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Abstract: In this work, the analytical treatment of Fourth order pd equations has been discussed 

with the variational iteration algorithm with an auxiliary parameter. The technique has the 

capability of reducing the size of computational work and easily overcomes the difficulty of the 

perturbation method or Adomian polynomials. Comparison with the classic variational iteration 

algorithm- is carried out, showing that the modification is more efficient and reliable. 
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1. Introduction 

Partial differential equations (PDEs) find use in a diverse range of academic areas, such as 

biology, chemistry, economics, engineering, and physics. In recent studies, researchers have 

identified the utilization of Partial Differential Equations (PDEs) in several domains such as 

nanotechnology, electronic communication platforms like blogs and Facebook, relativistic physics, 

condensed matter physics, fluid mechanics, non-linear optics, chemical kinetics, and wave 

phenomena, among others. (Ahmed et al., 2020; Inc et al., 2020; Shehata et al., 2019; Zayed 42 et al., 

2020). Analytical solutions to many PDEs, particularly those that are non-linear and complex, may be 

extremely challenging. The utilization of ordinary differential equations (ODEs) or partial differential 

equations (PDEs) is employed to articulate intricate difficulties encountered in real-world systems. 

Due to the inherent difficulty in obtaining precise solutions for several partial differential equations 

(PDEs), it is often necessary to employ numerical methods to approximate the solutions of fractional 

partial differential equations (FPDEs) of varying orders. The utilization of commonly employed 

analytical methods for solving nonlinear equations is sometimes limited. Conversely, the 

discretization of variables through the application of numerical approaches introduces the possibility 

of encountering rounding errors.  

In recent studies, the variational iteration technique (VIM) proposed by He [1,2] has been found 

to yield consecutive approximations of the exact solution that converge swiftly, provided that an 

exact solution exists. The successful derivation of analytical solutions for both linear and nonlinear 

differential equations has been demonstrated. The utilization of this technique is deemed more 

advantageous compared to numerical methods due to the absence of rounding mistakes. 

Additionally, this approach does not necessitate significant computational power or memory 

resources. He has used this technique to solve integro-differential equations, nonlinear partial 

differential equations with variable coefficients, and autonomous ordinary differential equations 

analytically. Several researchers have successfully employed the variational iteration method. The 

VIM (Variational Iteration Method) has been utilized in various applications, such as the nonlinear 

Boltzmann equation [3], Burger's and coupled Burger's equations [4], partial differential equation [5], 

parabolic integro-differential equations related to heat conduction in materials with memory [6], 

coupled Korteweg-de Vries (KdV) and Boussinesq-like B(m, n) equations [7], and Sawada-Kotera 

equations [8]. 
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2. Variational Iteration Method by He 

In order to demonstrate the technique of the proposed method, we initiate by examining a 

differential equation in a formal format, employing the variational iteration method. 

By employing the variational iteration method [21–28], one may derive the subsequent 

variational iteration formula for solving the nonlinear partial differential equation. 

 
The symbol λ is commonly referred to as a general Lagrange multiplier [20], which may be 

effectively determined by the application of variational theory. 

Calculating variation with respect to Un, 

 
The Lagrange multiplier, therefore, can be identified as [22–28]. 

 
Substituting the identified multiplier into Eq. results in the following iteration formula: 

 
The term situated on the right side of the equation is commonly referred to as the correction 

term. The equation can be solved by an iterative process.  

U0(x, t) = f0(x) + f1(x)t +… … …+ fs−1(x)ts−1     as an initial approximation. 

3. Diverse Implementations of the Analytical Expression Proposed:  

Within this segment, the expression for the approximate solution or VIM solution of the fourth-

order fluid dynamics equation is derived using a variety of functions g(x, t). 

