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Abstract: We consider a Cauchy problem for differential equations in a Hilbert space X. The problem
is stated in a time interval I, which can be finite or infinite. We use a fixed point argument for
history-dependent operators to prove the unique solvability of the problem. Then, we state and prove
convergence criteria for both a general fixed point problem and the corresponding Cauchy problem.
These criteria provide necessary and sufficient conditions on a sequence {u,} which guarantee
its convergence to the solution of the corresponding problem, in the space of both continuous
and continuously differentiable functions. We then specify our results in the study of a particular
differential equation governed by two nonlinear operators. Finally, we provide an application in
viscoelasticity and give a mechanical interpretation of the corresponding convergence result.
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convergence criterion; viscoelastic constitutive law

1. Introduction

Convergence results represent an important topic in Functional Analysis, Numerical Analysis,
Differential and Partial Differential Equations Theory. They are important in the study of mathematical
models which arise in Mechanics, Physics and Engineering Sciences, as well. Some elementary
examples are the following: the convergence of the solution of a penalty problem to the solution of
the original problem as the penalty parameter converges, the convergence of the discrete solution to
the solution of the continuous problem as the time step or the discretization parameter converges to
zero, the convergence of the solution of a viscoelastic problem to the solution of an elastic problem as
the viscosity goes to zero, the convergence of the solution of a frictional problem to the solution of a
frictionless problem as the coefficient of friction converges to zero.

For all these reasons, a considerable effort was done to obtain convergence results in the study
of various mathematical problems including nonlinear equations, inequality problems, inclusions,
fixed point problems, optimization problems, among others. Note that, in most of the cases, such
results provide sufficient conditions which guarantee the convergence of a given sequence {u,} to the
solution of the corresponding problem, denoted in what follows by P. They do not describe all the
sequences which have this property. Therefore, we naturally arrive to consider the following problem,
associated to P.

Problem Qp. Given a Problem P which has a unique solution u in a metric space Y, describe the convergence
of a sequence {u,} C Y to the solution u. In the words, provide necessary and sufficient conditions for the
convergence u, — u in 'Y, i.e., provide a convergence criterion.

Note that Problem Qp represents a major issue in the study of convegence results. Its solution
depends on the structure of the original problem P and cannot be provided in this general framework.
Results in solving Problem Qp have been obtained in [15], in the particular case when P is a variational
inequality, a fixed point problem and a minimization problem.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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In this current paper we continue our research in [15] with the case when P is a Cauchy problem

of the form
u(t) = F(t,u(t))) Vtel, 1)
u(0) = uo @
Here and everywhere below X represent either a Banach space endowed with the norm || - || x or a
Hilbert space endowed with the inner product (-, -)x and the associated norm || - [|[x, I C R is an

interval of time, F : I x X — X and 1y € X is a given initial data. Moreover, the dot above represents
the derivative with respect to the time variable. We consider both the case when I is a bounded interval
of the form I = [0, T] with T > 0 and the case when I = R and, when no specification is made, I will
represent whichever of these intervals. Under appropriate assumptions which guarantee that problem
(1)=(2) has a unique solution u € CY(I; X), our aim is to indicate necessary and sufficient conditions
which garantee the convergence of a given sequence {u,} € C!(I; X) to the solution u, both in the
spaces C(I; X) and C!(I; X).
Note that the study of problem (1)—(2) is related to the study of the fixed problem

u(t) = Au(t) vVtel, (©)]

where A : C(I; X) — C(I; X) is an operator which will be specified later. For this reason, we start
with convergence results concerning this auxiliary fixed point problem. To conclude, in this paper we
shall provide an answer to Problem Qp in the case when P both the Cauchy problem (1)—-(2) and the
fixed point problem (3) while the space Y is the space C!(I; X) and the space C(I; X), respectively. Our
study is motivated by possible applications in Analysis and Solid Mechanics.

The rest of the manuscrit is structured as follows. In Section 2 we introduce some preliminary
material. Then, in Section 3 we state and prove a convergence criterion in the study of the fixed
problem (3). Next, in Section 4 we state and prove two different convergence criteria in the study
of the Cauchy problem (1)—-(2), in the space of continuous and continuously differentiable functions,
respectively. We use these results in Section 5, in which we consider a particular form of the differential
equation (1), governed by two nonlinear operators. Finlly, in Section 6 we provide an applications of
the abstract results in Section 5 in the study of a differential equations arising in viscoelasticity.

2. Preliminaries

In this section we introduce two spaces of functions and the class of history-dependent operators.
Then, we state two elementary inequalities which will be used repeatedly in the next sections. We
precise that everywhere in this manuscript m will denote a given positive integer and the limits are
considered as n — oo, even if we do not mention it explicitely. For a sequence {e,} C IRy which
converges to zero we use the short hand notation 0 < ¢, — 0. We extend this notation to a sequence
{el"} € Ry (with m given) which converges to zero and, therefore, we write 0 < & — 0.

Space of continuously and continuously differentiable functions. We start with some properties of
the spaces C(I; X) and C!(I; X) defined by
C(I;X)={v: I — X|viscontinuous },
CYLX)={v:1—=X|veC(;X)and v € C(I;X) }.

