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Article

Intrinsic Geometric Structure of Subcartesian Spaces

Richard Cushman and Jędrzej Śniatycki

Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada

Abstract: Every subset S of a Cartesian spaces Rd, endowed with differential structure C∞(S)

generated by restrictions to S of functions in C∞(Rd), has a canonical partition M(S) by manifolds,

which are orbits of the family X(S) of all derivations of C∞(S) that generate local one-parameter

groups of local diffeomorphisms of S. This partition satisfies the frontier condition, Whitney’s

conditions A and B. If M(S) is locally finite, then it satisfies all definitions of stratification of S. This

result extends to Hausdorff locally Euclidean differential spaces.

Keywords: subcartesian differential space; orbits of family of vector fields

1. Introduction

In the second half of twentieth century the idea of using differential geometry to study spaces

with singularities was floating in the air. In 1955, Satake introduced a notion of a V-manifold in terms

of an atlas of charts with values in quotients of connected open subsets of Rn by a finite group of linear

transformations, [14].

In 1961, Cerf, introduced the notion generalized manifold, now known as manifold with corners,

defined in terms of an atlas of charts with values in open subsets of [0, ∞)k × Rn−k ⊆ Rn, where

k = 0, 1, ...n, [6]. Cerf had all elements of the definition of general class of differential spaces, but he

did not develop the corresponding general theory. He preferred to investigate its example provided by

manifolds with corners.

In 1966, Smith introduced his notion of differentiable structure on a topological space, which consists

of a family of continuous functions on the space, deemed to be smooth, which carry all the information

about the geometry of the space, [17]. Smith used the term differentiable spaces, and he he studied the

de Rham Theorem on differentiable spaces.

In 1967, Sikorski generalized the approach of Smith and used it to discuss the notion of an abstract

covariant derivative, [15]. Sikorski used the term differential structure for the collection of functions

on a topological space deemed to be smooth, and the term differential space for a topological space

endowed with a differential structure. In 1974, Sikorski published a book on differential geometry, in

which he started with developement of the theory of differential spaces and later specified the spaces

under consideration to be smooth manifolds, [16]. Sikorski used his book as the text in his master level

course of differential geometry at the University of Warsaw. Even though Sikorski’s book was written

in Polish, it was appreciated by a sizeable group of of international scientists. Also in 1967, Aronszajn

introduced, in the abstract to his presentation at a Meeting of the American Mathematical Society, [1],

the notion of a subcartesian space, as a Hausdorff topological space that is locally diffeomorphic to a

subset of a Cartesian (Euclidean) space. The local diffeomorphisms used by Aronszajn formed an

atlas, similar to that introduced by Cerf. A more comprehensive presentations of this theory and its

applications were given by Aronszajn and Szeptycki in 1975, [2], and in 1980, [3].

There are other theories allowing for study of differential geometry of singular spaces. For a more

comprehensive review see [5].

Here, we concentrate on theories of Aronszajn and Sikorski. The strength of Aronszajn’s approach

is his choice of assumptions, which are satisfied by most finite dimensional examples. On the other

hand, Sikorski made the weakest assumptions. It leads to simplicity of the basic presentation of the

theory, and makes other theories to be special cases of Sikorski’s theory of differential spaces.The

relation between the theories of Aronszajn and of Sikorski was discussed first by Walczak in 1973, [20].
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In 2021, we exhibited a natural transformation from the category od subcartesian spaces to the category

of Hausdorff locally Euclidean differential spaces, [7]. Since Hausdorff locally Euclidean differential

spaces can be identified with corresponding subcartesian spaces, we treat the terms Hausdorff locally

Euclidean differential space and subcartesian space as synonims and use tham interchangeably. Aronszajn’s

term is shorter and it is well known to experts, but it does not convey much information to uninitiated.

That is why we use the longer term in the abstract and explanations. In the proofs we use the shorter

term.

The theory of differential spaces attracted a fair amount of interest, see [19] and references cited

there. In the next section, we give a brief review of the elements of this theory that are essential for

subsequent developement.

In Section 3, we give a more comprehensive review of results on derivations of the differential

structure of a differential space and their integration. We introduce the term vector fields on a

subcartesian space S (Hausdorff locally Euclidean differential space) for derivations of C∞(S) that

generate one-parameter groups of local diffeomorphisms of S. In [18] it was proved that orbits of the

family of all vector fields on a subcartesian space S form a partition M(S) of S by smooth manifolds.

In Section 4, we study the partition M(S) of a diffferential space S by orbits of the family of all

vector fields on S, which is the main objective of this paper. In the case when the differential space

under consideration is a connected manifold M, the Lie algebra of local one-parameter groups of local

diffeomorphisms of M acts transitively of M, which means that the corresponding partition of M is

trivial, it consists of a single orbit. We show that the partition M(S) satisfies the frontier condition,

Whitney’s conditions A and B, and it leads to a filtration of S by closed subsets.

In Section 5, we compare the results of Section 4 with various definitions of stratifications. If the

partition M(S) is locally finite then it satisfies all definitions of a stratification of a closed subset of a

smooth manifold.

In Section 6, we briefly relate derivations that are not vector fields to transient vector fields on

manifolds with boundary discussed by Percel [12]. These derivations generate transitions between

different manifolds of the partition M(S).

In Section 7, we apply our approach to manifolds with corners. According to Cerf’s definition,

[6], a manifold with corners S is a locally closed subcartesian space. Following Joyce’s formulation of

the theory of manifolds with corners, [9], we show that the depth function stratification of S coincides

with the partition M(S), and it satisfies Whitney’s conditions A and B.

The second author is greatly indebted to Dominic Joyce for helpful and stimulating e-mails.

2. Differential Spaces

Definition 2.1. A differential structure on a topological space S is a family C∞(S) of real valued functions on

S that satisfy the following conditions.

1. The family

{ f−1(I) | f ∈ C∞(S) and I is an open interval in R}

is a sub-basis of the topology of S.

2. If f1, ..., fn ∈ C∞(S) and F ∈ C∞(Rn), then F( f1, ..., fn) ∈ C∞(S).

3. If f : S → R is a function such that, for each x ∈ S, there is an open neighbourhood V of x in S and a

function fx ∈ C∞(S) satisfying

f
x |V = f|V ,

then f ∈ C∞(S).

A topological space S endowed with a differential structure C∞(S) is called differential space.
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A simple way of definig a differential structure on a set S is as follows. Choose a family of

functions F on S. Endow S with the topology generated by a sub-basis

{ f−1(I) | f ∈ F and I is an open interval in R}. (1)

The differential structure C∞(S) generated by F consists of functions h : S→ R such that, for each x ∈ S,

there exist an open neighbourhood V of x, an integer n ∈ N, functions f1, ..., fn ∈ F , and F ∈ C∞(Rn)

such that

h|V = F( f1, ..., fn)|V . (2)

It is easy to see that that the differential structure C∞(S) generated by F satisfies all conditions of

Definition 2.1.

Below, we are using the method, outlined above, to generate differential structures of products,

subsets and quotients of differential spaces.

Definition 2.2. Let (S, C∞(S)) and (R, C∞(R)) be differential spaces. Choose

F = {S× R→ R : (x, y) 7→ f (x)g(y) | f ∈ C∞(S) and g ∈ C∞(R)} ,

where f (x)g(y) is the product in R of the numbers f (x) and g(y). It is easy to see that, for this choice of F ,

equation (1) gives a sub-basis of the product topology on S× R.The diferential structure C∞(S× R) generated

by F is called the product differential structure.

Definition 2.3. Let (S,C∞(S)) be a differential space, and let R be a subset of S. Let

R(R) = { f|R | f ∈ C∞(S)}

be the family of restrictions to R of smooth functions on S. Equation (1) with F = R(R) gives a sub-basis of

the topology in R induced by its inclusion in S. The differential structure of R generated by F = R(R) is

called the subspace differential structure, and we refer to R as a differential subspace of S. We also refer to the

differential structure of R ⊆ S generated by F = R(R) as the differential structure induced by the inclusion of

R in S.

Definition 2.4. Let (S, C∞(S)) be a differential space. An equivalence relation ∼ on S defines a subset R of

S× S such that, if (x, y) ∈ S× S, then

(x, y) ∈ R if and only if x ∼ y.

For each x ∈ S we denote by [x] the ∼ equivalence class x. Let Q = S / ∼ be the set ot equivalence classes of

the relation ∼ in S, and let π : S→ Q be the projection map given by π(x) = [x] for every x ∈ S. The quotient

differential structure of Q is

C∞(Q) = { f : Q→ R | π∗ f = f ◦ π ∈ C∞(S)}

It should be noted that the topology of Q defined by the differential structure C∞(Q) need not coincide with the

quotient topology of Q.

Let (S, C∞(S)) and (R, C∞(R)) be differential spaces.

Definition 2.5. A continuous map ϕ : S→ R is smooth if for each f ∈ C∞(R) the pull back ϕ∗ f = f ◦ ϕ is

in C∞(S). A smooth map ϕ : S→ R is a diffeomorphism if it is invertible and its inverse is smooth.

