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Abstract: Recently, Artificial Intelligence (AI)-based algorithms have revolutionized the medical image 

segmentation processes. Thus, the precise segmentation of organs and their lesions may contribute to an 

efficient diagnostics process and a more effective selection of targeted therapies as well as increasing the 

effectiveness of the training process. Thus, AI may contribute to the automatization of the image scan 

segmentation process and increase the quality of the resulting 3D objects, which may lead to the generation of 

more realistic virtual objects. In this paper, we focus on the AI-based solutions applied in the medical image 

scan segmentation, and intelligent visual-content generation, i.e. computer-generated three-dimensional (3D) 

images in the context of Extended Reality (XR). We consider different types of neural networks used with a 

special emphasis on the learning rules applied, taking into account algorithm accuracy and performance, as 

well as open data availability. This paper also attempts to summarize the current development of AI-based 

segmentation methods in medical imaging and intelligent visual content generation that are applied in XR. 

Finally, this paper concludes with possible developments and open challenges in AI application in Extended 

Reality-based solutions. Finally, the future lines of research and development directions of Artificial 

Intelligence applications both in medical image segmentation and Extended reality-based medical solutions 

are discussed. 

Keywords: Artificial Intelligence; Extended Reality; medical image scan segmentation 

 

1. Introduction 

The human brain, a paramount example of evolutionary biological sophistication, transcends its 

anatomical categorization. Constituted by an estimated 86 billion neurons linked through an intricate 

web of synapses (ranging in the trillions), it is the epicenter of our cognitive, emotional, and 

consciousness-related functions [1]. This masterful structure of the central nervous system represents 

a nexus of myriad neurobiological processes, intricately overseeing sensory input conversion, 

motoric responses, and advanced cognitive functionalities. As a product of relentless evolutionary 

adaptations spanning millions of years, the brain epitomizes the apex of neurobiological 

optimization, synergizing complex neural circuitry with higher-order cognitive undertakings such 

as cognitive reasoning, emotional homeostasis, and the intricate processes of memory encoding, 

storage, and retrieval [1–3]. Thus, the human brain is a super-complex system whose functioning and 

intelligence depend rather on the type of neurons (depending on their role in the brain), their 

connections, and the way of supplying energy to neurons than the number of neurons [2]. It is an 

ideal reference model for the foundations of Artificial Intelligence (AI) [3,4]. 

Thus, processing and analysis of biomedical data for diagnostic purposes is a multidisciplinary 

field that combines AI, Machine Learning (ML), biostatistics, time series analysis as well as statistical 

physics and algebra (e.g. graph theory) [3]. Variables derived from biomedical phenomena can be 

described in several ways and in different domains (time, frequency, spectral values, spaces of states 

describing the biological system), depending on the characteristics and type of signal. Effective 

diagnosis of the early stages of the disease, as well as the determination of disease development 
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trends, is a very difficult issue that requires taking into account many factors and parameters. 

Therefore, the state spaces of biomedical signals are huge and impossible to fully search, analyze, and 

classify even with the use of powerful computational resources. Therefore, it is necessary to use 

Artificial Intelligence, in particular, bio-inspired AI methods to limit research to a smaller but 

significant part of the state space. 

Recently, computer-generated three-dimensional (3D) images have become increasingly 

important in medical diagnostics [5,6]. In particular, Extended Reality (XR) so-called Metaverse is 

increasingly used in health care and medical education, while it enables the deeper experience of the 

virtual world, especially through the development of depth perception, including the rendering of 

several modalities like vision, touch, and hearing [7]. In fact, medical images have different modalities 

and their accurate classification at the pixel level enables the accurate identification of disorders and 

abnormalities [7,8]. However, creating a 3D model of organs and/or their abnormalities is time-

consuming and is often done manually or semi-automatically[10]. AI can automate this process and 

also contribute to increasing the quality of the resulting 3D objects [11,12] as well as visual content in 

the Metaverse [4,13]. To give the users a real sense of visual immersion, the developers should virtual 

objects of high quality [14]. In the context of medicine, it is combined with good quality medical data 

and their classification/segmentation algorithms with high accuracy, to faithfully reproduce the 

content in virtual three dimensions. 

For that reason, this paper focuses on the overview of Artificial Intelligence-based algorithms in 

medical image scan segmentation and intelligent visual content generation in Extended Reality, 

including different types of neural networks used and learning rules, taking into account 

mathematical/theoretical foundations, algorithm accuracy, and performance, as well as open data 

availability. 

2. Materials and Methods 

The methodology of review methodology was based on the PRISMA Statement [15] and its 

extensions: PRISMA-S [16]. We considered recent publications, reports, protocols, and review papers 

from Scopus and Web of Science databases. The keywords: Artificial Intelligence, Machine Learning, 

Extended Reality, Mixed Reality (MR), Virtual Reality (VR), Metaverse, learning algorithms, learning 

rules, signal classification, signal segmentation, medical image scan segmentation, segmentation 

algorithms, classification algorithms, and their variations. The selected sources were analyzed in 

terms of compliance with the analyzed topic, and then their contribution to medical image scan 

segmentation. First, the obtained title and abstract were independently evaluated by the authors. The 

duplicated records have been removed. Moreover, we have considered the inclusion of criteria-like 

publication in the form of journal papers, books, and proceedings as well as technical reports. The 

search was limited to full-text articles in English, including electronic publications before printing. 

Also, the exclusion criteria like Ph. D. thesis and materials not related to medical image scan 

segmentation and Artificial Intelligence-based algorithms have been adopted. Subsequently, articles 

meeting the criteria were retrieved and analyzed. The documents used in this study were selected 

based on the procedure presented in Figure 1. Finally, 162 documents were taken into account. 
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Figure 1. Literature search flowchart. 

3. Neural communication  

Neurons, which are basic brain building blocks, function as the core computational units of the 

brain, underpinning the vast expanse of conscious and subconscious processes, and defining our 

neural identity with each electrochemical interaction [11]. The quintessence of neural communication 

is synaptic transmission. At these specialized junctions, the presynaptic neuron releases 

neurotransmitters, a diverse group of chemicals, into the synaptic cleft. Following the release, these 

compounds traverse the synaptic gap, interacting with receptors on the postsynaptic membrane, 

eliciting a series of intracellular events, potentially leading to the generation of an action potential, a 

transient depolarizing event propagated along the neuronal membrane. The multifunctionality of 

neurons is evident across physiological domains. While some mediate rudimentary autonomic 

functions, such as cardiac rhythm regulation, others participate in higher-order cognitive tasks, 

encompassing analytical reasoning and conceptual abstraction. Based on their anatomical 

localization and associated circuits, neurons can modulate affective states, dictate cognitive 

strategies, and contribute to individual behavioral phenotypes. Moreover, the synaptic connections 

between neurons exhibit plasticity, an inherent ability to modify their strength or form novel 

connections, representing experiential and learning-based adaptations. Such neural plasticity 

underscores the capacity for cognitive and behavioral adaptability, ensuring the brain's functional 

flexibility across an individual's lifespan.  

Since the famous experiments of Adrian [17], it is assumed that in the nervous systems 

(including the brain), information is transmitted through weak electric currents (on the order of 100 

(mV)), in particular employing action potentials (spikes) that are a transient, sudden (1-2 millisecond) 

change in the membrane potential of the cell/neuron associated with the transmission of information 

[18].  The stimulus for the creation of an action potential is a change in the electric potential in the 

cell's external environment. A wandering action potential is called a nerve impulse. In literature 

[19,20] it is assumed that the sequences of such action potentials, called spike-trains, play a key role 

in the transmission of information, and the times of appearance of these action potentials play a 

significant role. Mathematically, such time sequences can be and are modeled in particular after 

digitalization as trajectories (or their various variants) of certain stochastic processes (Bernoulli, 

Markov, Poisson, ...) [19,21–27]. 
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4. Taxonomy of neural network applied in the medical image segmentation process 

The Artificial Neural Networks (ANNs) are constructed with the perceptron neuron model [28] 

that is based on the binary decision rule. If the linearly weights 𝑤𝑖 the sum of the input signals (input 

vector 𝑥𝑖) exceeds the threshold 𝑡ℎ𝑟 neuron fires (i.e. the output is equal to 1) or if not output is equal 

to 0.  

