Pre prints.org

Article Not peer-reviewed version

Variational Iteration Method for Solving
Nonlinear Partial Differential Equations
iIn Fluid Dynamics

Nahid Fatima ~and Salma Haque

Posted Date: 23 November 2023
doi: 10.20944/preprints202311.1201.v1

Keywords: Partial Differential Equation; Solutions; Variational Method

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/1832831
https://sciprofiles.com/profile/1925662

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 November 2023 doi:10.20944/preprints202311.1201.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Variational Iteration Method for Solving Nonlinear

Partial Differential Equations in Fluid Dynamics

Nahid Fatima »* and Salma Haque 2

1 Department of Mathematics and Sciences, Prince Sultan University, Riyadh, 12232, Saudi Arabia

2 Department of Mathematics and Sciences, Prince Sultan University, Riyadh, 12232, Saudi Arabia;
shaque@psu.edu.sa

* Correspondence: nfatima@psu.edu.sa

Abstract: In this work, the analytical treatment of Fourth order pd equations has been discussed
with the variational iteration algorithm with an auxiliary parameter. The technique has the
capability of reducing the size of computational work and easily overcomes the difficulty of the
perturbation method or Adomian polynomials. Comparison with the classic variational iteration
algorithm- is carried out, showing that the modification is more efficient and reliable.
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1. Introduction

Partial differential equations (PDEs) find use in a diverse range of academic areas, such as
biology, chemistry, economics, engineering, and physics. In recent studies, researchers have
identified the utilization of Partial Differential Equations (PDEs) in several domains such as
nanotechnology, electronic communication platforms like blogs and Facebook, relativistic physics,
condensed matter physics, fluid mechanics, non-linear optics, chemical kinetics, and wave
phenomena, among others. (Ahmed et al., 2020; Inc et al., 2020; Shehata et al., 2019; Zayed 42 et al.,
2020). Analytical solutions to many PDEs, particularly those that are non-linear and complex, may be
extremely challenging. The utilization of ordinary differential equations (ODEs) or partial differential
equations (PDEs) is employed to articulate intricate difficulties encountered in real-world systems.
Due to the inherent difficulty in obtaining precise solutions for several partial differential equations
(PDEs), it is often necessary to employ numerical methods to approximate the solutions of fractional
partial differential equations (FPDEs) of varying orders. The utilization of commonly employed
analytical methods for solving nonlinear equations is sometimes limited. Conversely, the
discretization of variables through the application of numerical approaches introduces the possibility
of encountering rounding errors.

In recent studies, the variational iteration technique (VIM) proposed by He [1,2] has been found
to yield consecutive approximations of the exact solution that converge swiftly, provided that an
exact solution exists. The successful derivation of analytical solutions for both linear and nonlinear
differential equations has been demonstrated. The utilization of this technique is deemed more
advantageous compared to numerical methods due to the absence of rounding mistakes.
Additionally, this approach does not necessitate significant computational power or memory
resources. He has used this technique to solve integro-differential equations, nonlinear partial
differential equations with variable coefficients, and autonomous ordinary differential equations
analytically. Several researchers have successfully employed the variational iteration method. The
VIM (Variational Iteration Method) has been utilized in various applications, such as the nonlinear
Boltzmann equation [3], Burger's and coupled Burger's equations [4], partial differential equation [5],
parabolic integro-differential equations related to heat conduction in materials with memory [6],
coupled Korteweg-de Vries (KdV) and Boussinesq-like B(m, n) equations [7], and Sawada-Kotera
equations [8].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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2. Variational Iteration Method by He

In order to demonstrate the technique of the proposed method, we initiate by examining a
differential equation in a formal format, employing the variational iteration method.

By employing the variational iteration method [21-28], one may derive the subsequent
variational iteration formula for solving the nonlinear partial differential equation.

) menta e
Upy1(x, 1) = Up(%, ) +[ 2w, + Ru, + VU, }dr,
0

The symbol A is commonly referred to as a general Lagrange multiplier [20], which may be
effectively determined by the application of variational theory.
Calculating variation with respect to Un,

: )
awﬂmx)=&%umy+g[A@ﬂu%+Rur+Nm}m,
0

t
SUpp1(x, t) = 8Un(x, t) + 8 [ A(T) LUy (x, T) dT.
0
The Lagrange multiplier, therefore, can be identified as [22-28].
—(t —1) =1
(s—1)!

Substituting the identified multiplier into Eq. results in the following iteration formula:

A1) =

Upp1(x, t) = Uy(x, t) + / ( N {LUy(x. 1) +R(U,) + NU, } dr.
0 S — L

The term situated on the right side of the equation is commonly referred to as the correction
term. The equation can be solved by an iterative process.
Uo(x, t) = fo(x) + fi(X)t +... ... ... + fs-1(x)ts1 as an initial approximation.

3. Diverse Implementations of the Analytical Expression Proposed:

Within this segment, the expression for the approximate solution or VIM solution of the fourth-
order fluid dynamics equation is derived using a variety of functions g(x, t).

