle East and North Africa (MENA));
- Mosquito OR Mosquito-borne disease (MBD) OR MBD outbreaks OR MBD risk factors AND MENA;
- Mosquito OR Mosquito-borne disease (MBD) AND MBD outbreaks OR MBD risk factors;
- Mosquito AND MBD outbreaks OR MBD risk factors;
- Mosquito-borne disease (MBD) AND MBD outbreaks OR MBD risk factors;
- Mosquito-borne disease (MBD) AND MBD outbreaks AND MBD risk factors;
- Mosquito OR Vector-borne disease (VBD) OR VBD outbreaks OR VBD risk factors AND MENA.

Our search aimed to gather relevant studies that examined the impact of the spread of MBDs and their associated risk factors in MENA countries.


2.2. Inclusion and Exclusion Criteria

The study's selection criteria necessitated a meticulous examination of peer-reviewed papers published in English from May 1990 to Jan 2023. To maintain the rigor and integrity of the research, observational studies, including cohort, case-control, cross-sectional, longitudinal, and epidemiological studies, and experimental studies, such as quasi-experimental and randomized controlled trials, were considered in this search. The investigation focuses on the MENA region, and this systematic review has been registered in PROSPERO (CRD42022378844). However, it should be noted that the study imposes no restrictions on the setting or target population.

2.3. Study Selection

Initially, abstracts were screened by the lead author. Articles that passed the initial review underwent comprehensive full-text screening conducted independently by the initial trio of authors. In addition, this stage eliminated inaccessible or not explicitly relevant articles. **Figure 1** shows a brief

list of the reasons for article deletion. To ensure the quality of the reviewed articles, they were all appraised using critical appraisal tools from the Joanna Briggs Institute (JBI) [10].

Figure 1. The flow diagram of the systematic review.

2.4. Evaluation of the Quality of Reports on the Studies

The first three authors independently evaluated the initial assessment of each study included in the review, including the title, abstract, methods, results, discussion, and additional sections. The JBI guidelines were used for this process, providing checklists corresponding to the article's design type under review, each presenting a distinct set of questions [10]. The inter-rater reliability among the first three authors was strong, with an intra-class correlation coefficient (ICC) of 0.91. The employed checklists encompassed various study designs, including cross-sectional, case-control, cohort, and prevalence studies [10]. A final inclusion quality criterion was established, whereby each review article has to achieve a minimum score of 75% (Table 1).

Table 1. Evaluation of the review articles using the JBI checklists.

No. of article	Study	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Score
#1. Adam et al., 2007 [38]	Cross-sectional	Y	Y	Y	Y	U	U	Y	Y	NA	NA	75%
#2. Al Azraqi et al., 2013 [29]	Prevalence	Y	Y	Y	Y	Y	Y	Y	Y	U	NA	88.9%
#3. Alkhaldy and Barnett, 2021 [35]	Prevalence	Y	Y	U	Y	Y	Y	U	Y	Y	NA	77.8%
#4. Al-Nefaei et al., 2022 [12]	Cross-sectional	Y	Y	Y	Y	U	Y	Y	Y	NA	NA	87.5%
#5. Al-Quhaiti et al., 2022 [13]	Cross-sectional	Y	Y	Y	Y	U	Y	Y	Y	NA	NA	87.5%
#6. Bamaga et al., 2014 [19]	Cross-sectional	Y	Y	Y	Y	U	Y	Y	Y	NA	NA	87.5%
#7. Elaagip et al., 2020 [16]	Cross-sectional	Y	Y	Y	Y	U	Y	Y	Y	NA	NA	87.5%
#8. Eldigail et al., 2018 [31]	Cross-sectional	Y	Y	Y	Y	Y	Y	Y	Y	NA	NA	100%
#9. Eldigail et al., 2020 [14]	Cross-sectional	U	Y	Y	Y	Y	Y	Y	Y	NA	NA	87.5%
#10. Elghazali et al., 2003 [24]	Case-control	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100%
#11. Elkhalifa et al., 2021 [41]	Cross-sectional	Y	Y	Y	Y	U	U	Y	Y	NA	NA	75%
#12. Elmardi et al., 2011 [42]	Cross-sectional	Y	Y	Y	Y	U	Y	Y	Y	NA	NA	87.5%
#13. Elmardi et al., 2021 [30]	Cross-sectional	Y	Y	Y	Y	U	Y	Y	Y	NA	NA	87.5%

#14. Hassanain et al., 2010 [20]	Cross-sectional	Y	Y	Y	Y	U	Y	Y	Y	NA	NA	87.5%
#15. Ibrahim et al., 2011 [21]	Cross-sectional	U	Y	Y	Y	U	Y	Y	Y	NA	NA	75%
#16. Kadir et al., 2003 [17]	Cross-sectional	Y	Y	Y	Y	N	N	Y	Y	NA	NA	75%
#17. Kalantari et al., 2019 [25]	Cross-sectional	Y	Y	Y	Y	U	Y	Y	Y	NA	NA	87.5%
#18. Kholedi et al., 2012 [26]	Case-control	Y	Y	Y	Y	Y	Y	U	Y	Y	Y	90%
#19. Mahdi et al., 2016 [32]	Cross-sectional	U	Y	Y	Y	Y	U	Y	Y	NA	NA	75%
#20. Noureldin and Shaffer, 2019 [39]	Ecological study	Y	Y	Y	Y	Y	Y	Y	Y	Y	NA	100%
#21. Pouriayevali et al., 2019 [15]	Cross-sectional	Y	Y	Y	Y	U	Y	Y	Y	NA	NA	87.5%
#22. Riabi et al., 2014 [22]	Cross-sectional	Y	Y	Y	Y	U	Y	Y	Y	NA	NA	87.5%
#23. Saeed and Ahmed, 2003 [23]	Cross-sectional	U	Y	Y	Y	U	Y	Y	Y	NA	NA	75%
#24. Seidahmed et al., 2012 [33]	Cross-sectional	Y	Y	Y	Y	Y	Y	Y	Y	NA	NA	100%
#25. Soghaier et al., 2014 [18]	Cross-sectional	Y	Y	Y	Y	U	Y	Y	Y	NA	NA	87.5%
#26. Soghaier et al., 2015 [34]	Cross-sectional	Y	Y	Y	Y	Y	Y	Y	Y	NA	NA	100%
#27. Soghaier et al., 2018 [36]	Cross-sectional	Y	Y	Y	Y	Y	Y	Y	Y	NA	NA	100%
#28. Soleimani-Ahmadi et al., 2013 [40]	Cross-sectional	U	Y	Y	Y	Y	U	Y	Y	NA	NA	75%
#29. Tezcan-Ulger et al., 2019 [37]	Prevalence	Y	Y	Y	Y	Y	Y	Y	Y	Y	NA	100%
#30. Vasmehjani et al., 2022 [27]	Case-control	Y	Y	Y	Y	Y	U	Y	Y	Y	Y	90%
#31. Ziyaeyan et al., 2018 [28]	Prevalence	Y	Y	U	Y	Y	Y	Y	Y	Y	NA	88.9%

JBI, Joanna Briggs Institute; Y, Yes; N, No; U, Unclear; NA, Not applicable.

For the cross-sectional study: Q1: Were the criteria for inclusion in the sample clearly defined? Q2: Were the study participants and settings described in detail? Q3: Was exposure measured in a valid and reliable way? Q4: Were objective, standard criteria used for the measurement of the condition? Q5: Were the confounding factors identified? Q6: Were the strategies to deal with the confounding factors stated? Q7: Were the outcomes measured in a valid and reliable manner? Q8: Was appropriate statistical analysis used?

For case-control study: Q1: Were the groups comparable other than the presence of diseases in cases or the absence of disease in controls? Q2: Were the cases and controls matched appropriately? Q3: Were the same criteria used for identification of cases and controls? Q4: Was exposure measured in a standard, valid, and reliable manner? Q5: Was the exposure measured in the same way for both cases and controls? Q6: Were the confounding factors identified? Q7: Were the strategies to deal with the confounding factors stated? Q8: Were outcomes assessed in a standard, valid, and reliable manner for cases and controls? Q9: Was the exposure period of interest sufficiently long to be meaningful? Q10: Was the appropriate statistical analysis used?

For the prevalence study: Q1: Was the sample frame appropriate to address the target population? Q2: Were the study participants appropriately sampled? Q3: Was the sample size adequate? Q4: Were the study participants and settings described in detail? Q5: Was data analysis conducted with sufficient coverage of the identified sample? Q6: Were the valid methods used to identify the condition? Q7: Was the condition measured in a standard, reliable manner for all participants? Q8: Was there appropriate statistical analysis? Q9: Was the response rate adequate and, if not, was the low response rate managed appropriately?

2.5. Data Extraction

Data was extracted per PRISMA guidelines [11]. After establishing inter-rater reliability among the first three authors, duplicate articles were removed, and titles and abstracts were reviewed independently. The final inclusion of studies was based on a comprehensive full-text evaluation based on the JBI checklist [10]. Disagreements between the initial reviewers were addressed by consulting with the last two authors. There was no disagreement among the three reviewers on this review procedure. The specific data extracted included the author's name, country of origin, publication year, sample size, study duration, countries, mosquito-borne disease (MBD) events, population characteristics, and detailed information about the mosquito, including type, density, feeding, and resting behaviors, habitats, and seasonality. Other risk factors, including social and environmental, are also documented. Additionally, the correlation (r) or association (χ^2) or odds ratio (OR) between outbreaks of MBD events and each risk factor were collected and are presented in Table 2.

Table 2. Compiled Full-Text Review of the Studies Included in the Systematic Review.