The basic input function is described as follows 𝑓(𝑥) = {1, if  𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛 ≥ 𝑡ℎ𝑟0, otherwise    (1) 

The output vector of all neurons in 𝑙-th layer can be expressed as well as the combination of the linear 

transformation and non-linear mapping (i.e. ANN activation values) [29]. 𝑎𝑙 = ℎ(𝑾𝑙𝑎𝑙−1), 𝑖 = 1, … , 𝑀      (2) 

where 𝑊𝑙  is the weight matrix between layer 𝑙  and 𝑙 − 1, and ℎ(∙) denotes the activation 

function, in this case, Rectified Linear Unit (ReLU) 𝑓(𝑥) = 𝑥+ = max(0, 𝑥) and the vector 𝑎𝑙
 denotes 

the output of all neurons in 𝑙-th layer. The formula (2) has been quoted following the designations in 

the publication [29]. Neuron models from the Integrate-and-Fire family are among the simplest, 

however also the most frequently used. They are classified as spiking models. From a biophysical 

point of view, action potentials are the result of currents flowing through ion channels in the 

membrane of nerve cells. The Integrate-and-Fire neuron model [30,31] focuses on the dynamics of 

these currents and the resulting changes in membrane potential. Therefore, despite numerous 

simplifications, these models can capture the essence of neuronal behavior in terms of dynamic 

systems.  

The concept of Integrate-and-Fire neurons is the following: the input ion stream depolarizes the 

neuron's cell membrane, increasing its electrical potential. An increase in potential above a certain 

threshold value𝑈𝑡ℎ𝑟 produces an action potential (i.e. an impulse in the form of Dirac's delta) and 

then the membrane potential is reset to the resting level. The leaky Integrate-and-Fire (LIF) neuron 

model [30,31] is an extended model of the Integrate-and-Fire neuron, in which the issue of time-

independent memory is solved by equipping the cell membrane with a so-called leak. This 

mechanism causes ions to diffuse in the direction of lowering the potential to the resting level or 

another level 𝑈0 → 𝑈𝑙𝑒𝑎𝑘 < 𝑈𝑡ℎ𝑟 . Thus, the third generation of neural networks, i.e. the Spiking 

Neural Networks (SNN) [32] are mostly based on the LIF, where the membrane potential 𝑈(𝑡) is 

determined by the equation 𝜏𝑚 𝑑𝑈𝑑𝑡 = −[𝑈(𝑡) − 𝑈𝑟𝑒𝑠𝑡] + 𝑅𝑚𝐼(𝑡),   (3) 

where τm is the membrane time constant of the neuron, Rm is total membrane resistance, and I(t) is the 

electric current passing through the electrode. The spiking events are not explicitly modeled in the 

LIF model. Instead, when the membrane potential U(t) reaches a certain threshold Uth (spiking 

threshold), it is instantaneously reset to a lower value Urest (reset potential) and the leaky integration 

process starts a new one with the initial value Ur. To mention just a little bit of realism to the dynamics 

of the LIF model, it is possible to add an absolute refractory period Δabs immediately after U(t) hits 

Uth. During the absolute refractory period, U(t) might be clamped to Ur, and the leaky integration 

process is re-initiated following a delay of Δabs after the spike. More generally, the membrane potential 

(3) can be presented as 𝑈(𝑡) = ∑ 𝜔𝑖 ∑ 𝑢(𝑡 − 𝑡𝑖)𝑡𝑖<𝑡𝑁𝑖=1         (4) 

where 𝑢(𝑡) is a fixed casual temporal kernel that is an operation that allows scale covariance and 

scale invariance in a causal-temporal and recursive system over time [33] and 𝜔𝑖 , 𝑖 = 1, . . , 𝑁 denotes 

the strength of neuron synapses. Following Equation (2), the neuron's output 𝑚𝑙(𝑡) (membrane 

potential after the neuron firing) can be described as follows [29] 𝑚𝑙(𝑡) = 𝑣𝑙(𝑡 − 1) + 𝑊𝑙𝑥𝑙−1(𝑡) 𝑙 = 1, … , 𝑁      (5) 

where 𝑣𝑙 denotes the membrane potential before the neuron fires, 𝑊𝑙 is the weight in 𝑙-th layer (𝑙 
denoted layer index), and 𝑥𝑙−1(𝑡)  is the input from the last layer. Thus, to avoid the loss of 

information the reset-by-subtraction” mechanism was introduced [34] 𝑣𝑙(𝑡) − 𝑣𝑙(𝑡 − 1) = 𝑊𝑙𝑥𝑙−1(𝑡) − (𝐻(𝑚𝑙(𝑡) − 𝜽𝑙)𝜃𝑙)          (6) 
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where 𝑣𝑙(𝑡) is membrane potential after firing, 𝑚𝑙(𝑡) − membrane potential before firing, 𝐻(𝑚𝑙(𝑡) − 𝜃𝑙) refers to the output spikes of all neurons, and 𝜽𝑙 is a vector of the firing threshold 𝜃𝑙. 
There are also some applications of the concepts of the meta-neuron model in SNNs [35]. The main 

differences between the LIF neuron and meta neurons stay in the integration process, where meta 

neurons use a 2nd-order ordinary differential equation and an additional hidden variable. The basic 

differences between ANN and SNN (taking into account the type of neuron models) are presented in 

Figure 1. 

 

Figure 1. The scheme of the basic differences between ANN and SNN takes into account the type of 

neuron models. 

4.1. Convolutional Neural Network  

The most commonly used deep neural network (DNN) in medical image classification is the 

two-dimensional (2D) Convolutional Neural Network (CNN) [36,37]. In the Figure 2. The basic 

scheme of the SNN is presented. Its principle of operation is based on linear algebra, in particular 

matrix multiplication. CNNs consist of three types of layers: a convolutional layer, a pooling layer, 

and a fully connected layer. In fact, most computations are performed in the convolutional layer or 

layers. The image (pixels) is converted into binary values and patterns are searched. Every 

convolutional layer operates a dot product between two matrices, namely one matrix is a set of 

learnable parameters (kernel), and the second matrix is a limited part of the receptive field. Each 

subsequent layer contains a filter/kernel that allows you to classify features with greater efficiency. 

A pooling layer reduces the number of parameters in the input, which causes the loss of part of the 

information calculated in the common layer/layers, however, it allows for improvement in the 

efficiency of the CNN network. This operation is performed by sliding windows [38]. Next, the 

output of these two layers is transformed into a one-dimensional vector, i.e. input to the fully 

connected layer. In this last type of layer, image classification based on the features extracted in the 

previous layers is performed, i.e. the object in the image is recognized. The output 𝑦𝑖,𝑗(𝑘)
 from CNN 

can be described as follows 𝑦𝑖,𝑗(𝑘) = 𝜎(∑ ∑ 𝑥𝑖+𝑙−1,𝑗+𝑚−1(𝑙)𝑀𝑚=1𝐿𝑙=1 𝑤𝑙.𝑚(𝑘) + 𝑏(𝑘))(7) 

where 𝑥𝑖,𝑗(𝑙)
 denotes input to the network at the spatial location (𝑖, 𝑗) , 𝜎  is the activation 

function, 𝑤𝑙.𝑚(𝑘)
 is the weight of the 𝑚th kernel at the 𝑙th channel producing the 𝑘th feature map, and 𝑏(𝑘)) is the bias for 𝑘th feature map. 

In the case of large datasets, CNN achieves high efficiency and is resistant to noise [39]. The 

crucial disadvantages of CNNs in image processing are high computational requirements and 

difficulties in achieving high efficiency in the case of small datasets (i.e. if the dataset is too small the 

network may overfit to training data, and poorly recognize new data).  
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Figure 2. The basic scheme of the simple Convolutional Neural Network. 

