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Article
Intrinsic Geometric Structure of Subcartesian Spaces

Richard Cushman and Jedrzej Sniatycki

Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada

Abstract: Every subset S of a Cartesian spaces R?, endowed with differential structure C*(S)
generated by restrictions to S of functions in C**(R?), has a canonical partition 90t(S) by manifolds,
which are orbits of the family X(S) of all derivations of C®(S) that generate local one-parameter
groups of local diffeomorphisms of S. This partition satisfies the frontier condition, Whitney’s
conditions A and B. If 9(S) is locally finite, then it satisfies all definitions of stratification of S. This
result extends to Hausdorff locally Euclidean differential spaces.

Keywords: subcartesian differential space; orbits of family of vector fields

1. Introduction

In the second half of twentieth century the idea of using differential geometry to study spaces
with singularities was floating in the air. In 1955, Satake introduced a notion of a V-manifold in terms
of an atlas of charts with values in quotients of connected open subsets of R” by a finite group of linear
transformations, [14].

In 1961, Cerf, introduced the notion generalized manifold, now known as manifold with corners,
defined in terms of an atlas of charts with values in open subsets of [0,0)% x R*~* C R", where
k=0,1,..n, [6]. Cerf had all elements of the definition of general class of differential spaces, but he
did not develop the corresponding general theory. He preferred to investigate its example provided by
manifolds with corners.

In 1966, Smith introduced his notion of differentiable structure on a topological space, which consists
of a family of continuous functions on the space, deemed to be smooth, which carry all the information
about the geometry of the space, [17]. Smith used the term differentiable spaces, and he he studied the
de Rham Theorem on differentiable spaces.

In 1967, Sikorski generalized the approach of Smith and used it to discuss the notion of an abstract
covariant derivative, [15]. Sikorski used the term differential structure for the collection of functions
on a topological space deemed to be smooth, and the term differential space for a topological space
endowed with a differential structure. In 1974, Sikorski published a book on differential geometry, in
which he started with developement of the theory of differential spaces and later specified the spaces
under consideration to be smooth manifolds, [16]. Sikorski used his book as the text in his master level
course of differential geometry at the University of Warsaw. Even though Sikorski’s book was written
in Polish, it was appreciated by a sizeable group of of international scientists. Also in 1967, Aronszajn
introduced, in the abstract to his presentation at a Meeting of the American Mathematical Society, [1],
the notion of a subcartesian space, as a Hausdorff topological space that is locally diffeomorphic to a
subset of a Cartesian (Euclidean) space. The local diffeomorphisms used by Aronszajn formed an
atlas, similar to that introduced by Cerf. A more comprehensive presentations of this theory and its
applications were given by Aronszajn and Szeptycki in 1975, [2], and in 1980, [3].

There are other theories allowing for study of differential geometry of singular spaces. For a more
comprehensive review see [5].

Here, we concentrate on theories of Aronszajn and Sikorski. The strength of Aronszajn’s approach
is his choice of assumptions, which are satisfied by most finite dimensional examples. On the other
hand, Sikorski made the weakest assumptions. It leads to simplicity of the basic presentation of the
theory, and makes other theories to be special cases of Sikorski’s theory of differential spaces.The
relation between the theories of Aronszajn and of Sikorski was discussed first by Walczak in 1973, [20].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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In 2021, we exhibited a natural transformation from the category od subcartesian spaces to the category
of Hausdorff locally Euclidean differential spaces, [7]. Since Hausdorff locally Euclidean differential
spaces can be identified with corresponding subcartesian spaces, we treat the terms Hausdorff locally
Euclidean differential space and subcartesian space as synonims and use tham interchangeably. Aronszajn’s
term is shorter and it is well known to experts, but it does not convey much information to uninitiated.
That is why we use the longer term in the abstract and explanations. In the proofs we use the shorter
term.

The theory of differential spaces attracted a fair amount of interest, see [19] and references cited
there. In the next section, we give a brief review of the elements of this theory that are essential for
subsequent developement.

In Section 3, we give a more comprehensive review of results on derivations of the differential
structure of a differential space and their integration. We introduce the term vector fields on a
subcartesian space S (Hausdorff locally Euclidean differential space) for derivations of C®(S) that
generate one-parameter groups of local diffeomorphisms of S. In [18] it was proved that orbits of the
family of all vector fields on a subcartesian space S form a partition 9(S) of S by smooth manifolds.

In Section 4, we study the partition 9t(S) of a diffferential space S by orbits of the family of all
vector fields on S, which is the main objective of this paper. In the case when the differential space
under consideration is a connected manifold M, the Lie algebra of local one-parameter groups of local
diffeomorphisms of M acts transitively of M, which means that the corresponding partition of M is
trivial, it consists of a single orbit. We show that the partition 9t(S) satisfies the frontier condition,
Whitney’s conditions A and B, and it leads to a filtration of S by closed subsets.

In Section 5, we compare the results of Section 4 with various definitions of stratifications. If the
partition M(S) is locally finite then it satisfies all definitions of a stratification of a closed subset of a
smooth manifold.

In Section 6, we briefly relate derivations that are not vector fields to transient vector fields on
manifolds with boundary discussed by Percel [12]. These derivations generate transitions between
different manifolds of the partition 21(S).

In Section 7, we apply our approach to manifolds with corners. According to Cerf’s definition,
[6], a manifold with corners S is a locally closed subcartesian space. Following Joyce’s formulation of
the theory of manifolds with corners, [9], we show that the depth function stratification of S coincides
with the partition 91(S), and it satisfies Whitney’s conditions A and B.

The second author is greatly indebted to Dominic Joyce for helpful and stimulating e-mails.

2. Differential Spaces

Definition 2.1. A differential structure on a topological space S is a family C*(S) of real valued functions on
S that satisfy the following conditions.

1. The family
{f~X(I) | f € C*(S) and I is an open interval in R}

is a sub-basis of the topology of S.
2.If f1, .., fn € C*(S) and F € C®(R"), then F(f1, ..., fu) € C*(S).

3. If f : S — Ris a function such that, for each x € S, there is an open neighbourhood V of x in S and a
function f, € C*(S) satisfying
fav = fiv,
then f € C*(S).
A topological space S endowed with a differential structure C*(S) is called differential space.
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A simple way of definig a differential structure on a set S is as follows. Choose a family of
functions F on S. Endow S with the topology generated by a sub-basis

{f~Y(I) | f € F and I is an open interval in R}. 1)

The differential structure C*°(S) generated by F consists of functions /1 : S — R such that, for each x € S,
there exist an open neighbourhood V of x, an integer n € N, functions f, ..., f, € F,and F € C®(R")
such that

It is easy to see that that the differential structure C®(S) generated by F satisfies all conditions of
Definition 2.1.

Below, we are using the method, outlined above, to generate differential structures of products,
subsets and quotients of differential spaces.

Definition 2.2. Let (S,C®(S)) and (R, C*®(R)) be differential spaces. Choose
F={SXxR—=R:(xy)— f(x)g(y) | fe€C®(S)and g € C*(R)},

where f(x)g(y) is the product in R of the numbers f(x) and g(y). It is easy to see that, for this choice of F,
equation (1) gives a sub-basis of the product topology on S x R.The diferential structure C*(S x R) generated
by F is called the product differential structure.

Definition 2.3. Let (S,C*®(S)) be a differential space, and let R be a subset of S. Let

R(R) ={fir | f € CZ(5)}

be the family of restrictions to R of smooth functions on S. Equation (1) with F = R(R) gives a sub-basis of
the topology in R induced by its inclusion in S. The differential structure of R generated by F = R(R) is
called the subspace differential structure, and we refer to R as a differential subspace of S. We also refer to the
differential structure of R C S generated by F = R(R) as the differential structure induced by the inclusion of
R in§S.

Definition 2.4. Let (S,C®(S)) be a differential space. An equivalence relation ~ on S defines a subset R of
S x S such that, if (x,y) € S x S, then

(x,y) € R ifand only if x ~y.

For each x € S we denote by [x] the ~ equivalence class x. Let Q = S / ~ be the set ot equivalence classes of
the relation ~ in S, and let 7t : S — Q be the projection map given by 7t(x) = [x] for every x € S. The quotient
differential structure of Q is

CPQ)={f: Q=R |7 f=fomreC”()}
It should be noted that the topology of Q defined by the differential structure C*(Q) need not coincide with the
quotient topology of Q.
Let (S,C*(S)) and (R, C®°(R)) be differential spaces.