Note that, if (S, C∞(S)) and (R, C∞(R)) are differential spaces, and a map f : S→ R is smooth,

then it is a homeomorphism of the underlying topological spaces. Differential spaces and smooth

maps form a category.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 November 2023                   doi:10.20944/preprints202311.1212.v1

https://doi.org/10.20944/preprints202311.1212.v1


4 of 21

Sikorski’s theory of differential spaces is the most general approach to C∞-differential geometry

of singular spaces. Of special interest here are differential spaces that are locally diffeomorphic to

differential subspaces of Euclidean spaces.

Definition 2.6. A differential space (S, C∞(S)) is locally Euclidean if, for every x ∈ S, there exists an open

neighbour V of x in S,a subset W of some Rn and a diffeomorphism α : V →W,where V is endowed with the

differential structure C∞(V) induced by its inclusion in S and W is endowed with the differential structure

C∞(W) induced by its inclusion in Rn.

Definition 2.7. A Hausdorff locally Euclidean differential space (S, C∞(S)) is a subcartesian space of

Aronszajn.

Proof. Since (S, C∞(S)) is a locally Euclidean differential space, local diffeomorphisms α : Vα →Wα,

where Vα is an open differential subspace of S and Wα a differential subspace of some Rdα generate a

complete atlas A(S) = {α : Vα →Wα} of S, which satisfies the following conditions:

(1). The family {Vα | α ∈ A(S)} of open sets in S forms a covering of S.

(2). For every α, β ∈ A(S), and every x ∈ Vα ∩ Vβ, there exists a C∞-mapping Φα of an open

neighbourhood Uα of α(x) ∈ Rdα to Rdβ , which extends the mapping

β ◦ α−1 : α(Vα ∩Vβ)→ β(Vα ∩Vβ),

and a C∞-mapping Φβ of an open neighbourhood Uβ of β(x) ∈ Rdβ to Rdα , which extends the mapping

α ◦ β−1 : β(Vα ∩Vβ)→ α(Vα ∩Vβ).

(3). C∞(S) consists of continuous function f : S→ R on S such that, for every chart α : Vα →Wα ⊆ Rdα ,

there exists an open set Uα in Rdα containing Wα, and a smooth function F ∈ C∞(Uα) such that

f ◦ α−1 : Wα → R is the restriction of F to Wα ⊆ Uα.

These conditions, together with the assumptionthat S is Hausdorff, define a subcartesian space of

Aronszajn, [1]. and [? ].

Proof. In order to complete the proof, we show that that a continuous map ϕ : S→ R of Hausdorff

locally Euclidean differential spaces with complete atlases A(S) = {α : Vα → Wα} and A(R) = {β :

Vβ → Wβ}, respectively, is smooth if and only if, for every x ∈ S, there exist α ∈ A(S) and β ∈ A(R)

such that x ∈ Vα, ϕ(Vα) ⊆ Vβ and the mapping

Φαβ = β ◦ ϕ ◦ α−1 : Wα →Wβ : x 7→ y = Φαβ(x) (3)

extends to a C∞ mapping

Fαβ : Uα → Uβ : x 7→ y = Fαβ(x), (4)

where Uα is an open subset of Rdα containing Wα and Uβ is an open subset of Rdβ containing Wβ.

(a). Let ϕ : S → R be a map between subcartesian spaces. Assume that every transition map Φαβ,

given by equation (3) has a smooth extension Fαβ such that

Φαβ : Wα →Wβ : x 7→ y = Fαβ|Wα(x). (5)

The components of Φαβ with respect to the Cartesian coordinates (y1, ..., ydR) on RdR are

Φi
αβ = Φ∗αβyi

|Wβ
for i = 1, ...., dR..
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Since Φαβ = Fαβ|Wβ
, it follows that each component, Φi

αβ = Φ∗αβyi
|Wβ

of Φ, is the restriction of the

corresponding component of

FαβΦi
αβ = (Fαβ|Wα

)∗yi
|Wβ

f or i = 1, ...., dR. (6)

Next, given h ∈ C∞(R), we want to show that f = ϕ∗h = h ◦ ϕ ∈ C∞(S). In terms of the charts

α : Vα →Wα on S and β : Vβ →Wβ on R, given above, h|Vβ
: Vβ → R, and h ◦ β−1 : Wβ → R. Similarly,

f ◦ α−1 : Wα → R, and

f ◦ α−1 = (ϕ∗h) ◦ α−1 = h ◦ ϕ ◦ α−1 = (h ◦ β−1) ◦ β ◦ ϕ ◦ α−1 = (h ◦ β−1) ◦Φαβ. (7)

Since R is a locally Euclidean differential space, and h ∈ C∞(R), it follows that there exists a smooth

function hβ : U′β → R, where U′β is open in R and contains Wβ, such that (β−1)∗h = h ◦ β−1 = hβ|Wβ
.

Without loss of generality, we may assume that U′β = Uβ. Hence, equations (7) and (5) imply that

f ◦ α−1 = (h ◦ β−1) ◦Φαβ = hβ|Wβ
Fαβ|Wα

.

Hence, f ◦ α−1 : Wα → R is the restriction to Wα of a C∞ function hβFαβ : Uα → Uβ.

This result holds for all x ∈ S and every pair of charts (α, β) such that x ∈ Vα, ϕ(x) ∈ Vβ, and

ϕ ◦ α−1(Wα) ⊆ Vβ. Hence , f = ϕ∗h = h ◦ ϕ ∈ C∞(S) for every h ∈ C∞(R). Therefore, the map

ϕ : S→ R is smooth.

(b). In order to prove the implication in the opposite direction assume that a map ϕ : S → R is

smooth in the sense of differential spaces. That is, ϕ∗h ∈ C∞(S) for every h ∈ C∞(R). Equations (3)

and (7) yield

(ϕ∗h) ◦ α−1 = (h ◦ β−1) ◦Φαβ. (8)

For x ∈ Vα and y = ϕ(x) ∈ Vβ, let y1, ..., ydβ be Cartesian coordinates in Rdβ . We are going to construct

functions h1, ..., hdβ in C∞(R) such that, for each i = 1, ..., dRβ , hi ◦ β−1 = yi in a neighbourhood of β(y)

in Wβ ⊆ Rd.

There exists an open set Vy in R such that y ∈ Vy ⊆ Vy ⊆ Vβ. Since Vy ⊆ Vy ⊆ Vβ, continuity of

ϕ : S→ R implies that Vx = Vα ∩ ϕ−1(Vy) is an open subset of S. Moreover, ϕ(Vx) ⊆ Vy and

ϕ(Vx) ⊆ ϕ(Vx) ⊆ Vy ⊆ Vβ.

Hence, Vx ⊆ ϕ−1(Vβ) ⊆ Vα so that

Vx ⊆ Vx ⊆ Vα. (9)

For each i = 1, ..., dβ, β∗yi
|Wβ

is a smooth function on Vβ. Using partition of unity in R, we can

construct a function hi
y ∈ C∞(R) such that

hi
y|Vy

= (β∗yi
|Wβ

)|Vy
and hi

y|R\Vβ
= 0. (10)

Since ϕ : S → R is a smooth map of differential spaces, with differential structures C∞(S) and

C∞(R), respectively, and h1
y, ..., hdR

y ∈ C∞(R), it follows that ϕ∗h1
y, ..., ϕ∗hdR

y are in C∞(S). Moreover,

Vx = Vα ∩ ϕ−1(Vy) is an open neighbourhood of x in Vα ⊆ S, α(Vx) is an open subset of Wα, and

ϕ(Vx) ⊆ Vy. Hence, for every i = 1, ..., dβ, the restriction of ϕ∗hi
y to Vx is

ϕ∗hi
y|Vx

= hi
y ◦ ϕ|Vx

= hi
y|Vβ
◦ ϕ|Vx

= (β∗yi
|Wβ

) ◦ ϕ|Vx
= yi

|Wβ
◦ (β ◦ ϕ)|Vx

, (11)
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so that

(hi
y ◦ ϕ ◦ α−1)α(Vx) = yi

|Wβ
◦ (β ◦ ϕ ◦ α−1)|α(Vx). (12)

This implies that the restriction of Φαβ to α(Vx) is given in Cartesian coordinates on Rdβ by

Φαβ|α(Vx) : α(Vx)→Wβ : x 7→ y = Φαβ(x) (13)

= (((ϕ∗h1
y) ◦ α−1)(x), ..., (ϕ∗(hdR

y ) ◦ α−1)(x))

= (((h1
y ◦ ϕ) ◦ α−1)(x), ..., ((hdR

y ◦ ϕ) ◦ α−1)(x)).

Since ϕ∗h1
y, ..., ϕ∗h

dβ
y ∈ C∞(S), Definition 2.6(3) ensures that, for every i = 1, ..., dR, there exists an open

set Ui in RdS containing Wα, and a smooth function Fi ∈ C∞(Ui) such that ϕ∗hi
y ◦ α−1 : Wα → R is the

restriction of Fi to Wα ⊆ Ui. The intersection U = ∩dR
i=1Ui is open in RdS and α(Vx) ⊆ α(Vα) = Wα.

Hence Φαβ|α(Vx) : α(Vx) → Wβ is the restriction to α(Vx) of (F1
|U , ..., F

dβ

|U
) ∈ C∞(U,RdR) to domain

α(Vx) and codomain Wβ.

