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Abstract: We consider a Cauchy problem for differential equations in a Hilbert space X. The problem

is stated in a time interval I, which can be finite or infinite. We use a fixed point argument for

history-dependent operators to prove the unique solvability of the problem. Then, we state and prove

convergence criteria for both a general fixed point problem and the corresponding Cauchy problem.

These criteria provide necessary and sufficient conditions on a sequence {un} which guarantee

its convergence to the solution of the corresponding problem, in the space of both continuous

and continuously differentiable functions. We then specify our results in the study of a particular

differential equation governed by two nonlinear operators. Finally, we provide an application in

viscoelasticity and give a mechanical interpretation of the corresponding convergence result.

Keywords: differential equation; Cauchy problem; fixed point; history-dependent operator;

convergence criterion; viscoelastic constitutive law

1. Introduction

Convergence results represent an important topic in Functional Analysis, Numerical Analysis,

Differential and Partial Differential Equations Theory. They are important in the study of mathematical

models which arise in Mechanics, Physics and Engineering Sciences, as well. Some elementary

examples are the following: the convergence of the solution of a penalty problem to the solution of

the original problem as the penalty parameter converges, the convergence of the discrete solution to

the solution of the continuous problem as the time step or the discretization parameter converges to

zero, the convergence of the solution of a viscoelastic problem to the solution of an elastic problem as

the viscosity goes to zero, the convergence of the solution of a frictional problem to the solution of a

frictionless problem as the coefficient of friction converges to zero.

For all these reasons, a considerable effort was done to obtain convergence results in the study

of various mathematical problems including nonlinear equations, inequality problems, inclusions,

fixed point problems, optimization problems, among others. Note that, in most of the cases, such

results provide sufficient conditions which guarantee the convergence of a given sequence {un} to the

solution of the corresponding problem, denoted in what follows by P . They do not describe all the

sequences which have this property. Therefore, we naturally arrive to consider the following problem,

associated to P .

Problem QP . Given a Problem P which has a unique solution u in a metric space Y, describe the convergence

of a sequence {un} ⊂ Y to the solution u. In the words, provide necessary and sufficient conditions for the

convergence un → u in Y, i.e., provide a convergence criterion.

Note that Problem QP represents a major issue in the study of convegence results. Its solution

depends on the structure of the original problem P and cannot be provided in this general framework.

Results in solving Problem QP have been obtained in [15], in the particular case when P is a variational

inequality, a fixed point problem and a minimization problem.
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In this current paper we continue our research in [15] with the case when P is a Cauchy problem

of the form

u̇(t) = F(t, u(t))) ∀ t ∈ I, (1)

u(0) = u0 (2)

Here and everywhere below X represent either a Banach space endowed with the norm ‖ · ‖X or a

Hilbert space endowed with the inner product (·, ·)X and the associated norm ‖ · ‖X, I ⊂ R is an

interval of time, F : I × X → X and u0 ∈ X is a given initial data. Moreover, the dot above represents

the derivative with respect to the time variable. We consider both the case when I is a bounded interval

of the form I = [0, T] with T > 0 and the case when I = R+ and, when no specification is made, I will

represent whichever of these intervals. Under appropriate assumptions which guarantee that problem

(1)–(2) has a unique solution u ∈ C1(I; X), our aim is to indicate necessary and sufficient conditions

which garantee the convergence of a given sequence {un} ∈ C1(I; X) to the solution u, both in the

spaces C(I; X) and C1(I; X).

Note that the study of problem (1)–(2) is related to the study of the fixed problem

u(t) = Λu(t) ∀ t ∈ I, (3)

where Λ : C(I; X) → C(I; X) is an operator which will be specified later. For this reason, we start

with convergence results concerning this auxiliary fixed point problem. To conclude, in this paper we

shall provide an answer to Problem QP in the case when P both the Cauchy problem (1)–(2) and the

fixed point problem (3) while the space Y is the space C1(I; X) and the space C(I; X), respectively. Our

study is motivated by possible applications in Analysis and Solid Mechanics.

The rest of the manuscrit is structured as follows. In Section 2 we introduce some preliminary

material. Then, in Section 3 we state and prove a convergence criterion in the study of the fixed

problem (3). Next, in Section 4 we state and prove two different convergence criteria in the study

of the Cauchy problem (1)–(2), in the space of continuous and continuously differentiable functions,

respectively. We use these results in Section 5, in which we consider a particular form of the differential

equation (1), governed by two nonlinear operators. Finlly, in Section 6 we provide an applications of

the abstract results in Section 5 in the study of a differential equations arising in viscoelasticity.

2. Preliminaries

In this section we introduce two spaces of functions and the class of history-dependent operators.

Then, we state two elementary inequalities which will be used repeatedly in the next sections. We

precise that everywhere in this manuscript m will denote a given positive integer and the limits are

considered as n → ∞, even if we do not mention it explicitely. For a sequence {εn} ⊂ IR+ which

converges to zero we use the short hand notation 0 ≤ εn → 0. We extend this notation to a sequence

{ε
m
n } ⊂ IR+ (with m given) which converges to zero and, therefore, we write 0 ≤ ε

m
n → 0.

Space of continuously and continuously differentiable functions. We start with some properties of

the spaces C(I; X) and C1(I; X) defined by

C(I; X) = { v : I → X | v is continuous },

C1(I; X) = { v : I → X | v ∈ C(I; X) and v̇ ∈ C(I; X) }.