Author	Design	Country	Duration	Population	Samples	Disease	Factor	Sub-factor	Results	Measure of Association
Adam et al. 2007	Cross-sectional	Sudan	4 months	N/A	293 F	Malaria	Population	94 +ve, 199 -ve	Blood group A vs. non Blood group A	OR=0.77, p>0.05
								Blood group B vs. non Blood group B	OR=0.67, p>0.05	
								Blood group AB vs. non Blood group AB	OR=0.68, p>0.05	
								Blood group O vs. non Blood group O	OR=1.45, p>0.05	
Al Azraqi et al. 2013	Prevalence	Saudi Arabia	N/A	N/A	389	Rift Valley Fever	Population	Demography	Sex: 256 M (3.1%) vs 133 F (8.6%)	$\chi^2=3.98$, P=0.048
								Environment	Livestock	history of contact with aborted animals, yes = 21 OR=13.36, P<0.005
									history of transporting aborted animals, yes = 12 OR=18.86, P<0.005	
Alkhaldy & Barnett 2021	Prevalence	Saudi Arabia	4 years	3.4 Millions	N/A	Dengue	Population	Socioeconomic status	majority of dengue fever cases appeared in neighborhoods of low socioeconomic status	p=0.771
									high densities of population r=0.59, p<.001	
									large non-Saudi migrant populations r=0.50, p<.001	
Al-Nefaei et al. 2022	Cross-sectional	Saudi Arabia	1 year	4.6 millions	1098	Dengue	Population	Demography	Age (yrs): < 15 (susp=98, conf=23) vs. 15–24 (susp=47, conf=57) vs. 25–44 (susp=294, conf=255) vs. 45–65 (susp=189, conf=67) vs. 65+ (susp=40, conf=6)	$\chi^2=75.05$, p<.001
									Gender: M (susp=498, conf=348) vs. F (susp=182, conf=70) $\chi^2=14.7$, p<.001	
									Occupation: not worker (susp=265, conf=114) vs. health worker (susp=23, conf=5) vs. non-health worker (susp=392, conf=299) $\chi^2=23.04$, p<.001	
									Address: North (susp=115, conf=72) vs. east (susp=84, conf=146) vs. middle (susp=174, conf=114) vs. south (susp=79, conf=41) $\chi^2=43.97$, p<.001	
Al-Quhaiti et al. 2022	Cross-sectional	Yemen	1 year	597	400	Malaria	Population	Demography	Nationality	Nationality: Saudi (susp=235, conf=160) vs. non-Sauai (susp=445, conf=285) $\chi^2=1.55$, p=0.213
									Environment	Air condition: susp=6, conf=1 $\chi^2=1.69$, p=0.184
										Cement pool: susp=3, conf=0 $\chi^2=1.85$, p=0.237
									Sanitation:	Water container: susp=444, conf=3 $\chi^2=20.91$, p<.001
										Infiltrations: susp=2, conf=0 $\chi^2=1.23$, p=0.383
										Sewaged: susp=1, conf=0 $\chi^2=0.615$, p=0.615
										Street: susp=1, conf=0 $\chi^2=0.615$, p=0.619
										Water Surfaces: suspected = 0, confirmed = 3 $\chi^2=4.89$, p=0.055
										Vases: suspected = 0, confirmed = 1 $\chi^2=1.63$, p=0.388
										Water cooler: suspected = 3, confirmed = 0 $\chi^2=1.85$, p=0.237
										Open tanks: suspected = 0, confirmed = 1 $\chi^2=1.63$, p=0.318
										Water company: suspected = 1, confirmed = 0 $\chi^2=0.615$, p=0.615
										Stream water: suspected = 1, confirmed = 0 $\chi^2=1.63$, p=0.318

Bamaga et al. 2014	Cross- sectional	Yemen	11 months	N/A	735	Malaria	Population Demography	Gender: M=217 (24) vs. F=183 (15)	OR=1.4, p=0.33
								Household: $\geq 6=254 (30)$, $<6=146(9)$	OR=2.0, p=0.067
								Father's educational status: Literate=252(22) vs. Illiterate=148(17)	OR=1.4, p=0.370
								Mother's educational status: Literate=67(4) vs. Illiterate=333(35)	OR=1.9, p=0.253
								Father employment status: Employed=21(2) vs. Unemployed=377(36)	OR=1.0, p=1.000
								MBD outbreak	Morbidity
								Symptoms (fever): yes = 71(11), no = 329(28)	OR=2.0, p=0.072
								Symptoms (sweating): yes = 28(5), no = 382(34)	OR=2.2, p=0.134
								Symptoms (chills): yes = 7(1), no = 393(38)	OR=1.5, p=0.505
								Symptoms (vomiting): yes = 45(2), no = 355(37)	OR=0.4, p=0.205
								Symptoms (jaundice): yes = 4(1), no = 396(38)	OR=3.1, p=0.301
								Environment Risk factors	
								Sleeping under a mosquito net the previous night of the survey (No): yes=182(3) vs. no=218(36)	OR=11.8, p<.001
								Sleeping under a mosquito net the previous night of the survey (Yes): yes=64(16) vs. no=336(23)	OR=4.5, p<.001
								IRS during the last year (No): yes=240(13) vs. no=160(26)	OR=3.4, p<.001
								Residence in proximity to water collections (Yes): yes=298(32) vs. no=102(7)	OR=1.6, p=0.255
								Residence in proximity to garbage collections (Yes): yes=187(19) vs. no=213(20)	OR 1.1, p=0.795
								Screening windows (No): yes=55(1) vs. no=345(38)	OR=6.7, p=0.064
								District (Hajer district)	p=0.001
								Village (Kunina village)	p=0.001
								Symptoms (fever): Yes = 66, No = 75	p<0.05
								Symptoms (shivering): Yes = 38, No = 100	p<0.05
								Symptoms (headache): Yes = 21, No = 117	p<0.05
								Symptoms (Jaundice): Yes = 14, No = 124	p<0.05
								Symptoms (Hemoglobin level): Normal = 13 vs. Low anemia = 92 vs. Moderate anemia = 33	p<0.05
								Age (years): 10-15 (25/142) vs. >15 (79/393)	OR=0.85, p>0.05
								Age (years): 5-9 (30/152) vs. >15 (79/393)	OR=0.98, p>0.05
								Age (years): <5 (4/48) vs. >15 (79/393)	OR=0.36, p>0.05
								Gender: F (52/312) (ref) vs. M (86/423)	OR=1.04, p>0.05
								Education level household's head:	OR=1
								Secondary school and above (1/34) (Ref)	
								Primary school: 83/356	OR=10.1, p<0.05
								Not educated: 54/345	OR=6.12, p>0.05
								Occupation of household's head:	OR=1.0
								Government employees (4/76)	
								Not working (28/180)	OR=3.31, p<0.05
								Farmer (96/453)	OR=4.84, p<0.05

Elaagip et al. 2020	Cross-sectional	Sudan	2 years	401.477	409	Dengue	Population Demography	Fishermen (10/26)	OR=11.3, p<0.05	
								Family size: >5 (ref) (49/290) vs. ≤5 (89/445)	OR=1.23, p>0.05	
								House wall: mud (ref) (26/221) vs. non cement bricks (112/554)	OR=2.1, p<0.05	
								Material of house floor: cement (ref) (19/120) vs. mud (119/615)	OR=1.27, p>0.05	
								Availability of toilet: yes (ref) (42/285 vs. no (96/451)	OR=1.6, p<0.05	
								Distance to the nearest water collection (m): >200 (ref) (44/295) vs. ≤200 (146/440)	OR=1.6, p<0.05	
								Availability of electricity: yes (Ref) (66/379) vs. no (72/356)	OR=1.04, p>0.05	
								Availability of fridge: yes (ref) (44/295) vs. no (94/440)	OR=1.6, p<0.05	
								Availability of TV: yes (ref) (44/295) vs. no (94/440)	OR=1.6, p<0.05	
								Availability of radio: yes (ref) (70/385) vs. no (68/350)	OR=1.02, p>0.05	
								Age: 20-39 years	OR=4.2, p=0.700	
								Age: 40-60 years	OR=2.09, p=0.380	
								Age: >60 years	OR=6.31, p=0.040	
								Gender: F vs M	OR=0.73, p=0.430	
								Socioeconomic status	Socioeconomic level: Medium	OR=11.39, p=0.050
									Socioeconomic level: Low	OR=10.49, p=0.220
									No. of individuals living in the house: 6-10	OR=0.96, p=0.930
									No. of individuals living in the house: >10	OR=0.14, p=0.060
									No. of children under 5 years living in the house: 1-3 child	OR=0.87, p=0.740
								Environment	Geographical varieties: Staying in Kassala state	OR=1.31, p=0.670
								Live in a house	Roof-constructed materials of the house: Iron sheets	OR=0.85, p=0.870
									Roof-constructed materials of the house: Iron sheets: Grass	OR=0.78, p=0.880
									Wall-constructed materials of the house: Bricks with mud	OR=0.74, p=0.650
									Wall-constructed materials of the house: Cement blocks	OR=0.53, p=0.460
									Floor-constructed materials of the house: Cement screed	OR=1.02, p=0.980
									Floor-constructed materials of the house: Mud/Sand	OR=1.0, p=0.999
								Breeding habitats: Management of water containers		OR=1.52, p=0.330
								Sanitation:	Type of toilet used in the house	OR=0.47, p=0.170
									Type of bathroom used in the house	OR=3.52, p=0.010
									Solid waste disposal method: Bin-trash	OR=0.23, p=0.250
									Solid waste disposal method: Heap	OR=1.1, p=0.950
									Type of kitchen	OR=1.7, p=0.360
									Trees at the house	OR=0.66, p=0.260
									Air-cooling system: Water-based air conditioner	OR=6.9, p=0.010
									Screen in the windows	OR=0.25, p=0.190
									Using bed net	OR=1.84, p=0.120