On occasion, these spaces will be denoted by C([0, T]; X) and C!([0, T]; X), respectively, if I =
[0, T]. The space C([0, T|; X) will be equipped with the norm of the uniform convergence, that is

3y = t . 4
191l c(jo,7y;%) max lo(t) [l x (4)
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It is well known that, endowed with this norm, this space is a Banach space. Moreover, the space
CY([0, T]; X) is a Banach space with the norm

1ollcr (o) = e lo(H)[lx + max [o(t) 1 x- @)

We now consider the case I = R... It is well known that, if X is a Banach space, then C(R; X)
can be organized in a canonical way as a Fréchet space, i.e., a complete metric space in which the
corresponding topology is induced by a countable family of seminorms. The details can be found in
[3,7]. Here, we restrict ourselves to recall that the convergence of a sequence {v,} C C(R4; X) to the
element v € C(R4; X) is characterized by the following equivalence:

vy = v inC(Ry; X) «—
(6)

max_||v,(t) —o(t)|| = 0 forall m € N.
te[0,m]

In other words, the sequence {v,, } converges to the element v in the space C(R; X) if and only if it
converges to v in the space C([0, m]; X) for any m € N. Next, the convergence of a sequence {v,} to
the element v, in the space C!(R; X), can be defined as follows:

vy — v inCl{Ry;X) <

t)—o(t)||x -+ 0 and
e l[on(t) —o(t)]Ix an @)
max_|[|9,(r) —9(t)||x — 0, forall m € N.
te[0,m]

The equivalences (6) and (7) will be used repeatedly in the next sections, in order to prove various
convergence results when working on the framework of an unbounded interval of time.

Using the properties of the integral it is easy to see that if f € C(I; X) then the function g: I — X
given by

() = /Otf(s) ds forall te T

belongs to C!(I; X) and, moreover, ¢ = f. In addition, we recall that for a function v € C!(I; X) the
following equality holds

o(t) = /Otz')(s) ds +v(0) forall f ¢ I. ®)

Finally, we mention that, when no confusion arises, we shall use the notation Ox for the zero
element in both spaces X, C(I; X), C'(I; X), C([0,m]; X) and C'([0, m]; X), for any m € N.

History-dependent operators. We now introduce a class of operators defined on the space of
continuous functions C(I; X).

Definition 1. An operator A: C(I; X) — C(I; X) is called history-dependent if:
a) I = [0, T] and there exists L > O such that

t
() = Ay ()lx < L [ s (s) = a(s)]xc s ©)
forall uy, uy € C([0,T]; X), t€[0,T].
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b) I =R, and for any m € N there exists Ly, > 0 such that

t
[ (8) = A (8) x < L || fa(5) = wa(s) s (10)
forall uy, up € C(R4;X), t € [0, m].

Note that here and below, when no confusion arises, we use the shorthand notation Au(t) to
represent the value of the function Au at the point ¢, i.e., Au(t) = (Au)(t), forall t € I. Also, we recall
that the term “history-dependent operator” was introduced in [12] and since it has been used in many
papers, see [8,9,11,13], for instance. Exemples of history dependent operators will be provided in the
next sections of this manuscript.

Finally, using Definition 1 and the convergences (4) and (6) it is easy to see that any history
operator A : C(I; X) — C(I; X) is continuous, that is

upy - u  in C([X) = Au,—Au in C(L;X). (11)

An important property of history-dependent operators is the following fixed point property,
proved in [10,14].

Theorem 1. Let X be a Banach space and A: C(I; X) — C(I; X) be a history-dependent operator. Then, A
has a unique fixed point, i.e., there exists a unique element u € C(I; X) such that Au = u.

Theorem 1 is useful to prove the unique the solvability of various classes of nonlinear equations
and variational inequalities. An example is provided by the following result which will be used in
Section 6 in this paper.

Theorem 2. Let X be a Hilbert space, A : X — X a strongly monotone Lipschitz continuous operator and

A: C(L; X) — C(I; X) a history-dependent operator. Then, for any f € C(I; X) there exists a unique function
u € C(I; X) such that

Au(t)+ Au(t) = f(t) Vtel (12)

A proof of Theorem 2 can be found in [13], based on the fixed point result provided by Theorem 1.

Two elementary inequalities. We now recall two elementay inequalities which will be used in many
places below. To this end, we use the notation C(I) for the space of real-valued continuous functions
defined on the interval I, that is, C(I) = C(I;R). The first inequality we recall is the well-known
Gronwall inequality and is stated as fallows.

Lemma 1. Let f, ¢ € C(I) and assume that there exists ¢ > 0 such that

f(#) Sg(t)—i—c/otf(s)ds forall t € 1. (13)

Then, ,
ft) <g(t)+ c/ g(s)eft=5)ds forall tel. (14)
0

Moreover, if g is nondecreasing, then

f(t) < g(t)et forall tel.

A proof of Lemma 1 can be found in [13, p.60] and, therefore, we skip it.