3.1. Example 1 

Let us take into account the fourth order homogeneous partial differential equation, 𝜕2𝑢𝜕𝛼2 − 𝜕4𝑢𝜕𝛽4 = 0       (1) 

Initial conditions   

u (𝛽,0) =   sin 𝛽  − cos 𝛽   
𝜕𝑢𝜕∝ (𝛽 ,0) = − (sin 𝛽 − cos 𝛽) 

Boundary conditions 

u (0, 𝛼 ) = −1 + 𝛼, 

u (1, 𝛼 ) = (sin 1 – cos 1)(1 – 𝛼) 𝜕2𝑢𝜕𝛼2 (0, 𝛼) = 0        𝜕2𝑢𝜕𝛼2 (1, 𝛼) = (  sin 1 –  cos1 )𝑒−𝛼 

Applying VIM to equation (1) 𝑢𝑛+1(𝛽 , 𝛼) = 𝑢𝑛( 𝛽, 𝛼) + ∫ 𝜆(𝜗) [𝜕2𝑢𝑛( 𝛽, 𝜗)𝜕𝜗2 − 𝜕4𝑢𝑛( 𝛽, 𝜗)𝜕𝛽4 ] 𝑑𝜗𝑡
0

 

Take 𝜆(𝜗) =  𝜗 − 𝑡   ,  then  
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𝑢𝑛+1( 𝛽, 𝛼) = 𝑢𝑛(𝛽, 𝛼) + ∫ (𝜗 − 𝑡) [𝜕2𝑢𝑛( 𝛽, 𝜗)𝜕𝜗2 − 𝜕4𝑢𝑛( 𝛽, 𝜗)𝜕𝛽4 ] 𝑑𝜗𝑡
0

 

Take u0 (β, 𝛼) = (sin β – cos β) + (cos β -sin β) 𝛼 𝑢1( 𝛽, 𝛼) = 𝑢0( 𝛽, 𝛼) + ∫ (𝜗 − 𝑡) [𝜕2𝑢0( 𝛽, 𝜗)𝜕𝜗2 − 𝜕4𝑢0( 𝛽, 𝜗)𝜕𝛽4 ] 𝑑𝜗𝑡
0

 

The exact solution is: 

u (β, 𝛼) = (sin β −cos β) 𝑒−𝛼 

3.2. Example 2 

Let us consider fourth order homogeneous partial differential equation, 𝜕2𝑢𝜕𝛼2 + 2( 1𝛽2 + 𝛽46!  ) 𝜕4𝑢𝜕𝛽4 = 0       (1) 

With initial conditions   

u (𝛽, 0) = 0        
𝜕𝑢𝜕∝ (𝛽 ,0) = 1+ 𝛽66!  

Boundary conditions 

u (0, 𝛼) = 𝑠𝑖𝑛 ∝,      u (1, 𝛼 ) = (1 + 16!   )𝑠𝑖𝑛𝑡 𝜕2𝑢𝜕𝛼2 (0, 𝛼) = 𝑠𝑖𝑛 ∝ 

Applying VIM to equation (1) 𝑢𝑛+1(𝛽 , 𝛼) = 𝑢𝑛( 𝛽, 𝛼) + ∫ 𝜆(𝜗) [𝜕2𝑢𝑛( 𝛽, 𝜗)𝜕𝜗2 +  2( 1𝛽2 + 𝛽4
6!  ) 𝜕4𝑢𝑛( 𝛽, 𝜗)𝜕𝛽4 ] 𝑑𝜗𝑡

0
 

Take 𝜆(𝜗) =  𝜗 − 𝑡   ,  then  𝑢𝑛+1( 𝛽, 𝛼) = 𝑢𝑛(𝛽, 𝛼) + ∫ (𝜗 − 𝑡) [𝜕2𝑢𝑛( 𝛽, 𝜗)𝜕𝜗2 + 2( 1𝛽2 + 𝛽4
6!  ) 𝜕4𝑢𝑛( 𝛽, 𝜗)𝜕𝛽4 ] 𝑑𝜗𝑡

0
 

Take u0 (β, 𝛼 ) = (1 + 
𝛽66! ) 𝛼 𝑢1(𝛽, 𝛼) = 𝑢0( 𝛽, 𝛼) + ∫ (𝜗 − 𝑡) [𝜕2𝑢0( 𝛽, 𝜗)𝜕𝜗2 + 2( 1𝛽2 + 𝛽4

