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Abstract: Recently, Artificial Intelligence (AlI)-based algorithms have revolutionized the medical image
segmentation processes. Thus, the precise segmentation of organs and their lesions may contribute to an
efficient diagnostics process and a more effective selection of targeted therapies as well as increasing the
effectiveness of the training process. Thus, Al may contribute to the automatization of the image scan
segmentation process and increase the quality of the resulting 3D objects, which may lead to the generation of
more realistic virtual objects. In this paper, we focus on the Al-based solutions applied in the medical image
scan segmentation, and intelligent visual-content generation, i.e. computer-generated three-dimensional (3D)
images in the context of Extended Reality (XR). We consider different types of neural networks used with a
special emphasis on the learning rules applied, taking into account algorithm accuracy and performance, as
well as open data availability. This paper also attempts to summarize the current development of Al-based
segmentation methods in medical imaging and intelligent visual content generation that are applied in XR.
Finally, this paper concludes with possible developments and open challenges in Al application in Extended
Reality-based solutions. Finally, the future lines of research and development directions of Artificial
Intelligence applications both in medical image segmentation and Extended reality-based medical solutions
are discussed.

Keywords: Artificial Intelligence; Extended Reality; medical image scan segmentation

1. Introduction

The human brain, a paramount example of evolutionary biological sophistication, transcends its
anatomical categorization. Constituted by an estimated 86 billion neurons linked through an intricate
web of synapses (ranging in the trillions), it is the epicenter of our cognitive, emotional, and
consciousness-related functions [1]. This masterful structure of the central nervous system represents
a nexus of myriad neurobiological processes, intricately overseeing sensory input conversion,
motoric responses, and advanced cognitive functionalities. As a product of relentless evolutionary
adaptations spanning millions of years, the brain epitomizes the apex of neurobiological
optimization, synergizing complex neural circuitry with higher-order cognitive undertakings such
as cognitive reasoning, emotional homeostasis, and the intricate processes of memory encoding,
storage, and retrieval [1-3]. Thus, the human brain is a super-complex system whose functioning and
intelligence depend rather on the type of neurons (depending on their role in the brain), their
connections, and the way of supplying energy to neurons than the number of neurons [2]. It is an
ideal reference model for the foundations of Artificial Intelligence (AI) [3,4].

Thus, processing and analysis of biomedical data for diagnostic purposes is a multidisciplinary
field that combines AI, Machine Learning (ML), biostatistics, time series analysis as well as statistical
physics and algebra (e.g. graph theory) [3]. Variables derived from biomedical phenomena can be
described in several ways and in different domains (time, frequency, spectral values, spaces of states
describing the biological system), depending on the characteristics and type of signal. Effective
diagnosis of the early stages of the disease, as well as the determination of disease development
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trends, is a very difficult issue that requires taking into account many factors and parameters.
Therefore, the state spaces of biomedical signals are huge and impossible to fully search, analyze, and
classify even with the use of powerful computational resources. Therefore, it is necessary to use
Artificial Intelligence, in particular, bio-inspired Al methods to limit research to a smaller but
significant part of the state space.

Recently, computer-generated three-dimensional (3D) images have become increasingly
important in medical diagnostics [5,6]. In particular, Extended Reality (XR) so-called Metaverse is
increasingly used in health care and medical education, while it enables the deeper experience of the
virtual world, especially through the development of depth perception, including the rendering of
several modalities like vision, touch, and hearing [7]. In fact, medical images have different modalities
and their accurate classification at the pixel level enables the accurate identification of disorders and
abnormalities [7,8]. However, creating a 3D model of organs and/or their abnormalities is time-
consuming and is often done manually or semi-automatically[10]. Al can automate this process and
also contribute to increasing the quality of the resulting 3D objects [11,12] as well as visual content in
the Metaverse [4,13]. To give the users a real sense of visual immersion, the developers should virtual
objects of high quality [14]. In the context of medicine, it is combined with good quality medical data
and their classification/segmentation algorithms with high accuracy, to faithfully reproduce the
content in virtual three dimensions.

For that reason, this paper focuses on the overview of Artificial Intelligence-based algorithms in
medical image scan segmentation and intelligent visual content generation in Extended Reality,
including different types of neural networks used and learning rules, taking into account
mathematical/theoretical foundations, algorithm accuracy, and performance, as well as open data
availability.

2. Materials and Methods

The methodology of review methodology was based on the PRISMA Statement [15] and its
extensions: PRISMA-S [16]. We considered recent publications, reports, protocols, and review papers
from Scopus and Web of Science databases. The keywords: Artificial Intelligence, Machine Learning,
Extended Reality, Mixed Reality (MR), Virtual Reality (VR), Metaverse, learning algorithms, learning
rules, signal classification, signal segmentation, medical image scan segmentation, segmentation
algorithms, classification algorithms, and their variations. The selected sources were analyzed in
terms of compliance with the analyzed topic, and then their contribution to medical image scan
segmentation. First, the obtained title and abstract were independently evaluated by the authors. The
duplicated records have been removed. Moreover, we have considered the inclusion of criteria-like
publication in the form of journal papers, books, and proceedings as well as technical reports. The
search was limited to full-text articles in English, including electronic publications before printing.
Also, the exclusion criteria like Ph. D. thesis and materials not related to medical image scan
segmentation and Artificial Intelligence-based algorithms have been adopted. Subsequently, articles
meeting the criteria were retrieved and analyzed. The documents used in this study were selected
based on the procedure presented in Figure 1. Finally, 162 documents were taken into account.
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Figure 1. Literature search flowchart.