The second inequality we need is the following.
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Lemma 2. Let X be a Hilbert space, x € X and € > 0. Then the follwing equivalence holds:
lxlx <e <= (x,v)x+e||v||lx >0 VoeX. (15)
Proof. Assume that ||x||x < eand v € X. Then, it is easy to see that

(v, 0)x +ellvllx = =[lx[[xllvllx +ellvllx = (e = l[xllx)l[ollx

and, therefore (x,v)x + ¢[|v||x > 0. Conversely, assume that (x,v)x + ¢||v||x > 0 for any v € X. We
take v = —x in this inequality to find that —(x, x)x + ¢&||x||x > 0 which implies that ||x[|% < e||x|/x.
We deduce from here that ||x||x < ¢, which concludes the proof. [

3. The fixed point problem

In this section we state and prove a convergence criterion for the solution of the fixed point
problem (3). To this end, everywhere in this section we assume that X is a Hibert space and, under the
assumption of Theorem 1, we denote by u € C(I; X) the fixed point of operator A. Moreover, given an
arbitrary sequence {u,} C C(I; X) we consider the following statements:

uy, —u  in C(L;X). (16)
uy —Auy, - 0x  in C(L; X). (17)
[ = [0; T] and there exists 0 < ¢, — 0 such that a8)
(un(t),v)x +enllvl|x > (Aun(t),v)x Yoe X, neN, tel.
I =Ry and for any m € N there exists 0 < €]} — 0 such that 19)
(un(t),v)x +eM|v|lx > (Auu(t),v)x Voe X, neN,te[0,m].

Our main result in this section is the following.

Theorem 3. Let X be a Hilbert space, T > 0 and A : C(I; X) a history-dependent operator.
a) If I = [0; T| then the statements (16), (17) and (18) are equivalent.
b) If I = R then the statements (16), (17) and (19) are equivalent.

Proof. a) We start with the case I = [0, T]. Assume that (16) holds. Then, using (11) it is easy to see that
Uy — Auy, — u — Au in C(I; X) and, since u is the solution of the fixed point problem (3), we deduce
that (17) holds.

Next, assume that (17) holds which shows that

max ||u,(s) — Auu(s)||lx =0 as n — oo. (20)
s€[0,T)
For which n € N denote
en = max |[uu(s) — Auy(s)||x- (21)
s€[0,T]

Then, (20) shows that 0 < ¢, — 0 and, moreover, definition (21) implies that for any t € I we have
[un(t) — Aun(t)||x < en. (22)

We now use inequality (22) and Lemma 2 to see that condition (18) holds.
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Finally, assume that (18) holds. Let n € Nand t € [0,T]. We take v = u(t) — u,(t) in this
inequality to see that

(n (£), u(t) — 1 (£)) x + €n|u(t) —un()lx = (Awn(£), u(t) — un(t))x
and, using equality u(t) = Au(t), we find that

(un(t) —u(t), u(t) —un(t))x +enllu(t) —un(t)|x = (Aun(t) — Au(t), u(t) —un(t))x.
Thus,
[l (£) = u()[5 < enllun() = ut)|[x + ([ Awn(t) — Aut) || x| () — u(t)| x

and, therefore,
[un(t) —u(®)]lx < en+ |Aun(t) — Au(t)| x.

We now use inequality (9) to see that

() = () < e L [ 1 (5) (s e
and, employing the Gronwall argument provided by Lemma 1, we find that
ln () — u(®)|1x < ene™.
We now use the convergence ¢, — 0 and inequality ¢t < T to see that

max |[u,(f) —u(t)[[x =0 as n— oo,
te[0,T]

which implies that (16) holds.

To conclude, we proved the implications (16) = (17) = (18) = (16) which shows the
equivalence of the statements (16), (17) and (18).

b) We continue with the case I = R,.. To this end we fix m € N and we use the first part of the
theorem with T' = m, combined with the remark that the quantity ¢, defined in (21) depends on T and,
therefore, since T = m, we denote it by &/. We deduce from here the equivalences of the following
statements:

up —u  in C([0,m]; X). (23)

U, — Au, — Ox in C([0, m]; X). (24)

(25)

there exists 0 < &)} — 0 such that
(un(t),v)x +eM|v|lx > (Auu(t),v)x Voe X, neN,te[0,m].

Recall that the equivalence of these statements is valid for any m € N. We now use (6) to see that
the convergences (23) and (24) can be replaced by the convergences (16) and (17), respectively, which
concludes the proof. O

We remark that Theorem 3 provides an answer to Problem Qp in the particular case when
Problem P is the fixed point problem (3). Indeed, it provides a convergence criterion to the solution of
this problem, both in the case I = [0, T] and I = R,.

doi:10.20944/preprints202311.1182.v1
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We end this section with the remark that in the case I = R, we cannot skip the dependence on m
for the constants €] which appear in (25). More precisely, we claim that in the case I = R, condition

there exists 0 < ¢, — 0 such that
(26)

(un(t),v)x +enllvllx = (Auy(t),v)x Voe X, neN, tel
is not equivalent with the convergence (16). The proof of this claim follows from the following example.