Definition 2.5. A continuous map ¢ : S — R is smooth if for each f € C*®(R) the pull back ¢* f = f o ¢ is
in C®(S). A smooth map ¢ : S — R is a diffeomorphism if it is invertible and its inverse is smooth.

Note that, if (S,C®(S)) and (R, C*(R)) are differential spaces, and a map f : S — R is smooth,
then it is a homeomorphism of the underlying topological spaces. Differential spaces and smooth
maps form a category.
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Sikorski’s theory of differential spaces is the most general approach to C*-differential geometry
of singular spaces. Of special interest here are differential spaces that are locally diffeomorphic to
differential subspaces of Euclidean spaces.

Definition 2.6. A differential space (S,C*®(S)) is locally Euclidean if, for every x € S, there exists an open
neighbour V of x in S,a subset W of some R" and a diffeomorphism o : V. — W,where V is endowed with the
differential structure C*®(V') induced by its inclusion in S and W is endowed with the differential structure
C*®(W) induced by its inclusion in R".

Definition 2.7. A Hausdorff locally Euclidean differential space (S,C%(S)) is a subcartesian space of
Aronszajn.

Proof. Since (S,C*(S)) is a locally Euclidean differential space, local diffeomorphisms a : V, — W,
where V, is an open differential subspace of S and W, a differential subspace of some R% generate a
complete atlas 2A(S) = {a : V, — W, } of S, which satisfies the following conditions:

(1). The family {V,, | « € 2(S)} of open sets in S forms a covering of S.

(2). For every a,f € 2(S), and every x € V, N Vp, there exists a C*-mapping &, of an open
neighbourhood U, of a(x) € R% to R, which extends the mapping
Boal:a(VaNVg) — B(VaNVp),
and a C*-mapping @ of an open neighbourhood Uy of B(x) € R to R%, which extends the mapping
wop i B(VanVp) = a(Va N Vp).

(3). C*(S) consists of continuous function f : S — R on S such that, for every chart a : V, — W, C Ré%,
there exists an open set U, in R« containing W,, and a smooth function F € C®(U,) such that
fo a~1: W, — Ris the restriction of F to W, C U,.

These conditions, together with the assumptionthat S is Hausdorff, define a subcartesian space of
Aronszajn, [1]. and [? ].

Proof. In order to complete the proof, we show that that a continuous map ¢ : S — R of Hausdorff
locally Euclidean differential spaces with complete atlases 2(S) = {a : V;, — W, } and A(R) = {B:
Vg — W}, respectively, is smooth if and only if, for every x € S, there exist a € 2(S) and B € 2(R)
such that x € Vi, (V) € Vp and the mapping

<I>,X5:,Boq)ooc’1:Wa—>W/3:xn—>y:CD,X/3(x) (3)

extends to a C* mapping
Fup: Uy — Up 1 x =y = Fup(x), 4)

where U, is an open subset of R% containing W, and Ug is an open subset of R% containing Wj.
(@. Let ¢ : S — R be a map between subcartesian spaces. Assume that every transition map ®,g,
given by equation (3) has a smooth extension F,g such that

Dpp: W = Wp x> y = Fugiwa (). (5)
The components of @, with respect to the Cartesian coordinates (y', ...,y’®) on Rz are

fxﬁ = @Zﬁyiwﬂ fori=1,..,dg.

doi:10.20944/preprints202311.1212.v1
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Since Dyp = FIXIB|W,5/ it follows that each component, CDL g = N ﬁyl"wﬁ of ®, is the restriction of the

corresponding component of

Fup®hp = (Pamwm)*yfwﬁ fori=1,...,dg. (6)
O

Next, given h € C®(R), we want to show that f = ¢*h = ho ¢ € C®(S). In terms of the charts
«:Vy— WyonSand§: Vg — Wg on R, given above, h\vﬁ Vg = R, and ho ‘B_l : W — R. Similarly,
foof1 : W, = R, and

foal=(¢*h)oat=hogoat=(hop )oBogont= (ho,Bfl)qu,xﬁ. (7)

Since R is a locally Euclidean differential space, and i € C*(R), it follows that there exists a smooth
function hg : lll’3 — R, where l,I/’8 is open in R and contains Wg, such that (B H*h=hop = hﬁIWﬁ‘
Without loss of generality, we may assume that Uj; = Ug. Hence, equations (7) and (5) imply that

fO zxil = (h 0‘371> @) q),xﬁ = hﬁ‘WﬁPaﬁ‘Wa

Hence, f o a1 : W, — Ris the restriction to W, of a C* function hgFup : Uy — Up.

This result holds for all x € S and every pair of charts («, B) such that x € V,, ¢(x) € V3, and
poa (W) C Vg. Hence , f = ¢*h = ho ¢ € C®(S) for every h € C*(R). Therefore, the map
@ : S — Ris smooth.

(b). In order to prove the implication in the opposite direction assume thatamap ¢ : S — Ris
smooth in the sense of differential spaces. That is, p*h € C®(S) for every h € C*(R). Equations (3)
and (7) yield

(ph)oa™t = (hop™) oDy 8)

For x € Vyand y = ¢(x) € Vg, let vl ., ydﬁ be Cartesian coordinates in R%. We are going to construct
functions hy, ..., i in C*(R) such that, for each i = 1,...,dgg, h; o =1 = y' in a neighbourhood of ()
in Wﬁ g Rd.

There exists an open set Vy, in R such thaty € Vy <V, C Vg Since V, C V,, C Vg, continuity of
@ : S — Rimplies that V, =V, N go’l(Vy) is an open subset of S. Moreover, ¢(Vy) C V, and

P(Va) Co(Vy) SV, C Vg.

Hence, V, C go_l(V,g) C V, so that
Vi C Vx C Vi (9)
Foreachi =1,..,dg, ﬁ*yfwﬂ is a smooth function on Vp. Using partition of unity in R, we can

construct a function h; € C*(R) such that

h;\vy = (ﬁ*yl‘lwﬁ)wy and hfnR\Vﬁ =0. (10)

Since ¢ : S — R is a smooth map of differential spaces, with differential structures C*(S) and
C*®(R), respectively, and h;, ...,h;lR € C*(R), it follows that q)*h;, ey go*th are in C*(S). Moreover,
Ve =V,N (p’l(Vy) is an open neighbourhood of x in V, C S, a(Vy) is an open subset of W,, and
¢(Vx) C Vy. Hence, foreveryi =1,...,d p, the restriction of (p*h; to Vy is

9 Hyy, = o P, = Iy 0 9y, = (B Yiw,) © @y, = Yiw, © (B 9. (11)

doi:10.20944/preprints202311.1212.v1
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so that
(hly ogo a*l)a(vx) = y’lwﬁ o(Bogo a*l)‘a(vx), (12)
This implies that the restriction of @, to a(Vy) is given in Cartesian coordinates on R by
thXﬁhX(Vx) : IX(VX) — Wﬂ XYy = CDMg(x) (13)
= (((¢"hy) 0a™ ) (x), ., (9" (HF) 00 ) ()
= (((hyog)oa)(x), .. (HF 0 g)oa)(x)).

d
Since (p*h;, ey q)*hyﬁ € C*(S), Definition 2.6(3) ensures that, for every i = 1, ..., dg, there exists an open
set U in R¥ containing W,, and a smooth function F! € C®(U") such that go*h; oa~l: W, — Ris the
restriction of F! to W, C U'. The intersection U = ﬁ‘.iR u' is open in R and a(Vy) C a(Vy) = W,.

Hence ®@,4/4(v,) : #(Vx) — Wj is the restriction to a(Vy) of (F! € C®(U,R%) to domain

e )
«(Vy) and codomain Wpg.

The above result can be established for every x € S. Therefore, the map ¢ : S — R is a smooth
map between subcartesian spaces. [

In view of Proposition 2.1.7 we identify the terms Hausdorff locally Euclidean differential space
and subcartesians space. The first term is more transparent, while the second term is well known to
specialists in the field.

3. Derivations and Vector Fields

Definition 3.1. Let S be a differential space. A derivation of C*(S) is a linear map X : C*(S) — C*(S) :
f — X{f satisfying Leibniz’s rule
X(fif2) = (Xfi) 2+ fi(Xf2) (14)
for every f1, fo € C*(S).
Let Der C*(S) denote the space of deriviations of C*°(S). It is a Lie algebra with Lie bracket

(X1, Xo]f = X1(Xof) — X2(X1f) (15)

for every X1, X, € Der C®(S) and every f € C®(S). In addition, Der C*(S) is a module over the ring
C*®(S) with [f X1, Xp] = f[X1, Xp] and

(X1, fXa] = (X1f) X2 + f[X1, X2 (16)

for every Xi, X, € Der C*(S) and every f € C®(S).