								Traveling to Red Sea state during last 3 months	OR=1.44, p=0.590
						Disease	Incidence and prevalence: Yellow fever vaccination	OR=1.96, p=0.180	
							Incidence and prevalence: Having febrile illness during the last 3 months	OR=1.03, p=0.960	
							Any household had dengue before	OR=28.73, p<.001	
							Transmission of dengue (do not know)	OR=1.36, p=0.59	
Eldigail et al. 2018	Cross-sectional	Sudan	10 months	1.4 millions	701	Dengue	Environment Geographical: Locality: Gadaref (70/21) vs. Center Gagarif (70/37) vs. Butana (70/19) vs. Elfau (70/37) vs. Al Rahad (70/41) vs. Bassunda (70/46) vs. West Galabat (70/34) vs. East Galabat (70/39) vs. Ouravshah (70/16) vs. Elfashage (71/44)	p=0.001	
							Breeding	Presence of Clean water container: yes (670/322) vs. no (31/12)	p=0.308
						Population	Demography Age: young (176/91) vs. old (525/243)	p=0.123	
							Gender: M (419/207) vs. F (282/127)	p=0.145	
							Socioeconomic status Income: low (489/245) vs. medium (153/59) vs. high (59/30)	P=0.039	
							Education: informal study (55/29) vs. illiterate (186/90) vs. primary (154/75) vs. secondary (199/95) vs. university (107/45)	p=0.732	
							disease awareness: yes (56/26) vs. no (645/308)	p=0.849	
							work: yes (356/168) vs. no (345/166)	p=0.806	
							Behaviors sleeping outdoors: yes (377/196) vs. no (324/138) (Ref)	OR=3.75, p=0.013	
							mosquito nets use: yes (301/133) vs. no (400/201) (Ref)	p=0.112	
							mosquito control practice: yes (388/208) vs. no (313/126) (Ref)	OR=2.73, p=0.001	
							contact with an ill person: yes vs. no	p=0.01	
Eldigail et al. 2020	Cross-sectional	Sudan	10 months	1,400,000	600	Dengue	Population Demography Age: young (209/18) vs. old (392/62) (Ref)	OR=3.24, p=0.001	
							Socioeconomic status Income: low (44) vs. medium (146) vs. high (115)	2=3.75, p=0.027	
							mosquito control	OR=4.18, p=0.004	
							locality	OR=2.94, p=0.044	
							disease awareness: no (645) vs. yes (56)	p=0.06	
							mosquito net use: no (313) vs. yes (388)	p=0.013	
Elghazali et al. 2003	case-control	Sudan	1 year	1.841	175	Malaria	Population pregnant cases (86) vs. non-pregnant controls (89) (Ref)	OR= 3.56, p=0.014	
							Demography Primagravidae vs. Multigravidae (Ref)	OR=1.56, p>0.05	
							Clinical Age (years): mean: 24.5±6.2 vs. 26.7±6.2	p=0.215	
							Birth weight (kg): mean: 2.72±0.26 vs. 2.95±0.05	p<0.001	
							Hemoglobin at enrolment (g/dL): mean: 9.35±0.80 vs. 9.32±1.10	p=0.80	
							Hemoglobin at term (g/dL): mean: 9.10±1.30 vs. 9.50±0.60	p=0.069	
Elkhalifa et al. 2021	Cross-sectional	Sudan	7 months	N/A	392	Malaria	Pathogen Clinical (192 +ve, 200 -ve)	Hemoglobin (g/dL): Median: 11.6 vs. 14.0	p<0.001
								RBC count (x 10 ¹² /L): Median: 4.5 vs. 4.7	p=0.001
								MCV (fL): Median: 86.0 vs. 87.0	p=0.452
								MCH (pg): Median: 28.5 vs. 29.0	p<.001
								MCHC (g/dL): Median: 31.5 vs. 32.5	p=0.037

Elmardi et al. 2011	Cross-sectional	Sudan	2 months	N/A	26,471	Malaria	RDW (%):Median: 15.6 vs. 13.0	p<.001		
							Total WBC count (x 10 ⁹ /L): Median: 7.0 vs. 6.5	p=0.275		
							Neutrophil count (%):Median: 37.0 vs. 38.0	p=0.001		
							Lymphocyte count (%):Median: 24.0 vs. 26.0	p=0.004		
							Monocyte count (%):Median: 5.0 vs. 5.0	p=0.021		
							Platelet count (x 10 ⁹ /L): Median: 140.0 vs. 230.0	p<0.001		
							Anemia	OR=3.6, p<0.001		
							Low MCV (<80fL)	OR=2.6, p = 0.005		
							low MCH (<27pg)	OR=4.4, p<0.001		
							low MCHC (<32g/dL)	OR=2.6, p=0.008		
							High RDW (>14.5%)	OR=11.2, p<0.001		
							Thrombocytopenia	OR=49.8, p<0.001		
							Leucopenia	OR=0.9, p=0.754		
							Neutropenia	OR=2.3, p=0.001		
							Lymphopenia	OR=1.7, p=0.340		
							fever in the last two weeks vs. no history of fever	aOR=6.2, p<.001		
							fever on the day of the survey vs. no history of fever	aOR=3.4, p<.001		
Elmardi et al. 2021	Cross-sectional	Sudan	1 month	N/A	4,478	Malaria	population	Gender: M (3.7%) vs. F (2.6%)	p=0.035	
							Location: rural (1.8%) vs. urban (8.1%)	p=0.003		
							IRS coverage	aOR=0.98, p=0.007		
							utilization of long-lasting insecticidal nets (LLINs) at a community level	aOR=1.20, p<.001		
							utilization of artemisinin-based combination therapies (ACTs)/per 10% utilization	aOR=0.97, p=0.413		
							utilization of malaria diagnosis via rapid diagnostic tests/10% utilization	aOR=0.86, p=0.004		
Hassanain et al. 2010	Cross-sectional	Sudan	3 months	N/A	290	Rift Valley fever	Population	Demography	Gender: M vs F	OR=2.8, p=0.040
							Job	OR=1.9, p=0.190		
							Residency	OR=1.9, p=0.100		
							Education	OR=2.1, p=0.100		
							case (50) vs. control (50)			
Ibrahim et al. 2011	case-control	Sudan	3 months	100		Malaria	Population	Demography	Age (years): Mean: 18.08 vs. 15.60	p=0.62
							Clinical	Weight (Kg): mean: 45.05 vs. 47.40	p=0.570	
								Hemoglobin (g/dL): mean: 11.90 vs. 13.10	p=0.020	
								Urea (mg/dL): mean: 27.80 vs. 27.50	p=0.880	
								Creatinine (mg/dL): mean: 0.95 vs. 0.89	p=0.400	

Kadir et al. 2003	Cross- sectional	Iraq	10 years	N/A	261,763	Malaria	Population	Demography	Total Cortisol (mg/dL): mean: 602.2 vs. 449.2	p=0.120	
									Gender (M=165,721 vs. F=96,042)	OR=1.07, p=0.137	
									Age group (21-30 vs. <1-10)	OR=8.34, p<.001	
									Age group (21-30 vs. 11-20)	OR=1.3, p<.001	
									Age group (21-30 vs. 31-40)	OR=1.28, p<.001	
Kalantari et al. 2019	Cross- sectional	Iran	1 year	N/A	408	West Nile Virus	Population	Demography	Age group (21-30 vs. 41+)	OR=4.9, p<.001	
									Gender: M (261) vs. F (147)	p=0.600	
									Age (years): <19 vs. 20-29 vs. 30-39 vs. 40-49 vs. 50+	p=0.001	
									occupation	p=0.749	
									educational level	p=0.001	
Kholedi et al. 2012	case- control	Saudi Arabia	1 year	3 millions	650	Dengue	Population	Demography	geographical distribution	p=0.446	
									Gender: M (case=84 control=161) vs. F (case=45, control=79)	$\chi^2=0.146, p=0.703$	
									Age (years): (case/control) <10 (18/59) vs. 10-19 (23/47) vs. 20-29 (26/56) vs. 30-39 (28/35) vs. 40-49 (21/20) vs. 50+ (13/23)	$\chi^2=12.342, p=0.03$	
									Nationality: (case/control) Saudi (67/153) vs. non-Saudi (62/87)	$\chi^2=4.863, p=0.027$	
									working (case/control): inside (70/144) vs. outside (24/31) vs. not working (35/65)	$\chi^2=0.146, p=0.705$	
Kholedi et al. 2012						Mosquito	Type: case vs. control	Environment	Presence of indoor Aedes aegypti: adult (32 vs. 37)	$\chi^2=4.863, p=0.027$	
									Presence of indoor Aedes aegypti: larvae (43 vs. 39)	$\chi^2=14.167, p=0.001$	
									Breeding (case vs control)	Possible indoor breeding sites: Stagnant water in the bathroom basin (4 vs. 10)	$\chi^2=0.422, p=0.422$
									Possible indoor breeding sites: Uncovered water containers in the bathroom (13 vs. 18)	$\chi^2=0.781, p=0.244$	
									Possible indoor breeding sites: Uncovered water containers in the kitchen (4 vs. 9)	$P=0.509$	
									Possible indoor breeding sites: Stagnant water in a water cooler (10 vs. 19)	$\chi^2=0.004, p=0.951$	
									Possible indoor breeding sites: Stagnant water at the base of the refrigerator (3 vs. 6)	$p=0.610$	
									Possible indoor breeding sites: Stagnant water in the indoor drainage holes (14 vs. 7)	$\chi^2=9.830, p=0.002$	
									Possible outdoor breeding sites: Uncovered water containers on the balcony (7 vs. 4)	$p=0.040$	
									Possible outdoor breeding sites: Private garden (21 vs. 47)	$\chi^2=0.423, p=0.516$	
									Possible outdoor breeding sites: Neglected private pool (4 vs. 13)	$\chi^2=0.911, p=0.340$	
									land use (case vs. control)	Nearby buildings under construction: 88 vs. 123	$\chi^2=8.222, p=0.004$