6!  ) 𝜕4𝑢0( 𝛽, 𝜗)𝜕𝛽4 ] 𝑑𝜗𝑡
0

 𝑢1(𝛽, 𝛼)= (1 + 
𝛽66! ) (𝛼 − ∝33! ) 𝑢2(𝛽, 𝛼) = 𝑢1( 𝛽, 𝛼) + ∫ (𝜗 − 𝑡) [𝜕2𝑢1( 𝛽, 𝜗)𝜕𝜗2 + 2( 1𝛽2 + 𝛽4

6!  ) 𝜕4𝑢1( 𝛽, 𝜗)𝜕𝛽4 ] 𝑑𝜗𝑡
0

 

= (1 + 
𝛽66! )   (𝛼 − 𝛼33! + 𝛼55! ) 𝑢3(𝛽, 𝛼) = 𝑢2(𝛽, 𝛼) + ∫ (𝜗 − 𝑡) [𝜕2𝑢2( 𝛽, 𝜗)𝜕𝜗2 + 2( 1𝛽2 + 𝛽4

6!  ) 𝜕4𝑢2( 𝛽, 𝜗)𝜕𝛽4 ] 𝑑𝜗𝑡
0

 

= (1 + 
𝛽66! ) (𝛼 − 𝛼33! + 𝛼55! − 𝛼77! ) 

. 

. 

. 𝑢𝑛(𝛽, 𝛼) = ( 1  + 𝛽66! ) (𝛼 − 𝛼33! + 𝛼55! − 𝛼77! … … … … )  

The exact solution is: 

u(β, 𝛼) = (1 + 
𝛽66! ) sinα 

Table 1. The results of u1 compared to the exact solution for 𝛼 = 0.1and the VITM. 

β Exact VIM Error 
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0.1 0.09983341 0.09983333 0.00000008 

0.2 0.09983342 0.09983334 0.00000008 

0.3 0.09983351 0.09983343 0.00000008 

0.4 0.09983398 0.0998339 0.00000008 

 

Figure 1. 

From the above Figrure ,we can see error is quite less and if we compare table with exact 

solutions its well suited. 

3.3. Example 3 

Consider fourth order nonhomogeneous partial differential equation, 𝜕2𝑢𝜕𝛼2 + 𝜕4𝑢𝜕𝛽4 = 2𝑒𝛽+𝛼       (1) 

Initial conditions 

u (β,0) =  𝑒𝛽 𝜕𝑢𝜕𝛼 (β ,0) = 𝑒𝛽 

Applying VIM to equation (1) 𝑢𝑛+1( 𝛽, 𝛼) = 𝑢𝑛( 𝛽, 𝛼) + ∫  𝜆(𝜗) [𝜕2𝑢𝑛( 𝛽, 𝜗)𝜕𝜗2 + 𝜕4𝑢𝑛( 𝛽, 𝜗)𝜕𝛽4 ] 𝑑𝜗𝑡
0  

Take  𝜆(𝜗) = 𝜗 − 𝑡, 

then  𝑢𝑛+1( 𝛽, 𝛼) = 𝑢𝑛( 𝛽, 𝛼) + ∫ (𝜗 − 𝑡) [𝜕2𝑢𝑛( 𝛽, 𝜗)𝜕𝜗2 + 𝜕4𝑢𝑛( 𝛽, 𝜗)𝜕𝛽4  − 2𝑒𝛽+𝜗] 𝑑𝜗𝑡
0  