4.2. Recurrent Neural Network 

Another neural network commonly applied in medical data analysis is the Recurrent Neural 

Network (RNN) [40]. In the Figure 3. The basic scheme of the RNN is presented. This type of network 

contains at least one feedback connection. The output of RNN can be expressed as [41] 𝑦𝑖 = 𝑊ℎ𝑦 ℋ(𝑊ℎℎℎ𝑖−1 + 𝑊𝑥ℎ𝑥𝑖 + 𝑏ℎ)ℎ𝑖 + 𝑏𝑦          (8) 

where 𝑥𝑖, 𝑖 − 1, … , 𝑁, 𝑊𝑥ℎ , 𝑊ℎ𝑦 ,𝑊ℎℎ denotes weight matrices,𝑏ℎ, 𝑏𝑦 are bias vectors, and ℋ is 

the non-linear activation function, for example, ReLU, Sigmoid 𝑓(𝑥) = 11+𝑒−𝑥 , Tanh Function 

(Hyperbolic Tangent)𝑓(𝑥) = 𝑒𝑥−𝑒−𝑥𝑒𝑥+𝑒−𝑥 . The network operation is recursive since the hidden layer state 

depends on the current input and the previous state of the network. Thus, the hidden state ℎ𝑖−1 is 

the memory of past inputs. 

Thus, the RNN can operate on the sequential dataset and has an internal memory. It may have 

many inputs. However, RNNs exhibit learning-related problems, namely vanishing gradients (i.e. in 

the case of small gradients the updates of parameters are irrelevant) or exploding gradients (i.e. 

superposition of large error gradients leading to large parameter updates). These contribute to the 

long training process, low level of accuracy, and low network performance. 

 

Figure 3. The basic scheme of the simple Recurrent Neural Network. 

4.3. Spiking Neural Networks  

Besides the Artificial Neural Networks, i.e. CNNs, and RNNs, one can also be applied to the 

medical signals bio-inspired neural networks like Spiking Neural Networks [41,42]. In the Figure 4. 

The basic scheme of the SNN is presented. SNNs encode information taking into account spike 
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signals, and shells are promising in effectuating more complicated tasks, while the more 

spatiotemporal information is encoded with spike patterns [43]. They are mostly based on the LIF 

neuron model. SNNs were formulated to map organic neurons, i.e. the appearance of the presynaptic 

spike at synapse triggers the input signal 𝑖(𝑡) (the value of the current) that in the simplified cases 

can be written as follows 𝑖(𝑡) = ∫ 𝑆𝑗(𝑠 − 𝑡)exp (−𝑠𝜏𝑠∞0 )d𝑠        (9) 

where 𝜏𝑠  denotes synaptic time constant, 𝑆𝑗  is a presynaptic spike train, 𝑡  is time [44]. In 

contrast, the majority of DNNs do not take into account temporal dynamics [45]. In fact, SNNs show 

promising capability in playing a similar performance as living brains. Moreover, the binary 

activation in SNNs enables the development of dedicated hardware for neuromorphic computing 

[46]. The potential benefits are low energy usage and greater parallelizability due to the local 

interactions. 

 

Figure 4. The basic scheme of the simple Spiking Neural Network. 

5. Learning algorithms 

The heart of Artificial Intelligence is its learning algorithms. At their core, strive to automate the 

learning process, enabling machines to recognize patterns, make decisions, and predict outcomes 

based on data. Their design is often a balance between theoretical rigor and practical applicability. 

While mathematics and statistics provide the foundation, translating these into algorithms that can 

operate on vast and diverse datasets requires creative programming skills [22]. One can distinguish 

many types of network training algorithms [47]. Below we briefly discuss the most important of them. 

5.1. Back Propagation Algorithm 

The most commonly used learning algorithm is the back propagation (BP) algorithm. Ititers 

overweight optimizations via error propagation in the neural networks. BP plays a pivotal role in 

enabling neural networks to recognize complex and non-linear patterns from large datasets 

[23,48,49]. From the mathematical point of view, it is a calculation of the cost function, which 

minimizes the calculated error of the output using gradient descent or delta rule [50]. It can be split 

into three stages: forward calculation, backward calculation, and computing the updated biases and 

weights. The input to the hidden layer 𝑯𝒋 is the weighted sum of the outputs of the input neurons 

and can be described as [51] 𝑯𝒋 = 𝒃𝒊𝒏 + ∑ 𝒙𝒊𝒘𝒊𝒋𝒏𝒊=𝟏         (10) 

where 𝒙𝒊 is the input to the network (input layer), 𝒏 is the number of neurons in the input layer, 𝒃𝒊𝒏 is the bias input layer, and 𝒘𝒊𝒋 denotes the weight associated with the 𝒊-th input neuron and the 𝒋-th hidden neuron. The output 𝒚𝒌 is as follows 𝒚𝒌 = 𝒃𝒉 + ∑ 𝒘𝒋𝒌𝒎𝒋=𝟏 𝑭(𝑯(𝒋))       (11) 
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where 𝑭(𝑯(𝒋)) is a transfer function, 𝒌 is the number of neurons in the hidden layer, and 𝒃𝒉 is the 

bias of the hidden layer. The most commonly used transfer function is the sigmoid transfer function 𝑭(𝑯(𝒋)) = 𝟏𝟏+𝒆−(𝑯(𝒋)) . The back propagation algorithm is especially effective when used in multi-

layered neural architectures such as feed-forward neural networks, convolutional neural networks, 

and recurrent neural networks [26]. In image recognition, CNNs, energized by BP, can independently 

identify hierarchical features, from basic edges to detailed structures. Similarly, RNNs, amplified by 

BP, are adept at sequence-driven tasks like machine translation or speech recognition, as they 

incorporate previous data to influence present outputs. It is one of the most effective deep learning 

methods. However, BP requires large amounts of data and enormous computational efforts. 

5.2. ANN-SNN Conversion 

Artificial Neural Networks and Spiking Neural Networks are both computational models 

inspired by biological neural networks. While ANNs have been the mainstream for most deep 

learning applications due to their simplicity and effectiveness, SNNs are gaining traction because 

they mimic the behavior of real neurons more closely by using spikes or binary events for 

communication. To obtain a similar accuracy of the SNN-based algorithm as the algorithm using 

ANN, for example, the BP-type training rule consumes a lot of hardware resources. And the already 

existing platforms have limited optimization possibilities. Thus, the conversion of ANNs to SNNs 

seeks to harness the energy efficiency and bio-realism of SNNs without reinventing the training 

methodologies [28], while it is based on the ReLU activation function and LIF neuron model [52]. The 

basic principle of the conversion of ANNs to SNNs is mapping the activation value of the ANN 

neuron to the average postsynaptic potential (in fact, firing Rate) of SNN neurons, and the change of 

the membrane potential (i.e. the basic function of spiking neurons) can be expressed by the 

combination of the Equation (2) and Equation (6)[29] 𝒗𝒍(𝒕) − 𝒗𝒍(𝒕 − 𝟏) = 𝑾𝒍𝒙𝒍−𝟏(𝒕) − 𝒔𝒍(𝒕)𝜽𝒍      (12) 

Here 𝒔𝒍(𝒕) refers to the output spikes of all neurons in layer 𝒍 at time 𝒕. 

Tuning the right thresholds is paramount for the SNN to effectively and accurately represent 

information. Incorrectly set thresholds could lead to either too frequent or too rare spiking, 

potentially affecting the accuracy of the SNN post-conversion [35]. On the other hand, the 

neuromorphic hardware platforms that support SNNs natively can primarily offer energy efficiency 

benefits by converting ANNs to SNNs. Due to their event-driven nature, SNNs can be more 

computationally efficient [36]. However, the challenge lies in maintaining accuracy post-conversion. 

Some information might be lost during the transition, and not all ANN architectures and layers neatly 

convert to their SNN equivalents. The conversion from ANNs to SNNs is a promising direction, 

merging the advanced training methodologies of ANNs with the energy efficiency of SNNs. As we 

delve deeper into the realm of neuromorphic computing, this conversion process will play a pivotal 

role in bridging traditional deep learning with biologically-inspired neural models [37,38]. 

5.3. Supervised Hebbian Learning (SHL) 

Taking into account Artificial Intelligence, Supervised Hebbian Learning (SHL)can be described 

as a general methodology for weight changes [53]. Thus, this weight increases when two neurons fire 

at the same time, while it decreases when two neurons fire independently. According to this rule, the 

change in weight can be written ∆𝒘 = 𝜼(𝒕𝒐𝒖𝒕 − 𝒕𝒅)      (13) 

where 𝜼 is the learning rate (in fact, the small scalar that may vary with time, 𝜼 > 𝟎), 𝒕𝒐𝒖𝒕 the 

actual time of the postsynaptic spike, while 𝒕𝒅 is the time of firing of the second presynaptic spike 

[54,55]. The crucial disadvantage of Hebbian learning is the fact that when the number of hidden 

layers increases the efficiency decreases, while in the case of 4 layers is still competitive [56]. 
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5.4. Reinforcement Learning with Supervised Models 

According to the additional constraints in the SHL rule, Reinforcement Learning with 

Supervised Models (ReSuMe) was proposed [54]. ReSuMe, is a dynamic hybrid learning paradigm. 