The above result can be established for every x ∈ S. Therefore, the map ϕ : S → R is a smooth

map between subcartesian spaces.

In view of Proposition 2.1.7 we identify the terms Hausdorff locally Euclidean differential space

and subcartesians space. The first term is more transparent, while the second term is well known to

specialists in the field.

3. Derivations and Vector Fields

Definition 3.1. Let S be a differential space. A derivation of C∞(S) is a linear map X : C∞(S) → C∞(S) :

f 7→ X f satisfying Leibniz’s rule

X( f1 f2) = (X f1) f2 + f1(X f2) (14)

for every f1, f2 ∈ C∞(S).

Let Der C∞(S) denote the space of deriviations of C∞(S). It is a Lie algebra with Lie bracket

[X1, X2] f = X1(X2 f )− X2(X1 f ) (15)

for every X1, X2 ∈ Der C∞(S) and every f ∈ C∞(S). In addition, Der C∞(S) is a module over the ring

C∞(S) with [ f X1, X2] = f [X1, X2] and

[X1, f X2] = (X1 f )X2 + f [X1, X2] (16)

for every X1, X2 ∈ Der C∞(S) and every f ∈ C∞(S).

Definition 3.2. Let ϕ : R→ S be a smooth map of differential spaces with differential structures C∞(R) and

C∞(S), respectively. Derivations X in Der C∞(S) and Y in Der C∞(R) are ϕ-related if

ϕ∗(Y( f )) = X(ϕ∗ f )

for every f ∈ C∞(R).

Suppose that the map ϕ : R → S in Definition 3.1.2 is a diffeomorphism, that is ϕ−1 : R → S

exists and is smooth. For every derivation X ∈ Der C∞(R) there exists a unique derivation ϕ∗X

∈ Der C∞(S),

ϕ∗X : C∞(S)→ C∞(S) : f 7→ (ϕ∗X) f = (ϕ−1)∗(X(ϕ∗ f )), (17)

which is ϕ-related to X. It is called the push-forward of X by ϕ. Moreover,

ϕ∗ : Der C∞(R)→ Der C∞(S) : X 7→ ϕ∗X
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is a Lie algebra diffeomorphism.

Suppose now that (S, C∞(S)) is a differential space and V is an open subset of S. By Definition

2.3, the differential structure C∞(V) of V is generated by

R(V) = { f|V | f ∈ C∞(S)}.

A continuous function h : V → R is in C∞(V) if and only if, for every x ∈ V, there exists an open

subset U on V, and a function f ∈ C∞(S), such that h|U = f|U . Since V is open in S, it follows that for

every f ∈ C∞(S) the restriction f|V of f to V is in C∞(V). Hence, R(V) ⊆ C∞(V). Moreover, every

X ∈ Der C∞(S) restricts to a derivation X|V ofR(V), given by

X|V : R(V)→ R(V) : f|V 7→ X|V f|V = (X f )|V .

We want to extend the derivation X|V to all functions in C∞(V). Suppose that h ∈ C∞(V)\R(V).

For every x ∈ V, there exists an open subset U of V, and a function f ∈ C∞(S), such that h|U = f|U .

Since U is open in V and V is open in S, it follows that U is open in S. The argument above, applied to

U, implies that every X in Der C∞(S) restricts to a derivation X|U of

R(U) = { f|U | f ∈ C∞(S)},

given by

X|U : R(U)→ R(U) : f|U 7→ X|U f|U = (X f )|U .

Since, U is open in V, it follows that

R(U) = { f|U | f ∈ C∞(S)} = {( f|V)|U | f ∈ C∞(S)} = {( f|V)|U | f|V ∈ R(V)}

and

X|U f|U = (X f )|U = X|U f|U = ((X f )|V)|U = (X|V f|V)|U = (X|V)|U( f|V)|U = (X|V)|U f|U ,

so that X|U = (X|V)|U . Thus, h|U = f|U implies that we may extend the definition of X|V to h ∈

C∞(V)\R(V) by setting

(X|Vh)|U = X|U f|U

whenever h|U = f|U for f ∈ C∞(S) and U is open in V.

We need to verify that this definition is consistent. Suppose that U′ is another open subset of V

such that U ∩U′ 6= ∅. Then U ∩U′ is open in V and we may evaluate(X|Vh)|U∩U′ in two ways:

(X|Vh)|U∩U′ = ((X|Vh)|U)|U∩U′ = (X|U f|U)|U∩U′ = X|U∩U′ f|U∩U′ ,

(X|Vh)|U∩U′ = ((X|Vh)|U′)|U∩U′ = (X|U′ f|U′)|U∩U′ = X|U∩U′ f|U∩U′ ,

obtaining the same result.

Conclusion 3.3. If V is an open differential subspace of S, then every X ∈ Der C∞(S) restricts to a derivation

X|V of C∞(V). If ι : V → S is the inclusion map then

ι∗(X( f )) = (X f )|V = X|V f|V = X|V(ι
∗ f )

for every f ∈ C∞(S). In other words, X and X|V are related by the inclusion map.

Next, we show that derivations of the differential structure of a subcartesian space admit unique

maximal integral curves.
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We begin with a review of the notion of integral curves of vector fields on manifolds. Let M be

a smooth manifold and X a vector field on M. A smooth map c : I → M of an interval I ⊆ R is an

integral curve of X if

d

dt
f (c(t)) = (X f )(c(t)) for every f ∈ C∞(M) and every t ∈ I. (18)

In other words, c : I → S is an integral curve of X if Tc(t) = X(c(t)) for every t ∈ I.

If t0 ∈ I and x0 = c(t0), we may reparametrize the curve by a shift s : I → Ĩ : t 7→ t̃ = t− t0,

obtaining an integral curve c̃ : Ĩ → M : t̃ 7→ c̃(t̃) = c(t− t0) of X such that c̃(0) = x0. We say that

c̃ : Ĩ → M is an integral curve is an integral curve of X that originates at x0.

We generalize this definition to subcartesian spaces. Let c : I → S be a smooth map of an interval

I in R, containing 0, to a subcartesian space S, a derivation X of C∞(S) and a point x0 ∈ S. Suppose

that

c(0) = x0 and
d

dt
f (c(t)) = (X f )(c(t)) for every f ∈ C∞(S) and every t ∈ I. (19)

If the interval I has non-empty interior, then the conditions above are well defined and we may call

c : I → S an itegral curve of X originating at x0. However, there exist subcartesian spaces in which no

two distinct points are arc connected.

Example 3.4. Let Q be the set of rational numbers in R, and C∞(Q) consists of restrictions to Q of smooth

functions on R. Since Q is dense in R, it follows from equation (2) that every derivation of C∞(R) induces a

derivation of C∞(Q). Let X be the derivation of C∞(Q) induced by the derivative d
dx on C∞(R). In other words,

for every f ∈ C∞(Q) and every x0 ∈ Q,

(X f )(x0) = lim
x→x0

f (x)− f (x0)

x− x0
,

where the limit is taken over x ∈ Q. On the other hand, no two distinct points in Q can be connected by a

continuous curve.

In order to avoid saying that that in the Example 3.4 non-zero derivations have no integral curves,

we redefine the notion of an integral curve by allowing its domain I shrink to a point. With this

modification, every derivation X of C∞(Q) has an integral curve c : I → Q originating at x0 ∈ Q with

I = (0) and c(0) = x0. Thus, we adopt the following formal definition.

Definition 3.5. Let S be a subcartesian space and X a derivation of C∞(S). An integral curve of X originating

at x0 ∈ S is a map c : I → S, where I is a connected subset of R containing 0, such that c(0) = x0 and

d

dt
f (c(t)) = (X f )(c(t)) for every f ∈ C∞(S) and every t ∈ I, (20)

whenever the interior of I is not empty.

Integral curves of a given derivation X of C∞(S) starting at x0 can be ordered by inclusion of

their domains. In other words, if c1 : I1 → S and c2 : I2 → S are two integral curves of X, such that

c1(0) = c2(0) = x0, and I1 ⊆ I2, then c1 � c2. An integral curve c : I → S of X is maximal if c � c1

implies that c = c1.

Theorem 3.6. Let S be a subcartesian space and let X be a derivation of C∞(S). For every x ∈ S, there exists a

unique maximal integral curve c of X such that c(0) = x.

Proof. The modification of the definition of an integral curve, given in Definition 3.5, allows for closing

the hole in the proof of Theorem 3.2.1 in [19]. For the sake of clarity, we include here the complete

proof.
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(i) Local existence. Consider the defining equation for an integral curve c : I → S of X originating

at x :

c(0) = x and
d

dt
f (c(t)) = (X f )(c(t)) for every f ∈ C∞(S) and every t ∈ I.

If I = {0}, then the integral curve c consists of one point c(0) = x. If I has non-empty interior, then it

is an interval in R, possibly unbounded, and we need to consider the differential equation (20).

Let ϕ be a diffeomorphism of a neighbourhood V of x in S onto a differential subspace R of Rn.

Let Z = ϕ∗X|V be a derivation of C∞(R) obtained by pushing forward the restriction of X to V by ϕ.