Definition 3.2. Let ¢ : R — S be a smooth map of differential spaces with differential structures C*(R) and
C®(S), respectively. Derivations X in Der C*(S) and Y in Der C*(R) are ¢-related if

9" (Y(f)) = X(¢"f)

for every f € C®(R).

Suppose that the map ¢ : R — S in Definition 3.1.2 is a diffeomorphism, thatis ¢! : R — S
exists and is smooth. For every derivation X € Der C®(R) there exists a unique derivation ¢,X
€ DerC*®(S),

9-X:C(S) = C2(S) : f = (9 X)f = (971)" (X(9"f)), (17)
which is g-related to X. It is called the push-forward of X by ¢. Moreover,

¢« : DerC*(R) — Der C®(S) : X — ¢4 X

doi:10.20944/preprints202311.1212.v1
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is a Lie algebra diffeomorphism.
Suppose now that (S, C*(S)) is a differential space and V is an open subset of S. By Definition
2.3, the differential structure C®°(V) of V is generated by

R(V)={fiv | f €CZ(S)}.

A continuous function i : V — R is in C®(V) if and only if, for every x € V, there exists an open
subset U on V, and a function f € C*(S), such that hj;; = f|;. Since V is open in S, it follows that for
every f € C%(S) the restriction f}y of f to V is in C*(V). Hence, R(V) C C*(V). Moreover, every
X € Der C™(S) restricts to a derivation Xy, of R(V), given by

Xy :R(V) = R(V) : fly = X fiy = (Xf)v-

We want to extend the derivation X|y to all functions in C*(V). Suppose that h € C*(V)\R(V).
For every x € V, there exists an open subset U of V, and a function f € C%(S), such that hj;; = fy.
Since U is open in V and V is open in S, it follows that U is open in S. The argument above, applied to
U, implies that every X in Der C*(S) restricts to a derivation X|;; of

RU) ={fu | f€CZ(S)},
given by
Xy : RU) = RMU) : flu = Xjuflu = X
Since, U is open in V/, it follows that

RU) ={flul feCE)} ={Uhu | fF € CZS)} ={Ufv)u | fiy e R(V)}

and

Xufiu = XN = Xjufu = (XHw)u = X fv)u = X)) u(fiv)ju = Ev)ufiu

so that X;; = (X|y)jy- Thus, hjy = fjy implies that we may extend the definition of X}, to h €
C®(V)\R(V) by setting
(Xvh)ju = Xjuflu

whenever f;; = fj for f € C*(S) and U is openin V.
We need to verify that this definition is consistent. Suppose that U’ is another open subset of V
such that UN U’ # @. Then UN U’ is open in V and we may evaluate(X|yh)|ynyr in two ways:

Xy urw = (Xph)wune = Xufjw) une = Xunw fluna
Xyhurw = (Xyh)w)unw = X fju)junw = Xjunw flunu
obtaining the same result.

Conclusion 3.3. If V is an open differential subspace of S, then every X € Der C®(S) restricts to a derivation
Xy of C*(V). If1: V — Siis the inclusion map then

(X)) = (X = X fiv = X (£ f)
for every f € C*(S). In other words, X and Xy are related by the inclusion map.

Next, we show that derivations of the differential structure of a subcartesian space admit unique
maximal integral curves.

doi:10.20944/preprints202311.1212.v1
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We begin with a review of the notion of integral curves of vector fields on manifolds. Let M be
a smooth manifold and X a vector field on M. A smooth map ¢ : I — M of an interval I C R is an
integral curve of X if

d

¥ (c(t)) = (Xf)(c(t)) for every f € C®°(M) and every t € I. (18)

In other words, ¢ : I — S is an integral curve of X if Tc(t) = X(c(t)) for every t € I.

If ty € I and xo = c(tp), we may reparametrize the curve by a shifts: [ — [ :t— F=t—tg,
obtaining an integral curve ¢ : [ — M :  — &(f) = c(t — to) of X such that (0) = xo. We say that
¢: I — M is an integral curve is an integral curve of X that originates at xo.

We generalize this definition to subcartesian spaces. Let c : I — S be a smooth map of an interval
I in R, containing 0, to a subcartesian space S, a derivation X of C*(S) and a point xg € S. Suppose
that

c(0) = xp and %f(c(t)) = (Xf)(c(t)) forevery f € C*(S) and every t € I. (19)

If the interval I has non-empty interior, then the conditions above are well defined and we may call
c: I — S anitegral curve of X originating at xo. However, there exist subcartesian spaces in which no
two distinct points are arc connected.

Example 3.4. Let Q be the set of rational numbers in R, and C*(Q) consists of restrictions to Q of smooth
functions on R. Since Q is dense in R, it follows from equation (2) that every derivation of C*°(R) induces a
derivation of C*°(Q). Let X be the derivation of C*(Q) induced by the derivative % on C*(R). In other words,
for every f € C*(Q) and every xo € Q,
- f(x) = fx0)
X = lim —————~

(Xf)(x0) = lim ==— ==,
where the limit is taken over x € Q. On the other hand, no two distinct points in Q can be connected by a
continuous curve.

In order to avoid saying that that in the Example 3.4 non-zero derivations have no integral curves,
we redefine the notion of an integral curve by allowing its domain [ shrink to a point. With this
modification, every derivation X of C*°(Q) has an integral curve c : I — Q originating at xo € Q with
I = (0) and ¢(0) = xp. Thus, we adopt the following formal definition.

Definition 3.5. Let S be a subcartesian space and X a derivation of C*°(S). An integral curve of X originating
at xo € Sisamap c : I — S, where I is a connected subset of R containing 0, such that ¢(0) = xo and

%f(c(t)) = (Xf)(c(t)) for every f € C®(S) and every t € I, (20)

whenever the interior of I is not empty.

Integral curves of a given derivation X of C*®(S) starting at x¢ can be ordered by inclusion of
their domains. In other words, if c; : I; = Sand cp : I — S are two integral curves of X, such that
c1(0) = c2(0) = xp, and I; C I, then c; = ¢. Anintegral curve ¢ : I — S of X is maximal if ¢ < ¢1
implies that c = cy.

Theorem 3.6. Let S be a subcartesian space and let X be a derivation of C*(S). For every x € S, there exists a
unique maximal integral curve ¢ of X such that c(0) = x.

Proof. The modification of the definition of an integral curve, given in Definition 3.5, allows for closing
the hole in the proof of Theorem 3.2.1 in [19]. For the sake of clarity, we include here the complete
proof.
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(i) Local existence. Consider the defining equation for an integral curve c : I — S of X originating
atx: p
c(0) = x and af(c(t)) = (Xf)(c(t)) for every f € C*(S) and every t € I.

If I = {0}, then the integral curve ¢ consists of one point c(0) = x. If I has non-empty interior, then it
is an interval in R, possibly unbounded, and we need to consider the differential equation (20).

Let ¢ be a diffeomorphism of a neighbourhood V of x in S onto a differential subspace R of R".
Let Z = ¢. Xy be a derivation of C**(R) obtained by pushing forward the restriction of X to V by ¢.
In other words,

Z(f)og=Xy(foo)

for all f € C*(R). Without loss of generality, we may assume that there is an extension of Z to a vector
field Y on R".

Let z = ¢(x), and ¢g be an integral curve in R" of the vector field Y such that ¢y(0) = z. Let I,
be the connected component of ¢, 1(R) containing 0, and let ¢ : I, — R be the restriction of cg to I.
Clearly, c(0) = z. We have to consider two cases: (1) Iy = {0} and (2) I, is an interval in R. In the
first case, ¢ : {0} — S: 0+ x is an integral curve of X originating at x.! In the second case, for each
to € Iy and each f € C*(R) there exists a neighbourhood U of ¢(tp) in R and a function F € C*(R")
such that f|;; = F. Therefore,

Aty = FEO)imty = (Y(F)(e(to))

= (Y(F)jule(to)) = (Z(f))(c(to)),

which implies that ¢ : I, — R is an integral curve of Z through z.
Since I, is an interval, cxy = ¢ loc: I, — V C S satisfies cx(0) = ¢~ 1(c(0)) = ¢~ 1(z) = x.
Moreover, for every t € Iy and h € C*(S), f = ho ¢~ ! € C*(R) and

Dhied®) = Lo (e®)) = & (ho g™ (e(t)

Thus, ¢y : Iy — S is an integral curve of X through x.