								Nearby brick manufacturers: 17 vs. 18	$\chi^2=3.428, p=0.064$
								Presence of underground water seepage: 7 vs. 9	$\chi^2=0.656, p=0.418$
								Nearby public garden: 25 vs. 40	$\chi^2=0.623, p=0.430$
								Nearby public water tap: 22 vs. 30	$\chi^2=1.664, p=0.147$
								Nearby public water cooler: 11 vs. 16	$\chi^2=0.496, p=0.481$
								Nearby solid garbage: 9 vs. 18	$\chi^2=0.011, p=0.917$
								Old used tyres: 7 vs. 12	$\chi^2=0.060, p=0.807$
								Empty cans: 14 vs. 19	$\chi^2=1.076, p=0.300$
Mahdi et al. 2016	Cross-sectional	Sudan	1 month	N/A	140	Malaria	Pathogen	Species	Plasmodium11alciparumum: MSP1 gene (severe malaria vs. uncomplicated malaria)
									OR=0.48, p=0.096
								Plasmodium11alciparumum: MSP2 gene (severe malaria vs. uncomplicated malaria)	OR=0.119, p=0.008
							Population	Demography	Gender (M vs. F, severe malaria vs. uncomplicated malaria)
									OR=0.5, p=0.052
Noureldin & Shaffer 2019	Ecological	Sudan	6 years	N/A	N/A	Dengue	Climate	Rainfull	2011-2013 – 6 months prior to the dengue fever reporting month
									p<0.05
								2008-2011 - 6 months prior to the dengue fever reporting month	p=0.0433
								2008-2011 - 5 months prior to the dengue fever reporting month	p=0.0298
							Humidity		2008-2010, association with dengue fever/dengue hemorrhagic fever at the 3-month lag time
									p=0.0025
								2011-2013, association with dengue fever/dengue hemorrhagic fever at the 3-month lag time	p=0.0003
							Temperature		2008-2010, association with dengue fever/dengue hemorrhagic fever at the 3-month lag time
									p=0.0037
								2011-2013, association with dengue fever/dengue hemorrhagic fever at the 3-month lag time	p=0.0038
								< 56% vs. \geq 56% at 3, 4 and 5 months	$2=222.32, p<.001$
								Min. temperature was significantly correlated with dengue at the 1-month lag times, 2008–2010	p=0.0427
								Min. temperature was significantly correlated with dengue at the 2-month lag times, 2008–2011	p=0.0012
								Min. temperature was significantly correlated with dengue at the 3-month lag times, 2008–2012	p=0.0024
								Min. temperature was significantly correlated with dengue at the 4-month lag times, 2008–2013	p=0.0215
Pouriayevali et al. 2019	Cross-sectional	Iran	14 months	N/A	159	Chikungunya	Population	Demography	Gender: F (57) vs. M (62)
									p=0.584
								Age (years)	p=0.001
								History: Aboard traveling history (21)	p<.001
								History: Travel duration	p=0.218
								Country with travel history: Afghanistan (2)	p=0.230
								Country with travel history: Malaysia (1)	p=0.426

Riabi et al. 2014	Cross-sectional	Tunisia	3 months	N/A	113	West Nile Virus	Population	Demography	Country with travel history: Pakistan (18)	p=0.001		
									City of residence: Sarbaz (50)	p=0.010		
									Season of Symptom onset: Spring (34) vs. Summer (48) vs. Fall (17) vs. winter (7)	p=0.042		
									Mosquito bite: yes (30)	p=0.096		
									Clinical signs: chill (1)	p<0.001		
									Clinical signs: headache (34)	p=0.020		
									Laboratory findings: Leukopenia (9)	p=0.191		
									Gender: M (27) vs. F (15)	p=0.010		
									age (years): <55 (20) vs. ≥55 (20)	p=0.100		
									Disease	Morbidity	Meningitis	p=0.001
Saeed & Ahmed 2003	Cross-sectional	Sudan	14 months	N/A	856	Malaria	Population	Demography	Population	demography\SEVERITY	Age (years): Patients with meningoencephalitis are older than those with meningitis	p=0.001
									demography\SEVERITY	mortality\age (years): The age of 55 years or older was the factor most strongly associated with death	p<0.005	
									Gender (Male vs. Female)	aOR=2.02, p<0.05		
									Age (years) group (21-40 vs. 41+)	aOR=1.71, p>0.05		
									Age (years) group (<21 vs. 41+)	aOR=1.37, p>0.05		
									Language (local dialectic -Dinka only- vs. Arabic)	aOR=1.78, p>0.05		
									Language (local dialectic + Arabic vs. Arabic)	aOR=3.38, p>0.05		
									Education (basic vs. illiterate)	aOR = 2.01, p<0.05		
									Education (secondary or higher vs. illiterate)	aOR = 3.24, p<0.05		
									Socioeconomic status	Housing conditions (acceptable vs. poor)	aOR=0.77, p>0.05	
Seidahmed et al. 2012	Cross-sectional	Sudan	1 year	450	2825	Dengue	Population	Demography	Food expenditure: no income vs.≤ 50% of income	aOR=2.04, p>0.05		
									Food expenditure: All income vs. ≤50% of income	aOR=0.84, p>0.05		
									nationality	Tribe (Nuba vs. Western tribe)	aOR=1.33, p>0.05	
									Tribe (Southern vs. Western tribe)	aOR=1.30, p>0.05		
									Tribe (Dinka vs. Western tribe)	aOR=0.90, p>0.05		
									Knowledge (poor vs. good)	aOR=1.85, p<0.05		
									Attitude and practices (poor vs. good)	aOR=0.76, p>0.05		
									treatment-seeking behavior (poor vs. good)	aOR=1.44, p>0.05		
									Keeping water (no vs. yes)	aOR=1.19, p>0.05		
									Environment potential breeding habitat: Water source (well vs. cart)	aOR=2.25, p>0.05		
Seidahmed et al. 2012	Cross-sectional	Sudan	1 year	450	2825	Dengue	Population	Demography	Age group	χ2=5.05 , p=0.030		
									gender	χ2=0.168, p=0.400		

Soghaier et al. 2014	Cross-sectional	Sudan	1 year	1.4 millions	600	Dengue	Population	Demography	Socioeconomic status	upper class (15/265)	p=0.0031	
									Middle class (12/263)		p=0.0036	
									Lower class (14/263)		p=0.0036	
									Mosquito Density	pupae/person index: +ve correlation between P/P index and IgM seroprevalence	r=0.71, p=0.015	
									Climate Temperature	minimum temp: +ve correlation between the minimum temperature and seropositivity rates	r=0.67, p=0.03	
										maximum temp: -ve correlation between the minimum temperature and P/P index was significant	r=-0.83, p=0.027	
										Age (years): <35 (141) (ref) vs. 35-39 (139) vs. 40-44 (167) vs. ≥45 (153)	PR=1.4, p=0.020	
										Gender: M (294) (ref) vs. F (306) (Male)	PR=0.7, p=0.030	
										Residence: Lagawa (250) (ref) vs. Alsunut (161) vs. Jangaru (120) vs. Shingil (69)	PR=1.4, p=0.040	
										Travel history: Travel to Red Sea State (vs no): Red Sea State (79)	PR=1.4, p=0.040	
Soghaier et al. 2015	Cross-sectional	Sudan	1 year	N/A	530	Dengue	Population	Demography	Environment Breeding	Indoor water storage (544)	PR=2.9, p<.001	
										Indoor mosquito breeding (vs. no): yes (54)	PR=0.2, p=0.003	
										No use of mosquito nets (vs yes): Use of mosquito nets (545)	PR=0.2, p=0.003	
										Interrupted use of mosquito nets (vs. every day)	PR=0.5, p=0.002	
										Use of mosquito nets at night (vs day and night)	PR=2.5, p=0.030	
										Indoor insecticidal spraying (vs. no): Regular use of indoor insecticidal spraying (55)	PR=1.8, p<.001	
										Age (years): ≤35 (28/281) vs. >35 (18/206)	OR=1.17, p=0.690	
										Gender: M (29/288) vs. F (17/199)	OR=1.55, p=0.240	
										Permanent residence in Kassala: outside (1/12) vs. inside (45/472)	OR=1.31, p=0.810	
										Socioeconomic status	Never heard about dengue: no (27/197) vs. yes (19/289)	
Soghaier et al. 2018	Cross-sectional	Sudan	1 year	N/A	1775	Zika	Environment	Geographical		Education level: No formal education (16/144) vs. Formal education (30/344)	OR=0.84, p=0.670	
										Household density: >3 (24/178) vs. ≤3 (22/311)	OR=2.08, p=0.034	
										Population Socioeconomic status	Use bed net: No (23/241) vs. yes (23/242)	OR=1.08, p=0.820
										locality zone 2	OR=1.2, p=0.310	
										locality zone 3	OR=1.3, p=0.360	
										locality zone 4	OR=1.4, p=0.190	
										Urban/rural residence	Urban: zone1 525(85), zone2 601(92), zone3 108(60), zone4 235(83) vs. rural: zone1 102(15), zone2 55(8), zone3 73(40), zone4 49(17)	OR=1.4, p=0.090
										Population Demography	Age (years): 15-39 (907/51) vs. <15 (172/10)	OR=2.1, p=0.010
											Age (years): 40-65 (656/53) vs. <15 (172/10)	OR=2.1, p=0.010
											Age (years): >65 (65/14) vs. <15 (172/10)	OR=2.2, p=0.070
											Gender: M (826/47) vs. F (949/53)	OR=1.3, p=0.060