In other words,

Z( f ) ◦ ϕ = X|V( f ◦ ϕ)

for all f ∈ C∞(R). Without loss of generality, we may assume that there is an extension of Z to a vector

field Y on Rn.

Let z = ϕ(x), and c0 be an integral curve in Rn of the vector field Y such that c0(0) = z. Let Ix

be the connected component of c−1
0 (R) containing 0, and let c : Ix → R be the restriction of c0 to Ix.

Clearly, c(0) = z. We have to consider two cases: (1) Ix = {0} and (2) Ix is an interval in R. In the

first case, c : {0} → S : 0 7→ x is an integral curve of X originating at x.1 In the second case, for each

t0 ∈ Ix and each f ∈ C∞(R) there exists a neighbourhood U of c(t0) in R and a function F ∈ C∞(Rn)

such that f|U = F|U . Therefore,

d

dt
f (c(t))|t=t0

=
d

dt
F(c(t))t=t0 = (Y(F))(c(t0))

= (Y(F))|U(c(t0)) = (Z( f ))(c(t0)),

which implies that c : Ix → R is an integral curve of Z through z.

Since Ix is an interval, cx = ϕ−1 ◦ c : Ix → V ⊆ S satisfies cx(0) = ϕ−1(c(0)) = ϕ−1(z) = x.

Moreover, for every t ∈ Ix and h ∈ C∞(S), f = h ◦ ϕ−1 ∈ C∞(R) and

d

dt
h(cx(t)) =

d

dt
h(ϕ−1(c(t))) =

d

dt
(h ◦ ϕ−1)(c(t))

=
d

dt
( f (c(t)) = Z( f )(c(t))

= Z(h ◦ ϕ−1)(ϕ ◦ cx(t)) = X(h)(cx(t)).

Thus, cx : Ix → S is an integral curve of X through x.

(ii) Smoothness. It follows from the theory of differential equations that the integral curve c0 in

Rn of a smooth vector field Y is smooth. Hence, c = c0|Ix
is smooth. Since ϕ is a diffeomorphism of a

neighbourhood of x in S to R, its inverse ϕ−1 is smooth, and the composition cx = ϕ−1 ◦ c is smooth.

(iii) Local uniqueness. This follows from the local uniqueness of solutions of first order

differential equations in Rn.

(iv) Maximality. If there are no integral curves c : I → S of X originating at x such that the

interior of I is not empty, then c : {0} 7→ {x} is maximal. Otherwise, suppose that there is an

integral curve c : I → S of X originating at x has domain I with endpoints p < q, where p ≤ 0 and

q ≥ 0. If q ∈ I, q = ∞, or limt→q− c(t) does not exist, then the curve c does not extend beyond q. If

x1 = limt→q− c(t) exists, then it is unique because S is Hausdorff and we can repeat the construction

of section (i) beginning with the point x1. In this way, we obtain an integral curve c1 : I1 → S of X

with the initial condition c1(0) = x1. Let Ĩ1 = I ∪ {t = q + s | s ∈ I1 ∩ [0, ∞)}, and c̃1 : Ĩ1 → S be given

by c̃1(t) = c(t) if t ∈ I and c̃1(t) = c1(t− q) if t ∈ {q + s | s ∈ I1 ∩ [0, ∞)}. Clearly, c̃1 is continuous.

1 This argument was missing in the proof of Theorem 3.2.1 in [19].
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Moreover, since x1 = limt→q− c(t), it follows that the lower end point p1 of I1 is strictly less than zero.

Hence, the restriction of c to (max(p, p1) + q, q) differs from the restriction of c1 to (max(p, p1), 0) by

reparametrization t 7→ t− q. Since c and c1 are smooth, it follows that c̃1 is smooth. Let q1 be the upper

limit q1 of I1. If q1 ∈ I1, q1 = ∞, or limt→q−1
c1(t) does not exist, then the curve c1 does not extend

beyond q1. Otherwise, we can extend c̃1 by an integral curve c2 of X through x2 = limt→q−1
c1(t).

Continuing the process we obtain a maximal extension for t ≥ 0. In a similar way we can construct a

maximal extension for t ≤ 0.

(v) Global uniqueness. Let c : I → S and c′ : I′ → S be two maximal integral curves of X

through x and

T+ = {t ∈ I ∩ I′ | t > 0 and c(t) 6= c′(t)}.

Suppose that T+ 6= ∅. Since T+ is bounded from below by 0, there exists a greatest lower bound l of

T+. This implies that c(t) = c′(t) for 0 ≤ t ≤ l and, for every ε > 0, there exists tε ∈ T+ such that

l < tε < l + ε and c(tε) 6= c′(tε). Let xl = c(l) = c′(l) and cl : Il → S be an integral curve of X through

xl constructed as in section (i). We denote by ql the upper end point of the interval Il . If ql > 0, the local

uniqueness implies that c(t) = c′(t) = cl(t− l) for all l ≤ t ≤ l + ql . Hence, we get a contradiction

with the assumption that l is the greatest lower bound of T+. If ql = 0, then there is no extension of

cl to t > 0. Let q and q′ be the upper endpoints of I and I′, respectively. Since c and c′ are maximal

integral curves of X, it follows that q = q′ = l. Hence, the set T+ is empty. A similar argument shows

that

T− = {t ∈ I ∩ I′ | t < 0 and c(t) 6= c′(t)} = ∅.

Therefore, c(t) = c′(t) for all t ∈ I ∩ I′. If I 6= I′, then we get a contradiction with the assumption that

c and c′ are maximal. Hence, I = I′ and c = c′.

Let X be a derivation of C∞(S). We denote by etX(x) the point on the maximal integral curve of X,

originating at x, corresponding to the value t of the parameter. Given x ∈ S, etX(x) is defined for t in

an interval Ix containing zero, and e0X(x)(x) = x. If t, s, and t + s are in Ix, s ∈ IetX(x), and t ∈ IesX(x),

then

e(s+t)X(x) = esX(etX(x)) = etX(x)(esX(x)).

Proposition 3.7. For every derivation X of the differential structure C∞(S) of a subcartesian space and a

diffeomorphism ϕ : S→ R,

etϕ∗X = ϕ ◦ etX ◦ ϕ−1.

Proof. For each f ∈ C∞(R) and y = ϕ(x) ∈ R,

d

dt
f ((ϕ ◦ etX ◦ ϕ−1)(y)) =

d

dt
f (ϕ ◦ etX)(x)

=

(

Tϕ

(

d

dt
etX(x)

))

( f ) =

(

d

dt
etX(x)

)

(ϕ∗ f )

= X(ϕ∗ f )(etX(x)) by equation (19)

= ϕ∗(ϕ∗X( f ))(etX(x)) by equation (17)

= (ϕ∗X( f ))(ϕ(etX(x))) = (ϕ∗X( f ))(ϕ(etX(ϕ−1(y)))

= (ϕ∗X( f ))(ϕ ◦ etX ◦ ϕ−1)(y).

Hence, t 7→ (ϕ ◦ etX ◦ ϕ−1)(y) is an integral curve of ϕ∗X through y.

In the case when S is a manifold, the map etX is a local one-parameter group of local

diffeomorphisms of S. For a subcartesian space S, etX : x 7→ etX(x) might fail to be a local

diffeomorphism.
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Definition 3.8. A vector field on a subcartesian space S is a derivation X of C∞(S) such that for every x ∈ S,

there exists an open neighbourhood U of x in S and ε > 0 such that for every t ∈ (−ε, ε), the map etX(x) is

defined on U, and its restriction to U is a diffeomorphism from U onto an open subset of S. In other words, X is

a vector field on S if etX is a local 1-parameter group of local diffeomorphisms of S.

Notation 3.9. We denote by X(S) the familly of all vector fields on a subcartesian space S.

Example 3.10. Consider S = [0, ∞) ⊆ R with the structure of a differential subspace of R. Let (X f ) = d f
dx for

every f ∈ C∞([0, ∞)) and x ∈ [0, ∞). Note that the derivative at x = 0 is the right derivative; it is uniquely

defined by f (x) for x ≥ 0. For this X, the map etX is given by etX(x) = x + t whenever x and x + t are

in [0, ∞). In particular, for every neighbourhood U of 0 in [0, ∞) there exists δ > 0 such that [0, δ) ⊆ U.

Moreover, etX maps [0, δ) onto [t, δ + t), which is not an open neighbourhood of t = etX(0) in [0, ∞). Hence,

the derivation X is not a vector field on [0, ∞). On the other hand, for every f ∈ C∞[0, ∞) such that f (0) = 0,

the derivation f X is a vector field, because 0 is a fixed point of et f X . �

Theorem 3.11. Let S be a subcartesian space. A derivation X of C∞(S) is a vector field on S if the domain of

every maximal integral curve of X is open in R.

Proof. 2 Theorem 3.6 ensures that maximal integral curves of vector fields have non-empty open

domains. This implies that, if a derivation X of C∞(S) has a maximal integral curve of the type

c : {0} → {x} : 0 7→ x, then it cannot be a vector field. Hence, in the remaining of the proof we need

not consider integral curves of this type.Consider the case when S is a differential subspace of Rn. Let

X be a derivation on S such that domains of all its integral curves are open in R. In other words, for

each x ∈ S, the domain Ix of the map t 7→ etX(x) is an open interval in R.