On occasion, these spaces will be denoted by C([0, T]; X) and C1([0, T]; X), respectively, if I =

[0, T]. The space C([0, T]; X) will be equipped with the norm of the uniform convergence, that is

‖v‖C([0,T];X) = max
t∈[0,T]

‖v(t)‖X . (4)
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It is well known that, endowed with this norm, this space is a Banach space. Moreover, the space

C1([0, T]; X) is a Banach space with the norm

‖v‖C1([0,T];X) = max
t∈[0,T]

‖v(t)‖X + max
t∈[0,T]

‖v̇(t)‖X . (5)

We now consider the case I = R+. It is well known that, if X is a Banach space, then C(R+; X)

can be organized in a canonical way as a Fréchet space, i.e., a complete metric space in which the

corresponding topology is induced by a countable family of seminorms. The details can be found in

[3,7]. Here, we restrict ourselves to recall that the convergence of a sequence {vn} ⊂ C(R+; X) to the

element v ∈ C(R+; X) is characterized by the following equivalence:











vn → v in C(R+; X) ⇐⇒

max
t∈[0,m]

‖vn(t)− v(t)‖ → 0 for all m ∈ N.
(6)

In other words, the sequence {vn} converges to the element v in the space C(R+; X) if and only if it

converges to v in the space C([0, m]; X) for any m ∈ N. Next, the convergence of a sequence {vn} to

the element v, in the space C1(R+; X), can be defined as follows:























vn → v in C1(R+; X) ⇐⇒

max
t∈[0,m]

‖vn(t)− v(t)‖X → 0 and

max
t∈[0,m]

‖v̇n(r)− v̇(t)‖X → 0, for all m ∈ N.

(7)

The equivalences (6) and (7) will be used repeatedly in the next sections, in order to prove various

convergence results when working on the framework of an unbounded interval of time.

Using the properties of the integral it is easy to see that if f ∈ C(I; X) then the function g : I → X

given by

g(t) =
∫ t

0
f (s) ds for all t ∈ I

belongs to C1(I; X) and, moreover, ġ = f . In addition, we recall that for a function v ∈ C1(I; X) the

following equality holds

v(t) =
∫ t

0
v̇(s) ds + v(0) for all t ∈ I. (8)

Finally, we mention that, when no confusion arises, we shall use the notation 0X for the zero

element in both spaces X, C(I; X), C1(I; X), C([0, m]; X) and C1([0, m]; X), for any m ∈ N.

History-dependent operators. We now introduce a class of operators defined on the space of

continuous functions C(I; X).

Definition 1. An operator Λ : C(I; X) → C(I; X) is called history-dependent if:

a) I = [0, T] and there exists L > 0 such that

‖Λu1(t)− Λu2(t)‖X ≤ L
∫ t

0
‖u1(s)− u2(s)‖X ds (9)

for all u1, u2 ∈ C([0, T]; X), t ∈ [0, T].
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b) I = R+ and for any m ∈ N there exists Lm > 0 such that

‖Λu1(t)− Λu2(t)‖X ≤ Lm

∫ t

0
‖u1(s)− u2(s)‖X ds (10)

for all u1, u2 ∈ C(R+; X), t ∈ [0, m].

Note that here and below, when no confusion arises, we use the shorthand notation Λu(t) to

represent the value of the function Λu at the point t, i.e., Λu(t) = (Λu)(t), for all t ∈ I. Also, we recall

that the term “history-dependent operator” was introduced in [12] and since it has been used in many

papers, see [8,9,11,13], for instance. Exemples of history dependent operators will be provided in the

next sections of this manuscript.

Finally, using Definition 1 and the convergences (4) and (6) it is easy to see that any history

operator Λ : C(I; X) → C(I; X) is continuous, that is

un → u in C(I; X) =⇒ Λun → Λu in C(I; X). (11)

An important property of history-dependent operators is the following fixed point property,

proved in [10,14].

Theorem 1. Let X be a Banach space and Λ : C(I; X) → C(I; X) be a history-dependent operator. Then, Λ

has a unique fixed point, i.e., there exists a unique element u ∈ C(I; X) such that Λu = u.

Theorem 1 is useful to prove the unique the solvability of various classes of nonlinear equations

and variational inequalities. An example is provided by the following result which will be used in

Section 6 in this paper.

Theorem 2. Let X be a Hilbert space, A : X → X a strongly monotone Lipschitz continuous operator and

Λ : C(I; X) → C(I; X) a history-dependent operator. Then, for any f ∈ C(I; X) there exists a unique function

u ∈ C(I; X) such that

Au(t) + Λu(t) = f (t) ∀ t ∈ I. (12)

A proof of Theorem 2 can be found in [13], based on the fixed point result provided by Theorem 1.

Two elementary inequalities. We now recall two elementay inequalities which will be used in many

places below. To this end, we use the notation C(I) for the space of real-valued continuous functions

defined on the interval I, that is, C(I) = C(I;R). The first inequality we recall is the well-known

Gronwall inequality and is stated as fallows.

Lemma 1. Let f , g ∈ C(I) and assume that there exists c > 0 such that

f (t) ≤ g(t) + c
∫ t

0
f (s) ds for all t ∈ I. (13)

Then,

f (t) ≤ g(t) + c
∫ t

0
g(s) ec (t−s) ds for all t ∈ I. (14)

Moreover, if g is nondecreasing, then

f (t) ≤ g(t) ec t for all t ∈ I.

A proof of Lemma 1 can be found in [13, p.60] and, therefore, we skip it.

The second inequality we need is the following.
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Lemma 2. Let X be a Hilbert space, x ∈ X and ε ≥ 0. Then the follwing equivalence holds:

‖x‖X ≤ ε ⇐⇒ (x, v)X + ε‖v‖X ≥ 0 ∀ v ∈ X. (15)

Proof. Assume that ‖x‖X ≤ ε and v ∈ X. Then, it is easy to see that

(x, v)X + ε‖v‖X ≥ −‖x‖X‖v‖X + ε‖v‖X = (ε − ‖x‖X)‖v‖X

and, therefore (x, v)X + ε‖v‖X ≥ 0. Conversely, assume that (x, v)X + ε‖v‖X ≥ 0 for any v ∈ X. We

take v = −x in this inequality to find that −(x, x)X + ε‖x‖X ≥ 0 which implies that ‖x‖2
X ≤ ε‖x‖X.