(ii) Smoothness. It follows from the theory of differential equations that the integral curve ¢y in
R" of a smooth vector field Y is smooth. Hence, ¢ = ¢g|;, is smooth. Since ¢ is a diffeomorphism of a
neighbourhood of x in S to R, its inverse ¢! is smooth, and the composition ¢y = ¢! o ¢ is smooth.

(iii) Local uniqueness. This follows from the local uniqueness of solutions of first order
differential equations in R".

(iv) Maximality. If there are no integral curves ¢ : I — S of X originating at x such that the
interior of I is not empty, then ¢ : {0} — {x} is maximal. Otherwise, suppose that there is an
integral curve ¢ : I — S of X originating at x has domain I with endpoints p < g, where p < 0 and
q>0.1fq € 1,q = oo, orlim;_,,- c(t) does not exist, then the curve c does not extend beyond g. If
xp = limy - c(t) exists, then it is unique because S is Hausdorff and we can repeat the construction
of section (i) beginning with the point x1. In this way, we obtain an integral curve ¢y : Iy — S of X
with the initial condition ¢;(0) = x1.Let [ = TU{t =g+s|s€ [ N[0,00)},and ¢ : [; — S be given
by & (t) = c(t)ift € Iand ¢1(t) = c1(t —¢q) if t € {g+s | s € [ N[0, c0)}. Clearly, ¢ is continuous.

1 This argument was missing in the proof of Theorem 3.2.1 in [19].
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Moreover, since x; = lim; - c(t), it follows that the lower end point p; of I is strictly less than zero.
Hence, the restriction of ¢ to (max(p, p1) + 4, q) differs from the restriction of ¢; to (max(p, p1),0) by
reparametrization ¢ — ¢ — g. Since ¢ and c¢; are smooth, it follows that ¢; is smooth. Let q; be the upper
limit g, of I1. If 1 € Ij, g1 = oo, or lim,_, g €1 (t) does not exist, then the curve ¢; does not extend
beyond gq;. Otherwise, we can extend ¢; by an integral curve c; of X through x, = lim,_, 0 c1(t).
Continuing the process we obtain a maximal extension for ¢ > 0. In a similar way we can construct a
maximal extension for t < 0.

(v) Global uniqueness. Letc : I — Sand ¢’ : I’ — S be two maximal integral curves of X
through x and
T={telInl'|t>0andc(t) #c'(t)}.

Suppose that T # @. Since T™ is bounded from below by 0, there exists a greatest lower bound ! of
T*. This implies that c(t) = ¢/(t) for 0 < t < I and, for every ¢ > 0, there exists . € T such that
I <te<l+eandc(t:) # c'(te). Letx; = c(l) = ¢'(I) and ¢; : [; — S be an integral curve of X through
x; constructed as in section (i). We denote by gq; the upper end point of the interval I;. If q; > 0, the local
uniqueness implies that c(t) = ¢/(t) = ¢;(t — 1) for all I < t < I+ g;. Hence, we get a contradiction
with the assumption that ! is the greatest lower bound of T*. If g; = 0, then there is no extension of
c;tot > 0. Let g and 4’ be the upper endpoints of I and I’, respectively. Since ¢ and ¢’ are maximal
integral curves of X, it follows that ¢ = g’ = I. Hence, the set T" is empty. A similar argument shows
that
T-={telInl'|t<0andc(t) #(t)} =Q.

Therefore, ¢(t) = ¢/(t) forallt € INT'. If I # I, then we get a contradiction with the assumption that
c and ¢’ are maximal. Hence, | = I'andc=¢. O

Let X be a derivation of C*(S). We denote by e'*(x) the point on the maximal integral curve of X,
originating at x, corresponding to the value t of the parameter. Given x € S, e/X(x) is defined for t in
an interval I, containing zero, and eOX(x) (x) =x.1ft,s,and t +sarein Iy, s € IefX(x)/ and t € Iesx(x),
then

e (x) = X (e(x)) = X (x) (e (v)).

Proposition 3.7. For every derivation X of the differential structure C*(S) of a subcartesian space and a
diffeomorphism ¢ : S — R,

el P X — (poetxoq)

Proof. Foreach f € C*(R)andy = ¢(x) € R

-1

Lf(goeop ™)) = L f(poe™) ()

= (1o (Fe*0)) 0= (F@) ')

= X(¢*f)(e™(x)) by equation (19)

= ¢ (9:X(f)(eX (%)) by equation (17)
(9 X () (@™ (%)) = (9 X () (@™ (97 ()))

= (¢:X(f)(goeT oo N)(y).

Hence, t — (@ oe!X o0 ¢~ 1)(y) is an integral curve of ¢, X throughy. O

In the case when S is a manifold, the map e!X is a local one-parameter group of local
diffeomorphisms of S. For a subcartesian space S, /X : x +— e!*(x) might fail to be a local
diffeomorphism.
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Definition 3.8. A vector field on a subcartesian space S is a derivation X of C*(S) such that for every x € S,
there exists an open neighbourhood U of x in S and e > 0 such that for every t € (—g, ), the map X (x) is
defined on U, and its restriction to U is a diffeomorphism from U onto an open subset of S. In other words, X is
a vector field on S if e'X is a local 1-parameter group of local diffeomorphisms of S.

Notation 3.9. We denote by X(S) the familly of all vector fields on a subcartesian space S.

Example 3.10. Consider S = [0,00) C R with the structure of a differential subspace of R. Let (Xf) = % for
every f € C*([0,00)) and x € [0, c0). Note that the derivative at x = 0 is the right derivative; it is uniquely
defined by f(x) for x > 0. For this X, the map e'X is given by e'X(x) = x + t whenever x and x + t are
in [0,00). In particular, for every neighbourhood U of 0 in [0,00) there exists 6 > 0 such that [0,6) C U.
Moreover, !X maps [0,6) onto [t, 5 + t), which is not an open neighbourhood of t = e!X(0) in [0, o). Hence,
the derivation X is not a vector field on [0, 00). On the other hand, for every f € C®[0,00) such that f(0) =0,
the derivation fX is a vector field, because 0 is a fixed point of e'fX. O

Theorem 3.11. Let S be a subcartesian space. A derivation X of C®(S) is a vector field on S if the domain of
every maximal integral curve of X is open in R.

Proof. 2 Theorem 3.6 ensures that maximal integral curves of vector fields have non-empty open
domains. This implies that, if a derivation X of C*(S) has a maximal integral curve of the type
c: {0} = {x} : 0 — x, then it cannot be a vector field. Hence, in the remaining of the proof we need
not consider integral curves of this type.Consider the case when S is a differential subspace of R”. Let
X be a derivation on S such that domains of all its integral curves are open in R. In other words, for
each x € S, the domain I of the map ¢ — e/X(x) is an open interval in R.

This implies that no maximal integral curve of X is defined only for t = 0. We need to show that
the map x — eX(x) is a local diffeomorphism of S.

Given xp € S C R", there exists an open neighbourhood W of x( such that the restriction of X
to Wy extends to a vector field Y on an open subset Uy C R”, containig Wy. We show first that the
restriction of X to Wy generates a local one-parameter group of local diffeomorphisms of Wj.

Since open sets in S are the intersections with S of open sets in R", without loss of generality we
can write Wy = Uy N S. Let e’ denote the local one-parameter group of local diffeomorphisms of Uy
generated by Y. There exists an open neighbourhood U of x¢, contained in Uy, and & > 0 such that,
for every t € (—¢,¢), the map ef¥ : Uy — ¥ (U;) C Uy is a diffeomorphism of Uj onto its image.

Let Wy = Uy NS € Wp. Since Y}y, = Xy, the assumption that maximal integral curves of vector
fields have non-empty open domains ensures that, for every x € Wy C Wy, there is 6, > 0 such that
elY(x) = e'X(x) € Wy = UpNSforall t € (—0y,dy). Let 1y, = inf {6y | x € Wy} be the, the infimum
of the set {d | x € W; C R"}. Since each J, > 0 it follows that ¢y, > 0.

(1) If 15, > 0, then there is a neigbourhood W, of xy contained in W and &1 € (0, ¢) such that, for
every t € (—ep,£1), the map e!X : W, — e'X(W,) C W is a diffeomorphism of W, onto its image. In
this case, the restriction of X to W; 3 xg is a vector field on Wj.