Example 1. Let X =R, I = Ry and let A : C(I) — C(I) be the operator defined by

Au(t) = /Otu(s) ds (27)

forallu € C(I),t € Iand n € N. Then, it is easy to see that A is a history-dependent operator and its unique
fixed point is the function u(t) = 0 for all t € 1. Consider now the function

1 =»
Un(t) = Ee%” VneN, teRy. (28)
Then, it is easy to see that
1 141,y 1 2m
max |uy(f)|==en "< =™ -0 asn—>o00, VmeN
te[0,m] n n

and, therefore, (6) shows that u, — 0 in the space C(I). Nevertheless, we shall prove that condition (26) does
not hold. Indeed, arguing by contradiction, assume that the sequence {uy } satisfies this condition. Then, there
exists a sequence 0 < &, — 0 such that the inequality in (26) holds and, using Lemma 2, we deduce that

[ Ay (t) —un ()] < ey VneN, teR;. (29)

Using now (27)—(29), we deduce that

MCES

1 nlt 1

n+1§£n VTIGN,tER+.

We now take t = n? in the previous inequality, then we pass to the limit as n — oo and arrive to a contradiction.
We conclude from here that condition (26) does not hold.

4. The Cauchy Problem

We now proceed with the study of the Cauchy problem (1)—(2) and, to this end, we consider the
following assumptions.

(a)F: IxX— X.

(b) The mapping t — F(t,u): I — X is continuous
forall u € X.
(c) If I = [0, T] then there exists Ly > 0 such that
[F(t,u1) — F(t,u2)|lx < Lp[lug —uzllx (30)
forall uy,u; € X, t € [0, T].
(d) If I = Ry then for any m € N there exists L} > 0 such that
[F(t,u1) = F(t,ua)||x < L¥[Jug — ual|x
forall uy,up; € X, t € [0, m].
1y € X. 31)
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Our first result in this section is the following.

Theorem 4. Let X be a Banach space, T > 0 and assume (30)(a), (b) and (31). Then, problem (1)—(2) has a
unique solution u € C'(I; X) in the following two cases:

a) I = [0; T| and F satisfy condition (30)(c);
b) I = Ry and F satisfy condition (30)(d).

Proof. Let ug € X and let A: C(I; X) — C(I; X) be the operator defined by
t
Au(t) = / F(s,u(s)) ds +uo forall u e C(I;X), t € L. (32)
0

Note that assumptions (30) (a),(b) imply that for any function u € C(I; X), the function ¢ — F(t,u(t))
is continuous on I and, therefore, the operator A is well defined. In addition, using condition (30) (c)
it is easy to see that in the case when I = [0, T, this operator satisfies inequality (9) and, therefore,
Definition 1 a) guarantees that it is a history-dependent operator. Moreover, if I = R, using condition
(30) (d) it follows that the operator A satisfies inequality (10) and, therefore, Definition 1 b) guarantees
that it is a history-dependent operator, too. Therefore, using Theorem 1 we deduce that there exists a
unique function # € C(I; X) such that

u(t) = A(t) forall ¢ € I (33)

Hence, using (33) and (32) we deduce the existence of a unique function u € C(I; X) such that
t
u(t) = / F(s,u(s))ds+ug forall t € I. (34)
0

On the other hand, it is easy to see that a function u € C!(I;X) is a solution to the Cauchy
problem (1)—-(2) if and only if u € C(I; X) and (34) holds. We combine this equivalence with the unique
solvability of the integral equation (34) to end the proof. g

The proof of Theorem 4 establish a link between the Cauchy problem (1)-(2) and the fixed point
problem (3) with A given by (32). Based on this link, in the case when X il a Hilbert space, we can
easily deduce a convergence criterion to the solution of the Cauchy problem (1)—(2). More precisely,
we write the statements (16)-(19) in the particular case of the operator (32):

Uy — u in C(I; X). (35)
t
iy —/0 F(s, un(s))ds —ug — 0 in C(I;X). (36)

I = [0; T] and there exists 0 < e, — 0 such that
t
(1 (8),0)x + enlfollx = ( [ F(s,ua(s)) ds + o, 0)x (37)
VoeV,neN, tel
I =Ry and for any m € N there exists 0 < €} — 0 such that

(0n (1), 0)x + € ollx = ([ Fls,u(s)) ds + o, 0)x )

VYoeV,neN,tel0,m.

doi:10.20944/preprints202311.1182.v1
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Then, using the convergence criterion provided by Theorem 3 we deduce the following result.

Corollary 1. Let X be a Hilbert space, T > 0 and assume (30)(a), (b) and (31).
a) If I = [0; T] and (30)(c) holds then the statements (35), (36) and (37) are equivalent.
b) If I = Ry and (30)(d) holds then the statements (35), (36) and (38) are equivalent.

Note that Corollary 1 provides a convergence criterion for the solution of the Cauchy problem
(1)-(2), in the space C(I; X). Nevertheless, recall that the solution u of the problem belongs to the space
CY(I; X). The example below shows that this criterion is not valid in the space C'(I; X).