We deduce from here that ‖x‖X ≤ ε, which concludes the proof.

3. The fixed point problem

In this section we state and prove a convergence criterion for the solution of the fixed point

problem (3). To this end, everywhere in this section we assume that X is a Hibert space and, under the

assumption of Theorem 1, we denote by u ∈ C(I; X) the fixed point of operator Λ. Moreover, given an

arbitrary sequence {un} ⊂ C(I; X) we consider the following statements:

un → u in C(I; X). (16)

un − Λun → 0X in C(I; X). (17)

{

I = [0; T] and there exists 0 ≤ εn → 0 such that

(un(t), v)X + εn‖v‖X ≥ (Λun(t), v)X ∀ v ∈ X, n ∈ N, t ∈ I.
(18)

{

I = R+ and for any m ∈ N there exists 0 ≤ ε
m
n → 0 such that

(un(t), v)X + ε
m
n ‖v‖X ≥ (Λun(t), v)X ∀ v ∈ X, n ∈ N, t ∈ [0, m].

(19)

Our main result in this section is the following.

Theorem 3. Let X be a Hilbert space, T > 0 and Λ : C(I; X) a history-dependent operator.

a) If I = [0; T] then the statements (16), (17) and (18) are equivalent.

b) If I = R+ then the statements (16), (17) and (19) are equivalent.

Proof. a) We start with the case I = [0, T]. Assume that (16) holds. Then, using (11) it is easy to see that

un − Λun → u − Λu in C(I; X) and, since u is the solution of the fixed point problem (3), we deduce

that (17) holds.

Next, assume that (17) holds which shows that

max
s∈[0,T]

‖un(s)− Λun(s)‖X → 0 as n → ∞. (20)

For which n ∈ N denote

εn = max
s∈[0,T]

‖un(s)− Λun(s)‖X . (21)

Then, (20) shows that 0 ≤ εn → 0 and, moreover, definition (21) implies that for any t ∈ I we have

‖un(t)− Λun(t)‖X ≤ εn. (22)

We now use inequality (22) and Lemma 2 to see that condition (18) holds.
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Finally, assume that (18) holds. Let n ∈ N and t ∈ [0, T]. We take v = u(t) − un(t) in this

inequality to see that

(un(t), u(t)− un(t))X + εn‖u(t)− un(t)‖X ≥ (Λun(t), u(t)− un(t))X

and, using equality u(t) = Λu(t), we find that

(un(t)− u(t), u(t)− un(t))X + εn‖u(t)− un(t)‖X ≥ (Λun(t)− Λu(t), u(t)− un(t))X .

Thus,

‖un(t)− u(t)‖2
X ≤ εn‖un(t)− u(t)‖X + ‖Λun(t)− Λu(t)‖X‖un(t)− u(t)‖X

and, therefore,

‖un(t)− u(t)‖X ≤ εn + ‖Λun(t)− Λu(t)‖X .

We now use inequality (9) to see that

‖un(t)− u(t)‖X ≤ εn + L
∫ t

0
‖un(s)− u(s)‖X ds

and, employing the Gronwall argument provided by Lemma 1, we find that

‖un(t)− u(t)‖X ≤ εneLt.

We now use the convergence εn → 0 and inequality t ≤ T to see that

max
t∈[0,T]

‖un(t)− u(t)‖X → 0 as n → ∞,

which implies that (16) holds.

To conclude, we proved the implications (16) =⇒ (17) =⇒ (18) =⇒ (16) which shows the

equivalence of the statements (16), (17) and (18).

b) We continue with the case I = R+. To this end we fix m ∈ N and we use the first part of the

theorem with T = m, combined with the remark that the quantity εn defined in (21) depends on T and,

therefore, since T = m, we denote it by ε
m
n . We deduce from here the equivalences of the following

statements:

un → u in C([0, m]; X). (23)

un − Λun → 0X in C([0, m]; X). (24)

{

there exists 0 ≤ ε
m
n → 0 such that

(un(t), v)X + ε
m
n ‖v‖X ≥ (Λun(t), v)X ∀ v ∈ X, n ∈ N, t ∈ [0, m].

(25)

Recall that the equivalence of these statements is valid for any m ∈ N. We now use (6) to see that

the convergences (23) and (24) can be replaced by the convergences (16) and (17), respectively, which

concludes the proof. �

We remark that Theorem 3 provides an answer to Problem QP in the particular case when

Problem P is the fixed point problem (3). Indeed, it provides a convergence criterion to the solution of

this problem, both in the case I = [0, T] and I = R+.
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We end this section with the remark that in the case I = R+, we cannot skip the dependence on m

for the constants ε
m
n which appear in (25). More precisely, we claim that in the case I = R+, condition

{

there exists 0 ≤ εn → 0 such that

(un(t), v)X + εn‖v‖X ≥ (Λun(t), v)X ∀ v ∈ X, n ∈ N, t ∈ I
(26)

is not equivalent with the convergence (16). The proof of this claim follows from the following example.

Example 1. Let X = R, I = R+ and let Λ : C(I) → C(I) be the operator defined by

Λu(t) =
∫ t

0
u(s) ds (27)

for all u ∈ C(I), t ∈ I and n ∈ N. Then, it is easy to see that Λ is a history-dependent operator and its unique

fixed point is the function u(t) = 0 for all t ∈ I. Consider now the function

un(t) =
1

n
e

n+1
n t ∀ n ∈ N, t ∈ R+. (28)

Then, it is easy to see that

max
t∈[0,m]

|un(t)| =
1

n
e

n+1
n m ≤

1

n
e2m → 0 as n → ∞, ∀m ∈ N

and, therefore, (6) shows that un → 0 in the space C(I). Nevertheless, we shall prove that condition (26) does

not hold. Indeed, arguing by contradiction, assume that the sequence {un} satisfies this condition. Then, there

exists a sequence 0 ≤ εn → 0 such that the inequality in (26) holds and, using Lemma 2, we deduce that

|Λun(t)− un(t)| ≤ εn ∀ n ∈ N, t ∈ R+. (29)

Using now (27)–(29), we deduce that

1

n(n + 1)
e

n+1
n t +

1

n + 1
≤ εn ∀ n ∈ N, t ∈ R+.