This implies that no maximal integral curve of X is defined only for t = 0. We need to show that

the map x 7→ etX(x) is a local diffeomorphism of S.

Given x0 ∈ S ⊆ Rn, there exists an open neighbourhood W0 of x0 such that the restriction of X

to W0 extends to a vector field Y on an open subset Ū0 ⊆ Rn, containig W0. We show first that the

restriction of X to W0 generates a local one-parameter group of local diffeomorphisms of W0.

Since open sets in S are the intersections with S of open sets in Rn, without loss of generality we

can write W0 = U0 ∩ S. Let etY denote the local one-parameter group of local diffeomorphisms of U0

generated by Y. There exists an open neighbourhood U1 of x0, contained in U0, and ε > 0 such that,

for every t ∈ (−ε, ε), the map etY : U1 → etY(U1) ⊆ U0 is a diffeomorphism of U1 onto its image.

Let W1 = U1 ∩ S ⊆W0. Since Y|W0
= X|W0

, the assumption that maximal integral curves of vector

fields have non-empty open domains ensures that, for every x ∈W1 ⊆W0, there is δx > 0 such that

etY(x) = etX(x) ∈ W0 = U0 ∩ S for all t ∈ (−δx, δx). Let ιW1
= inf {δx | x ∈ W1} be the , the infimum

of the set {δx | x ∈W1 ⊆ Rn}. Since each δx > 0 it follows that ιW1
≥ 0.

(1) If ιw1
> 0, then there is a neigbourhood W2 of x0 contained in W1 and ε1 ∈ (0, ε) such that, for

every t ∈ (−ε1, ε1), the map etX : W2 → etX(W2) ⊆ W1 is a diffeomorphism of W2 onto its image. In

this case, the restriction of X to W1 ∋ x0 is a vector field on W1.

(2) Suppose that ιW1
= 0. Since the domain of every maximal integral curve of X is open in R, it

follows that the closure W1 of W1 has non-empty intersection with the part of the boundary S̄∩ (Rn\S)

of S that is not contained in S. In this case there exists an open set V ⊂ S such that x0 ∈ V ⊂ V ⊂ W1

so that V has empty intersection with the part of the boundary S̄ ∩ (Rn\S) of S that is not contained

in S. Then ιV = inf{δx | x ∈ V} > 0, and there exists a neighbourhood W2 of x0 contained in V and

ε1 ∈ (0, ε) such that, for every t ∈ (−ε1, ε1), the map etX : W2 → etX(W2) ⊆ V is a diffeomorphism of

W2 onto its image. In this case, the restriction of X to V ∋ x0 is a vector field on V.

2 This proof is an improvement of the proof of Proposition 3.2.6 in [19]. Not only it does not require the assumption that S is
locally closed, but it is complete and more transparent.
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These arguments can be repeated for every x0 ∈ W0 ⊆ S. Hence, the restriction of X to W0 is a

vector field on W. Similarly, we can repeat these arguments for every x0 ∈ S, concluding that X is a

vector field on S.

Consider now the case of a general subcartesian space S. Let X be a derivation of C∞(S) such that

the domains of all its maximal integral curves are open. For every x ∈ S there exists a neighbourhood

W of x in S and a diffeomorphism χof W onto a differential subspace SW of Rn. Since W is open in

S, maximal integral curves of the restriction X|W of X to W are open domais. The diffeomorphism

χ : W → SW pushes-forward X|W of X to a derivation χ∗X|W of C∞(SW) with the same properties.

That is all integral curves of χ∗X|W have open domains. By the argument above, χ∗X|W is a vector

field on SW .

Since χ : W → SW is a diffeomorphism, it follows that X|W is a vector field on W. This argument

can be repeated at every point x ∈ S. Therefore, for every x ∈ S, the derivation X restricts to a vector

field in a an open neighbourhood of of x.

Therefore, X is a vector field on S.

For X1, . . . , Xn ∈ X(S) consider a piece-wise smooth integral curve c in S,originating at x0 ∈ S,

given by a sequence of steps. First, we follow the integral curve of X1 through x0 for time τ1; next

we follow the integral curve of X2 though x1 = ϕX
τ1
(x0) for time τ2; and so on. For each i = 1, . . . , n

let Ji be [0, τi] ⊆ R if τi > 0 or [τi, 0] if τi < 0. Note that τi < 0 means that the integral curve of Xi is

followed in the negative time direction. For every i, Ji is contained in the domain Ixi−1
of the maximal

integral curve of Xi starting at xi−1. In other words, for t = τ1 + ... + τn−1 + τn,

c(t) = c(τ1 + τ2 + ... + τn−1 + τn) = ϕXn
τn
◦ ϕ

Xn−1
τn−1
◦ .... ◦ ϕ

X1
τ1
(x0).

Definition 3.12. The orbit through x0 of the family X(S) of vector fields on S is the set M of points x in S

that can be joined to x0 by a piecewise smooth integral curve of vector fields in X(S);

M = {ϕXn
tn
◦ ϕ

Xn−1
tn−1
◦ .... ◦ ϕ

X1
t1
(x0) | X1, ..., Xn ∈ X(S) t1, ..., tn ∈ R, n ∈ N} .

Theorem 3.13. Orbits M of the family X(S) of vector fields on a subcartesian space S are submanifolds of S.

In the manifold topology of M, the differential structure on M induced by its inclusion in S coincides with its

manifold differential structure.

Proof. See reference [18].

4. Partition of S by Orbits of X(S)

In this section, we study consequences of Theorem 3.13 to our understanding of the geometry of

subcartesian spaces.

Notation 4.1. We denote by M(S) the family of orbits of X(S).

By Theorem 3.13 each orbit M of X(S) is a manifold. Moreover, the manifold structure of M is its

differential structure induced by the inclusion of M in S. Hence, M is a submanifold of the differential

space S. The orbits of X(S), give a partition M(S) of S by connected smooth manifolds. Since the notion

of a vector field on a subcartesian space S is intrinsically defined in terms of its differential structure,

it follows that every subcartesian space has a natural partition by connected smooth manifolds. In

particular, every subset S of Rn has natural partition by connected smooth manifolds.

Proposition 4.2. Let X be a derivation of C∞(S). If, for each M ∈ M(S) and each x ∈ M, the maximal

integral curve of X originating at x ∈ M is contained in M, then X ∈ X(S), that is, X is a derivation of C∞(S)

that generates local one parameter groups of local diffeomorphisms of S.
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Proof. Suppose that X is a derivation of C∞(S) satisfying the assumptions of Proposition 4.2. By

Theorem 3.13, every M ∈ M(S) is a submanifold of the differential space S. This means that the

manifold structure C∞(M) of M is induced by the restrictions to M of functions in C∞(S). Since all

integral curves of X originating at points of M are contained in M, it follows that the restriction X|M of

X to M is a derivation of C∞(M). But, for a manifold M, all derivations of C∞(M) are vector fields on

M in the sense that their integral curves generate local one parameter groups of local diffeomorphisms

of M. Moreover, domains of maximal integral curves of vector fields on a manifold are open. By

assumption, this holds to every M ∈M(S). Since S is the union of all manifolds M ∈M(S), it follows

that every integral curve of X has open domain. Theorem 3.11 ensures that X is a vector field on S in

the sense that it generates local one parameter groups of local diffeomorphisms of S.

Theorem 4.3. The family X(S) of all vector fields on a subcartesian space S is a Lie subalgebra of the Lie algebra

DerC∞(S) of derivations of C∞(S).3

Proof. For X ∈ X(S) and f ∈ C∞(S), the product f X ∈ DerC∞(S). By construction, for every M ∈

M(S), X|M is a vector field on the submanifold M of S, and f|M ∈ C∞(M). Hence, ( f X)|M = f|MX|M
is a derivation of C∞(M). Therefore, for every x ∈ M, the maximal integral curve of f X originating at

x, is the maximal integral curve of ( f X)|M originating at x. But M is a manifold, which implies that

the derivation ( f X)|M of C∞(M) is a vector field on M so that every maximal integral curve of ( f X)|M
has open domain.

The argument above is valid for every manifold . Since S = ∪M∈M(S)M, it follows that every

integral curve of f X has open domain. Theorem 3.3.8 ensures that f X is a vector field on S, that is

f X ∈ X(S).

Suppose that X, Y ∈ X(S). Then X + Y ∈ DerC∞(S). As before, for every M ∈ M(S), the

restrictions X|M and Y|M are vector fields on the manifold M, so that (X + Y)|M = X|M + Y|M is a

vector field on M. Hence integral curves of X + Y originating at points in M have open domains.

This is valid for every M ∈M(S), which implies that all integral curves of X + Y have open domains.

Therefore, X + Y ∈ X(S).

Replacing + in the arguments of the preceding paragraph by the Lie bracket [·, ·], we can show

that, for every X, Y ∈ X(S), their Lie bracket [X, Y] ∈ X(S). Therefore, the family X(S) of all vector

fields on S is a Lie subalgebra of DerC∞(S).

Proposition 4.4 (Frontier Condition). For M, M′ ∈ M(S), if M′ ∩ M 6= ∅, then either M′ = M or

M′ ⊂ M\M.