Example 2. Let X be a Hilbert space, I = [0, T|, f € X, f # Ox and consider the Cauchy problem of finding a
function u : I — X such that

u(t)+u(t)=f Vtel0,T], u(0)=f. (39)

Then, it is easy to see that this problem is of the form (1)—(2) with F(t,u) = f —u foreach t € I, u € X and
uy = f.It is easy to see that the assumptions of Corollary 1 a) are satisfied and, moreover, the solution of this
problem is given by

u(t)y=f Vtel

Consider now the sequence {u,} C C*(I; X) defined by
1 .
uy(t) = <1+Esmnt>f Viel

Then, it is easy to see that conditions (35) and (36) are satisfied. Nevertheless, the convrgence u, — u in
CY([0, T); X) does not hold since, for instance, the sequence of derivatives {1i, } does not converge to zero in the
space C([0, T]; X).

In order to provide a convergence criterion to the solution the Cauchy problem (1)—(2) in the space
CY(I; X) we consider the following statements.

up —u  in CY(I; X). (40)
iy —F(-,uy) - 0x in C(I;X) and u,(0) = up in X. (41)
I = [0; T] and there exists 0 < ¢, — 0 such that

(i (t),0)x +enl|lvllx = (F(t,un(t)),v)x VoeX,neN, tel, (42)

lun(0) —upllx <& VneNlN

I =Ry and for any m € N there exists 0 < €]} — 0 such that
(uy(1),0)x + M||vl|x = (F(t,un(t)),v)x YveX,neN, te[0,m], (43)

|12 (0) — up||x < e VneN.

Our next result in this section is the following.

Theorem 5. Let X be a Hilbert space, T > 0 and assume (30)(a), (b) and (31).
a) If I = [0; T] and (30)(c) holds then the statements (40), (41) and (42) are equivalent.
b) If I = Ry and (30)(d) holds then the statements (40), (41) and (43) are equivalent.
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Proof. a) We start with the case I = [0, T]. Assume that (40) holds. Then, using (30) (a), (b), (c) it is easy
to see that 1, — F(-,u,) — 1 — F(-,u) in C(I; X) and, since u is the solution of the Cauchy problem
problem (3), we deduce that

iy — F(-,uy) =0  in C(I; X).

In addition, u,(0) — u(0) in X and, since u(0) = ug we find that 1, (0) — g in X. It follows from
here that (41) holds.
Next, assume that (41) holds which shows that

max |[u,(s) — F(s, un(s))||lx =0 as n — oo. (44)
s€[0,T)

For which n € N denote

0, = 12(s) — F(s, uy . 45
mac [in(s) — F(s,un(5)) | x )

Then, (44) shows that 0 < 8, — 0 and, moreover, definition (45) implies that for any ¢ € I we have
it (£) = E(t, 00 (£)) [ < 60 (46)
We now use inequality (46) and Lemma 2 to see that
(it (t),0)x + 6nllollx = (F(t,un(t)),v)x VoeX,neN, tel (47)
Then, it is easy to see that condition (42) holds with
en = max {6y, [|u,(0) —u(0)||x}- (48)

Finally, assume that (42) holds. Letn € Nand t € [0,T]. We take v = 1(t) — 1,(t) in this
inequality to see that

(e (), 1 (8) = 12 (£))x + €nl[11(8) — st (£) | x = (F(t, un(t)), (t) — tha (£))x
and, using equality 1(t) = F(t,u(t)), we find that
(ttn (8) — i (8), 11(t) — 1 (£)) x + e[| () — 11 (£)]|x
> (F(t,un(t)) = F(t,u(t)), i(t) — iin(t))x-
Thus,
1 () = (E)|% < enllitn(t) = (81 x + [ F( un(t)) — F(t,u(t))xlt0a () — a(£) ]| x

and, therefore,
[ (t) — i (t)[|x < en+ [|F(t un(t) — F(t,u(t))]x.

We now use assumption (30)(c) to see that
[t (£) = 11(£) | x < €n + Le[Jun(t) —u(t)||x

and, keeping in mind (8), after some algebra we find that

i (£) = () [ x < en+ L /Ot 11 (s) — 1i(s) || x ds + L[[un(0) — uol|x-
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Next, we use the Gronwall lemma and inequality ||, (0) — up||x < &, in (42) to find that
lin(£) =i (#)][x < (1+ Lp)e"ep.
We now use the convergences ¢, — 0 and inequality t < T to see that
max ||, () —u(t)||x = 0 as n — oo. (49)
te[0,T]
On the other hand, using the identity
t
(1) = u(t) = [ (a(s) = 1(5)) ds +100(0) — g
we find that .
[[un () —u(t)||x < /O 11 (s) = 1i(s)) || x ds + [|un (0) = uo||x-
Therefore, (49) and (42) imply that
max |u,(f) —u(t)||x = 0 as n — oo. (50)

t€[0,T]

The convergences (49) and (50) show that 1, — u in CY(I; X) and, therefore, (40) holds.
To conclude, we proved the implications (40) = (41) = (42) = (40) which shows the
equivalence of the statements (40), (41) and (42).

b) We proceed with the case I = R. To this end we fix m € N and we use the first part of the
theorem with T = m, combined with the remark that the quantity ¢, defined by (48), (45) depends on
T and, since T = m, it we denote it what follows by ¢]'. We deduce from here the equivalences of the
following statements:

Uy — U in Cl([O,m];X). (51)
iy — F(-,uy) — 0x in C([0,m]; X), un(0) — u(0) in X. (52)

there exists 0 < €} — 0 such that
(i (t),0)x +eM|v]|x > (F(t,un(t)),v)x VneN,te|0,m], (53)
||, (0) —up||lx < e VneNlN

Recall that the equivalence of these statements is valid for any m € N. We now use (5) and the

equivalence (6) to see that the convergences (51) and (52) can be replaced by the convergences (40) and
(41), respectively, which concludes the proof. O

Note that Theorem 5 provides a convergence criterion for the solution of the Cauchy problem
(1)-(2), in the space C!(I; X). Therefore, it provides an answer to Problem Qg in the case when P
represents the above mentioned Cauchy problem.

5. A particular case

Everywhere in this section we assume that X is a Hilbert space. We use the results in Section 4 in
the study of the Cauchy problem

Au(t) +Bu(t) = f(t) Vtel, (54)
u(0) = ug, (55)

doi:10.20944/preprints202311.1182.v1
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inwhich A : X — X and B : X — X are given nonlinear operators, f : I — X and u is an initial data.
In the study of this problem we assume that A is a strongly monotone Lipschitz continuous operator,
that is, there exists two constants m4 > 0 and L, > 0 such that

(Au— Av,u —v)x >mq|lu—ol% Vu,veX, (56)
|Au — Av||x < Lallu—ov|x  Yu,veX. (57)
We also assume that B is a Lipschitz continuous operator with constant Lg > 0, i.e.,
||Bu— Bo||x < Lg|lu—v||lx Vu,veX (58)
and, finally, we assume that the function f and the initial data have the following regularity:
feC(;X), (59)
ug € X. (60)

It is well known that conditions (56) and (57) imply that the operator is invertible and, moreover,
2
its inverse A~!: X — X is a strongly monotone Lipschitz continuous operator, with constants T—g‘ and

1 . . . .
i, respectively. A proof of this result can be found in [13, p. 23], for instance. Therefore,

(At — A Yo, u—v)x > % |lu—o|% VYuveX, (61)
A

1
A7 — A o||x < —|lu—v||x VYuveX (62)
ma
The unique solvability of the problem (54)—(55) is provided by the following result.

Theorem 6. Let X be a Hilbert space and assume (56)—(60). Then, problem (54)—(55) has a unique solution
u € CHL; X).

Proof. We use the inverse of the operator A to see that problem (54)—(55) is equivalent to the problem
of finding a function u € C!(I; X) such that

u(t) = A7Y(f(t) — Bu(t)) forall t €I, (63)
1(0) = uy. (64)

Denote by F: I x X — X the function given by
F(t,u) = A7 (f(t) = Bu) Vtel,ucX. (65)

Then, using the properties (62), (58) of the operators A~! and B, respectively, as well as the regularity
(59) of the function f, it is easy to see that the function F defined before satisfies conditions (30).
Therefore, Theorem 6 is a direct consquence of Theorem 4, which guarantees the unique solvability of
the Cauchy problem (63)-(64). O

We provide a convergence criterion to the solution the Cauchy problem (63)—(64) and, to this end,
we consider the following statements.

doi:10.20944/preprints202311.1182.v1
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uy —u in CHI; X). (66)
Aty +Buy, — f in C(;X) and u,(0) - up in X. (67)
I = [0; T] and there exists 0 < ¢, — 0 such that
(Atin(t),0)x + (Bun(t),v)x +enllvl|x = (f(t),0)x (68)
VoeX,neN, tel,
|un(0) —ugllx <&n VneN,
I =Ry and for any m € N there exists 0 < € — 0 such that
(Atin(t),0)x + (Bun(t),v)x + &7 [[vl[x = (f(t),v)x (69)
VoeX,neN, tel0,m],
lun(0) —upllx <e VneNlN

Our main result in this section is the following.

Theorem 7. Let X be a Hilbert space, T > 0 and assume (56)—(60).
a) If I = [0; T|] then the statements (66), (67) and (68) are equivalent.
b) If I = R then the statements (66), (67) and (69) are equivalent.

Proof. a) We assume that I = [0, T]. We use Theorem 5 with F given by (65) to see that the there
statements below are equivalent.

u, —u in CY(I; X). (70)
iy — A7 (f —Bu,) = 0x in C(;X) and wu, — up in X. (71)

I = [0; T] and there exists 0 < 6, — 0 such that
(it (t),0)x + Oullollx = (A7 (f(t) — Bun(t)), 0)x

(72)
Voe X, neN, tel,
|tn(0) —upllx <60, VneNl
Letn € Nand t € I. We write
i (£) = ATH(f (1) = Bun(t)) = A (Atin(£)) = A7H(f(t) = Buu(t))
then we use the property (62) of the operator A~! to deduce that
, - 1 .
it (£) = AT () = Bun (1)) | x < oy At (8) + Bun(t) = f(8)l|x- (73)

A similar argument, based on the identity
Aty (£) + Bun(t) = f(t) = Attu(t) = A(A7}(f(t) — Bun(t)))
and the property (57) of the operator A, yields