We now take t = n2 in the previous inequality, then we pass to the limit as n → ∞ and arrive to a contradiction.

We conclude from here that condition (26) does not hold.

4. The Cauchy Problem

We now proceed with the study of the Cauchy problem (1)–(2) and, to this end, we consider the

following assumptions.















































































(a) F : I × X → X.

(b) The mapping t 7→ F(t, u) : I → X is continuous

for all u ∈ X.

(c) If I = [0, T] then there exists LF > 0 such that

‖F(t, u1)− F(t, u2)‖X ≤ LF‖u1 − u2‖X

for all u1, u2 ∈ X, t ∈ [0, T].

(d) If I = R+ then for any m ∈ N there exists Lm
F > 0 such that

‖F(t, u1)− F(t, u2)‖X ≤ Lm
F ‖u1 − u2‖X

for all u1, u2 ∈ X, t ∈ [0, m].

(30)

u0 ∈ X. (31)
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Our first result in this section is the following.

Theorem 4. Let X be a Banach space, T > 0 and assume (30)(a), (b) and (31). Then, problem (1)–(2) has a

unique solution u ∈ C1(I; X) in the following two cases:

a) I = [0; T] and F satisfy condition (30)(c);

b) I = R+ and F satisfy condition (30)(d).

Proof. Let u0 ∈ X and let Λ : C(I; X) → C(I; X) be the operator defined by

Λu(t) =
∫ t

0
F(s, u(s)) ds + u0 for all u ∈ C(I; X), t ∈ I. (32)

Note that assumptions (30) (a),(b) imply that for any function u ∈ C(I; X), the function t 7→ F(t, u(t))

is continuous on I and, therefore, the operator Λ is well defined. In addition, using condition (30) (c)

it is easy to see that in the case when I = [0, T], this operator satisfies inequality (9) and, therefore,

Definition 1 a) guarantees that it is a history-dependent operator. Moreover, if I = R+, using condition

(30) (d) it follows that the operator Λ satisfies inequality (10) and, therefore, Definition 1 b) guarantees

that it is a history-dependent operator, too. Therefore, using Theorem 1 we deduce that there exists a

unique function u ∈ C(I; X) such that

u(t) = Λ(t) for all t ∈ I. (33)

Hence, using (33) and (32) we deduce the existence of a unique function u ∈ C(I; X) such that

u(t) =
∫ t

0
F(s, u(s)) ds + u0 for all t ∈ I. (34)

On the other hand, it is easy to see that a function u ∈ C1(I; X) is a solution to the Cauchy

problem (1)–(2) if and only if u ∈ C(I; X) and (34) holds. We combine this equivalence with the unique

solvability of the integral equation (34) to end the proof. �

The proof of Theorem 4 establish a link between the Cauchy problem (1)–(2) and the fixed point

problem (3) with Λ given by (32). Based on this link, in the case when X il a Hilbert space, we can

easily deduce a convergence criterion to the solution of the Cauchy problem (1)–(2). More precisely,

we write the statements (16)–(19) in the particular case of the operator (32):

un → u in C(I; X). (35)

un −
∫ t

0
F(s, un(s)) ds − u0 → 0 in C(I; X). (36)























I = [0; T] and there exists 0 ≤ εn → 0 such that

(un(t), v)X + εn‖v‖X ≥ (
∫ t

0
F(s, un(s)) ds + u0, v)X

∀ v ∈ V, n ∈ N, t ∈ I.

(37)























I = R+ and for any m ∈ N there exists 0 ≤ ε
m
n → 0 such that

(un(t), v)X + ε
m
n ‖v‖X ≥ (

∫ t

0
F(s, u(s)) ds + u0, v)X

∀ v ∈ V, n ∈ N, t ∈ [0, m].

(38)
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Then, using the convergence criterion provided by Theorem 3 we deduce the following result.

Corollary 1. Let X be a Hilbert space, T > 0 and assume (30)(a), (b) and (31).

a) If I = [0; T] and (30)(c) holds then the statements (35), (36) and (37) are equivalent.

b) If I = R+ and (30)(d) holds then the statements (35), (36) and (38) are equivalent.

Note that Corollary 1 provides a convergence criterion for the solution of the Cauchy problem

(1)-(2), in the space C(I; X). Nevertheless, recall that the solution u of the problem belongs to the space

C1(I; X). The example below shows that this criterion is not valid in the space C1(I; X).

Example 2. Let X be a Hilbert space, I = [0, T], f ∈ X, f 6= 0X and consider the Cauchy problem of finding a

function u : I → X such that

u̇(t) + u(t) = f ∀ t ∈ [0, T], u(0) = f . (39)

Then, it is easy to see that this problem is of the form (1)–(2) with F(t, u) = f − u for each t ∈ I, u ∈ X and

u0 = f .It is easy to see that the assumptions of Corollary 1 a) are satisfied and, moreover, the solution of this

problem is given by

u(t) = f ∀ t ∈ I.

Consider now the sequence {un} ⊂ C1(I; X) defined by

un(t) =
(

1 +
1

n
sin nt

)

f ∀ t ∈ I.

Then, it is easy to see that conditions (35) and (36) are satisfied. Nevertheless, the convrgence un → u in

C1([0, T]; X) does not hold since, for instance, the sequence of derivatives {u̇n} does not converge to zero in the

space C([0, T]; X).