Proof. Let M and M′ be orbits of X(S) such that M′ ∩M 6= ∅, where M denotes the closure of M in

S. Suppose that x0 ∈ M′ ∩M with M′ 6= M. Let {xk}k∈N be a sequence of points in M converging

to x0. For every X ∈ X(S), there is an open neighbourhood U0 of x0 in S and t0 > 0 such that

exp(tX)(x) is defined for every 0 ≤ t ≤ t0 and every x ∈ U0. Moreover, if 0 ≤ t ≤ t0, the map

U0 → S : x 7→ exp(tX)(x) is continuous. Therefore, for 0 ≤ t ≤ t0,

lim
k→∞

exp(tX)(xk) = exp(tX)(x0).

Since M is the orbit of X(S), it is invariant under the family of one-parameter local groups

of local diffeomorphisms of S generated by vector fields, and {xk}k∈N ⊆ M, it follows that

limk→∞ exp(tX)(xk) ∈ M . Therefore, exp(tX)(x0) ∈ M. On the other hand, M′is the orbit of X(S)

through x0, so that exp(tX)(x0) ∈ M′. Hence, exp(tX)(x0) ∈ M′ ∩M. By assumption, M′ 6= M, which

3 This result was first obtained by Watts in Ph.D. Thesis, Corollary 4.71, [21]. Here, we give an alternative proof.
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implies that exp(tX)(x0) ∈ M\M. This holds for every X ∈ X(S) and x0 ∈ M′∩ M\M. Therefore,

M′ ⊂ M\M.

Proposition 4.5 (Whitney’s Conditions A and B). Consider a differential subspace S of Rn. Let y ∈ M′ ⊆

M\M,where M, M′ ∈M(S), and let m = dim M.

(A). If xi is a sequence of points in M such that xi → y ∈ M′, and Txi
M converges to some m-plane E ⊆

TyS ⊆ TyR
n then Ty M′ ⊆ E.

(B). If yi be a sequence of points in M′ also converging to y. Suppose that Txi
M converges to an m-plane E ⊆

TyS ⊆ TyR
n and the secant←→xiyi converges to some line in L ⊆ Rn. Then L ⊆ E.

Proof. (A). Since M is a submanifold of the differential subspace S of Rn, and M is the closure of M in

S, then M is a differential subspace of S. Moreover, M and M′ are submanifolds of M. Hence, for a

sequence xi in M, such that y = limi→∞ xi ∈ M′, we have

Ty M = lim
i→∞

Txi
M.

Since M′is a submanifold of M, it follows that Ty M′ ⊆ Ty M.

In order to write the result in the form used in the statement of the proposition, we use the

identification Rn ×Rn ≡ TRn such that the following diagram commutes

Rn ×Rn ≡ TRn

pr1 ↓ ↓ τ

Rn = Rn

,

where pr1 : Rn × Rn → Rn is the projection on the first factor, and τ : TRn → Rn is the tangent

bundle projection. Moreover, for every f ∈ C∞(Rn) and v = (x, v) ∈ TRn, the derivation of f by v

is v f = 〈d f | v〉 (x). With this identification, the m-plane Ty M ⊆ TyS ⊆ TyR
n, can be expressed as

Ty M = (y,E), where E ⊆ Rn. Hence, Ty M′ ⊆ (y, E).

(B) The sequence←→xiyi of secants, if it converges as i→ ∞, defines a derivation v ∈ Ty M such that,

for every f ∈ C∞(M),

v f = lim
i→∞

f (xi)− f (yi)

‖xi − yi‖
,

where ‖xi − yi‖ =
(

∑
n
i=1(xi − yi)

2
)1/2

. The limiting line of the sequence←→xiyi of secants is the line L

through y in direction v. Since, v ∈ Ty M, in the identification used above, L ⊆ E.

For each n = 0, 1, 2, ..., let

Mn(S) = {M ∈M(S) | dim M = n}, (21)

and

Sn = ∐
M∈Mn(S)

M. (22)

Since elements of Mn(S) are mutually disjoint n-dimensional manifolds , it follows that Sn is a manifold

of dimension n, and the connected manifolds M ∈Mn(S) are connected components of Sn. Since S is

a subcartesian space, the dimension n of Sn is locally bounded. For every chart α : Vα → Wα ⊆ Rdα ,

dim Sn ∩Vα ≤ dα. Hence,

S =
∞

∐
n=0

Sn. (23)

In general, the partition M(S) of S by orbits of X(S) need not be locally finite, as is shown in the

following example.
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Example 4.6. Let S = Q×R ⊆ R2, where Q is the set of rational numbers. The discussion following Example

3.3.1 shows that that a derivation X ∈ Der S is a vector field only if it is tangent to the second factor R. In other

words, if f ∈ C∞(S) is written in terms of the coordinates (x1, x2) ∈ Q×R, then X ∈ X(S) if and only if,

there exists a ∈ C∞(S) such that

(X f )(x1, x2) = a(x1, x2)
∂ f (x1, x2)

∂x2

for every f ∈ C∞(S) and every (x1, x2) ∈ Q×R.

Since the space X(R) of vector fields on R acts transitively on R, it follows that in our example, for every

x = (x1, x2) ∈ S, the orbit M of X(S) through x = (x1, x2) is {x1} ×R. Thus, the space M(S) of orbits of

X(S) for S = Q×R is parametrized by Q, and it is not locally finite.

Example 4.7. Let S = {x ∈ R | x = 0 or x = 1
n for n ∈ N}. In this case, the only vector field on S is X = 0,

and every M ∈M(S) is a single point. There is no neighbourhood of 0 ∈ S that contains only finite number of

points of S. Hence, M(S) is not locally finite.

5. Comparison with Stratification

There are several definitions of stratification of a closed subset S of a smooth4 manifold. The

definition used by Goresky and MacPherson, [8], adapted to the set up considered here, can be

reformulated as follows.

Definition 5.1. A partition of a subcartesian space S by submanifolds of S is a decomposition of S if it is

locally finite and satisfies Frontier Condition, that is the statement of Proposition 4.3. A Whitney stratification

of S is a decomoposition of S that satisfies Whitney’s conditions A and B, that is the statement of Proposition 4.4.

If S is a closed subset of a smooth manifold M, then composing the inclusion of S into M with

the charts for M we get an atlas A(S) = {α : Vα → Wα}, where Vα an open subset of S and Wα is a

locally closed subset of Rdα . In other words, S is a locally closed subcartesian space. Propositions 4.3 and

4.4 ensure that, if S is a locally closed subcartesian space and the partition M(S) is locally finite, then

M(S) is a Whitney stratification of S.

Mather, uses the term prestratification for a decomposition of S by submanifolds and the term

stratification for the sheaf S of germs of manifolds of prestratification, [11]. If S is locally closed and

M(S) is locally closed, then M(S) is a prestratification of S and the sheaf S of germs of manifolds in

M(S) is the induced stratification.

Prestratifications of S that induce the same sheaf of germs S can be partially ordered by inclusion.

Pflaum, [13], identifies the sheaf S of germs of the manifolds of prestratification with the coarsest

prestratification in this class. If S is locally closed and M(S) is locally closed, then the coarsest

prestratification in the sense of Pflaum is {Sn}∞
n=0, where Sn = ∐M∈Mn(S) M, see equation (22).

We have seen that, for every definition of stratification discussed above, if S is a locally closed

subcartesian space and M(S) is locally finite, then the decomposition M(S) of S corresponds to a

stratification of S. It should be noted that, in this case, our approach corresponds to an algorithm

leading to discovery of the of the stratification of S. Once S is chosen and its differential structure is

established, there is no room for choice. The main step is to determine the family X(S), consisting

of all derivations of C∞(S) that generate local one-parameter groups of local diffeomorphisms of S.

Theorem 3.8 helps us to make this determination.

4 We consider here only the C∞ category.
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6. Transient Derivations

Up to now, we have concentrated on orbits of the Lie algebra X(S) of vector fields on S, that

is derivations of C∞(S) that generate local one-parameter local groups of diffeomorphisms. In this

section, we consider the role played by derivation of C∞(S) that do not generate local one-paremeter

groups of local diffeomorphisms of S.

Definition 6.1. Transient derivation5 on a subcartesian space S is a derivation of C∞(S) that does not

generate local one-paremeter groups of local diffeomorphisms of S.

Let X be a transient derivation on a subcartesian space S. By Theorem 3.6, for every x0 ∈ S, there

exists a unique maximal integral curve c0 of X such that c0(0) = x0. If, for every x0 ∈ S, the maximal

integral curve c0 of X through x0 ∈ M ∈ M(S) is contained in M0, then Proposition 4.2 ensures

that X is generates local one paremeter local groups of diffeomorphisms of S, which contradicts the

assumption that X is a transient derivation. Therefore, there must exist a maximal integral curve

c : I → S of X such that, for some t1 ∈ I, the curve c crosses from a manifold M ∈M(S) to a manifold

M′ ⊆ M\M. It follows that transient derivations provide integral curves joinining manifolds of M(S)

7. Manifolds with Corners

Manifolds with corners are a basic example of stratified subcartesian spaces. Here, we rely on

the presentation of the theory of manifolds with corners given in [9]. We begin with a defininition of

manifold with corners, as a locally Euclidean Hausdorff manifold, see Definition 2.6. This definition is

equivalent to the original definition by Cerf, [6], used in [9].