(2) Suppose that iy, = 0. Since the domain of every maximal integral curve of X is open in R, it
follows that the closure Wy of W; has non-empty intersection with the part of the boundary S N (R"\S)
of S that is not contained in S. In this case there exists an open set V C Ssuch thatxo € V.CV C W,
so that V has empty intersection with the part of the boundary § N (R™\S) of S that is not contained
in S. Then 1y = inf{dy | x € V} > 0, and there exists a neighbourhood W, of xj contained in V and
g1 € (0,¢) such that, for every t € (—¢q,¢€1), the map etX . Wy, — e!X(W,) C V is a diffeomorphism of
W, onto its image. In this case, the restriction of X to V' > x( is a vector field on V.

2 This proof is an improvement of the proof of Proposition 3.2.6 in [19]. Not only it does not require the assumption that S is

locally closed, but it is complete and more transparent.
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These arguments can be repeated for every xg € Wy C S. Hence, the restriction of X to Wy is a
vector field on W. Similarly, we can repeat these arguments for every xy € S, concluding that X is a
vector field on S.

Consider now the case of a general subcartesian space S. Let X be a derivation of C*(S) such that
the domains of all its maximal integral curves are open. For every x € S there exists a neighbourhood
W of x in § and a diffeomorphism yof W onto a differential subspace Sy of R". Since W is open in
S, maximal integral curves of the restriction Xy, of X to W are open domais. The diffeomorphism
X : W — Sy pushes-forward X|jy of X to a derivation x. X of C*(Sw) with the same properties.
That is all integral curves of x. Xy have open domains. By the argument above, x. Xy is a vector
field on Sy .

Since x : W — Sy is a diffeomorphism, it follows that Xy is a vector field on W. This argument
can be repeated at every point x € S. Therefore, for every x € S, the derivation X restricts to a vector
field in a an open neighbourhood of of x.

Therefore, X is a vector field on S. O

For Xy,..., X, € X(S) consider a piece-wise smooth integral curve c in S,originating at xg € S,
given by a sequence of steps. First, we follow the integral curve of X; through x¢ for time 7;; next
we follow the integral curve of X, though x; = goi(l (x0) for time T; and so on. Foreachi =1,...,n
let J;be [0,7;] C Rif ; > 0or [1;,0] if ; < 0. Note that 7; < 0 means that the integral curve of X; is
followed in the negative time direction. For every i, J; is contained in the domain I, , of the maximal
integral curve of X; starting at x;_. In other words, fort =1 + ... + T,—1 + Ty,

Xy— X
ct)=c(n+n+..+T1+T) = (pii” 0@y o..o gy (x0).

Definition 3.12. The orbit through x( of the family X(S) of vector fields on S is the set M of points x in S
that can be joined to xo by a piecewise smooth integral curve of vector fields in X(S);

X,
M={g{0p," o..0pf (x0) | X1, .., Xu € X(S) t1, .ty €R, n €N}

Theorem 3.13. Orbits M of the family X(S) of vector fields on a subcartesian space S are submanifolds of S.
In the manifold topology of M, the differential structure on M induced by its inclusion in S coincides with its
manifold differential structure.

Proof. See reference [18]. O

4. Partition of S by Orbits of X(S)

In this section, we study consequences of Theorem 3.13 to our understanding of the geometry of
subcartesian spaces.

Notation 4.1. We denote by M (S) the family of orbits of X(S).

By Theorem 3.13 each orbit M of X(S) is a manifold. Moreover, the manifold structure of M is its
differential structure induced by the inclusion of M in S. Hence, M is a submanifold of the differential
space S. The orbits of X(S), give a partition M1(S) of S by connected smooth manifolds. Since the notion
of a vector field on a subcartesian space S is intrinsically defined in terms of its differential structure,
it follows that every subcartesian space has a natural partition by connected smooth manifolds. In
particular, every subset S of R” has natural partition by connected smooth manifolds.

Proposition 4.2. Let X be a derivation of C®(S). If, for each M € I(S) and each x € M, the maximal
integral curve of X originating at x € M is contained in M, then X € X(S), that is, X is a derivation of C*(S)
that generates local one parameter groups of local diffeomorphisms of S.
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Proof. Suppose that X is a derivation of C*(S) satisfying the assumptions of Proposition 4.2. By
Theorem 3.13, every M € 91(S) is a submanifold of the differential space S. This means that the
manifold structure C®(M) of M is induced by the restrictions to M of functions in C%(S). Since all
integral curves of X originating at points of M are contained in M, it follows that the restriction X|; of
X to M is a derivation of C®(M). But, for a manifold M, all derivations of C®(M) are vector fields on
M in the sense that their integral curves generate local one parameter groups of local diffeomorphisms
of M. Moreover, domains of maximal integral curves of vector fields on a manifold are open. By
assumption, this holds to every M € 9M1(S). Since S is the union of all manifolds M € 9M(S), it follows
that every integral curve of X has open domain. Theorem 3.11 ensures that X is a vector field on S in
the sense that it generates local one parameter groups of local diffeomorphisms of S. O

Theorem 4.3. The family X(S) of all vector fields on a subcartesian space S is a Lie subalgebra of the Lie algebra
DerC®(S) of derivations of C*(S).3

Proof. For X € X(S) and f € C®(S), the product f X € DerC*®(S). By construction, for every M €
M(S), Xy is a vector field on the submanifold M of S, and f)); € C®(M). Hence, (fX) | = fimuX|m
is a derivation of C*°(M). Therefore, for every x € M, the maximal integral curve of fX originating at
x, is the maximal integral curve of (f X)) originating at x. But M is a manifold, which implies that
the derivation (fX)|ys of C*(M) is a vector field on M so that every maximal integral curve of (fX)y
has open domain.

The argument above is valid for every manifold . Since S = Uycgn(s)M, it follows that every
integral curve of fX has open domain. Theorem 3.3.8 ensures that fX is a vector field on S, that is
fX € X(S).

Suppose that X,Y € X(S). Then X +Y € DerC®(S). As before, for every M € M(S), the
restrictions X|5; and Y|y are vector fields on the manifold M, so that (X +Y)y = Xy + Y|y is a
vector field on M. Hence integral curves of X + Y originating at points in M have open domains.
This is valid for every M € M(S), which implies that all integral curves of X + Y have open domains.
Therefore, X + Y € X(S).

Replacing + in the arguments of the preceding paragraph by the Lie bracket [-, -], we can show
that, for every X,Y € X(S), their Lie bracket [X, Y] € X(S). Therefore, the family X(S) of all vector
fields on S is a Lie subalgebra of DerC®(S). [

Proposition 4.4 (Frontier Condition). For M, M’ € I(S), if M' "M # @, then either M’ = M or
M c M\M.

Proof. Let M and M’ be orbits of X(S) such that M’ N M # @, where M denotes the closure of M in
S. Suppose that xop € M’ N M with M" # M. Let {x; }scn be a sequence of points in M converging
to xg. For every X € X(S), there is an open neighbourhood Uj of xg in S and ty > 0 such that
exp(tX)(x) is defined for every 0 < t < ty and every x € Uy. Moreover, if 0 < t < ), the map
Uy — S : x — exp(tX)(x) is continuous. Therefore, for 0 < t < t,

Jim exp(£X) (31) = exp(£X) (xo).

Since M is the orbit of X(S), it is invariant under the family of one-parameter local groups
of local diffeomorphisms of S generated by vector fields, and {x;}reny € M, it follows that
limy o, exp(tX)(xx) € M . Therefore, exp(tX)(xg) € M. On the other hand, M'is the orbit of X(S)
through x, so that exp(tX)(xg) € M’. Hence, exp(tX)(xp) € M’ N M. By assumption, M’ # M, which

3 This result was first obtained by Watts in Ph.D. Thesis, Corollary 4.71, [21]. Here, we give an alternative proof.
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implies that exp(tX)(xp) € M\M. This holds for every X € X(S) and xg € M'N M\ M. Therefore,
M cM\M. O

Proposition 4.5 (Whitney’s Conditions A and B). Consider a differential subspace S of R". Let y € M’ C
M\M,where M, M’ € M(S), and let m = dim M.

(A). If x; is a sequence of points in M such that x; — y € M', and Ty, M converges to some m-plane E C
T,S C TyR" then T,M' C E.

(B). If y; be a sequence of points in M’ also converging to y. Suppose that Ty, M converges to an m-plane E C
TS C TyR" and the secant m converges to some line in L C R". Then L C E.