In order to provide a convergence criterion to the solution the Cauchy problem (1)–(2) in the space

C1(I; X) we consider the following statements.

un → u in C1(I; X). (40)

u̇n − F(·, un) → 0X in C(I; X) and un(0) → u0 in X. (41)



















I = [0; T] and there exists 0 ≤ εn → 0 such that

(u̇n(t), v)X + εn‖v‖X ≥ (F(t, un(t)), v)X ∀ v ∈ X, n ∈ N, t ∈ I,

‖un(0)− u0‖X ≤ εn ∀ n ∈ N.

(42)















I = R+ and for any m ∈ N there exists 0 ≤ ε
m
n → 0 such that

(u̇n(t), v)X + ε
m
n ‖v‖X ≥ (F(t, un(t)), v)X ∀ v ∈ X, n ∈ N, t ∈ [0, m],

‖un(0)− u0‖X ≤ ε
m
n ∀ n ∈ N.

(43)

Our next result in this section is the following.

Theorem 5. Let X be a Hilbert space, T > 0 and assume (30)(a), (b) and (31).

a) If I = [0; T] and (30)(c) holds then the statements (40), (41) and (42) are equivalent.

b) If I = R+ and (30)(d) holds then the statements (40), (41) and (43) are equivalent.
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Proof. a) We start with the case I = [0, T]. Assume that (40) holds. Then, using (30) (a), (b), (c) it is easy

to see that u̇n − F(·, un) → u̇ − F(·, u) in C(I; X) and, since u is the solution of the Cauchy problem

problem (3), we deduce that

u̇n − F(·, un) → 0 in C(I; X).

In addition, un(0) → u(0) in X and, since u(0) = u0 we find that un(0) → u0 in X. It follows from

here that (41) holds.

Next, assume that (41) holds which shows that

max
s∈[0,T]

‖u̇n(s)− F(s, un(s))‖X → 0 as n → ∞. (44)

For which n ∈ N denote

θn = max
s∈[0,T]

‖u̇n(s)− F(s, un(s))‖X . (45)

Then, (44) shows that 0 ≤ θn → 0 and, moreover, definition (45) implies that for any t ∈ I we have

‖u̇n(t)− F(t, un(t))‖X ≤ θn. (46)

We now use inequality (46) and Lemma 2 to see that

(u̇n(t), v)X + θn‖v‖X ≥ (F(t, un(t)), v)X ∀ v ∈ X, n ∈ N, t ∈ I (47)

Then, it is easy to see that condition (42) holds with

εn = max {θn, ‖un(0)− u(0)‖X}. (48)

Finally, assume that (42) holds. Let n ∈ N and t ∈ [0, T]. We take v = u̇(t) − u̇n(t) in this

inequality to see that

(u̇n(t), u̇(t)− u̇n(t))X + εn‖u̇(t)− u̇n(t)‖X ≥ (F(t, un(t)), u̇(t)− u̇n(t))X

and, using equality u̇(t) = F(t, u(t)), we find that

(u̇n(t)− u̇(t), u̇(t)− u̇n(t))X + εn‖u̇(t)− u̇n(t)‖X

≥ (F(t, un(t))− F(t, u(t)), u̇(t)− u̇n(t))X .

Thus,

‖u̇n(t)− u̇(t)‖2
X ≤ εn‖u̇n(t)− u̇(t)‖X + ‖F(t, un(t))− F(t, u(t))‖X‖u̇n(t)− u̇(t)‖X

and, therefore,

‖u̇n(t)− u̇(t)‖X ≤ εn + ‖F(t, un(t)− F(t, u(t))‖X .

We now use assumption (30)(c) to see that

‖u̇n(t)− u̇(t)‖X ≤ εn + LF‖un(t)− u(t)‖X

and, keeping in mind (8), after some algebra we find that

‖u̇n(t)− u̇(t)‖X ≤ εn + LF

∫ t

0
‖u̇n(s)− u̇(s)‖X ds + LF‖un(0)− u0‖X .
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Next, we use the Gronwall lemma and inequality ‖un(0)− u0‖X ≤ εn in (42) to find that

‖u̇n(t)− u̇(t)‖X ≤ (1 + LF)e
LFt

εn.

We now use the convergences εn → 0 and inequality t ≤ T to see that

max
t∈[0,T]

‖u̇n(t)− u̇(t)‖X → 0 as n → ∞. (49)

On the other hand, using the identity

un(t)− u(t) =
∫ t

0
(u̇n(s)− u̇(s)) ds + un(0)− u0

we find that

‖un(t)− u(t)‖X ≤
∫ t

0
‖u̇n(s)− u̇(s))‖X ds + ‖un(0)− u0‖X .

Therefore, (49) and (42) imply that

max
t∈[0,T]

‖un(t)− u(t)‖X → 0 as n → ∞. (50)

The convergences (49) and (50) show that un → u in C1(I; X) and, therefore, (40) holds.

To conclude, we proved the implications (40) =⇒ (41) =⇒ (42) =⇒ (40) which shows the

equivalence of the statements (40), (41) and (42).

b) We proceed with the case I = R+. To this end we fix m ∈ N and we use the first part of the

theorem with T = m, combined with the remark that the quantity εn defined by (48), (45) depends on

T and, since T = m, it we denote it what follows by ε
m
n . We deduce from here the equivalences of the

following statements:

un → u in C1([0, m]; X). (51)

u̇n − F(·, un) → 0X in C([0, m]; X), un(0) → u(0) in X. (52)















there exists 0 ≤ ε
m
n → 0 such that

(u̇n(t), v)X + ε
m
n ‖v‖X ≥ (F(t, un(t)), v)X ∀ n ∈ N, t ∈ [0, m],

‖un(0)− u0‖X ≤ ε
m
n ∀ n ∈ N.