Soleimani-Ahmadi et al. 2015	Cross-sectional	Iran	9 months	112,423	2,973	Malaria	Environment	Breeding habitat	water temperature	r=0.17, p<0.010
									Sulphate ions in water	r=0.23, P<0.040
									Chloride ions in water	r=0.19, P<0.020
									alkalinity of water	r=0.16, P<0.010
									conductivity of water	r=0.29, P<0.030
									Permanence (permanent vs. temporary): mean density: 31.12±2.07 vs. 19.78±1.93	p<0.001
									Water current (still flowing vs. still): mean density: 20.05±2.67 vs. 30.22±1.92	p=0.001
									Intensity of light (full sunlight, partial sunlight, shaded): mean density: 31.13±1.92, 18.21±1.96, 12.85±2.70	p=0.041
									Turbidity (turbid vs. clear): mean density: 19.28±1.20 vs. 30.48±1.93	p=0.002
									Substrate type (Mud, Sand, & Gravel): mean density: 21.39±2.05 vs. 33.12±2.40, 18.85±2.13	p=0.504
									Origin of habitat (River edge: natural vs. man-made): mean density: 20.52±2.32 vs. 30.10±1.95	p=0.045
Tezcan-Ulger et al. 2019	Cross-sectional	Turkey	7 months	N/A	977	Rift Valley Fever	Environment	Geographical	Urban vs Rural	p=0.933
									positivity between rural in different regions	p=0.141
									positivity between urban in different regions	p=0.029
						Population	Demography		gender from the urban area	p=0.581
									gender from the rural area	p=0.321
Vasmehjani et al. 2022	case-control	Iran	10 months	N/A	1,257	West Nile virus	population	Demography	Age (years): 25-34 vs. 1-24	OR=1.35, p=0.220
									Age (years): 35-44 vs. 1-24	OR=1.45, p=0.152
									Age (years): 45-54 vs. 1-24	OR=1.82, p=0.040
									Age (years): >=55 vs. 1-24	OR=3.52, p<.001
									Gender: M vs. F	OR=0.732, p=0.530
						Dengue virus	population	Demography	Age (years): 25-34 vs. 1-24	OR=0.63, p=0.300
									Age (years): 35-44 vs. 1-24	OR=1.15, p=0.730
									Age (years): 45-54 vs. 1-24	OR=0.65, p=0.400
									Age (years): >=55 vs. 1-24	OR= 2.19, p=0.070
									Gender (Male vs. Female)	OR=1.17, p=0.310
						Chikungunya virus	population	Demography	Age (years): 25-34 vs. 1-24	OR=1.35, p=0.320
									Age (years): 35-44 vs. 1-24	OR=1.35, p=0.330
									Age (years): 45-54 vs. 1-24	OR=1.35, p=0.340
									Age (years) >=55 vs. 1-24	OR=1.35, p=0.350

Ziyaeyan et al. 2018	Prevalence Iran	10 months	1.7 millions	494	West Nile Fever / Zika	Population	Demography	Gender: M vs. F	OR=1.35, p=0.360
								Age (years): 26-45 (39) vs. 0-25 (22)	OR=1.3, p=0.416
								Age (years): >45 (41) vs. 0-25 (22)	OR=4.1, p<.001
								Gender: M (35) vs. F (67)	OR=2.0, p=0.005
					Environment	Geographical		Jask (23) vs. Bandar Khamir (17)	OR=1.5, p=0.252
								Bandar Abbas (30) vs. Bandar Khamir (17)	OR=2.0, p=0.040
								Bashagard (32) vs. Bandar Khamir (17)	OR=2.2, p=0.020
					Population	Demography		Skin Type: III/IV (77) vs. I/II (10)	OR=2.9, p=0.003
								Skin Type: V/VI (15) vs. I/II (10)	OR=3.8, p=0.003
						Occupation		Mostly indoor (Child/student/Housewife): 67	OR=1.0
								Usually indoor (Office employee/ Freelancer): 20	OR=1.7, p=0.085
								Mostly outdoor (Fisherman/Sailor/ Worker/Retiree): 15	OR=3.7, p<.001
					Environment	Geographical		Urban (43) (ref) vs. rural (59)	OR=1.5, p=0.056

M, male; F, Female; N/A, Not available; OR, Odds Ratio; aOR, adjusted OR; r, correlation coefficient; Susp=suspected; Conf, confirmed; Yrs, Years; Ref: Reference; PR, Prevalence ratio

3. Results

3.1. Description of Studies

3.1.1. Search Flow Result

A total of 12,697 and 68 records were evaluated from the journal database and other sources, respectively. After removing the duplicate records, 12,263 unique records were obtained. Eleven thousand eight hundred and sixty-three records were excluded during abstract and full-text screening, resulting in a final set of 400 records. Following the eligibility screening of these records, 31 records were included in this systematic review.

3.1.2. Study Characteristic

A comprehensive review was conducted between 2003 and 2022 and included 31 studies (Table 1, #1 to #31). The studies were primarily conducted in Sudan (n=18; #1, 7-15, 19, 20, 23-27), followed by Iran (n=5; #17, 21, 28, 30, and 31), Saudi Arabia (n=4; #2-4, and 18), Yemen (n=2; #5 and 6), Iraq (n=1; #16), Tunisia (n=1; #22), and Turkey (n=1; #29). Most studies employed a cross-sectional design (n=23; #1, 4-9, 11-17, 19, 21-28). Other study designs included prevalence (n=4; #2, 3, 29, and 31), case-control (n=3; #10, 18, and 30), and ecological studies (n=1; #20). The studies covered a range of mosquito-borne diseases, with 11 studies focused on dengue, 11 on malaria, 3 on Rift Valley fever, 4 on West Nile fever, 3 on chikungunya, and 2 on Zika.

3.2. Population Factors

3.2.1. Age

Seventeen studies examined the relationship between age and MBDs. Al-Nefaei et al. [12] reported a significant association between age and MBDs ($\chi^2=75.05$, $p<0.001$), as did Al-Quhaiti et al. [13] ($OR=8.2$, $p<0.001$), Eldigail et al. [14] ($OR=3.24$, $p=0.001$), and Pouriayevali et al. [15] ($p=0.001$). Elaagip et al. [16] found a significant association between individuals aged > 60 years and dengue ($OR=6.31$, $p=0.04$), while Kadir et al. [17] identified a significant difference between individuals aged 21-30 years and other age groups ($p<0.001$). Soghaier et al. [18] observed significant associations in age groups, with those under 15 years compared to those aged 15-39 years ($OR=2.1$, $p=0.01$) and those aged 40-65 years ($OR=2.1$, $p=0.01$) in Zika disease. However, no significant association was found in the age group > 65 years ($OR=2.2$, $p=0.07$). Conversely, the remaining 11 out of 17 articles [14,19-24] found no significant association between age and MBDs ($p>0.05$). In the context of malaria in pregnant women, Elghazali et al. [24] also reported no significant correlation with age ($p=0.215$). However, Kalantari et al. [25] ($p=0.001$) and Kholedi et al. [26] ($\chi^2=12.34$, $p=0.03$) reported a significant association between age and the presence of dengue. Vasmehjani et al. [27] reported significant associations in different age groups, specifically between those aged 1-24 years compared to those aged 45-54 years ($OR=1.82$, $p=0.04$) and those aged 55 years and older ($OR=3.52$, $p<0.001$) in West Nile disease. However, no significant differences were found in other age groups for West Nile disease, dengue, or chikungunya. Ziyaeyan et al. [28] reported significant differences between the age group 0-25 years and those over 45 years ($OR=4.1$, $p=0.00$), but no significant differences were observed between the age group 0-25 years and those aged 26-45 years ($OR=1.3$, $p=0.416$) in West Nile and Zika diseases.

3.2.2. Gender

Seventeen studies analyzed the association between gender and MBDs. Al Azraqi et al. [29] ($\chi^2=3.98$, $p=0.048$) and Al-Nefaei et al. [12] ($\chi^2=14.7$, $p<0.001$) both found a statistically significant association between sex and Rift Valley fever and dengue, respectively. Riabi et al. [22] ($p=0.01$), Saeed and Ahmed [23] (adjusted $OR=2.02$, $p<0.05$), Elmardi et al. [30] ($p=0.035$), and Soghaier et al.

[18] ($p=0.03$) showed similar significant associations. Ziyaeyan et al. [28] supported these findings with a significant association ($OR=2.0$, $p=0.005$). Conversely, Al-Quhaiti et al. [13] ($OR=1.4$, $p=0.33$), Bamaga et al. [19] ($OR=1.04$, 95% CI 0.98-1.12), Elaagip et al. [16] ($OR=0.73$, $p = 0.43$), Eldigail et al. [31] ($p=0.123$), Kadir et al. [17] ($OR=1.07$, $p=0.137$), Kholedi et al. [26] ($\chi^2=0.146$, $p=0.703$), Mahdi et al. [32] ($OR=0.5$, $p=0.052$), Pouriayevali et al. [15] ($p=0.584$), Seidahmed et al. [33] ($\chi^2=0.168$, $p=0.400$), Soghaier et al. [34] ($OR=1.55$, $p=0.240$), and Vasmehjani et al. [27] (West Nile virus: $p=0.53$; dengue: $p=0.310$; chikungunya: $p=0.36$) reported no statistically significant association between sex and MBDs.