At (£) + Bun(£) — F(8) [ x < Lallia(t) — A7 (F(5) = Bua () | x- 74)
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Therefore, inequalities (73) and (74) show that
the convergence (67) holds if and only the convergence (71) holds. (75)
Assume now that (72) holds. Then Lemma 2 guarantees that
it (£) = ATM(F(£) = Bua(t))llx <6 VneN, tel
and, using (74) we deduce that
| Aty (t) + Buu(t) — f(t)||x < Labn VneN, tel.
Then, using again Lemme 2, we deduce that
(Atiy(t),v)x + (Bun(t),v)x + Labul|v|x > (f(t),v)x VYVveX,neN, tel

It follows from here that the statement (68) holds with e, = max {L460,,0,}, for all n € N. This shows
that the statement (72) implies the statement (68). A similar argument, based on inequality (73), shows
that the converse of this implication holds, too. We conclude from here that

the statement (68) holds if and only the statement (72) holds. (76)

The equivalence of the statements (66), (67) and (68) is now a direct consequence of the equivalences
the statements (70), (71) and (72), guaranteed by Theorem 5, combined with the equivalences (75) and
(76).

b) Assume now that I = R.. Then, the equivalences of the statements (66), (67) and (69) follows
arguments similar to those used in the first part of the theorem. Since the modifications are straight,
we skip the details. O

Consider now two sequences { f, } and {ug, } such that, for each n € N the following condition
hold.

fn € C(L;X), (77)
gy € X. (78)

Then, it followws from Theorem 6 that for each n € N there exists a unique function u, € C!(I; X)
such that

Aty () + Buy(t) = fu(t) Vtel, (79)
1n(0) = ton, (80)
We have the following result.

Corollary 2. Let X be a Hilbert space, and assume (56)—(60), (77) and (78). Then, the solution u, of Problem
(79)~(80) converges in C1(I; X) to the solution u of Problem (54)—(55) if and only if

fu—f in CYL;X) and wug, —u in X.

Proof. Corollary 2 is a direct consequence of the equivalence of statements (66) and (67) in Theorem
7. O
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Note that Corollary 2 provides, in particular, a continuous dependence result of the solution of
the Cauchy problem (54)—(55) with respect to the date f and ug. Similar results can be obtained by
considerating the perturbation of the operators A or B as well as various perturbations of the left hand
side of the differential equation (54). Such an example will be presented in the next section, in the
study to a viscoelastic problem.

6. An application in Solid Mechanics

Our results in the previous sections are usefull in the study of various boundary value problems
in Solid Mechanics. References in the field are the books [13,14], for instance. Here, to keep the paper
in a reasonable length, we provide only one simplified exemple and, to this end, we need to introduce
some additional notations.

Let O C R (d = 1,2,3) and denote by S the space of second order symmetric tensors on R? or,
equivalently, the space of symmetric matrices of order d. We recall that the canonical inner product
and the corresponding norm on S¢ are given by

ot =01, Tl =(r-0)"* Vo= () = (1) S

Here and below in this section the indices i, j, k, | run between 1 and 3, and, unless stated otherwise,
the summation convention over repeated indices is used. We consider the space

Q=1 ={7= () | =1, €LX(Q), 1<ij<d}

which, recall, is a Hilbert spaces with the canonical inner product

(U,T)Q:/Qaij'qjdx:/na~rdx

and the associated norm, denoted by || - ||o. Moreover, we need the space of symmetric fourth order
tensors Q. given by

Qo = {C = (cijur) | cijir = cjit = ewij € L*(Q), 1 < i, j,k1<d}.

It is easy to see that Q. is a real Banach space with the norm

ICllo. = 0B, il L (2)
and, in addition,
[Ctllg <dlIClla.lltllg VC € Qw, TEQ. (81)

Below we denote by 0w the zero element of the spaces C(I; Qo) and C([0,m]; Qo) with m € N.
Moreover, 0 will represent the zero element of the space Q. Finally, let I be a time interval of interest
which can be either bounded (i.e., of the form I = [0, T] with T > 0), or unbounded (i.e., | = R} ) and
recall that, as usual, we use a dot above to denote the derivative with respect to the time variable.

We now turn to the viscoelastic problem we consider, which is governed by two given operators
A:Q — QandB:Q — Q. It can be formulated as follows.

Problem P. Given a function o € C(I; Q) and an element &y € Q, find a function € € C(I; Q) such that

o(t) = Aé(t) + Be(t) Vtel, (82)
£(0) = €. (83)

This problem describes the behaviour of a viscoelastic body in the time interval I. Here, ()
represents the reference configuration of the body, ¢ is the stress tensor, € represents the linearized
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strain tensor and equation (82) is related to the consitutive law of the material, asumed to be viscoelastic
with short memory. The operator A represents the viscosity operator and B is the elasticity operator.
Finally, the function &y is the initial deformation. More details on the constitutive laws which describe
the bahaviour of viscoelastic materials can be found in [4-6,13,14], for instance.

We now consider a sequence {C,, } of functions defined on I with values in the space Q« and, for
each n € N, we consider the following problem.