It effectively combines the resilience of Reinforcement Learning (RL) with the precision of Supervised 

Learning (SL). This fusion empowers ReSuMe to leverage feedback-driven mechanisms inherent in 

RL and take advantage of labeled guidance typical for SL [37–39]. The difference between SHL is that 

the learning signal is expected not to have or have a marginal direct effect on the value of the 

postsynaptic somatic membrane potential [57], thus the synaptic weights are modified as follows 
d
d𝒕 𝒘𝒋𝒊(𝒕) = 𝒂[𝑺𝒅(𝒕) − 𝑺𝒋(𝒕)]𝑺̅𝒊(𝒕)      (14) 

where 𝒂 denoted learning rate, 𝑺𝒅 is desired/targeted spike train, 𝑺𝒋(𝒕) is the output of the 

network (spike train), and 𝑺̅𝒊(𝒕) expresses the low-pass filtered input spike train. ReSuMe guided 

one of its most salient features exploration. By leveraging labeled data via SL, ReSuMe can effectively 

steer RL exploration, ensuring agents avoid falling into the trap of suboptimal policies. The hybrid 

nature of ReSuMe also grants it a unique resilience, especially in the face of noisy data or in reward-

scarce environments. Moreover, its adaptability is noteworthy, making it an ideal choice for tasks 

that combine immediate feedback (through SL) with long-term strategic maneuvers (through RL). 

However, like all things, ReSuMe is not without challenges. A potential bottleneck in ReSuMe is 

computational complexity, as managing both RL and SL can sometimes strain computational 

resources. Another challenge is the precise tuning of the λ coefficient. The key is to find a balance 

where neither RL nor SL overly dominates the learning process. By melding immediate feedback 

from supervised learning with a deep reinforcement learning strategy, ReSuMe establishes itself as a 

formidable tool in Machine Learning [49,50,52]. 

5.5. Chronotron 

The Chronotron, by its essence, challenges and reshapes our understanding of how information 

can be encoded and processed in neural structures [50,55]. Traditional neural models have 

predominantly focused on the spatial domain, emphasizing the architecture and interconnections 

between neurons. While this spatial component is undeniably critical, it offers only a part of the full 

informational symphony that the brain plays. Just as the rhythm and cadence of a song contribute as 

much to its essence as its melody, in the vast theater of the brain, timing is not just a factor; it is a 

storyteller in its own right. The brilliance of the Chronotron lies in its ability to discern and respond 

to this temporal narrative. Unlike its counterparts, which often treat time as a secondary parameter, 

the Chronotron places it center stage. As a consequence, it acknowledges and leverages the intricate 

interplay of spatial and temporal dynamics in neural computation. This means that it doesn't just 

consider which neurons are firing, but also pays meticulous attention to when they fire concerning 

one another. Thus, the membrane potential is 𝒖(𝒕) = 𝜼(𝒕) + ∑ 𝒘𝒋 ∑ 𝜺𝒋(𝒕, 𝒕𝒋𝒇)𝒕𝒋𝒇≤𝒕𝒋       (15) 

Where the models the 𝜼 model's refractoriness is caused by the past presynaptic spikes,  𝒘𝒋is the 

synaptic efficacy, 𝒕𝒋𝒇 is the time of appearance of the 𝒇 -th presynaptic spike on the 𝒋  synapse, 𝜺𝒋 (𝒕, 𝒕𝒋𝒇)denotes normalized kernel [58]. When 𝒖(𝒕) reaches the threshold level, a spike is fired. And 𝒖(𝒕) is reset to the value of reset potential. In this approach, it is crucial to find the appropriate error 

functions, i.e. such an error function that enables the minimization with a gradient descent method 

[59]. The advantage of this learning rule is the fact that it uses the same coding for inputs and outputs. 

Chronotron's hallmark, its granularity, can sometimes surge computational demands, especially 

during intense training. And like many cutting-edge neural frameworks, harnessing Chronotron's 

full potential can be intricate, necessitatin' fine-tuned parameters and rich, well-timed data. 

5.6. Bio-inspired Learning Algorithms 

Brain-inspired Artificial Intelligence approaches, in particular spiking neural networks, are 

becoming a promising energy-efficient alternative to traditional artificial neural networks [60]. 
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However, the performance gap between SNNs and ANNs has been a significant obstacle to the wild 

SNNs application (applicable SNNs). To fully use the potential of SNNs, including the detection of 

the non-regularities in biomedical signals, and designing more specific networks, the mechanisms of 

their training should be improved, one of the possible directions of development is the bio-inspiring 

learning algorithms. Below we briefly discuss the most important of them. 

5.6.1. Spike Timing Dependent Plasticity 

Spike Timing Dependent Plasticity (STDP) is rooted in the idea that the precise timing of neural 

spikes critically affects changes in synaptic strength [61]. This principle highlights the intricate dance 

between time and neural activity, showcasing the dynamics of our neural circuits. This biologically 

plausible learning rule is a timing-dependent specialization of Hebbian learning (13) [62]. STDP shed 

light on the intricate interplay between timing and synaptic modification. It is based on the change 

in synaptic weight function ∆𝑾 = 𝜼(𝟏 + 𝜻)𝑯(𝑾; 𝒕𝒑𝒓𝒆 − 𝒕𝒑𝒐𝒔𝒕)      (16) 

where 𝜼  denotes the learning speed, 𝜻  is Gaussian white noise with zero mean, while 𝑯(𝑾; 𝒕𝒑𝒓𝒆 − 𝒕𝒑𝒐𝒔𝒕) is the function, that determines the long-term potentiation (LTP, ie. presynaptic 

and postsynaptic neurons emit a high rate) and depression (LTD, i.e. presynaptic neurons emit a high 

rate) in the time window 𝒕𝒑𝒓𝒆 − 𝒕𝒑𝒐𝒔𝒕 [63] 𝑯(𝑾; 𝒕𝒑𝒓𝒆 − 𝒕𝒑𝒐𝒔𝒕) { 𝒂+(𝑾)𝐞𝐱𝐩 (− |𝒕𝒑𝒓𝒆−𝒕𝒑𝒐𝒔𝒕|𝝉+ ) for 𝒕𝒑𝒓𝒆 − 𝒕𝒑𝒐𝒔𝒕 < 𝟎−𝒂−(𝑾)𝐞𝐱𝐩 (− |𝒕𝒑𝒓𝒆−𝒕𝒑𝒐𝒔𝒕|𝝉− ) for 𝒕𝒑𝒓𝒆 − 𝒕𝒑𝒐𝒔𝒕 > 𝟎          (17) 

where 𝒂(𝑾) is a scaling function that determines the weight dependence, while 𝝉 denotes the 

time constant for depression [61–63]. STDP's significance is underpinned by its numerous 

advantages. Chiefly, it offers a biologically authentic model by 'mimicking the temporal dynamics 

observed in real neural 'systems. Furthermore, its event-centric nature promotes unsupervised 

learning, enabling networks to autonomously adjust based on the temporal patterns present in input 

data. This time-based sensitivity equips STDP to adeptly process data with spatiotemporal attributes 

and detect intricate temporal relationships within neuronal signals [64,65]. However, STDP is not 

without its complexities. A prominent challenge is the fine-tuning of parameters. The exact values 

assigned to constants like 𝒂(𝒘)and 𝝉 can substantially dictate the behavior and efficacy of STDP-

informed networks. Balancing these values requires a meticulous approach. Moreover, the precision 

demanded by STDP's time-centric nature often calls for higher computational rigor, especially within 

simulation contexts. STDP stands as a testament to the elegance and intricacy of neural systems. By 

emphasizing the role of spike timing, STDP offers a vivid depiction of how synaptic interactions 

evolve [66,67]. 