3.2.3. Occupation

Seven studies examined the relationship between occupation and MBDs. Notably, Al-Nefaei et al. [12] ($\chi^2=23.04$, $p<0.001$) and Bamaga et al. [19] found significant associations with different occupational categories (government employees vs. not working: $OR=4.84$, $p<0.05$; government employees vs. farmers: $OR=1.33$, $p<0.05$). Al-Nefaei et al. [12] identified a significant correlation between occupation types (not working, health worker, and non-health worker) and MBDs. Eldigail et al. [14,31] reported a significant association between low-income levels and MBDs ($OR=1.61$, $p = 0.039$) in 2018 and ($OR=3.75$, $p=0.027$) in 2020. Ziyaeyan et al. [28] highlighted significant differences between individuals who primarily work outdoors and those who work mostly indoors in the context of Zika and West Nile diseases ($OR=3.7$, $p<0.001$). However, no significant difference was observed between those who usually work indoors ($OR=1.70$, $p=0.085$). Conversely, Al-Quhaiti et al. [13] ($OR=1.0$, $p=0.999$) and Hassanain et al. [20] ($OR=1.9$, $p=0.19$) reported no significant association between occupation and MBDs, specifically malaria and Rift Valley fever, respectively.

3.2.4. Socioeconomic Status

Al-Quhaiti et al. [13] found no significant association between parents' educational status and MBDs for fathers ($p=0.370$) and 0.253 for mothers ($p=0.253$). Eldigail et al. [31] ($p=0.732$) and Hassanain et al. [20] ($p=0.1$) also reported no significant association between educational status and MBD. Similarly, a study by Saeed and Ahmed [23] revealed no significant association between educational status and the presence of malaria ($p>0.05$). Al-Quhaiti et al. [13] reported a significant association in individuals who had slept under a mosquito net the previous night of the survey, with a significant association with malaria ($OR=4.5$, $p<0.001$), compared to those who had not ($OR=11.8$, $p<0.001$). The study also found that malaria incidence was significantly higher in households without indoor residual spraying the previous year ($OR=3.4$, $p<0.001$). However, no significant association was observed between malaria and residence proximity to garbage collection and screened windows ($p>0.05$).

3.2.5. Demography

Alkhaldy and Barnett [35] reported that high-density populations and large non-Saudi migrant populations were significantly associated with MBD ($p<0.001$). Elmardi et al. [30] reported that people in urban areas have significantly higher MBDs than in rural ($p=0.003$). Soghaier et al. [36] reported no significant difference in Zika virus infection between urban and rural areas ($OR=1.4$, $p=0.09$). Tezcan-Ulger et al. [37] reported no significant difference in Rift Valley fever between rural and urban areas ($p=0.933$). Ziyaeyan et al. [28] reported no significant difference between urban and rural areas with Zika and West Nile disease ($OR=1.5$, $p=0.056$).

3.2.6. Blood Group

Only one study considered the effect of blood group on MBDs, which was by Adam et al. [38]. No significant correlation was reported between the blood group and MBDs ($p>0.05$).

3.2.7. Skin Type

Regarding the possible effect that skin type may have on MBDs, Ziyaeyan et al. [28] reported there is a significant difference in Zika and West Nile disease between skin type I/II vs III/IV (OR=2.9, p=0.003) and type V/VI (OR=3.8, p=0.003).

3.2.8. Number of households

Elaagip et al. [16] reported that there is no significant correlation between the number of individuals living in the house or the number of children under five years living in the house with MBDs (p>0.05)

3.3. Environmental Factors

3.3.1. Climate

Noureldin and Shaffer [39] identified a significant correlation between rainfall and the outbreak of dengue (p<0.05) and the minimum temperature on the spread of dengue (p<0.05). Pouriayevali et al. [15] reported a significant correlation between the season of symptom onset and chikungunya (p=0.042). Seidahmed et al. [33] found significant correlations between dengue and minimum temperature ($r=0.67$, p=0.03) and maximum temperature ($r=-0.83$, p=0.027). Soleimani-Ahmadi et al. [40] demonstrated a significant correlation between malaria and various environmental conditions, including water temperature ($r=0.17$, p<0.01), sulfate ions in water ($r=0.23$, p<0.04), chloride ions in water ($r=0.19$, p<0.02), alkalinity of water ($r=0.16$, p<0.01), conductivity of water ($r=0.29$, p<0.03), permanence of water (p<0.001), water current (p=0.001), light intensity (p=0.041), and turbidity (p=0.002) except the substrate type (p=0.581).

3.3.2. Sanitation

Al-Nefaei et al. [12] reported a significant correlation between the presence of water containers and MBDs ($\chi^2=20.91$, p<0.001). In contrast, other factors, including air conditioning, cement pools, infiltration, sewage systems, water surfaces, vases, water coolers, open tanks, water company supply, and stream water sources, were not significantly correlated (p>0.05). Elaagip et al. [16] identified a significant association between the type of bathroom used in households (OR=3.52, p=0.01) and the use of water-based air conditioners (OR=6.9, p=0.01) with MBDs. However, no significant association was observed between MBDs and the other household condition factors (p>0.05).

3.3.3. Breeding Habitats

Eldigail et al. [31] reported no significant association between clean water and MBDs (p = 0.308). Conversely, Kholedi et al. [26] found a significant association between MBDs and the presence of uncovered water containers ($\chi^2=4.09$, p=0.04) and nearby buildings under construction ($\chi^2=8.22$, p=0.004). In contrast, Saeed and Ahmed [23] reported no significant association between potential breeding habitats and malaria (adjusted OR=2.25, p>0.05).

3.4. Disease Factors

3.4.1. Pathogen

Mahdi et al. [32] reported a significant association between the *Plasmodium falciparum* variant MSP2 gene and malaria severity (OR=0.119, p=0.008).

3.4.2. Clinical Symptoms

Bamaga et al. [19] identified a significant correlation between various symptoms, including fever, shivering, headache, jaundice, and anemia, and MBDs (p<0.05). Elghazali et al. [24] reported a significant correlation between birth weight and MBDs (p<0.001). However, there was no significant

correlation between hemoglobin levels and MBDs ($p>0.05$) in this study. Elkhalifa et al. [41] observed significant correlations between MBDs and various hematological parameters, including hemoglobin levels ($p<0.001$), red blood cell (RBC) count ($p<0.001$), mean corpuscular hemoglobin (MCH) levels ($p<0.001$), mean corpuscular hemoglobin concentration (MCHC) ($p=0.037$), red cell distribution width (RDW) ($p<0.001$), neutrophil count ($p<0.001$), lymphocyte count ($p=0.004$), monocyte count ($p=0.021$), and platelet count ($p<0.001$). Ibrahim et al. [21] reported a significant correlation between hemoglobin levels and MBDs ($p=0.02$), but no significant correlations were found for weight ($p=0.57$), urea ($p=0.88$), creatinine ($p=0.4$), and total cortisol ($p=0.12$). Pouriayevali et al. [15] reported a significant correlation between chills ($p<0.001$) and headache ($p=0.02$) with chikungunya. In contrast, no significant correlations were observed between myalgia, rash, conjunctivitis, retroorbital pain, stomachache, nausea, vomiting, diarrhea, white blood cell (WBC) count, and platelet count with chikungunya. Riabi et al. [22] identified a significant correlation between meningitis and West Nile disease ($p=0.001$). In contrast, Al-Quhaiti et al. [13] reported no significant correlation between MBDs and symptoms such as fever, sweating, chills, vomiting, and jaundice ($p>0.05$).

3.4.3. Mosquito

Kholedi et al. [26] discovered a noteworthy association between indoor *Aedes aegypti* mosquitoes and the incidence of dengue fever cases from Jeddah in Saudi Arabia. Their findings revealed a statistically significant correlation ($p=0.027$) for adult mosquitoes and an even stronger correlation ($p=0.001$) for mosquito larvae. Meanwhile, in a study by Seidahmed et al. [33], a significant correlation was observed between the pupae/person index and the IgM seroprevalence of dengue fever in Port Sudan. This correlation suggests a notable relationship between the density of mosquito pupae and the prevalence of dengue fever in the area.

4. Discussion

The results of this study highlight several key findings regarding population, environmental, disease, and mosquito factors in the context of MBDs. Concerning population-related factors, the study findings suggest that the relationship between age and MBDs is complex. While some studies reported significant correlations between age and diseases such as dengue, Zika, and West Nile fever, with individuals over 60 at a higher risk for dengue, others observed no significant age-related differences. This variation could be attributed to differences in disease dynamics, mosquito vector behavior, and population demographics across different regions.

4.1. Impacts of Population Factors on MBD

When considering the population's occupation, this study's findings suggest that occupational factors play a significant role in some studies, with certain occupations, such as farming, showing a higher risk of MBDs [12,28]. This could be attributed to increased outdoor exposure and proximity to mosquito breeding sites for individuals with specific occupations [7]. However, not all studies have identified a significant correlation, indicating that occupational risk varies across contexts.

Regarding gender, the study's findings suggest that the association between gender and MBDs yielded mixed results. While some studies have found significant correlations, others have not. This suggests that gender may not consistently predict disease risk, with factors such as exposure patterns, immune responses, and behavioral differences between genders contributing to these variations [19,27].

Finally, regarding the population's socioeconomic status, the study's findings suggest that the influence of socioeconomic status on MBDs did not show significant correlations in most studies [6]. This suggests that other factors, such as environmental conditions and healthcare access, could be more influential in determining the disease risk [13].

4.2. Impact of Environmental Factors on MBD

Another aspect of MBDs is highlighted by findings related to environmental factors. First, several studies have emphasized the significance of climate, such as rainfall, temperature, and water quality, in transmitting MBDs [39]. Climate changes can impact mosquito breeding and survival rates, leading to fluctuations in disease prevalence [9]. The correlation between seasonality and disease incidence underscores the need for targeted interventions at specific times of the year [15].