Proof. (A).Since M is a submanifold of the differential subspace S of R”, and M is the closure of M in
S, then M is a differential subspace of S. Moreover, M and M’ are submanifolds of M. Hence, for a
sequence x; in M, such that y = lim;_,, x; € M’, we have

TyM = lim Ty, M.
1—00
Since M'is a submanifold of M, it follows that T,M' C T, M.
In order to write the result in the form used in the statement of the proposition, we use the
identification R” x R" = TR" such that the following diagram commutes

R"xR" = TR"
Pr1 \lf \l/ T,
R" = R"

where pr; : R" x R" — R" is the projection on the first factor, and 7 : TR" — R" is the tangent
bundle projection. Moreover, for every f € C®(R") and v = (x,v) € TR", the derivation of f by v
is of = (df | v) (x). With this identification, the m-plane T,M C T,S C T,R", can be expressed as
TyM = (y,E), where E C R". Hence, T,M' C (y,E).

(B) The sequence W of secants, if it converges as i — oo, defines a derivation v € TyM such that,

for every f € C®(M),
S £ )
o P

7

where ||x; — yil| = (21 (x; — yi)z)l/z. The limiting line of the sequence ¥;7/; of secants is the line L
through y in direction v. Since, v € Tyﬁ, in the identification used above, L C E. [

Foreachn =0,1,2,..., let

M, (S) ={M e M(S) | dimM = n}, (21)
and
So= [ M (22)
MeM,(S)

Since elements of 91, (S) are mutually disjoint n-dimensional manifolds, it follows that S, is a manifold
of dimension 7, and the connected manifolds M € 9, (S) are connected components of S, Since S is
a subcartesian space, the dimension n of S, is locally bounded. For every charta : V,y = W, C R,
dim S, NV, <d,. Hence,

S= ]O_o[ Sn. (23)
n=0

In general, the partition 2t(S) of S by orbits of X(S) need not be locally finite, as is shown in the
following example.

doi:10.20944/preprints202311.1212.v1
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Example 4.6. Let S = Q x R C R?, where Q is the set of rational numbers. The discussion following Example
3.3.1 shows that that a derivation X € Der S is a vector field only if it is tangent to the second factor R. In other
words, if f € C®(S) is written in terms of the coordinates (x1,x) € Q X R, then X € X(S) if and only if,
there exists a € C®(S) such that

af(xll x2)

(Xf)(x1,x2) = a(x1, x2) oxs

for every f € C®(S) and every (x1,x2) € Q x R.

Since the space X(R) of vector fields on R acts transitively on R, it follows that in our example, for every
x = (x1,x2) € S, the orbit M of X(S) through x = (x1,x2) is {x1} x R. Thus, the space MM(S) of orbits of
X(S) for S = Q x R is parametrized by Q, and it is not locally finite.

Example 4.7. Let S = {x € R | x = 0o0r x = 1 for n € N}. In this case, the only vector field on S is X = 0,
and every M € 9(S) is a single point. There is no neighbourhood of 0 € S that contains only finite number of
points of S. Hence, MM(S) is not locally finite.

5. Comparison with Stratification

There are several definitions of stratification of a closed subset S of a smooth* manifold. The
definition used by Goresky and MacPherson, [8], adapted to the set up considered here, can be
reformulated as follows.

Definition 5.1. A partition of a subcartesian space S by submanifolds of S is a decomposition of S if it is
locally finite and satisfies Frontier Condition, that is the statement of Proposition 4.3. A Whitney stratification
of S is a decomoposition of S that satisfies Whitney's conditions A and B, that is the statement of Proposition 4.4.

If S is a closed subset of a smooth manifold M, then composing the inclusion of S into M with
the charts for M we get an atlas A(S) = {a : V; — W, }, where V, an open subset of S and W, is a
locally closed subset of R%:. In other words, S is a locally closed subcartesian space. Propositions 4.3 and
4.4 ensure that, if S is a locally closed subcartesian space and the partition 9(S) is locally finite, then
M(S) is a Whitney stratification of S.

Mather, uses the term prestratification for a decomposition of S by submanifolds and the term
stratification for the sheaf S of germs of manifolds of prestratification, [11]. If S is locally closed and
M(S) is locally closed, then M(S) is a prestratification of S and the sheaf S of germs of manifolds in
M(S) is the induced stratification.

Prestratifications of S that induce the same sheaf of germs S can be partially ordered by inclusion.
Pflaum, [13], identifies the sheaf S of germs of the manifolds of prestratification with the coarsest
prestratification in this class. If S is locally closed and M(S) is locally closed, then the coarsest
prestratification in the sense of Pflaum is {S, }7_o, where Sy = [Tjcom, (s) M, see equation (22).

We have seen that, for every definition of stratification discussed above, if S is a locally closed
subcartesian space and Mi(S) is locally finite, then the decomposition 91(S) of S corresponds to a
stratification of S. It should be noted that, in this case, our approach corresponds to an algorithm
leading to discovery of the of the stratification of S. Once S is chosen and its differential structure is
established, there is no room for choice. The main step is to determine the family X(S), consisting
of all derivations of C*(S) that generate local one-parameter groups of local diffeomorphisms of S.
Theorem 3.8 helps us to make this determination.

4 We consider here only the C® category.
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6. Transient Derivations

Up to now, we have concentrated on orbits of the Lie algebra X(S) of vector fields on S, that
is derivations of C*°(S) that generate local one-parameter local groups of diffeomorphisms. In this
section, we consider the role played by derivation of C*°(S) that do not generate local one-paremeter
groups of local diffeomorphisms of S.

Definition 6.1. Transient derivation® on a subcartesian space S is a derivation of C®(S) that does not
generate local one-paremeter groups of local diffeomorphisms of S.

Let X be a transient derivation on a subcartesian space S. By Theorem 3.6, for every xy € S, there
exists a unique maximal integral curve ¢y of X such that co(0) = xo. If, for every xy € S, the maximal
integral curve ¢y of X through xy € M € M(S) is contained in M, then Proposition 4.2 ensures
that X is generates local one paremeter local groups of diffeomorphisms of S, which contradicts the
assumption that X is a transient derivation. Therefore, there must exist a maximal integral curve
¢ : I — S of X such that, for some t; € I, the curve ¢ crosses from a manifold M € 9(S) to a manifold
M’ C M\M. It follows that transient derivations provide integral curves joinining manifolds of 9(S)

7. Manifolds with Corners

Manifolds with corners are a basic example of stratified subcartesian spaces. Here, we rely on
the presentation of the theory of manifolds with corners given in [9]. We begin with a defininition of
manifold with corners, as a locally Euclidean Hausdorff manifold, see Definition 2.6. This definition is
equivalent to the original definition by Cerf, [6], used in [9].

Definition 7.1. A d-dimensional manifold with corners is a paracompact Hausdorff topological space S equipped
with a maximal d-dimensional atlas A = {« : Vo — Wy}, where a is a homeomorphism of an open subset V,, of
S onto an open subset W, ofRza = [0,00)k¢ x Rk« C RY, in the topology induced by its inclusion in RY,
which satisfies the conditions listed below.

(1). The sets {V,, | « € A} form a covering of S.

(2). For every a, p € 2, and every x € Vy NV, there exist:
(a) a C®-mapping Py, of an open neighbourhood Uy of a(x) € R" to R"F, which extends the mapping

Boa l:a(VanVp) = B(VaNVp),

(b) a C*-mapping ®g of an open neighbourhood Ug of B(x) € R" to R,
which extends the mapping
woB i B(VanVp) = a(Va N Vp).

(3). A continuous function f : S — R on S is smooth if and only if, for every chart « : V,, — W, C R,
there exists an open set U, in R? containing Wy, and a smooth function F € C*(U,) such that foa™! :
Wy — R is the restriction of F to W, C Uy,. We denote by C®(S) the space of smooth functions on S.
(4). Amap ¢ : S — R between manifolds with corners S and R is is smooth if it is continuous and, for every pair
of charts  a:Vy — Wy CR¥ inA(S) and B : Vg — Wg C RIR in A(R), such that ¢ o a1 (W,) C Vg,
there exist open subsets U, C R%, Ug C RIR and Fup € C®(U,, Uﬁ) such that: (i) W, C U,, (ii)
Wy C U, and, for every x € Wy,
Fugw,(x) = Bogoa~ (x).

The fundamental notion on a manifold with corners S, leading to the stratification structure of S,
is the depth functions

5 The term transient derivation is an extension of the notion of transient vector field used in the theory of manifolds with

boundary, [12].
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depthg:S — Z>g : x — depth gx = Eg}{ka | x € Vo).

It is easy to show that the function depth ¢x is well defined by the differential structure C*®°(S) of the
manifold with corners S under consideration.

Definition 7.2. For each k > 0, the depth k stratum of S is
Sk = {x € S| depthg x = k}.