Definition 7.1. A d-dimensional manifold with corners is a paracompact Hausdorff topological space S equipped

with a maximal d-dimensional atlas A = {α : Vα → Wα}, where α is a homeomorphism of an open subset Vα of

S onto an open subset Wα of Rd
kα

= [0, ∞)kϕ ×Rd−kα ⊆ Rd, in the topology induced by its inclusion in Rd,

which satisfies the conditions listed below.

(1). The sets {Vϕ | α ∈ A} form a covering of S.

(2). For every α, β ∈ A, and every x ∈ Vα ∩Vβ, there exist:

(a) a C∞-mapping Φα of an open neighbourhood Uα of α(x) ∈ Rnα to Rnβ , which extends the mapping

β ◦ α−1 : α(Vα ∩Vβ)→ β(Vα ∩Vβ),

(b) a C∞-mapping Φβ of an open neighbourhood Uβ of β(x) ∈ Rnβ to Rnα ,

which extends the mapping

α ◦ β−1 : β(Vα ∩Vβ)→ α(Vα ∩Vβ).

(3). A continuous function f : S → R on S is smooth if and only if, for every chart α : Vα → Wα ⊆ Rd,

there exists an open set Uα in Rd containing Wα, and a smooth function F ∈ C∞(Uα) such that f ◦ α−1 :

Wα → R is the restriction of F to Wα ⊆ Uα. We denote by C∞(S) the space of smooth functions on S.

(4). A map ϕ : S→ R between manifolds with corners S and R is is smooth if it is continuous and, for every pair

of charts α : Vα →Wα ⊆ RdS in A(S) and β : Vβ →Wβ ⊆ RdR in A(R), such that ϕ ◦ α−1(Wα) ⊆ Vβ,

there exist open subsets Uα ⊆ RdS , Uβ ⊆ RdR and Fαβ ∈ C∞(Uα, Uβ) such that: (i) Wα ⊆ Uα, (ii)

Wα ⊆ Uα and, for every x ∈Wα,

Fαβ|Wa
(x) = β ◦ ϕ ◦ α−1(x).

The fundamental notion on a manifold with corners S, leading to the stratification structure of S,

is the depth functions

5 The term transient derivation is an extension of the notion of transient vector field used in the theory of manifolds with
boundary, [12].
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depth S : S→ Z≥0 : x 7→ depth Sx = min
α∈A
{kα | x ∈ Vα}.

It is easy to show that the function depth Sx is well defined by the differential structure C∞(S) of the

manifold with corners S under consideration.

Definition 7.2. For each k ≥ 0, the depth k stratum of S is

Sk = {x ∈ S | depthS x = k}.

Proposition 7.3. Let S be a d-dimensional manifold with corners.

(a) S is a disjoint union of Sk, for k = 0, ..., d,

S =
d

∐
k=0

Sk.

(b) Each Sk has the structure of an (d− k)-dimensional manifold (without boundary or corners).

(c) If S
k
∩ Sl 6= ∅, then either Sl = Sk, or Sl ⊆ S

k
\Sk, where S

k
denotes the closure of Sk in S.

(d) For every k = 0, ..., d,

S
k
=

d

∐
l=k

Sl (24)

is a manifold with corners.

Proof. (a) The depth of x ∈ S is uniquely defined by the maximal n-dimensional atlas A. Hence

Sk ∩ Sl = ∅ if k 6= l. Moreover, k = 0, ..., d. Hence, S is a disjoint union of Sk, for k = 0, ..., d.

(b) Definition 3.1 enures that S has an atlas A = {α : Vα → Wα}, where α is a homeomorphism

of an open subset Vα of S onto an open subset Wα of Rd
kα

= [0, ∞)kϕ ×Rd−kα ⊆ Rd, in the topology

induced by its inclusion in Rd. For each x ∈ Sk ⊆ S, there exists a chart α : Vα → Wα for S

such that x ∈ Vα, and Wα = ([0, ∞)k × Rd−k) ∩ Uα, where Uα is an open subset of Rd. Moerover

α(Vα ∩ Sk) = ([0]k ×Rd−k) ∩Uϕ. Note that [0]k ×Rd−k ∼= Rd−k and Rd−k ∩Uϕ is an open subset of

Rd−k. The collection of charts

ASk = {ϕ|Vϕ∩Sk : Vϕ ∩ Sk → ϕ(Vϕ ∩ Sk)

= Rd−k ∩Uϕ | for all ϕ ∈ A such that ϕ(Vϕ ∩ Sk)

= ([0]k ×Rd−k) ∩Uϕ}

is a (d − k)-manifold atlas for Sk. It satisifes the condition (2) of Definition 3.1because the atlas A

satisfies this condition.

(c) Recall that a manifold with corners S is defined as a topological space satisfying certain

conditions. Therefore, by the closure Sk of Sk we mean the closure of Sk in S. If S were a subset of some

other topological space T, then the closure of Sk in S is the intersection with S of the closure of Sk in

the topology induced by its embedding of S into T.

If If Sk ∩ Sl 6= ∅, there exists x0 ∈ Sk ∩ Sl ⊆ S. Since x0 ∈ Sk, every open neighbourhood

V of x has non-empty intersection with Sk. Since x0 ∈ Sl , it follows that depth x0 = l, and there

exists a chart α : Vα → Wα be such that such that x0 ∈ Vα, and Wα = ([0, ∞)l ×Rd−l) ∩Uα, where

Uα is an open subset of Rd−l .Without loss of generality, we may assume that, for each x ∈ Sk ∩ Vα,

α(x) = (x1, ..., xl , xl+1, ..., xd), has first k of the l components (x1, ..., xl) equal to zero. Hence, l ≥ k. If

l = k, then Sl = Sk. If l > k, then x0 ∈ Sk\Sk. This argument holds for every x ∈ Sk ∩ Sl with l > k.

Hence, Sl ⊆ Sk\Sk.
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(d) It follows from (a) and (c) that

Sk = Sk ∩ S = Sk ∩
d

∐
l=0

Sl =
d

∐
l=0

Sk ∩ Sl =
d

∐
l=k

Sk ∩ Sl =
d

∐
l=k

Sl .

It is easy to check that Sk = ∐
d
l=k Sl satisfies the conditions for a manifold with corners.

Definition 4.2 quotes the corresponding definition in [9], in which the term "depth k stratum"

is used without explanation. It shows that the stratification structure of manifolds with corners

is a common knowledge in this field. By Definiton 4.1, manifolds with corners are locally closed

subcartesian spaces.

All definitions of stratifications, discussed in the preceding section, deal with closed subsets of a

manifold. Every closed subset of a manifold is a locally closed subcartesian space. However, not every

locally closed subcartesian space can be presented as a closed subset of a manifold. Hence, the use

of the term "stratification" in the theory of manifolds with corners is a generalization of the classical

notion of stratification which is convenient to adopt in the theory of differential spaces.

In order to relate the general theory of the preceding sections to the example of manifolds with

corners, we have to establish what are vector fields on manifolds with corners. In other words, we

have to establish the class of derivations of C∞(S) which generate local one-parameter groups of local

diffeomorphisms of S.

The depth function stratification {S0, S1, ..., Sk, ...Sd} encodes the intrinsic geometric structure of

the manifold with corners S. Therefore, we may expect that connected components of the strata of the

stratification {S0, S1, ..., Sk, ...Sd} are integral manifolds of the Lie algebra X(S) of S. We establish this

result in a series of propositions.

Proposition 7.4. Let S be a manifold with corners. A derivation X of C∞(S) is a vector field on S if and only if

every maximal integral curve c : I → S of X is contained in a single stratum of the depth function stratification

of S.

Proof. Let X be a derivation of C∞(S) of an d-manifold with corners. Suppose that every maximal

integral curve c : I → S of X is contained in a single stratum in M(S). Let M be a connected component

of a stratum Sk of the depth function stratification of S. Since all integral curves of X are connected,

it follows that all integral curves of X originating at points in M are contained in M. Therefore, the

restriction X|M of X to M is a derivation of C∞(M). But M is a manifold and all derivations of C∞(M)

are vector fields on M. Therefore, X|M generates local one-parameter group of local diffeomorphisms

of M.

The argument above is valid for every connected component of each stratum of the depth

function stratification of S. Therefore, the derivation X generates a local one-paremeter group of local

diffeomorphisms of manifolds with corners that preserve the depth function stratification of S. Hence

the derivation X is a vector field on S.

Let X be a vector field on S. That is, X generates a local one-parameter group of local

diffeomorphisms of X. We need to show that every integral curve of X is contained in a connected

component of a single stratum of the depth function stratification of S. We suppose opposite and

derive a contradiction.

Suppose that there is an integral curve c : I → S of X such that, for −ǫ < t < 0, c(t) is in a

connected component M of a stratum Sm and c(0) is in a connected component N of a different

stratum Sn of S. Since c(0) = limt→0− c(t), Proposition 4.3(c) implies that N ⊆ M\M so that m ≤ n− 1.