5.6.2. Spike-Driven Synaptic Plasticity 

Spike-Driven Synaptic Plasticity (SDSP) offers the ability to elucidate the causality in neural 

communication. It operates on a fundamental principle: the sequence and timing of spikes determine 

whether a synapse strengthens or weakens. If a neuron consistently fires just before its downstream 

counterpart, it's a strong indication of its influential role in the latter's activity. This "pre-before-post" 

firing often leads to synaptic strengthening, cementing the relationship between the two neurons. 

Conversely, if the sequence is reversed, with the downstream neuron firing before its predecessor, 

the connection may weaken, reflecting a lack of causal influence [68,69]. This causative aspect of SDSP 

provides valuable insights into the learning mechanisms of the brain. It suggests that our neural 

circuits are continually evolving, adjusting their connections based on the flow of spike-based 

information. Such adaptability ensures that our brains remain receptive to new information, enabling 

us to learn and adjust to ever-changing environments. Moreover, SDSP emphasizes the significance 

of precise spike timing. In the realm of neural computation, milliseconds matter. Small shifts in spike 

timing can change a synapse's fate, showcasing the brain's precision and sensitivity. This 

meticulousness in spike-driven modifications underscores the importance of timing in neural 

computations, hinting at the brain's capacity to encode and process temporal patterns with 
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remarkable accuracy [70]. In this learning rule the changes in synaptic weights can be expressed as 

[64] ∆𝒘 = { 𝜼+ + 𝒆−|∆𝒕| 𝝉+⁄ if ∆𝒕 > 𝟎    𝜼− + 𝒆−|∆𝒕| 𝝉−⁄ , otherwise
       (18) 

where 𝜼+ > 𝟎 and 𝜼− < 𝟎 denotes the learning parameters, 𝝉+ and 𝝉− are time constraints, 

and ∆𝒕 is the difference between post- and pre-synaptic spikes. This representation, while 

streamlined, encapsulates the principle that the mere presence of a spike can induce modifications 

in the synaptic weight, either strengthening or weakening the connection based on the specific 

neural context and the directionality of the spike's influence [71–73]. 

The appeal of Spkie-Driven Synaptic Plasticity is manifold its primary virtue is its biological 

relevance. Focusing on individual spike occurrences mirrors the granular events that take place in 

real neural systems. Such an approach facilitates the modeling of neural networks in scenarios where 

individual spike occurrences are of paramount importance. Furthermore, by anchoring plasticity on 

singular events, this model is inherently suitable for real-time learning and rapid adaptability in 

dynamic environments [74]. 

A crucial challenge lies in the accurate capture and interpretation of individual spikes, especially 

in densely firing neural environments. Moreover, the plasticity model's sensitivity to' single events 

'means that it can' be susceptible to noise, requiring sophisticated filtering mechanisms to discern 

genuine learning events from spurious spikes. SDS elucidates the profound influence of singular 

neuronal events on the grand tapestry of neural learning and adaptation [73]. 

5.6.3. Tempotron Learning Rule 

One of the most interesting biological-inspired learning algorithms is the tempotron principle 

[65,76,77] It is designed to adapt synaptic weights based on the temporal precise patterns of incoming 

spikes, rather than only the frequency of such spikes. While traditional neural models might 

emphasize synaptic weights or connection topologies, tempotron underscores that the 'when' of a 

neural event can be as informative, if not more so, than the 'where' or 'how often' [78–80]. The 

tempotron learning rule is based on the LIF neuron model. It fires when (4) exceeds the threshold 

(binary decision). Thus, one can define the potential of the neuron’s membrane as a weighted sum of 
postsynaptic potentials (PSPs) from all appearance spikes [77]  𝒗(𝒕) = ∑ 𝝎𝒊𝒊 ∑ 𝑲(𝒕 − 𝒕𝒊) + 𝑽𝒓𝒆𝒔𝒕𝒕𝒊       (19) 

where 𝝎𝒊 denotes synaptic efficacy, 𝒕𝒊 is the firing time of the 𝒊th afferents, 𝑽𝒓𝒆𝒔𝒕 is resting 

potential, and 𝑲 is the normalized PSP kernel 𝑲(𝒕 − 𝒕𝒊) = 𝑽𝟎(𝐞𝐱𝐩 (−(𝒕−𝒕𝒊)𝝉𝒎 ) − 𝐞𝐱𝐩 (−(𝒕−𝒕𝒊)𝝉𝒔 ))    (20) 

where 𝝉𝒎 is the decay time constant of membrane integration, while 𝝉𝒔 denotes the decay time 

constant of synaptic currents.While the 𝑽𝟎 normalized the PSP that the maximum kernel value is 

equal to 1. The neuron is fired when the value of the potential of the neuron’s membrane (19) is 
greater than the value of the firing threshold. Next, the potential of the neuron’s membrane (19) 
smoothly decreases to the value of 𝑽𝒓𝒆𝒔𝒕. In the case of the segmentation/classification task, the input 

to the neuron may belong to one of two classes, namely 𝑷+when a stimulus occurs (i.e. pattern is 

presented) the neuron should fire), and 𝑷− when the pattern is presented neuron should not fired. 

Each input consists of 𝑵 spike trains. In turn, the tempotron learning rules are as follows ∆𝝎𝒊 = 𝝀 ∑ 𝑲(𝒕𝒎𝒂𝒙 − 𝒕𝒊)𝒕𝒊<𝒕𝒎𝒂𝒙 (21) 

where 𝒕𝒎𝒂𝒙 is the time when the potential of the neuron’s membrane (19) reaches a maximum 
value. While 𝝀 is the constant that is greater than zero in the case of 𝑷+, and smaller than zero in the 

case 𝑷−. In this operation, tempotron introduces gradient-decent dynamics, i.e. minimizing the cost 

function for each input pattern measures the maximum voltage that is generated by the erroneous 

patterns. In comparison to the STDP learning rule, tempotron can make the appropriate decision 

under a supervisory signal, by tuning fewer parameters than STDP. Thus, tempotron uses LTP and 

LTD mechanisms like STDP. The advantage of the tempotron learning rule is the speed of learning. 
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6. Neural networks and learning algorithms in the medical image segmentation process 

Image segmentation has a crucial role in creating both, medical diagnosing supported by image 

analysis and virtual object creation like the medical digital twin (DT) of organs [66,67], holograms of 

the human organs [81,82], and virtual medical simulators [68,83]. One can split the image 

segmentation process into semantic segmentation (i.e. assigning a label or category to each pixel), 

instance segmentation (i.e. identifying and separating individual objects in an image and assigning a 

label to it), and panoptic segmentation (i.e. more complex tasks, which involves the two 

segmentations above) [77,78]. The application of AI enables to increase in the efficiency and speed of 

these processes [84]. In Table 1. the comparison of the AI-based algorithms applied in medical image 

scan segmentation taking into account the neuron model, the type of neural network, learning rule, 

and biological plausibility is shown. It turned out that the most commonly used in image 

segmentation are CNNs, in particular, Unet architecture and its variations [71,72,74,75,85]. In [73] the 

authors modified this neural network structure by adding dense and nested skip connections 

(UNet++), while [Yao et al., 2020] added the residual blocks and attention modules to enable the 

network to learn deeper features and increase the effectiveness of segmentation. To connect the 

efficiency of segmentation with access to global semantic information, often CNNs are combined with 

transformer blocks [85–87]. Another CNNs-based algorithm commonly used in medical image 

segmentation is You Only Look Once (YOLO), which is open-source software used under the GNU 

General Public License v3.0 license [88]. It uses one fully connected layer, the number (depending on 

the version) of convolution layers that are pre-trained with the CNN (YOLO v1 ImageNet, YOLO v2 

Darknet-19, YOLO v3 Darknet-53, YOLO v4 CSPNet, YOLO v5 EfficientNet, YOLO v6 EfficientNet-

L2, YOLO v7 ResNET, YOLO v8 RestNet), and pooling layer. The algorithm divides the input in the 

form of a photo into specific segmentations and then uses CNN to generate bounding boxes and class 

predictions. Recently, in image classification, SNN has become more popular [78,79] due to its low 

power consumption. However, SNN training rules require refinement to achieve ANN accuracy. 