Proposition 7.3. Let S be a d-dimensional manifold with corners.
(a) S is a disjoint union ofSk,for k=0,..,4d,

d
s=]1]Is"
k=0

(b) Each S¥ has the structure of an (d — k)-dimensional manifold (without boundary or corners).
(c) If§k N S! # @, then either S' = Sk, or S! C §k\Sk, where S denotes the closure of Skin S.
(d) For every k =0, ...,d,

S =]]¢ (24)
1=k
is a manifold with corners.

Proof. (a) The depth of x € S is uniquely defined by the maximal n-dimensional atlas 2. Hence
sknsl =@ifk # I. Moreover, k =0, ...,d. Hence, S is a disjoint union of sk fork=0,...,d.

(b) Definition 3.1 enures that S has an atlas % = {a : V;, — W, }, where « is a homeomorphism
of an open subset V, of S onto an open subset W, of Rza = [0,00)k¢ x R*% C RY, in the topology
induced by its inclusion in R?. For each x € Sk C S, there exists a chart « : V, — W, for S
such that x € V,, and W, = ([0,00)" x R4=%) N U,, where U, is an open subset of R?. Moerover
a(Vy N S5) = ([0]F x R?7F) N U,. Note that [0]F x R9~% = R1=% and R?~¥ N U, is an open subset of
R4~k The collection of charts

At = {@y,nse: Vo NS = @(VpN S¥)
= RFNU, | forall ¢ € Asuch that p(V, NS
= ([0 xRy nu,}

is a (d — k)-manifold atlas for S. It satisifes the condition (2) of Definition 3.1because the atlas 2
satisfies this condition.

(c) Recall that a manifold with corners S is defined as a topological space satisfying certain
conditions. Therefore, by the closure Sk of Sk we mean the closure of Sk in S. If S were a subset of some
other topological space T, then the closure of S in § is the intersection with S of the closure of S* in
the topology induced by its embedding of S into T.

If If SkN'S! £ @, there exists xo € SKNS' C S. Since xg € S, every open neighbourhood
V of x has non-empty intersection with S¥. Since xy € S, it follows that depthxg = 1, and there
exists a chart & : V;, — W, be such that such that xy € V,, and W, = ([0, oo)l X Rd’l) N U,, where
U, is an open subset of R~ Without loss of generality, we may assume that, for each x € skNv,,
a(x) = (x,..., xl Xt x%), has first k of the components (x!, ..., xl) equal to zero. Hence, I > k. If
| =k, then Sh=¢6k 1f1 > k, then xg € ?\Sk. This argument holds for every x € Sk S with I > k.
Hence, S! C ?\Sk.

doi:10.20944/preprints202311.1212.v1
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(d) It follows from (a) and (c) that

d d
Sk=skns=skn][s' =11

It is easy to check that Sk = H‘f:k S satisfies the conditions for a manifold with corners. [

Definition 4.2 quotes the corresponding definition in [9], in which the term "depth k stratum”
is used without explanation. It shows that the stratification structure of manifolds with corners
is a common knowledge in this field. By Definiton 4.1, manifolds with corners are locally closed
subcartesian spaces.

All definitions of stratifications, discussed in the preceding section, deal with closed subsets of a
manifold. Every closed subset of a manifold is a locally closed subcartesian space. However, not every
locally closed subcartesian space can be presented as a closed subset of a manifold. Hence, the use
of the term "stratification” in the theory of manifolds with corners is a generalization of the classical
notion of stratification which is convenient to adopt in the theory of differential spaces.

In order to relate the general theory of the preceding sections to the example of manifolds with
corners, we have to establish what are vector fields on manifolds with corners. In other words, we
have to establish the class of derivations of C*°(S) which generate local one-parameter groups of local
diffeomorphisms of S.

The depth function stratification {SO, st .., sk ...Sd} encodes the intrinsic geometric structure of
the manifold with corners S. Therefore, we may expect that connected components of the strata of the
stratification {S°,S1, ..., S, ..9} are integral manifolds of the Lie algebra X(S) of S. We establish this
result in a series of propositions.

Proposition 7.4. Let S be a manifold with corners. A derivation X of C*(S) is a vector field on S if and only if
every maximal integral curve ¢ : I — S of X is contained in a single stratum of the depth function stratification

of S.

Proof. Let X be a derivation of C*(S) of an d-manifold with corners. Suppose that every maximal
integral curve ¢ : I — S of X is contained in a single stratum in 9(S). Let M be a connected component
of a stratum S* of the depth function stratification of S. Since all integral curves of X are connected,
it follows that all integral curves of X originating at points in M are contained in M. Therefore, the
restriction Xy, of X to M is a derivation of C*°(M). But M is a manifold and all derivations of C**(M)
are vector fields on M. Therefore, X)), generates local one-parameter group of local diffeomorphisms
of M.

The argument above is valid for every connected component of each stratum of the depth
function stratification of S. Therefore, the derivation X generates a local one-paremeter group of local
diffeomorphisms of manifolds with corners that preserve the depth function stratification of S. Hence
the derivation X is a vector field on S.

Let X be a vector field on 5. That is, X generates a local one-parameter group of local
diffeomorphisms of X. We need to show that every integral curve of X is contained in a connected
component of a single stratum of the depth function stratification of S. We suppose opposite and
derive a contradiction.

Suppose that there is an integral curve ¢ : I — S of X such that, for —e <t < 0, ¢(t) isin a
connected component M of a stratum S™ and ¢(0) is in a connected component N of a different
stratum S" of S. Since ¢(0) = lim;_,q- c(t), Proposition 4.3(c) implies that N C M\ M so thatm < n —1.
Leta : V — W C R? be a chart in 21, where V is a neighbourhood of ¢(0) in Sand W C R4, NU =
([0,00)™ x R¥=™) N U C R? for some open neighbourhood U of 0; € R¥, such that a(c(0)) = 0, € R%.
Moreover, «(MN V) = ({0,} x R¥™) N U and, for every

x = (xb, T x x x) ea(MNV),


https://doi.org/10.20944/preprints202311.1212.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 November 2023 doi:10.20944/preprints202311.1212.v1

19 of 21

the first m coordinates (x, ..., x™) are equal to zero, Similarly, «(NN V) = ({0,} x R*") N U and, for
every y = (y!,...,y",y" L, y", x"H1, ., x%) € a(N N V), the first n coordinates (v, ..., y™, y" 1, ..y")
are equal to zero.

For every t < 0, there exists a neighbourhood V; of ¢(t) in V such that V; N N = @. Therefore,
there exists an open neighbourhood U; of 0, € R? such that

a(Vy) = ([0,00)™ x R™™) N U .
On the other hand, if V) C V is a neigbourhood of ¢(0) in S, then
a(Vp) = ([0,00)" x R™™) N Uy

for a neighbourhood Uy of 0, € RY. But, m # n, so that, for t < 0, «(V;) is not diffeomorphic to a(Vp).
Since & : V — W is a diffeomorphism, it follows that V; is not diffeomorphic to V for every ¢t < 0. This
contradicts the assumption that X generates a local one-parameter group of local diffeomorphisms of
S. O

Proposition 7.5. Let S be a manifold with corners and X a derivation on S such that, for every connected
component M of the depth function stratification of S, the restriction Xy of X to M is a vector field on the
manifold M. Then X is a vector field on S.

Proof. In view of Proposition 7.4, it suffices to show that every integral curve of X originating at a
connected component M of the depth function stratification of S, is contained in M. Suppose that there
is an integral curve c : I — S of X, originating at x( in a connected component M of a stratum of the
depth function stratification of S, such that x; = ¢(t;) € N € M\M, where t{ = min{t € I | t > 0 and
c(t) € M} and N is a connected component of another another stratum in S. Since X is of class C*, it
follows that

lim X(c(t)) = lim Xjp(c(t)) = X(c(t1)) = Xn(c(t1)).

t—t1— t—t_

Suppose that X(x;) = 0. The equation

& Fe(t) = (XF)(e()

for every f € C®(S) implies that,
) = epem
af (Xf)(e(t))’

Hence, X(x1) = 0 implies that t — o0 as c¢(t) — x7. Therefore, x; = lim; . c(t) and it is not in the
range of the curve c contrary to the previous assumption.