Let α : V → W ⊆ Rd be a chart in A, where V is a neighbourhood of c(0) in S and W ⊆ Rd
m ∩U =

([0, ∞)m ×Rd−m) ∩U ⊆ Rd for some open neighbourhood U of 0d ∈ Rd, such that α(c(0)) = 0d ∈ Rd.

Moreover, α(M ∩V) = ({0m} ×Rd−m) ∩U and, for every

x = (x1, ..., xm, xm+1, ...xn, xn+1, ..., xd) ∈ α(M ∩V),
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the first m coordinates (x1, ..., xm) are equal to zero, Similarly, α(N ∩V) = ({0n} ×Rd−n) ∩U and, for

every y = (y1, ..., ym, ym+1, ...yn, xn+1, ..., xd) ∈ α(N ∩V), the first n coordinates (y1, ..., ym, ym+1, ...yn)

are equal to zero.

For every t < 0, there exists a neighbourhood Vt of c(t) in V such that Vt ∩ N = ∅. Therefore,

there exists an open neighbourhood Ut of 0d ∈ Rd such that

α(Vt) = ([0, ∞)m ×Rd−m) ∩Ut .

On the other hand, if V0 ⊆ V is a neigbourhood of c(0) in S, then

α(V0) = ([0, ∞)n ×Rd−n) ∩U0

for a neighbourhood U0 of 0d ∈ Rd. But, m 6= n, so that, for t < 0, α(Vt) is not diffeomorphic to α(V0).

Since α : V →W is a diffeomorphism, it follows that Vt is not diffeomorphic to V0 for every t < 0. This

contradicts the assumption that X generates a local one-parameter group of local diffeomorphisms of

S.

Proposition 7.5. Let S be a manifold with corners and X a derivation on S such that, for every connected

component M of the depth function stratification of S, the restriction X|M of X to M is a vector field on the

manifold M. Then X is a vector field on S.

Proof. In view of Proposition 7.4, it suffices to show that every integral curve of X originating at a

connected component M of the depth function stratification of S, is contained in M. Suppose that there

is an integral curve c : I → S of X, originating at x0 in a connected component M of a stratum of the

depth function stratification of S, such that x1 = c(t1) ∈ N ∈ M\M, where t1 = min{t ∈ I | t > 0 and

c(t) ∈ M} and N is a connected component of another another stratum in S. Since X is of class C∞, it

follows that

lim
t→t1−

X(c(t)) = lim
t→t1−

X|M(c(t)) = X(c(t1)) = X|N(c(t1)).

Suppose that X(x1) = 0. The equation

d

dt
f (c(t)) = (X f )(c(t))

for every f ∈ C∞(S) implies that,
dt

d f
(c(t)) =

1

(X f )(c(t))
.

Hence, X(x1) = 0 implies that t → ∞ as c(t) → x1. Therefore, x1 = limt→∞ c(t) and it is not in the

range of the curve c contrary to the previous assumption.

Suppose now that X(x1) = X|N(x1) 6= 0. Note that X|N is a vector field on the manifold N. Hence,

there exists an integral curve cN : IN → N of X|N originating at x1. Consider a chart α : V → W

in B such that V is a neighbourhood of x1 = c(t1), and W ⊆ Rd
n = [0, ∞)n × Rd−n ⊆ Rd contains

α(x1). By Proposition 3.1.6 in [19], there exist a neighbourhood V1 of x1 ∈ V, U ⊆ Rd such that

α|V1
: V1 →W1 = α(V1) ⊆W is a diffeomorphism, and a vector field Y defined on an open set U ⊆ Rd

containing W1 such that

(α∗X)|W1
= Y|W1

.

Since cN : IN → N of X|N originates at x1 ∈ V1, it follows that there is a connected subset ĨN of

IN containing 0 such that the restriction c̃N of (α ◦ cN) to ĨN has its range in W1. The equation above

implies that c̃N : ĨN →W1 is an integral curve of Y originating at α(x1). On the other hand, x1 = c(t1).

Hence c′ : I′ → S : t 7→ c(t− t1) is an integral curve of X originating at x1 = c(t1), where I′ is I shitfed

by t1. Let Ĩ′ be a connected neighbourhood of 0 ∈ I′ such that the restriction c̃′ of α ◦ c′ to Ĩ′ has its

range in W1. As before, c̃′ : Ĩ′ → W1 is an integral curve of Y originating at α(x1). But Y is a vector
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field on an open subset of Rd, and the germ of its integral curve passing through α(x1) is unique up to

parametrization. However, c̃N and c̃′ are distinct integral curves of Y such that c̃N(0) = c̃′(0) = α(x1).

Therefore, we have a contradiction with hypothesis that X(x1) 6= 0.

Proposition 7.6. Let S be a d-manifold with corners. For every vector v0 ∈ Tx0 S tangent to the stratum of the

depth function stratification of S that contains x0 = τ(v0), there exists a vector field X on S such extending v0,

that is X(x0) = v0.

Proof. If v0 = 0, then it extends to the vector field X = 0 on S. That is X f = 0 for every f ∈ C∞(S).

If v0 6= 0, consider a chart α : Vα → Wα ⊆ Rd
n = [0, ∞)n × Rd−n ⊆ Rd on the manifold with

corners S such that Vα is a neighbourhood of x in S. and Rd. If depth Sx = n then, without loss of

generality, we may assume that

α(x0) = x0 = (x1
0, ..., xd

0), where x1
0 = ... = xn

0 = 0 and xn+1
0 = ... = xd

0 = 1,

α(Vα ∩ Sn) = {(x1, ..., xd) ∈ Rd | x1 = 0, ..., xn = 0, (xn+1 , ..., xd) ∈ U ⊆ Rd−n}

= {0n} ×U ⊂ Rd,

where U is open in Rd−n. For every m ∈ 0, 1, ..., d, the point (x1, ..., xd) ∈ α(Vα ∩ Sm) if and only if

exactly m of the coordinates x1, ..., xd are zero. A vector v = (v1, ..., vd) is tangent to α(Vα ∩ Sm) at

(x1, ..., xd) ∈ α(Vα ∩ Sm) if and only if, for every i = 1, ..., d, xi = 0 implies vi = 0. Since α : Vα →

Wα ⊆ Rd is a diffeomorphism, and the definition of the depth function is independent of the chart, it

follows that v ∈ TxS is tangent at x to Sm if and only if v = Tα(v) is tangent to α(Vα ∩ Sm) at the point

α(x) = (x1, ..., xd).

Thus, for x ∈ Sm ∩Vα a vector v ∈ TxS is in TxSm if and only if xivi = 0 for every i = 1, ..., d, where

(x1, ..., xd) are coordinates of α(x) in Rd and (v1, ..., vd) are components of Tα(v) ∈ Tα(x) R
d ∼= Tα(x0)

Rd.

Since U is open in Rd−n, there exists ǫ ∈ (0, 1
2 ) such that the set

W ǫ = {x = (x1, ..., xd) ∈ Rd | −ǫ < xi
< ǫ for i = 1, ..., n

and 1− ǫ < xj
< 1 + ǫ for j = n + 1, ..., d}

is an open neighbourhood of α(x0) = x0 in Wα ⊆ Rd and W ǫ ⊆Wα. It follows from the discussion

above that Wǫ ⊆ ∪n
m=0α(Vα ∩ Sm).

Let v0 = (v1
0, ..., vd

0) = Tα(v0) ∈ Rd ∼= Tα(x0)
Rd. The assumptions about the chart α : Vα → Wα,

made above, imply that vn+1
0 = ... = vd

0 = 0. By construction, for every x = (x1, ..., xd) ∈ W ǫ, the

coordinates xn+1, ..., xd do not vanish, and some of the coordinates x1, ..., xn may also be non-zero.

Therefore, for every x = (x1, ..., xd) ∈ W ǫ, a vector v = (v1, ..., vd) ∈ TxR
d ∼= Rd such that v1 =

... = vn = 0 is tangent to α(Vα ∩ Sm) for every m ≤ n. On the other hand, for every m ≥ n,

Wǫ ∩ α(Vα ∩ Sm) = ∅.

Choose a function f ∈ C∞(Rd) such that f (x0) = 1 and f (x) = 0 for every x /∈W ǫ, and consider

a vector field Y on Rd given by

Y(x) = f (x)
∂

∂xn+1
+ f (x)

∂

∂xn+2
+ ... + f (x)

∂

∂xd

for every x ∈ Rd. Since f ∈ C∞(Rd), it follows that integral curves of Y have open domains. The

assumption that f (x) = 0 for every x /∈ W ǫ imply that that the integral curves of Y originating in

Wα ⊇ Wǫ are contained in Wα. Therefore, the restriction Y|Wα
of Y to Wα is a vector field on Wα. The

the push-forward α−1
∗ Y|Wα

be the diffeomorphism α−1 : Wα → Vα is a vector field on Vα, which can be

extended to a vector field X ∈ X(S) vanishing outside α−1(Wǫ) ⊆ Vα. Since f (α(x0)) = 1, it follows

that X(x0) = v0, which completes the proof.
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Corollary 7.7. It follows from the the above results that connected components of strata of the depth function

stratification of the manifold with corners S are orbits of the Lie algebra X(S) of all vector fields on S. Hence the

depth function stratification of S is given by the partition M(S) of S by orbits of X(S).
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