Problem P,,. Given a function o € C(I; Q) and an element &y € Q, find a function &, € C(I; Q) such that

o(t) = Aén(t) + Beu(t) + /Ot Cn(t—s)&n(s)ds Vtel, (84)
£(0) = &o. (85)

Note that the mechanical significance of Problem P, is similar to that of Problem P. The difference
arise in the fact that the viscoelastic constitutive law with short memory (82) was replaced by the
viscoelastic constitutive law with long memory (84), in which C, represents a relaxation tensor. Such
constitutive laws have been used in the literature in order to model the behavior of real materials like
rubbers, rocks, metals, pastes and polymers. References in the field are [1,2], for instance.

In the study of Problems P and P,, we consider the following assumtions:

A : Q — Qis a strongly monotone Lipschitz continuous operator. (86)
B : Q — Qs a Lipschitz continuous operator. (87)
o e C(LQ). (88)
g € Q. (89)
Ch€C(;Qw) VneN. (90)
Ch = 0 in C(I;Qu). (91)

Our main result in this section is the following.

Theorem 8. Assume (86)—(90). Then:

a) Problem P has a unique solution e € C'(I;Q) and, for each n € N, Problem Py, has a unique solution
en € CH(L; Q).
b) If, moreover, (91) holds, then
e, — ¢ in CYLQ). (92)

Proof. a) The unique solvability of Problem P is a direct consequence of Theorem 6. Let n € N. To
prove the unique solvability of Problem P, we consider the operator A, : C(I; Q) — C(I; Q) defined

by
Apy(t) = B(/O 1(s)ds —i—so) —I—/O Cu(t—s)y(s)ds VYtel, neC(I:Q). (93)

Then, using assumptions (87), (90) and inequality (81) it is easy to see that A, is a history-dependent
operator. We now use Theorem 2 to deduce that there exists a unique function #,, € C(I; Q) such that

An, () + Aun, (t) =0 (t) Viel

or, equivalently,

Aqn(t)+B</()tqn(s)ds+eo> —i—/OtCn(t—s)qn(s)ds:(r(t) Viel (94)
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Denote by &, the function given by

t
£n(t) :/0 n,(s)ds+e  Viel (95)
It follows from (94) and (95) that &, is a solution to Problem P, with regularity &, € CYI;Q). This

proves the existence of the solution of Problem P,,. The uniqueness follows from the uniquenss of the
solution of equation (94), guaranteed by Theorem 6.

b) Assume now that (91) holds. We start with the case when I = [0, T] with T > 0. First, we prove
that the sequence {&,} is bounded in the space C(I; Q), see inequality (98) below. To this end, we fix
n € Nand t € [0, T|. Then, using (84) we obtain that

t
(Aén(t),&(t))g + (Ben(t), &(t)) g + (/0 Cu(t —s)én(s)ds, &n(t)) g = (0 (t), €(s))g
and, therefore,
(Aén(t) — ADQ, &n(t))q = ((t), &n(s)) — (AOQ, n(t))q — (Ben(t), &n(t)) g
t
7(/0 Cu(t — 8)en(s) ds, £n (1)) -
Next, using the strong monotonicity of the operator A with constant m4 we deduce that
t

malle Ol < (Ie(®llo+ 140gllg + I Ben(tllio + [ ICn(t — ents) dsllo) en (Do

which implies that
t
mallent)llo < lo(®)llo + 1 40llo +IBen(®lo + [ Gt —s)en@)dsllo- 90

We now use assumption (87) and inequality (81) to find that

t
l&n(D)llq < D+ [len(t)llg +d/0 1Cu(t = 5)llQu ll€n(s) I @ ds. 97)

Here and below D represents a positive constant which does not depend on n and whose value will
change from place to place. On the other hand, inequality (97) combined with assumption (91) and
identity (8) yields

t
lea(®)llx <D+D [ lew(s)llds:

We now use the Gronwall argument to see that
ln ()]l < D. (98)

Next, we use equation (84), again, inequality (81) and inequality (98), valid for any t € [0, T}, to
see that

Jaen(t) + Ben(t) — o)l a = || [ Calt = )euts) dslo
< [ et = 9ens)lads <a [ 1Cutt =) laullen(s) o ds

t
<d Cy / . ds <D c '
<d max Il f len(E)llods < D max I (r) o
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It follows now from assumption (91) that

Aé,(t Be, (t) — t 0
tg}%ll én(t) + Ben(t) — o (t)[|g —

and, therefore, Aé, + Be, — ¢ in C(I; X). We now use Theorem 7 a) to deduce that the convergence
(92) holds.

Assume now that I = R... Then, assumption (91) guarantee that C;, — 0 in C([0, m]; Qc), for
any m € N. Therefore, using the part a) of the theorem we deduce that &, — & in C!([0, m]; Q) for any
m € N. This implies that (92) holds, which concludes the proof. [

In addition to the mathematical interest in the convergence result (91) it is important from the
mechanical point of view since it shows that the viscoelastic constitutive law with short memory (82)
can be approached by the viscoelastic constitutive law with long memory (84) for a small relaxation
tensor.
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