(53)

Recall that the equivalence of these statements is valid for any m ∈ N. We now use (5) and the

equivalence (6) to see that the convergences (51) and (52) can be replaced by the convergences (40) and

(41), respectively, which concludes the proof. �

Note that Theorem 5 provides a convergence criterion for the solution of the Cauchy problem

(1)–(2), in the space C1(I; X). Therefore, it provides an answer to Problem QQ in the case when P

represents the above mentioned Cauchy problem.

5. A particular case

Everywhere in this section we assume that X is a Hilbert space. We use the results in Section 4 in

the study of the Cauchy problem

Au̇(t) + Bu(t) = f (t) ∀ t ∈ I, (54)

u(0) = u0, (55)
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in which A : X → X and B : X → X are given nonlinear operators, f : I → X and u0 is an initial data.

In the study of this problem we assume that A is a strongly monotone Lipschitz continuous operator,

that is, there exists two constants mA > 0 and LA > 0 such that

(Au − Av, u − v)X ≥ mA ‖u − v‖2
X ∀ u, v ∈ X, (56)

‖Au − Av‖X ≤ LA‖u − v‖X ∀ u, v ∈ X. (57)

We also assume that B is a Lipschitz continuous operator with constant LB > 0, i.e.,

‖Bu − Bv‖X ≤ LB‖u − v‖X ∀ u, v ∈ X (58)

and, finally, we assume that the function f and the initial data have the following regularity:

f ∈ C(I; X), (59)

u0 ∈ X. (60)

It is well known that conditions (56) and (57) imply that the operator is invertible and, moreover,

its inverse A−1 : X → X is a strongly monotone Lipschitz continuous operator, with constants
m2

A
LA

and
1

mA
, respectively. A proof of this result can be found in [13, p. 23], for instance. Therefore,

(A−1u − A−1v, u − v)X ≥
mA

L2
A

‖u − v‖2
X ∀ u, v ∈ X, (61)

‖A−1u − A−1v‖X ≤
1

mA
‖u − v‖X ∀ u, v ∈ X. (62)

The unique solvability of the problem (54)–(55) is provided by the following result.

Theorem 6. Let X be a Hilbert space and assume (56)–(60). Then, problem (54)–(55) has a unique solution

u ∈ C1(I; X).

Proof. We use the inverse of the operator A to see that problem (54)–(55) is equivalent to the problem

of finding a function u ∈ C1(I; X) such that

u̇(t) = A−1( f (t)− Bu(t)) for all t ∈ I, (63)

u(0) = u0. (64)

Denote by F : I × X → X the function given by

F(t, u) = A−1( f (t)− Bu) ∀ t ∈ I, u ∈ X. (65)

Then, using the properties (62), (58) of the operators A−1 and B, respectively, as well as the regularity

(59) of the function f , it is easy to see that the function F defined before satisfies conditions (30).

Therefore, Theorem 6 is a direct consquence of Theorem 4, which guarantees the unique solvability of

the Cauchy problem (63)–(64).

We provide a convergence criterion to the solution the Cauchy problem (63)–(64) and, to this end,

we consider the following statements.
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un → u in C1(I; X). (66)

Au̇n + Bun → f in C(I; X) and un(0) → u0 in X. (67)



























I = [0; T] and there exists 0 ≤ εn → 0 such that

(Au̇n(t), v)X + (Bun(t), v)X + εn‖v‖X ≥ ( f (t), v)X

∀ v ∈ X, n ∈ N, t ∈ I,

‖un(0)− u0‖X ≤ εn ∀ n ∈ N.

(68)



























I = R+ and for any m ∈ N there exists 0 ≤ ε
m
n → 0 such that

(Au̇n(t), v)X + (Bun(t), v)X + ε
m
n ‖v‖X ≥ ( f (t), v)X

∀ v ∈ X, n ∈ N, t ∈ [0, m],

‖un(0)− u0‖X ≤ ε
m
n ∀ n ∈ N.

(69)

Our main result in this section is the following.

Theorem 7. Let X be a Hilbert space, T > 0 and assume (56)–(60).

a) If I = [0; T] then the statements (66), (67) and (68) are equivalent.

b) If I = R+ then the statements (66), (67) and (69) are equivalent.

Proof. a) We assume that I = [0, T]. We use Theorem 5 with F given by (65) to see that the there

statements below are equivalent.

un → u in C1(I; X). (70)

u̇n − A−1( f − Bun) → 0X in C(I; X) and un → u0 in X. (71)































I = [0; T] and there exists 0 ≤ θn → 0 such that

(u̇n(t), v)X + θn‖v‖X ≥ (A−1( f (t)− Bun(t)), v)X

∀ v ∈ X, n ∈ N, t ∈ I,

‖un(0)− u0‖X ≤ θn ∀ n ∈ N.

(72)

Let n ∈ N and t ∈ I. We write

u̇n(t)− A−1( f (t)− Bun(t)) = A−1(Au̇n(t))− A−1( f (t)− Bun(t))

then we use the property (62) of the operator A−1 to deduce that

‖u̇n(t)− A−1( f (t)− Bun(t))‖X ≤
1

mA
‖Au̇n(t) + Bun(t)− f (t)‖X . (73)

A similar argument, based on the identity

Au̇n(t) + Bun(t)− f (t) = Au̇n(t)− A(A−1( f (t)− Bun(t)))

and the property (57) of the operator A, yields

‖Au̇n(t) + Bun(t)− f (t)‖X ≤ LA‖u̇n(t)− A−1( f (t)− Bun(t))‖X . (74)
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Therefore, inequalities (73) and (74) show that

the convergence (67) holds if and only the convergence (71) holds. (75)

Assume now that (72) holds. Then Lemma 2 guarantees that

‖u̇n(t)− A−1( f (t)− Bun(t))‖X ≤ θn ∀ n ∈ N, t ∈ I

and, using (74) we deduce that

‖Au̇n(t) + Bun(t)− f (t)‖X ≤ LAθn ∀ n ∈ N, t ∈ I.