Take                                     

u0 (β, 𝛼 ) = 𝑒𝛽(1 + 𝛼) 𝑢1( 𝛽, 𝛼) = 𝑢0( 𝛽, 𝛼) + ∫ (𝜗 − 𝑡) [𝜕2𝑢0( 𝛽, 𝜗)𝜕𝜗2 + 𝜕4𝑢0( 𝛽, 𝜗)𝜕𝛽4 − 2𝑒𝛽+𝜗] 𝑑𝜗𝑡
0  𝑢1(𝛽, 𝛼)= 𝑒𝛽(1 + 𝛼) + 𝑒𝛽 (−𝛼22 + −𝛼36 ) − 2𝑒𝛽(𝛼𝑒𝛼 − 𝑒𝑡𝛼 + 1) + 2𝛼𝑒𝛼 . 𝑒𝛽 − 2𝛼𝑒𝛽 
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= 𝑒𝛽 (1 + 𝛼 − 𝛼22 − 𝛼36 ) − 2𝛼𝑒𝛼𝑒𝛽 + 2𝛼𝑒𝛼. 𝑒𝛽 + 2𝑒𝛽+𝛼 − 2𝑒𝛽 − 2𝛼𝑒𝛽 

= −𝑒𝛽 (1 + 𝛼 + 𝛼22 + 𝛼36 ) + 2𝑒𝛽+𝛼 𝑢1(𝛽, 𝛼)= 𝑒𝛽+𝛼 𝑢2(𝛽, 𝛼) = 𝑢1(𝛽, 𝛼) + ∫ (𝜗 − 𝑡) [𝜕2𝑢1( 𝛽, 𝜗)𝜕𝜗2 + 𝜕4𝑢1( 𝛽, 𝜗)𝜕𝛽4 − 2𝑒𝛽+𝜗] 𝑑𝜗𝑡
0  

= 𝑒𝛽+𝛼 + ∫ (𝜗 − 𝑡)[𝑒𝛽+𝜗 + 𝑒𝛽+𝜗 − 2𝑒𝛽+𝜗]𝑑𝜗𝑡0  

= 𝑒𝛽+𝛼 𝑢3( 𝛽, 𝛼) = 𝑢2( 𝛽, 𝛼) + ∫ (𝜗 − 𝑡) [𝜕2𝑢2( 𝛽, 𝜗)𝜕𝜗2 + 𝜕4𝑢2(𝛽, 𝜗)𝜕𝛽4 − 2𝑒𝛽+𝜗] 𝑑𝜗𝑡
0  

= 𝑒𝛽+𝛼    +  ∫ (𝜗 − 𝑡) [𝜕2𝑢2( 𝛽,𝜗)𝜕𝜗2 +  𝜕4𝑢2( 𝛽,𝜗)𝜕𝛽4 − 2𝑒𝛽+𝜗] 𝑑𝜗𝑡0  

= 𝑒𝛽+𝛼 

. 

. 

. 𝑢𝑛( 𝛽, 𝛼) = 𝑒𝛽+𝛼 

The exact solution is: 

u (β, 𝛼)  = 𝑒𝛽+𝛼 

Table 2. The results of u1 compared to the exact solution for 𝛼 =0.1and the VITM 

.β Exact VIM Error 

0.1 1.22140275 1.22140275 0 

0.2 1.3496588 1.3496588 0 

0.3 1.49182469 1.49182469 0 

0.4 1.54872127 1.54872127 0 

 

Figure 2. 

From the above table and curve we have found no error. Hence, VIM is most suited well for this 

type of problems. 

4. Final Conclusion 

The efficiency, robustness, and fast convergence of our suggested method for solving 4th order 

partial differential equations (PDEs) have been established. This article provides an analytical 

approximate solution for fourth-order partial differential equations.  The suggested method is 

straightforward, and its approximation to PDE solutions can be easily evaluated. The proposed 
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method has been used to calculate the solutions to a variety of cases. Additional data showing VIM's 

effectiveness can be found in the tables and figures provided. Finally, the analysis of VIM 

approximate solutions for different order equations with precise solutions confirms the efficiency and 

dependability of the proposed method.  The proposed method's efficacy, resilience, and rapid 

convergence render it highly suitable for various domains within the realm of science and technology. 

However, the majority of the dynamic field of application encompasses communication signaling 

and nanoscience, particularly in the thermal evaluation of nanoparticles. 

Acknowledgments: The authors express their gratitude to the anonymous reviewers for their insightful 

feedback. 
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