3.1. Example 1

Let us take into account the fourth order homogeneous partial differential equation,

Pu_ o _ g )

da2 ot M)
Initial conditions

u(0)= sinf —cosf 2= (f,0)= — (sin f —cosf)
Boundary conditions
u@0a)=-1+a,
u(l,a )=(sinl-cos1)(1- a)
2y u

W(O, a)=0 W(l, a) =(sinl- cosl)e™®

Applying VIM to equation (1)
_ t ’u,(B,9)  *un(B,Y9)
Uns1(B, @) = uy (B, a) + fo A(9) [ T~ g

Take A(W)= 99—t , then

dv
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t 62 '19 a . 9
un+1(ﬁ.a)=un([>’,a)+J;(ﬂ—t)[ ug;f ) uaigf )] 49

Take o (B, a)=(sin 3 - cos 3) + (cos 3 -sin B) «

t 32 '19 6 9
R i T A

The exact solution is:

u (B, a)=(sinfp —cos ) e™®

3.2. Example 2

Let us consider fourth order homogeneous partial differential equation,

2T =0 (1)
With initial conditions
u(B,0=0 2@ 0=1+%
Boundary conditions
u(0, @)= sin «, u(l, @ )=(1+--)sint
62
?; (0,a) = sin x
Applying VIM to equation (1)
t 0%u, (B, 9 4 9*u (B9
a8 = ) + [ 20|20 24 B TR D g
Take A(¥) =9 —t , then
‘ Pun(f,9) Bt 0*un(B,0)
un+1(ﬁ:a) zun(ﬁ:a)'i_L (ﬁ_t)[ 992 (ﬁz ) 6B4 dd
Takeuwo (B, a )=(1+ /Z—!G) a
¢ 02 9 4 g4 9
w0 = w00+ [ 00| B 2+ By T as
wa=-1+5) @-5)
¢ 92 ,0 4 94 9
W =g+ [ -0 298 20+ 5 T as
-+ 5 (a-5+5)
t 02 , 0 4 g4 9
wb) = w0+ [ -0 58D 20+ 2 LD as

_ B® _@ o
_(1+6!) (a o T 7!)

un(ﬁ a)=(1 +—) (a——3 5——7—7)

The exact solution is:

u(B, @) =(1+ Z) sina

Table 1. The results of ui compared to the exact solution for a = 0.1and the VITM.

B Exact VIM Error
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0.1 0.09983341 0.09983333 0.00000008
0.2 0.09983342 0.09983334 0.00000008
0.3 0.09983351 0.09983343 0.00000008
0.4 0.09983398 0.0998339 0.00000008
Graph.
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Figure 1.

From the above Figrure ,we can see error is quite less and if we compare table with exact
solutions its well suited.

3.3. Example 3

Consider fourth order nonhomogeneous partial differential equation,

0%u o%u

Initial conditions

oaz T ogi = 2eP"
uBO)= ef
du
ou = ef
e BO)=¢€

Applying VIM to equation (1)

t
ter(Br@) = un( Brcc) + f A(9)
0

Take A(W) =9 —t¢,

then

Un1 (B, @) = up(B, ) +f @ - t)[
0

Take

)

dv

[azun(ﬁ,ﬂ) + 0*u (B, 9)

092

ap*

azun(ﬁlﬁ) a4un(ﬁ'19) _Zeﬁ+19

wP, a)=ef(l+a)

Uy (ﬁ' (Z)=

092

ap*

0%uo(B,9) = 0*ue(B,9) _ 2pB+P

s (Bra) = uo( B ) +f (ﬁ—t)[
0

2

092

op*

|ao

|as

_ —3
eP(1+a)+ef (L + %) —2ef(ae® —et® + 1) + 2ae®.ef — 2aef

2
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a?  ad

ef (1 ta——- ?) —2ae%ef 4+ 2ae% ef 4 2eP+2 —20F — 2qef
2 3
—ef (1+a+S+5) + 2P
2 6
u’l(ﬁr a): eﬁ‘HZ
¢
u(B,0) =u (B, a) + f @-1 [
0

efra 4 fot(ﬁ —t)[ePt0 + PP — 2eF*0]dy
_ ebra

*w (B,9) 0wy (B,9) 2B+
992 ap*

|

¢ 62 2 ,19 64 2 ,19
wh.0) = wpa)+ [ @ -0| e TG gepes
0

Bta tog o~ [0%ua(BB) | 3*ua(BD) . pio
R ING t)[ 2P T 2e ] o

|as

= oBta

un( .El a) = eﬁ-HZ
The exact solution is:
upa) = efr

Table 2. The results of u1 compared to the exact solution for a =0.1and the VITM

B Exact VIM Error
0.1 1.22140275 1.22140275 0
0.2 1.3496588 1.3496588 0
0.3 1.49182469 1.49182469 0
0.4 1.54872127 1.54872127 0

Figure 2.

From the above table and curve we have found no error. Hence, VIM is most suited well for this
type of problems.

4. Final Conclusion

The efficiency, robustness, and fast convergence of our suggested method for solving 4th order
partial differential equations (PDEs) have been established. This article provides an analytical
approximate solution for fourth-order partial differential equations. The suggested method is
straightforward, and its approximation to PDE solutions can be easily evaluated. The proposed
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method has been used to calculate the solutions to a variety of cases. Additional data showing VIM's
effectiveness can be found in the tables and figures provided. Finally, the analysis of VIM
approximate solutions for different order equations with precise solutions confirms the efficiency and
dependability of the proposed method. The proposed method's efficacy, resilience, and rapid
convergence render it highly suitable for various domains within the realm of science and technology.
However, the majority of the dynamic field of application encompasses communication signaling
and nanoscience, particularly in the thermal evaluation of nanoparticles.
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