Then, using again Lemme 2, we deduce that

(Au̇n(t), v)X + (Bun(t), v)X + LAθn‖v‖X ≥ ( f (t), v)X ∀ v ∈ X, n ∈ N, t ∈ I.

It follows from here that the statement (68) holds with εn = max {LAθn, θn}, for all n ∈ N. This shows

that the statement (72) implies the statement (68). A similar argument, based on inequality (73), shows

that the converse of this implication holds, too. We conclude from here that

the statement (68) holds if and only the statement (72) holds. (76)

The equivalence of the statements (66), (67) and (68) is now a direct consequence of the equivalences

the statements (70), (71) and (72), guaranteed by Theorem 5, combined with the equivalences (75) and

(76).

b) Assume now that I = R+. Then, the equivalences of the statements (66), (67) and (69) follows

arguments similar to those used in the first part of the theorem. Since the modifications are straight,

we skip the details.

Consider now two sequences { fn} and {u0n} such that, for each n ∈ N the following condition

hold.

fn ∈ C(I; X), (77)

u0n ∈ X. (78)

Then, it followws from Theorem 6 that for each n ∈ N there exists a unique function un ∈ C1(I; X)

such that

Au̇n(t) + Bun(t) = fn(t) ∀ t ∈ I, (79)

un(0) = u0n, (80)

We have the following result.

Corollary 2. Let X be a Hilbert space, and assume (56)–(60), (77) and (78). Then, the solution un of Problem

(79)–(80) converges in C1(I; X) to the solution u of Problem (54)–(55) if and only if

fn → f in C1(I; X) and u0n → u in X.

Proof. Corollary 2 is a direct consequence of the equivalence of statements (66) and (67) in Theorem

7.
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Note that Corollary 2 provides, in particular, a continuous dependence result of the solution of

the Cauchy problem (54)–(55) with respect to the date f and u0. Similar results can be obtained by

considerating the perturbation of the operators A or B as well as various perturbations of the left hand

side of the differential equation (54). Such an example will be presented in the next section, in the

study to a viscoelastic problem.

6. An application in Solid Mechanics

Our results in the previous sections are usefull in the study of various boundary value problems

in Solid Mechanics. References in the field are the books [13,14], for instance. Here, to keep the paper

in a reasonable length, we provide only one simplified exemple and, to this end, we need to introduce

some additional notations.

Let Ω ⊂ Rd (d = 1, 2, 3) and denote by Sd the space of second order symmetric tensors on Rd or,

equivalently, the space of symmetric matrices of order d. We recall that the canonical inner product

and the corresponding norm on Sd are given by

σ · τ = σijτij, ‖τ‖ = (τ · τ)1/2 ∀ σ = (σij), τ = (τij) ∈ S
d.

Here and below in this section the indices i, j, k, l run between 1 and 3, and, unless stated otherwise,

the summation convention over repeated indices is used. We consider the space

Q = L2(Ω)d×d
s =

{

τ = (τij) | τij = τji ∈ L2(Ω), 1 ≤ i, j ≤ d
}

which, recall, is a Hilbert spaces with the canonical inner product

(σ, τ)Q =
∫

Ω

σij τij dx =
∫

Ω

σ · τ dx

and the associated norm, denoted by ‖ · ‖Q. Moreover, we need the space of symmetric fourth order

tensors Q∞ given by

Q∞ = { C = (cijkl) | cijkl = cjikl = eklij ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d } .

It is easy to see that Q∞ is a real Banach space with the norm

‖C‖Q∞
= max

0≤i,j,k,l≤d
‖cijkl‖L∞(Ω)

and, in addition,

‖Cτ‖Q ≤ d ‖C‖Q∞
‖τ‖Q ∀ C ∈ Q∞, τ ∈ Q. (81)

Below we denote by 0∞ the zero element of the spaces C(I; Q∞) and C([0, m]; Q∞) with m ∈ N.

Moreover, 0Q will represent the zero element of the space Q. Finally, let I be a time interval of interest

which can be either bounded (i.e., of the form I = [0, T] with T > 0), or unbounded (i.e., I = R+) and

recall that, as usual, we use a dot above to denote the derivative with respect to the time variable.

We now turn to the viscoelastic problem we consider, which is governed by two given operators

A : Q → Q and B : Q → Q. It can be formulated as follows.

Problem P . Given a function σ ∈ C(I; Q) and an element ε0 ∈ Q, find a function ε ∈ C(I; Q) such that

σ(t) = Aε̇(t) + Bε(t) ∀ t ∈ I, (82)

ε(0) = ε0. (83)

This problem describes the behaviour of a viscoelastic body in the time interval I. Here, Ω

represents the reference configuration of the body, σ is the stress tensor, ε represents the linearized
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strain tensor and equation (82) is related to the consitutive law of the material, asumed to be viscoelastic

with short memory. The operator A represents the viscosity operator and B is the elasticity operator.

Finally, the function ε0 is the initial deformation. More details on the constitutive laws which describe

the bahaviour of viscoelastic materials can be found in [4–6,13,14], for instance.

We now consider a sequence {Cn} of functions defined on I with values in the space Q∞ and, for

each n ∈ N, we consider the following problem.

Problem Pn. Given a function σ ∈ C(I; Q) and an element ε0 ∈ Q, find a function εn ∈ C(I; Q) such that

σ(t) = Aε̇n(t) + Bεn(t) +
∫ t

0
Cn(t − s)ε̇n(s) ds ∀ t ∈ I, (84)

ε(0) = ε0. (85)

Note that the mechanical significance of Problem Pn is similar to that of Problem P . The difference

arise in the fact that the viscoelastic constitutive law with short memory (82) was replaced by the

viscoelastic constitutive law with long memory (84), in which Cn represents a relaxation tensor. Such

constitutive laws have been used in the literature in order to model the behavior of real materials like

rubbers, rocks, metals, pastes and polymers. References in the field are [1,2], for instance.