Second, this study noted the influence of sanitation practices on MBDs. Water containers were a significant risk factor for MBDs, and proper sanitation practices, such as eliminating potential mosquito breeding sites, are essential for disease prevention [12]. However, other sanitation-related factors did not consistently demonstrate significant correlations, indicating that specific practices and their impacts could vary widely [16].

The impact of breeding habitats also plays an important role in the spread of MBD. In some studies, uncovered water containers and construction sites near residences were associated with a higher risk of MBDs (Humphrey et al., 2016). This highlights the importance of mosquito breeding site management and construction site sanitation in disease prevention [26]. However, not all studies found significant correlations, suggesting that local environmental factors may influence the significance of these risk factors [31].

4.3. Impact of Disease Factors on MBD

The last aspect of note illustrated by the findings of this study was the impact of different disease factors on MBDs. First, the pathogen itself was found to be necessary, as specific pathogen variants have been linked to disease severity in some studies [32,42]. Understanding the genetic diversity of mosquito-borne pathogens can aid in predicting disease outcomes and developing targeted interventions [9].

The role of clinical conditions in affecting MBDs was noted. Various clinical symptoms, such as fever, anemia, and hematological parameters, have been associated with MBDs in different studies [6,15,41,42]. These findings underscore the multifaceted nature of disease manifestations and their potential implications in diagnosis and patient care.

The results also highlighted the significance of the type and species of mosquito affecting the incidence of MBDs in MENA countries [5]. The indoor presence of *Aedes aegypti* mosquitoes was significantly associated with dengue fever cases from Jeddah, in Saudi Arabia, as reported by Kholedi et al. [26]. This underscores the importance of implementing vector control measures, such as indoor mosquito control, to prevent dengue transmission. Moreover, the correlation between mosquito pupae density and dengue seroprevalence in Port Sudan, as reported by Seidahmed et al. [33], highlights the crucial role of mosquito breeding site management for disease prevention.

4.4. Limitations

Considering the finite time and resources at our disposal, it is essential to recognize the inherent limitations of this systematic review. These limitations include confining the literature search solely to the MENA countries, restricting the search timeframe to 1990-2023, and limiting the inclusion of literature to the English language only. These limitations, while imperative for the feasibility of the study, may have resulted in the inadvertent exclusion of noteworthy publications beyond the findings from this study.

5. Conclusions

The findings of these studies emphasize the need for region-specific strategies and interventions to effectively control and prevent these diseases. Targeted public health measures, such as vector control, sanitation improvement, and education campaigns, can play a crucial role in reducing the burden of these diseases in affected regions. Further research and surveillance are essential to understanding these diseases better and developing evidence-based interventions.

Author Contributions: Conceptualization, A.A. and M.F.C.; methodology, A.A., A.A.B.W., R.A.A.E., M.F.C.X.X.; validation, M.F.C., M.A.; formal analysis, A.A., A.A.B.W.; data curation, A.A., A.A.B.W., R.A.A.E.; writing—original draft preparation, A.A., A.A.B.W., R.A.A.E.; writing—review and editing, A.A., A.A.B.W., R.A.A.E., M.A., M.F.C.; supervision, M.F.C., M.A.; project administration, M.F.C.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no funding.

Institutional Review Board Statement: Ethical approval exemption was obtained by the University medical research ethics committee (MREC #3146).

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used in this research can be made available with a reasonable request from the corresponding author.

Acknowledgments: We acknowledge the comments from the reviewers and support given by the technical support from the university library.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Vector-borne Diseases. <https://www.who.int/news-room/detail/vector-borne-diseases> (accessed on 2 March 2022)
2. Omodior, O., Luetke, M. C., & Nelson, E. J. Mosquito-borne infectious disease, risk-perceptions, and personal protective behavior among U.S. international travelers. *Preventive Medicine Reports*, 2018, 12, 336–342. <https://doi.org/10.1016/j.pmedr.2018.10.018>
3. Dahmane, H., & Mediannikov, O. (2020). Mosquito-Borne Diseases Emergence/Resurgence and How to Effectively Control It Biologically. *Pathogens* (Basel, Switzerland), 2020, 9(4), 310. <https://doi.org/10.3390/PATHOGENS9040310>
4. Centers for Disease (CDC) control and Prevention. Global Health - CDC's Regional Offices around the World.. <https://www.cdc.gov/globalhealth/countries/regional/default.htm> (accessed on 11 Jan 2023)
5. Humphrey, J. M., Cleton, N. B., Reusken, C. B. E. M., Glesby, M. J., Koopmas, M. P. G., & Abu-Raddad, L. J. Dengue in the Middle East and North Africa: A systematic review. *PLOS Neglected Tropical Diseases*. 2016, 10(2), e0005194, <https://doi.org/10.1371/journal.pntd.0005194>
6. Nebbak, A., Almeras, L., Parola, P., & Bitam, I. Mosquito Vectors (Diptera: Culicidae) and Mosquito-Borne Diseases in North Africa. *Insects* 2022, 13, 962. <https://doi.org/10.3390/insects13100962>
7. Altassan, K. K., Morin, C., Shocket, M.S., Ebi, K., & Hess, J. Dengue fever in Saudi Arabic: A review of environmental and population factors impacting emergence and spread. *Travel Medicine and Infectious Disease*. 2019, 30, 46-53. <https://doi.org/10.1016/j.tmaid.2019.04.006>
8. Braack, L., Paulo Gouveia de Almeida, A., Cornel, A. J., Swanepoel, R., de Jager, C. Mosquito-borne arboviruses of African origin: review of key viruses and vectors. *Parasites Vectors*, 2018, 11, 29. <https://doi.org/10.1186/s13071-017-2559-9>
9. Aryaprema, V. S., Steck, M. R., Peper, S. T., Xue, R., & Qualls, W. A. A systematic review of published literature on mosquito control action thresholds across the world. *PLoS Negl Trop Dis*. 2023, 17(3), e0011173. <https://doi.org/10.1371/journal.pntd.0011173>
10. Joanna Briggs Institute. Critical Appraisal Tools. <https://jbi.global/critical-appraisal-tools> (Accessed on 10 May 2022)
11. Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., & Moher, D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. *The BMJ*, 2021, 372, n71. <https://doi.org/10.1136/bmj.n71>
12. Al-Nefaei, H., Alsultan, A., & Abusaris, R. Temporal and spatial patterns of dengue geographical distribution in Jeddah, Saudi Arabia. *Journal of Infection and Public Health*, 2022, 15(9), 1025–1035. <https://doi.org/10.1016/j.jiph.2022.08.003>
13. Al-Quhaiti, M. A. A., Abdul-Ghani, R., Mahdy, M. A. K., & Assada, M. A. Malaria among under-five children in rural communities of Al-Mahweet governorate, Yemen. *Malaria Journal*, 2022, 21(1), 344. <https://doi.org/10.1186/S12936-022-04371-8>
14. Eldigail, M. H., Abubaker, H. A., Khalid, F. A., Abdallah, T. M., Adam, I. A., Adam, G. K., Babiker, R. A., Ahmed, M. E., Haroun, E. M., & Aradaib, I. E. Recent transmission of dengue virus and associated risk factors among residents of Kassala state, eastern Sudan. *BMC Public Health*, 2020, 20(1), 530. <https://doi.org/10.1186/S12889-020-08656-Y>