Another interesting algorithm for natural image segmentation with was recently developed (April 

2023) by Meta is the Segmentation Anything Model (SAM) [89,90]. This AI-based algorithm enables 

cutting out any object from the image with a single click. It uses CNNs and transformer-based 

architectures for image processing, in particular, transformers-based architectures are applied to 

extract the features, compute the embedding, and pomp the encoder. The first attempt has been made 

to apply it in the field of medical imaging, however, in medical segmentation, it is still not so accurate 

in comparison to other application fields [91,92]. The imperfections of the SAM algorithm in the field 

of medical image segmentation are mainly connected to insufficient numbers of training data. In [93], 

the authors proposed to apply the Med SAM Adapter to overcome the above limitations. The pre-

training method like Masked Autoencoder (MAE), Contrastive Embedding-Mixup (e-Mix), and 

Shuffled Embedding Prediction (ShED) was applied. There is a lot of work in the area of medical 

image segmentation using machine learning, but relatively little addresses the issue related to the 

network learning process itself (along with data, a key element in achieving high accuracy of the 

process) [94], see Table 1. Thus, the most commonly used learning algorithms in medical image 

segmentation are still on the low level of biological plausibility. On the other hand, in other image 

segmentation, in particular, biologically plausible learning algorithms are applied, for example, in 

the field of the images of handwritten digits [77]. 

Table 1. The comparison of the AI-based algorithms applied in medical image scan segmentation. 

Network 

Type  

Neuron 

model 

Average 

Accuracy [%] 

Data sets - 

training/testing/validatio

n sets [%] or 

training/testing sets [%] 

Input 

parameters 

Learning 

rule 

Biological 

plausibilit

y 

Ref.  

ANN Perceproto

n 

99.10 mammography images 

lack of information 

 

 

mammography 

images – 33 

features 

extracted by  

Region of 

Interest (ROI) 

BP low [95] 
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CNN Perceproto

n 

98.70 Brain tumor, MRI color 

images 

70/15/15 

MRI image scan, 

12 features 

(mean, SD, 

entropy, Energy, 

contract, 

homogeneity, 

correlation, 

variance, 

covariance, 

RMS, skewness, 

kurtosis) 

BP low [96] 

CNN Perceproto

n 

93.00 Echocardiograms 

60/40 

Disease 

classification, 

cardiac chamber 

segmentation, 

viewpoints 

classification in 

echocardiogram

s 

lack of 

information 

low [97] 

CNN Perceproto

n 

94.58 brain tumor images 

50/25/25 

brain tumor 

images 

lack of 

information 

low [98] 

CNN Perceproto

n 

91.10 IVUS frames, EA after 

OCT/IVUS registration 

IVUS frames, EA 

after OCT/IVUS 

registration 

lack of 

information 

low [99] 

CNN Perceproto

n 

98.00 2-D ultrasound 

49/49/2 

Classification of 

the cardiac view 

into 7 classes 

lack of 

information 

low [100] 

CNN Perceproto

n 

99.30 coronary cross-sectional 

images 

80/20 

Detection of 

motion artifacts 

in coronary 

CCTA, 

classification of 

coronary cross-

sectional images 

lack of 

information 

low [101] 

CNN Perceproto

n 

99.00 MRI image scan 

60/40 

Bounding box 

localization of 

LV in short-axis 

MRI slices 

lack of 

information 

low [102

] 

CNN and 

doc2vec 

Perceproto

n 

96.00 Doppler US cardiac valve 

images 

94/4/2 

Automatic 

generation of 

text for Doppler 

US cardiac valve 

images 

lack of 

information 

low [103] 

Deep CNN 

+ complex 

data 

preparation 

Perceproto

n 

97.00 Vessel segmentation 

lack of information 

proposing a 

supervised 

segmentation 

technique that 

uses a deep 

neural network. 

Using structured 

prediction 

lack of 

information 

low [104] 

CNN and 

Transforme

r encoders 

Perceproto

n 

90.70 Automated Cardiac 

Diagnosis Challenge 

(ACDC), CT image scans 

from Synapse  

60/40 

CT image scans BP low [105] 

CNN, and 

RNN 

Perceproto

n 

95.24 (REs-Net50) 

97.18(IncepnetV3

) 

98.03 (Dense-Net) 

MRI image scan of the 

brain  

80/20 

MRI image scan 

of the brain, 

modality, mask 

images 

BP low [106] 

CNN, and 

RNN 

Perceproto

n 

95.74  (REs-

Net50) 

97.14(DarkNet-

53) 

skin image  

lack of information 

skin image BP low [107] 

SNN LIF 81.95 baseline T1-weighted 

whole brain MRI image 

scan 

lack of information 

The 

hippocampus 

section of the 

MRI image scan 

ANN-

SNN 

conversio

n 

low [108] 

SNN LIF 92.89 burn images 

lack of information 

256 × 256 burn 

image  encoded 

into 24 × 256 × 

256 feature maps 

BP low [109] 
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SNN LIF 89.57 skin images (melanoma 

and  non-melanoma) 

lack of information 

skin images 

converted into 

spikes using 

Poisson 

distribution 

surrogate

d gradient 

descent 

low [110] 

SNN LIF 99.60 MRI scan of brain tumors 

80/10/10 

2D MRI scan of 

brain tumors 

YO-LO-2-

based 

transfer 

learning 

low [111] 

SNN LIF 95.17 microscopic images of 

breast tumor 

lack of information 

microscopic 

images of breast 

tumor 

Spike-

Prop 

low [112] 

The segmented structures (in this case organs and their disorders) may be next applied to the 

development of the 3D virtual environment [105]. These 3D objects may be implemented through for 

example, holograms displayed in the head-mounted display (HDMs) like Mixed Reality glasses in 

medical diagnostics [113], pre-operative imaging [114], surgical assistance [115,116], robotics surgery 

[117], and medical education [81,82]. However, the crucial issue is connected with the quality of 

obtained segmented structures, and this process can be significantly accelerated and improved by the 

use of Artificial Intelligence. 

7. Data availability 

One of the key issues in the development of AI algorithms in the field of medicine is the 

availability and quality of data, i.e. access to electronic health records (EHRs) [118,119]. Thus, the 

medical data should be anonymized. In Table 2 a summary of publicly available retrospective image 

scan medical databases is presented. Some authors also provide anonymized data upon request. It is 

worth stressing that data, including medical image scans, are subjected to various types of biases 

[120]. 

Table 2. A summary of publicly available retrospective image scan medical databases. 

Database Data 

source 

Data type Amount of data Availability 

Physionet [121] EEG, x-ray images, 

polysomnographic,  

Auditory evoked potential EEG-Biometric dataset – 240 

measurements from 20 subjects 

The Brno University of Technology Smartphone PPG 

Database (BUT PPG) – 12 polysomnographic 

recordings 

CAP Sleep Database - 108 polysomnographic 

recordings 

CheXmask Database: a large-scale dataset of anatomical 

segmentation masks for chest x-ray images – 676 803 

chest radiographs 

Electroencephalogram and eye-gaze datasets for robot-

assisted surgery performance evaluation– EEG from 25 

subjects 

Siena Scalp EEG Database – EEG from 14 subjects 

Publics 

Physionet [121] EEG, x-ray images, 

polysomnographic,  

Computed Tomography Images for Intracranial 

Hemorrhage Detection and Segmentation – 82 CT After 

Traumatic Brain Injury (TBI) 

A multimodal dental dataset facilitating machine 

learning research and clinic service -574 CBCT images 

from 389 patients 

KURIAS-ECG: a 12-lead electrocardiogram database 

with standardized diagnosis ontology- EEG 147 subjects 

Restricted 

access 
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VinDr-PCXR: An open, large-scale pediatric chest X-ray 

dataset for interpretation of common thoracic diseases – 

adult chest radiography (CXR) 9125 subjects 

VinDr-SpineXR: A large annotated medical image 

dataset for spinal lesions detection and classification from 

radiographs - 10466 spine X-ray images from 5000 

studies 

National Sleep 

Research 

Resource  

[122] Polysomnography 

 

 

 