Suppose now that X(x1) = X|y(x1) # 0. Note that Xy is a vector field on the manifold N. Hence,
there exists an integral curve cy : Iy — N of Xy originating at x;. Consider a charta : V. — W
in 9B such that V is a neighbourhood of x; = ¢(t1), and W C RY = [0, 00)" x RI—" C R? contains
a(x1). By Proposition 3.1.6 in [19], there exist a neighbourhood V; of x; € V, U C R? such that
apy, + Vi — Wi = a(Vy) C Wis a diffeomorphism, and a vector field Y defined on an open set U C R4
containing W such that

(“*X)‘Wl = Y|W1‘

Since ¢y : Iy — N of X|y originates at x; € V7, it follows that there is a connected subset Iy of
Iy containing 0 such that the restriction éy of (x o cy) to Iy has its range in Wj. The equation above
implies that ¢y : Iy — W is an integral curve of Y originating at a(x1). On the other hand, x; = c(t;).
Hencec' : I' — S : t — c(t — t1) is an integral curve of X originating at x; = c(#;), where I’ is I shitfed
by t1. Let I be a connected neighbourhood of 0 € I’ such that the restriction & of a o ¢’ to I has its
range in Wy. As before, & : I' — Wj is an integral curve of Y originating at a(x1). But Y is a vector
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field on an open subset of RY, and the germ of its integral curve passing through a(x;) is unique up to
parametrization. However, ¢y and ¢ are distinct integral curves of Y such that &y (0) = & (0) = a(x7).
Therefore, we have a contradiction with hypothesis that X(x1) # 0. O

Proposition 7.6. Let S be a d-manifold with corners. For every vector vo € Ty, S tangent to the stratum of the
depth function stratification of S that contains xy = T(vy), there exists a vector field X on S such extending vy,
that is X (xg) = vy.

Proof. If vo = 0, then it extends to the vector field X = 0 on S. Thatis Xf = 0 for every f € C*(S).

If v # 0, consider a charta : V,, — W, C R% = [0, 00)" x R4-" C R on the manifold with
corners S such that V, is a neighbourhood of x in S. and R?. If depth sx = n then, without loss of
generality, we may assume that

n+l _  _ .d _
g = =xp=1,

a(xg) = xo=(x}, .., x8), where x} =..=x =0 and x
a(Vyns") = {(xl,..., xd) € R4 | x'=0,..,x"=0, (x"H,..., xd) celUcC Rd*”}
= {0,} xUCRY,

where U is open in R, For every m € 0,1,...,d, the point (x!, ..., x?) € a(V, N S™) if and only if
exactly m of the coordinates x!, ..., x¢ are zero. A vector v = (0!, ...,v%) is tangent to a(V, N S™) at
(x',...,x") € a(V, N S™) if and only if, for every i = 1,...,d, x' = 0 implies v/ = 0. Since « : V,, —
W, C R? is a diffeomorphism, and the definition of the depth function is independent of the chart, it
follows that v € TyS is tangent at x to S™ if and only if v = Ta(v) is tangent to a(V, N S™) at the point
a(x) = (21, ..., x%).

Thus, for x € S" NV, avectorv € TyS is in T,S™ if and only if xiv' = 0 for everyi =1,..,d, where
(x1, ..., x%) are coordinates of «(x) in RY and (v, ..., v%) are components of Ta(v) € To(x) RY = Ta(xO)Rd.

Since U is open in R?~", there exists € € (0, %) such that the set

We={x=@x,.x)eR? | —e<x<efori=1,.,n
and1—e¢ < x <l+eforj=n+1,..,d}

is an open neighbourhood of a(xg) = xp in W, C R and W, C W,. It follows from the discussion
above that We C U7 _ja(V, N S™).

Let vy = (v),...,v) = Ta(vp) € R? Ta(xO)]Rd. The assumptions about the chart a : V, — W,,
6”“1 =..= vg = 0. By construction, for every x = (x!,..., xd) € W, the
coordinates x"*1, ..., x? do not vanish, and some of the coordinates x?, ..., x" may also be non-zero.
Therefore, for every x = (x, ..., xd) € W, avectorv = (v,..., vd) e T,R? =~ R? guch that v! =
.. = 0" = 0 is tangent to a(V, N S™) for every m < n. On the other hand, for every m > n,
We Na(V, NS™) = Q.

Choose a function f € C*(R?) such that f(xg) = 1and f(x) = 0 for every x ¢ W, and consider
a vector field Y on RY given by

made above, imply that v

Y(x) = f(x)ax,;i+1 +f(x)# . +f(x)%

for every x € RY. Since f € C®(R%), it follows that integral curves of Y have open domains. The
assumption that f(x) = 0 for every x ¢ W, imply that that the integral curves of Y originating in
W, D W, are contained in W,. Therefore, the restriction Y‘ w, of Y to W, is a vector field on W,. The
the push-forward a;1Y| w, be the diffeomorphism a1 : W, — V, is a vector field on V,, which can be
extended to a vector field X € X(S) vanishing outside a = (W) C V,. Since f(a(xq)) = 1, it follows
that X(xo) = vo, which completes the proof. [
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Corollary 7.7. It follows from the the above results that connected components of strata of the depth function
stratification of the manifold with corners S are orbits of the Lie algebra X(S) of all vector fields on S. Hence the
depth function stratification of S is given by the partition I(S) of S by orbits of X(S).

References

1. N. Aronszajn, “Subcartesian and subriemannian spaces”, Notices Amer. Math. Soc., 14 (1967) 111.

2. N. Aronszajn and P. Szeptycki, “Theory of Bessel potentials” IV, Ann. Inst. Fourier, 25 (1975) 27-69.

3. N. Aronszajn and P. Szeptycki, “Subcartesian Spaces”, J. Differential Geometry, 15 (1980) 393-416.

4. L. Bates, R.Cushman and J. Sniatycki, “Vector fields and differential forms on the orbit space of a proper

action”, arXiv:2108.00280v1 [math.DG] 31 Jul 2021.

5. A.Batubange, P. Iglasias-Zenmour, Y. Karshon and J. Watts, “Diffeological, Frolicher, and differential spaces”,
arXiv:1712.04576v1 [math.DG] 13 Dec 2017.

6. J. Cerf, Topologie de certains espaces de plongements, Bull. Soc. Math. France 89 (1961) 227-380.

7. R.Cushman and ]J. Sniatycki, “Aronszajn and Sikorski subcartesian differential spaces”. Bull. Polish Acad.
Sci. Math., 69 (2021) 171-180.

8. M. Goresky and R. MacPherson, Stratified Morse Theory, Springer Verlag Berlin, 1980.

9.  D.]Joyce, "On manifolds with corners ", in: J. Janeczko, J. Li, D.H. Phong (Eds.), Advances in Geometric Analysis
in: Advanced Lectures in Mathematics, vol. 21, International Press, Boston, 2012, pp. 225-258. arxiv:0910.3518

10. C.D. Marshall, "Calculus on subcartesian spaces”, J. Differential Geom. 10 (1975) no. 4, 575-588.

11.  J.N. Mather, "Stratifications and mappings". In Dynamical Systems, M.M. Peixoto (ed.), Academic Press, New
York, 1973, pp. 195-232.

12.  PB. Percel, "Structural stability on manifolds with boundary", Topology, 12 (1973) 123-144.

13.  M.J. Pflaum, Analytic and Geometric Study of Stratified Spaces, Springer Verlag, Berlin, 2001.

14. I Satake, "The Guass-Bonnet theorem for V-manifolds", . Math. Soc. Japan 9 (1957) 464-492.

15. R. Sikorski, “Abstract covariant derivative”, Coll. Math. 18 (1967) 252-272.

16. R. Sikorski, Wstep do Geometrii Rozniczkowej, PWN, Warszawa, 1972.

17.  ]J.W. Smith, “On the de Rham theorem for general spaces”, Tohoku Math. Journ., 18 (1966) 115-137.

18. J. éniatycki, “Orbits of families of vector fields on subcartesian spaces”. Ann. Inst. Fourier (Grenoble), 53
(2003) 2257-2296.

19.  J. Sniatycki, Differential Geometry of Singular Spaces and Reduction of Symmetry, Cambridge University Press,
Cambridge, 2013.

20. P. Walczak, “A theorem on diffeomorphisms in the category of differential spaces”, Bull. Acad. Polon. Sci,,
Ser. Sci. Math. Astronom. Phys. 21 (1973) 325-329.

21. J. Watts, Diffeologies, Differential Spaces and Symplectic Geometry, Ph.D. Thesis, Department of Mathematics,
University of Toronto. Modified September 17, 2023. https:/ /arxiv.org/pdf/1208.3634.pdf

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202311.1212.v1

	Introduction
	Differential Spaces
	Derivations and Vector Fields
	Partition of S by Orbits of X(S)
	Comparison with Stratification
	Transient Derivations
	Manifolds with Corners
	References