15. Pouriayevali, M. H., Rezaei, F., Jalali, T., Baniasadi, V., Fazlalipour, M., Mostafavi, E., Khakifirouz, S., Mohammadi, T., Fereydooni, Z., Tavakoli, M., Azad-Manjiri, S., Hosseini, M., Ghalejoogh, M., Gouya, M. M., Failloux, A.-B., & Salehi-Vaziri, M. Imported cases of chikungunya virus in Iran. *BMC Infectious Diseases*, 2019, 19(1), 1004. <https://doi.org/10.1186/s12879-019-4637-4>
16. Elaagip, A., Alsedig, K., Altahir, O., Ageep, T., Ahmed, A., Siam, H. A., Samy, A. M., Mohamed, W., Khalid, F., Gumaa, S., Mboera, L., Sindato, C., Elton, L., Zumla, A., Haider, N., Kock, R., & Abdel Hamid, M. M. Seroprevalence and associated risk factors of Dengue fever in Kassala state, eastern Sudan. *PLoS Neglected Tropical Diseases*, 2020, 14(12), e0008918. <https://doi.org/10.1371/journal.pntd.0008918>
17. Kadir, M. A., Ismail, A. K., & Tahir, S. S. Epidemiology of malaria in Al-Tameem Province, Iraq, 1991-2000. *Eastern Mediterranean health journal = La revue de sante de la Mediterranee orientale = al-Majallah al-sihhiyah li-sharq al-mutawassit*, 2003, 9(5-6), 1042-1047.
18. Soghaier, M. A., Mahmood, S. F., Pasha, O., Azam, S. I., Karsani, M. M., Elmangory, M. M., Elmagboul, B. A., Okoued, S. I., Shareef, S. M., Khogali, H. S., & Eltigai, E. Factors associated with dengue fever IgG seroprevalence in South Kordofan State, Sudan, in 2012: Reporting prevalence ratios. *Journal of Infection and Public Health*, 2014, 7(1), 54-61. <https://doi.org/10.1016/J.JIPH.2013.07.008>
19. Bamaga, O. A., Mahdy, M. A., Mahmud, R., & Lim, Y. Al. Malaria in Hadhramout, a southeast province of Yemen: prevalence, risk factors, knowledge, attitude and practices (KAPs). *Parasites & Vectors*, 2014, 7(1), 351. <https://doi.org/10.1186/1756-3305-7-351>
20. Hassanain, A. M., Noueldien, W., Karsany, M. S., Saeed, E. S., Aradaib, I. E., & Adam, I. Rift Valley Fever among febrile patients at New Halfa Hospital, eastern Sudan. *Virology Journal*, 2010, 7(1), 97. <https://doi.org/10.1186/1743-422X-7-97>
21. Ibrahim, E. A., Kheir, M. M., Elhardello, O. A., Almahdi, W. A., Ali, N. I., Elbashir, M. I., & Ishag, A. Cortisol and uncomplicated *Plasmodium falciparum* malaria in an area of unstable malaria transmission in eastern Sudan. *Asian Pacific journal of tropical medicine*, 2011, 4(2), 146-147. [https://doi.org/10.1016/S1995-7645\(11\)60056-4](https://doi.org/10.1016/S1995-7645(11)60056-4)
22. Riabi, S., Gaaloul, I., Mastouri, M., Hassine, M., & Aouni, M. An outbreak of West Nile virus infection in the region of Monastir, Tunisia, 2003. *Pathogens and Global Health*, 2014, 108(3), 148-157. <https://doi.org/10.1179/2047773214Y.0000000137>
23. Saeed, I. E., & Ahmed, E. S. Determinants of malaria mortality among displaced people in Khartoum state, Sudan. *Eastern Mediterranean health journal = La revue de sante de la Mediterranee orientale = al-Majallah al-sihhiyah li-sharq al-mutawassit*, 2003, 9(4), 593-599.
24. Elghazali, G., Adam, I., Hamad, A., & El-Bashir, M. I. *Plasmodium falciparum* infection during pregnancy in an unstable transmission area in eastern Sudan. *Eastern Mediterranean Health Journal = La Revue de Sante de La Mediterranee Orientale = Al-Majallah al-Sihhiyah Li-Sharq al-Mutawassit*, 2003, 9(4), 570-580. <https://doi.org/10.26719/2003.9.4.570>
25. Kalantari, M., Salehi-Vaziri, M., Pouriayevali, M., Baniasadi, V., Salmanzadeh, S., Kharat, M., & Fazlalipour, M. Seroprevalence of West Nile virus in Khuzestan province, southwestern Iran, 2016-2017. *Journal of Vector Borne Diseases*, 2019, 56(3), 263-267. <https://doi.org/10.4103/0972-9062.289391>
26. Kholedi, A. A. N., Balubaid, O., Milaat, W., Kabbash, I. A., & Ibrahim, A. Factors associated with the spread of dengue fever in Jeddah Governorate, Saudi Arabia. *Eastern Mediterranean Health Journal = La Revue de Sante de La Mediterranee Orientale = Al-Majallah al-Sihhiyah Li-Sharq al-Mutawassit*, 2012, 18(1), 15-23. <https://doi.org/10.26719/2012.18.1.15>
27. Vasmehjani, A. A., Rezaei, F., Farahmand, M., Mokhtari-Azad, T., Yaghoobi-Ershadi, M. R., Keshavarz, M., Baseri, H. R., Zaim, M., Iranpour, M., Turki, H., & Esmaeilpour-Bandboni, M. Epidemiological evidence of mosquito-borne viruses among persons and vectors in Iran: A study from North to South. *Virologica Sinica*, 2022, 37(1), 149-152. <https://doi.org/10.1016/J.VIRS.2022.01.005>
28. Ziyaeyan, M., Behzadi, M. A., Leyva-Grado, V. H., Azizi, K., Pouladfar, G., Dorzaban, H., Ziyaeyan, A., Salek, S., Jaber Hashemi, A., & Jamalidoust, M. Widespread circulation of West Nile virus, but not Zika virus, in southern Iran. *PLoS Neglected Tropical Diseases*, 2018, 12(12), e0007022. <https://doi.org/10.1371/journal.pntd.0007022>
29. Al Azraqi, T. A., El Mekki, A. A., & Mahfouz, A. A. Rift Valley fever among children and adolescents in southwestern Saudi Arabia. *Journal of Infection and Public Health*, 2013, 6(3), 230-235. <https://doi.org/10.1016/j.jiph.2012.11.011>
30. Elmardi, K. A., Adam, I., Malik, E. M., Kafy, H. T., Abdin, M. S., Kleinschmidt, I., & Kremers, S. Impact of malaria control interventions on malaria infection and anemia in areas with irrigated schemes: a cross-sectional population-based study in Sudan. *BMC Infectious Diseases*, 2021, 21(1), 1248. <https://doi.org/10.1186/S12879-021-06929-4>
31. Eldigail, M. H., Adam, G. K., Babiker, R. A., Khalid, F., Adam, I. A., Omer, O. H., Ahmed, M. E., Birair, S. L., Haroun, E. M., Abuasha, H., Karrar, A. E., Abdalla, H. S., & Aradaib, I. E. Prevalence of dengue fever virus antibodies and associated risk factors among residents of El-Gadarif state, Sudan. *BMC Public Health*, 2018, 18(1), 921. <https://doi.org/10.1186/s12889-018-5853-3>

32. Mahdi Abdel Hamid, M., Elamin, A. F., Albsheer, M. M. A., Abdalla, A. A. A., Mahgoub, N. S., Mustafa, S. O., Muneer, M. S., & Amin, M. Multiplicity of infection and genetic diversity of *Plasmodium falciparum* isolates from patients with uncomplicated and severe malaria in Gezira State, Sudan. *Parasites & Vectors*, 2016, 9(1), 362. <https://doi.org/10.1186/S13071-016-1641-Z>
33. Seidahmed, O. M. E., Hassan, S. A., Soghaier, M. A., Siam, H. A. M., Ahmed, F. T. A., Elkarsany, M. M., & Sulaiman, S. M. Spatial and temporal patterns of dengue transmission along a Red Sea coastline: a longitudinal entomological and serological survey in Port Sudan city. *PLoS Neglected Tropical Diseases*, 2012, 6(9), e1821. <https://doi.org/10.1371/JOURNAL.PNTD.0001821>
34. Soghaier, M. A., Himatt, S., Osman, K. E., Okoud, S. I., Seidahmed, O. E., Beatty, M. E., Elmusharaf, K., Khogali, J., Shingrai, N. H., & Elmangory, M. M. Cross-sectional community-based study of the socio-demographic factors associated with the prevalence of dengue in the eastern part of Sudan in 2011. *BMC Public Health*, 2015, 15(1), 558. <https://doi.org/10.1186/S12889-015-1913-0>
35. Alkhaldy, I., & Barnett, R. Explaining Neighbourhood Variations in the Incidence of Dengue Fever in Jeddah City, Saudi Arabia. *International Journal of Environmental Research and Public Health*, 2021, 18(24), 13220. <https://doi.org/10.3390/IJERPH182413220>
36. Soghaier, M. A., Abdelgadir, D. M., Abdelkhalig, S. M., Kafi, H., Zarroug, I. M. A., Sall, A. A., Eldegai, M. H., Elageb, R. M., Osman, M. M., & Khogali, H. Evidence of pre-existing active Zika virus circulation in Sudan prior to 2012. *BMC Research Notes*, 2018, 11(1), 906. <https://doi.org/10.1186/S13104-018-4027-9>
37. Tezcan-Ulger, S., Kurnaz, N., Ulger, M., Aslan, G., & Emekdas, G. Serological evidence of Rift Valley fever virus among humans in Mersin province of Turkey. *Journal of Vector Borne Diseases*, 2019, 56(4), 373–379. <https://doi.org/10.4103/0972-9062.302042>
38. Adam, I., Babiker, S., Mohammed, A. A., Salih, M. M., Prins, M. H., & Zaki, Z. M. ABO blood group system and placental malaria in an area of unstable malaria transmission in eastern Sudan. *Malaria Journal*, 2007, 6, 110. <https://doi.org/10.1186/1475-2875-6-110>
39. Noureldin, E., & Shaffer, L. Role of climatic factors in the incidence of dengue in Port Sudan City, Sudan. *Eastern Mediterranean health journal = La revue de sante de la Mediterranee orientale = al-Majallah al-sihhiyah li-sharq al-mutawassit*, 2019, 25(12), 852–860. <https://doi.org/10.26719/emhj.19.019>
40. Soleimani-Ahmadi, M., Vatandoost, H., Hanafi-Bojd, A. A., Zare, M., Safari, R., Mojahedi, A., & Poorahmad-Garbandi, F. Environmental characteristics of anopheline mosquito larval habitats in a malaria endemic area in Iran. *Asian Pacific Journal of Tropical Medicine*, 2013, 6(7), 510–515. [https://doi.org/10.1016/S1995-7645\(13\)60087-5](https://doi.org/10.1016/S1995-7645(13)60087-5)
41. Elkhalifa, A. M. E., Abdul-Ghani, R., Tamomh, A. G., Eltaher, N. E., Ali, N. Y., Ali, M. M., Bazie, E. A., KhirAlla, A., DfaAlla, F. A., & Alhasan, O. A. M. Hematological indices and abnormalities among patients with uncomplicated falciparum malaria in Kosti city of the White Nile state, Sudan: a comparative study. *BMC Infectious Diseases*, 2021, 21(1), 507. <https://doi.org/10.1186/S12879-021-06228-Y>
42. Elmardi, K. A., Noor, A. M., Githinji, S., Abdelgadir, T. M., Malik, E. M., & Snow, R. W. Self-reported fever, treatment actions, and malaria infection prevalence in the northern states of Sudan. *Malaria Journal*, 2011, 10, 128. <https://doi.org/10.1186/1475-2875-10-128>

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.