Apnea Positive Pressure Long-term Efficacy Study – 

1516 subject 

Efficacy Assessment of NOP Agonists in Non-Human 

Primates – 5 subjects 

Maternal Sleep in Pregnancy and the Fetus – 106 

subjects 

Apnea, Bariatric surgery, and CPAP study – 49 subjects 

Best Apnea Interventions in Research – 169 subjects 

Childhood Adenotonsillectomy Trial – 1243 subjects 

Cleveland Children's Sleep and Health Study – 517 

subjects 

Cleveland Family Study – 735 subjects 

Cox & Fell (2020) Sleep Medicine Reviews – 3 subjects 

Heart Biomarker Evaluation in Apnea Treatment – 318 

subjects 

Hispanic Community Health Study / Study of Latinos – 

16415 subjects 

Home Positive Airway Pressure – 373 subjects 

Honolulu-Asia Aging Study of Sleep Apnea – 718 

subjects 

Learn – 3 subjects 

Mignot Nature Communications – 3000 subjects 

MrOS Sleep Study – 2237 subjects 

NCH Sleep DataBank – 3673 subjects 

Nulliparous Pregnancy Outcomes Study Monitoring 

Mothers-to-be – 3012 subjects 

Sleep Heart Health Study – 5804 subjects 

Stanford Technology Analytics and Genomics in Sleep – 

1881 subjects 

Study of Osteoporotic Fractures – 461 subjects 

Wisconsin Sleep Cohort – 1123 subjects 

Publics on 

request (no 

commercial 

use) 

Open Access 

Series of Imaging 

Studies - Oasis 

Brain 

[123] MRI Alzheimer’s 
disease 

OASIS-1 – 416 subjects   

OASIS-2 – 150 subjects   

OASIS-3 – 1379 subjects   

OASIS-4 – 663 subjects   

Publics on 

request (no 

commercial 

use) 

openeuro [124] MRI, PET, MEG, 

EEG, and iEEG 

data (various types 

of disorders, 

depending on the 

database) 

595 MRI public datasets, 23 304 subjects 

8 PET public datasets – 19 subjects 

161 EEG public dataset – 6790 subjects 

23 iEEG public dataset – 550 subjects 

32 MEG public dataset – 590 subjects 

Publics 

brain tumor 

dataset 

[125] MRI, brain tumor MRI - 233 subjects Publics 

Cancer Ima-ging 

Ar-chive (TCIA) 

[126] MR, CT, Positron 

Emission 

Tomography, 

Computed 

HNSCC-mIF-mIHC-comparison – 8 subjects  

CT-Phantom4Radiomics – 1 subject  

Breast-MRI-NACT-Pilot – 64 subjects 

Adrenal-ACC-Ki67-Seg – 53 subjects 

Publics (Free 

access, 

registration 

required) 
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Radiography, 

Digital 

Radiography, 

Nuclear Medicine, 

Other (a category 

used in DICOM for 

images that do not 

fit into the standard 

modality 

categories), 

Structured 

Reporting 

Pathology Various 

CT Lymph Nodes – 176 subjects 

UCSF-PDGM – 495 subjects 

UPENN-GBM – 630 subjects 

Hungarian-Colorectal-Screening – 200 subjects 

Duke-Breast-Cancer-MRI – 922 subjects 

Pancreatic-CT-CBCT-SEG – 40 subjects 

HCC-TACE-Seg – 105 subjects 

Vestibular-Schwannoma-SEG – 242 subjects 

ACRIN 6698/I-SPY2 Breast DWI – 385 subjects 

I-SPY2 Trial – 719 subjects 

HER2 tumor ROIs – 273 subjects 

DLBCL-Morphology – 209 subjects 

CDD-CESM – 326 subjects 

COVID-19-NY-SBU – 1,384 subjects 

Prostate-Diagnosis – 92 subjects 

NSCLC-Radiogenomics – 211 subjects 

CT Images in COVID-19 – 661 subjects 

QIBA-CT-Liver-Phantom – 3 subjects 

Lung-PET-CT-Dx – 363 subjects 

QIN-PROSTATE-Repeatability – 15 subjects 

NSCLC-Radiomics – 422 subjects 

Prostate-MRI-US-Biopsy – 1151 subjects 

CRC_FFPE-CODEX_CellNeighs – 35 subjects 

TCGA-BRCA – 139 subjects 

TCGA-LIHC – 97 subjects 

TCGA-LUAD – 69 subjects 

TCGA-OV – 143 subjects 

TCGA-KIRC – 267 subjects 

Lung-Fused-CT-Pathology – 6 subjects 

AML-Cytomorphology_LMU – 200 subjects 

Pelvic-Reference-Data – 58 subjects 

CC-Radiomics-Phantom-3 – 95 subjects 

MiMM_SBILab – 5 subjects 

LCTSC – 60 subjects 

QIN Breast DCE-MRI – 10 subjects 

Osteosarcoma Tumor Assessment – 4 subjects 

CBIS-DDSM – 1566 subjects  

QIN LUNG CT – 47 subjects 

CC-Radiomics-Phantom – 17 subjects 

PROSTATEx – 346 subjects 

Prostate Fused-MRI-Pathology – 28 subjects 

SPIE-AAPM Lung CT Challenge – 70 subjects 

ISPY1 (ACRIN 6657) – 222 subjects 

Pancreas-CT – 82 subjects 

4D-Lung – 20 subjects 

Soft-tissue-Sarcoma – 51 subjects 

LungCT-Diagnosis – 61 subjects 

Lung Phantom – 1 subject 

Prostate-3T – 64 subjects 

LIDC-IDRI – 1010 subjects 

RIDER Phantom PET-CT – 20 subjects 

RIDER Lung CT – 32 subjects 

BREAST-DIAGNOSIS – 88 subjects 
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CT COLONOGRAPHY (ACRIN 6664) – 825 sub-

jects 

LUNA16 [127] CT, Lung Nodules

   

LUNA16- 888 CT scans Publics (Free 

access to all 

users) 

MICCAI 2012 

Prostate 

Challenge 

[128] MRI, Prostate 

Imaging 

Prostate Segmentation in Transversal T2-weighted 

MR images - Amount of Data: 50 training cases 

Publics (Free 

access to all 

users) 

IEEE Dataport  [129] Ultrasound 

Images,  Brain 

MRI, Ultra-

widefield 

fluorescein 

angiography 

images, Chest X-

rays, 

Mammograms, CT, 

Lung Image 

Database 

Consortium and 

Image, Thermal 

Images 

CNN-Based Image Reconstruction Method for 

Ultrafast Ultrasound Imaging: 31,000 images  

OpenBHB: a Multi-Site Brain MRI Dataset for Age 

Prediction and Debiasing: >5,000 - Brain MRI. 

Benign Breast Tumor Dataset: 83 patients - 

Mammograms. 

X-ray Bone Shadow Suppression: 4,080 images  

STROKE: CT series of patients with M1 thrombus 

before thrombectomy: 88 patients 

Automatic lung segmentation results 

Nextmedproject -  718 of the 1012 LIDC-IDRI scans 

PRIME-FP20: Ultra-Widefield Fundus Photography 

Vessel Segmentation Dataset -15 images 

Plantar Thermogram Database for the Study of 

Diabetic Foot Complications - Amount of data: 122 

subjects (DM group) and 45 subjects (control group) 

A part Public 

and a part 

restricted 

(Subscription) 

AIMI  [130] Brain MRI studies, 

Chest X-rays, 

echocardiograms, 

CT  

BrainMetShare- 156 subjects 

CheXlocalize: 700 subjects 

BrainMetShare: 156 subjects 

COCA - Coronary Calcium and Chest CTs: Not 

specified  

CT Pulmonary Angiography: Not specified  

CheXlocalize: 700 subjects  

CheXpert: 65,240 subjects  

CheXphoto: 3,700 subjects  

CheXplanation: Not specified  

DDI - Diverse Dermatology Images: Not specified 

EchoNet-Dynamic: 10,030 subjects  

EchoNet-LVH: 12,000 subjects  

EchoNet-Pediatric: 7,643 subjects 

LERA - Lower Extremity Radiographs: 182 subjects 

MRNet: 1,370 subjects  

MURA: 14,863 studies Multimodal Pulmonary 

Embolism Dataset: 1,794 subjects  

SKM-TEA: Not specified  

Thyroid Ultrasound Cine-clip: 167 subjects 

CheXpert:224,316 chest radiographs of 65,240 

subjects 

Publics (Free 

access) 

fast MRI [131] MRI fast MRI Knee: 1,500+ subjects 

fast MRI Brain: 6,970 subjects 

fast MRI Prostate: 312 subjects 

Publics (Free 

access, 

registration 

required)  