In the study of Problems P and Pn we consider the following assumtions:

A : Q → Q is a strongly monotone Lipschitz continuous operator. (86)

B : Q → Q is a Lipschitz continuous operator. (87)

σ ∈ C(I; Q). (88)

ε0 ∈ Q. (89)

Cn ∈ C(I; Q∞) ∀ n ∈ N. (90)

Cn → 0∞ in C(I; Q∞). (91)

Our main result in this section is the following.

Theorem 8. Assume (86)–(90). Then:

a) Problem P has a unique solution ε ∈ C1(I; Q) and, for each n ∈ N, Problem Pn has a unique solution

εn ∈ C1(I; Q).

b) If, moreover, (91) holds, then

εn → ε in C1(I; Q). (92)

Proof. a) The unique solvability of Problem P is a direct consequence of Theorem 6. Let n ∈ N. To

prove the unique solvability of Problem Pn we consider the operator Λn : C(I; Q) → C(I; Q) defined

by

Λnη(t) = B
(

∫ t

0
η(s) ds + ε0

)

+
∫ t

0
Cn(t − s)η(s) ds ∀ t ∈ I, η ∈ C(I : Q). (93)

Then, using assumptions (87), (90) and inequality (81) it is easy to see that Λn is a history-dependent

operator. We now use Theorem 2 to deduce that there exists a unique function ηn ∈ C(I; Q) such that

Aηn(t) + Λnηn(t) = σ(t) ∀ t ∈ I

or, equivalently,

Aηn(t) + B
(

∫ t

0
ηn(s) ds + ε0

)

+
∫ t

0
Cn(t − s)ηn(s) ds = σ(t) ∀ t ∈ I. (94)
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Denote by εn the function given by

εn(t) =
∫ t

0
ηn(s) ds + ε0 ∀ t ∈ I. (95)

It follows from (94) and (95) that εn is a solution to Problem Pn with regularity εn ∈ C1(I; Q). This

proves the existence of the solution of Problem Pn. The uniqueness follows from the uniquenss of the

solution of equation (94), guaranteed by Theorem 6.

b) Assume now that (91) holds. We start with the case when I = [0, T] with T > 0. First, we prove

that the sequence {ε̇n} is bounded in the space C(I; Q), see inequality (98) below. To this end, we fix

n ∈ N and t ∈ [0, T]. Then, using (84) we obtain that

(Aε̇n(t), ε̇n(t))Q + (Bεn(t), ε̇n(t))Q + (
∫ t

0
Cn(t − s)ε̇n(s) ds, ε̇n(t))Q = (σ(t), ε̇n(s))Q

and, therefore,

(Aε̇n(t)− A0Q, ε̇n(t))Q = (σ(t), ε̇n(s))− (A0Q, ε̇n(t))Q − (Bεn(t), ε̇n(t))Q

−(
∫ t

0
Cn(t − s)ε̇n(s) ds, ε̇n(t))Q.

Next, using the strong monotonicity of the operator A with constant mA we deduce that

mA‖ε̇n(t)‖
2
Q ≤

(

‖σ(t)‖Q + ‖A0Q‖Q + ‖Bεn(t)‖Q +
∫ t

0
‖Cn(t − s)ε̇n(s) ds‖Q

)

‖ε̇n(t)‖Q,

which implies that

mA‖ε̇n(t)‖Q ≤ ‖σ(t)‖Q + ‖A0Q‖Q + ‖Bεn(t)‖Q +
∫ t

0
‖Cn(t − s)ε̇n(s) ds‖Q. (96)

We now use assumption (87) and inequality (81) to find that

‖ε̇n(t)‖Q ≤ D + ‖εn(t)‖Q + d
∫ t

0
‖Cn(t − s)‖Q∞

‖ε̇n(s)‖Q ds. (97)

Here and below D represents a positive constant which does not depend on n and whose value will

change from place to place. On the other hand, inequality (97) combined with assumption (91) and

identity (8) yields

‖ε̇n(t)‖X ≤ D + D
∫ t

0
‖ε̇n(s)‖Q ds.

We now use the Gronwall argument to see that

‖ε̇n(t)‖Q ≤ D. (98)

Next, we use equation (84), again, inequality (81) and inequality (98), valid for any t ∈ [0, T], to

see that

‖Aε̇n(t) + Bεn(t)− σ(t)‖Q = ‖
∫ t

0
Cn(t − s)ε̇n(s) ds‖Q

≤
∫ t

0
‖Cn(t − s)ε̇n(s)‖Q ds ≤ d

∫ t

0
‖Cn(t − s)‖Q∞

‖εn(s)‖Q ds

≤ d max
r∈[0,T]

‖Cn(r)‖Q∞

∫ t

0
‖ε̇n(s)‖Q ds ≤ D max

r∈[0,T]
‖Cn(r)‖Q∞

.
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It follows now from assumption (91) that

max
t∈[0,T]

‖Aε̇n(t) + Bεn(t)− σ(t)‖Q → 0

and, therefore, Aε̇n + Bεn → σ in C(I; X). We now use Theorem 7 a) to deduce that the convergence

(92) holds.

Assume now that I = R+. Then, assumption (91) guarantee that Cn → 0∞ in C([0, m]; Q∞), for

any m ∈ N. Therefore, using the part a) of the theorem we deduce that εn → ε in C1([0, m]; Q) for any

m ∈ N. This implies that (92) holds, which concludes the proof.

In addition to the mathematical interest in the convergence result (91) it is important from the

mechanical point of view since it shows that the viscoelastic constitutive law with short memory (82)

can be approached by the viscoelastic constitutive law with long memory (84) for a small relaxation

tensor.
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