ADNI [132] MRI, PET Scans Related to Alzheimer's Disease Publics (Free 

access, 
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registration 

required) 

Pediatric Brain 

Imaging Dataset 

[133] MRI 

 

Pediatric Brain Imaging Data-set Over 500 pediatric 

brain MRI scans 

Publics (Free 

access to all 

users 

ChestX-ray8 [134] Chest X-ray Images NIH Clinical Center Chest X-ray Dataset - Over 

100,000 images from more than 30,000 subjects 

 

Publics (Free 

access to all 

users) 

Breast Cancer 

Digital 

Repository  

[135] MLO and CC 

images 

BCDR-FM (Film Mammography-based Repository) 

- Amount of Data: 1010 subjects 

BCDR-DM (Full Field Digital Mammography-based 

Repository)Amount of Data: 724 subjects 

Publics (Free 

access, 

registration 

required 

Brain-CODE [136] Neuroimaging High-Resolution Magnetic Resonance Imaging of 

Mouse Model Related to Autism - 839 subjects 

 

Restricted 

(Application 

for access is 

required and 

Open Data 

Releases) 

RadImageNet [137] PET, CT, 

Ultrasound, MRI 

with DICOM tags   

5 million images from over 1 million studies across 

500,000 subjects               

Publics subset 

available; Full 

dataset 

licensable; 

Academic 

access with 

restrictions   

EyePACS [138] Retinal fundus 

images for diabetic 

retinopathy 

screening 

Images for Training and validation set- 57,146 

images Test set -  8,790 images 

Available 

through the 

Kaggle 

competition 

Medical 

Segmentation 

Decathlon 

[139] mp-MRI, MRI, CT 10 data sets  Cases (Train/Test) 

Brain         484/266 

Heart         20/10 

Hippocampus 263/131 

Liver         131/70 

Lung         64/32 

Pancreas  282/139 

Prostate  32/16 

Colon        126/64 

Hepatic Vessels 303/140 

Spleen  41/20 

Open source 

license, 

available for 

research use 

DDSM [140] Mammography 

images 

2,500 studies with images, subjects info - 2620 cases 

in 43 volumes categorized by case type 

Publics (Free 

access) 

LIDC-IDRI [141] CT Images with 

Annotations 

1018 cases with XML and DICOM files - Images 

(DICOM, 125GB), DICOM Metadata Digest (CSV, 

314 kB), Radiologist Annotations/Segmentations 

(XML format, 8.62 MB), Nodule Counts by Patient 

(XLS), Patient Diagnoses (XLS) 

Images and 

annotations 

are available 

for download 

with NBIA 
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Data 

Retriever, 

usage under 

CC BY 3.0 

synapse [142] CT scans, Zip files 

for raw data, 

registration data 

CT scans- 50 scans with variable volume sizes and 

resolutions 

Labeled organ data -13 abdominal organs were 

manually labeled 

Zip files for raw data - Raw Data: 30 training + 20 

testing; Registration Data: 870 training-training + 

600 training-testing pairs 

Under IRB 

supervision, 

Available for 

participants 

Mini-MIAS [143] Mammographic 

images 

322 digitized films on 2.3GB 8mm tape - Images 

derived from the UK National Breast Screening 

Programme and digitized with Joyce-Loebl 

scanning microdensitometer to 50 microns, reduced 

to 200 microns and standardized to 1024x1024 pixels 

for the database 

free for 

scientific 

research 

under a 

license 

agreement 

Breast Cancer 

Histopathological 

Database 

(BreakHis) 

[144] microscopic 

images of breast 

tumor 

9,109 microscopic images of breast tumor tissue 

collected from 82 subjects  

 

free for 

scientific 

research 

under a 

license 

agreement 

Messidor [145] eye fundus color 

numerical images 

1200 eye fundus color numerical images of the 

posterior pole 

free for 

scientific 

research 

under a 

license 

agreement 

8. Discussion and conclusions 

The effectiveness of learning algorithms is compared among others in terms of the number of 

learning cycles, number of objective function calculations, number of floating-point multiplications, 

computation time, and sensitivity to local minima. In addition to the selection of appropriate 

parameters and network structure, the selection of an appropriate (effective) network learning 

algorithm is of key importance. The most commonly applied learning algorithm in ANNs is 

backpropagation, however, it has a rather slow convergence rate and as a consequence, ANN has 

more redundancy [146]. On the other hand, the training of the SNNs due to quite complicated 

dynamics and the non-differentiable nature of the spike activity remains a challenge [147]. The three 

types of ANN and SNN learning rules can be distinguished: unsupervised learning, indirect, 

supervised learning, and direct supervised learning. Thus, a commonly used learning algorithm in 

SNNs is the arithmetic rule SpikePropo, which is similar in concept to the backpropagation (BP) 

algorithm, in which network parameters are iteratively updated in a direction to minimize the 

difference between the final outputs of the network and target labels [148,149]. The main difference 

between SNNs and ANNs is output dynamics. However, arithmetic-based learning rules are not a 

good choice for building biologically efficient networks. Other learning methods have been proposed 

for this purpose, including bio-inspired algorithms like spike-timing-dependent plasticity [150], 

spike-driven synaptic plasticity [151], and the tempotron learning rule [65,76,77]. STDP is 

unsupervised learning, which characterizes synaptic changes solely in terms of the temporal 

contiguity of presynaptic spikes and postsynaptic potentials or spikes [152], while spike-driven 

synaptic plasticity is supervised learning and uses rate coding. However, still, ANN with BP learning 

achieves a better classification performance than SNNs trained with STDP. To obtain better 

performance the combination of layer-wise STDP-based unsupervised and supervised spike-based 
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BP was proposed [153,154]. Other commonly used learning algorithms are ReSuMe [57], and 

Chronotron [58]. The tempotron learning rule implements gradient-descent dynamics, which 

minimizes a cost function that measures the amount by which the maximum voltage generated by 

erroneous patterns deviates from the firing threshold. Tempotron learning is efficient in learning 

spiking patterns where information is embedded in precise timing spikes (temporal coding). Instead, 

[155] proposed a neuron normalization technique and an explicitly iterative neuron model, which 

resulted in a significant increase in the SNNs' learning rate. However, training the network still 

requires a lot of labeled samples (input data). Another learning algorithm is indirect. It firstly trains 

ANN (created with perceptron’s) and thereupon transforms it into its SNN version with the same 
network structure (i.e., ANN-SNN conversion) [156]. The disadvantage of such learning is the fact, 

that reliably estimating frequencies requires a nontrivial passage of time, and this learning rule fails 

to capture the temporal dynamics of a spiking system. The most popular direct supervised learning 

is gradient descent, which uses the first-spike time to encode input [157]. It uses the first-spike time 

to encode input signals and minimizes the difference between the network output and desired 

signals, the whole process of which is similar to the traditional BP. Thus, the application of the 

temporal coding-based learning rule, which could potentially carry the same information efficiently 

using less number of spikes than the rate coding, can help to increase the speed of calculations. On 

the other hand, active learning methods, including bio-inspired active learning (BAL), bio-inspired 

active learning on Firing Rate (BAL-FR), and bio-inspired active learning on membrane potential 

(BAL-M) have been proposed to reduce the size of the input data [158]. During the learning 

procedure, the labeled data sets are used to train the empirical behaviors of patterns, while the 

generalization behavior of patterns is extracted from unlabeled data sets. It leverages the difference 

between empirical and generalization behavior patterns to select the samples unmatched by the 

known patterns. This approach is based on the behavioral pattern differences of neurons in SNNs for 

active sample selection, and can effectively reduce the sample size required for SNNs training. 

The integration of AI and Metaverse is a fact and suggests that AI may become the dominant 

approach for image scan segmentation and intelligent visual-content generation in the whole virtual 

world, not just medical applications [6,159]. Recently, the Segment Anything Model (SAM) based on 

AI was introduced for natural images [89], in [160] SAM was proposed to be applied to medical 

images with a high level of accuracy. Better image segmentation contributes the higher-quality virtual 

objects. AI application in the context of the Metaverse is connected with the identification and 

categorization of meta-verse virtual items [161]. Moreover, AI may lead to more efficient 

cybersecurity solutions in the virtual world [162]. However, this is closely related to the accuracy of 

AI-based algorithms and, consequently, the accuracy of their training. 
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