3. Neural communication

Neurons, which are basic brain building blocks, function as the core computational units of the
brain, underpinning the vast expanse of conscious and subconscious processes, and defining our
neural identity with each electrochemical interaction [11]. The quintessence of neural communication
is synaptic transmission. At these specialized junctions, the presynaptic neuron releases
neurotransmitters, a diverse group of chemicals, into the synaptic cleft. Following the release, these
compounds traverse the synaptic gap, interacting with receptors on the postsynaptic membrane,
eliciting a series of intracellular events, potentially leading to the generation of an action potential, a
transient depolarizing event propagated along the neuronal membrane. The multifunctionality of
neurons is evident across physiological domains. While some mediate rudimentary autonomic
functions, such as cardiac rhythm regulation, others participate in higher-order cognitive tasks,
encompassing analytical reasoning and conceptual abstraction. Based on their anatomical
localization and associated circuits, neurons can modulate affective states, dictate cognitive
strategies, and contribute to individual behavioral phenotypes. Moreover, the synaptic connections
between neurons exhibit plasticity, an inherent ability to modify their strength or form novel
connections, representing experiential and learning-based adaptations. Such neural plasticity
underscores the capacity for cognitive and behavioral adaptability, ensuring the brain's functional
flexibility across an individual's lifespan.

Since the famous experiments of Adrian [17], it is assumed that in the nervous systems
(including the brain), information is transmitted through weak electric currents (on the order of 100
(mV)), in particular employing action potentials (spikes) that are a transient, sudden (1-2 millisecond)
change in the membrane potential of the cell/neuron associated with the transmission of information
[18]. The stimulus for the creation of an action potential is a change in the electric potential in the
cell's external environment. A wandering action potential is called a nerve impulse. In literature
[19,20] it is assumed that the sequences of such action potentials, called spike-trains, play a key role
in the transmission of information, and the times of appearance of these action potentials play a
significant role. Mathematically, such time sequences can be and are modeled in particular after
digitalization as trajectories (or their various variants) of certain stochastic processes (Bernoull,
Markov, Poisson, ...) [19,21-27].
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4. Taxonomy of neural network applied in the medical image segmentation process

The Artificial Neural Networks (ANNSs) are constructed with the perceptron neuron model [28]
that is based on the binary decision rule. If the linearly weights w; the sum of the input signals (input
vector x;) exceeds the threshold tj, neuron fires (i.e. the output is equal to 1) or if not output is equal
to 0.

The basic input function is described as follows

(L0 wyxg +woxy o Wpxy, =ty
fe) _{ 0, otherwise 1)
The output vector of all neurons in I-th layer can be expressed as well as the combination of the linear
transformation and non-linear mapping (i.e. ANN activation values) [29].
at =hWta1),i=1,..,M ()

where W' is the weight matrix between layer [ and [ —1, and h(:) denotes the activation
function, in this case, Rectified Linear Unit (ReLU) f(x) = x* = max(0,x) and the vector a! denotes
the output of all neurons in I-th layer. The formula (2) has been quoted following the designations in
the publication [29]. Neuron models from the Integrate-and-Fire family are among the simplest,
however also the most frequently used. They are classified as spiking models. From a biophysical
point of view, action potentials are the result of currents flowing through ion channels in the
membrane of nerve cells. The Integrate-and-Fire neuron model [30,31] focuses on the dynamics of
these currents and the resulting changes in membrane potential. Therefore, despite numerous
simplifications, these models can capture the essence of neuronal behavior in terms of dynamic
systems.

The concept of Integrate-and-Fire neurons is the following: the input ion stream depolarizes the
neuron's cell membrane, increasing its electrical potential. An increase in potential above a certain
threshold valueU,p, produces an action potential (i.e. an impulse in the form of Dirac's delta) and
then the membrane potential is reset to the resting level. The leaky Integrate-and-Fire (LIF) neuron
model [30,31] is an extended model of the Integrate-and-Fire neuron, in which the issue of time-
independent memory is solved by equipping the cell membrane with a so-called leak. This
mechanism causes ions to diffuse in the direction of lowering the potential to the resting level or
another level Uy = Ujeqr < Ugpr- Thus, the third generation of neural networks, i.e. the Spiking
Neural Networks (SNN) [32] are mostly based on the LIF, where the membrane potential U(t) is

determined by the equation
av

m oy = ~LU(®) = Upese] + RinI(8), (3)
where Txis the membrane time constant of the neuron, Ruis total membrane resistance, and I(t) is the
electric current passing through the electrode. The spiking events are not explicitly modeled in the
LIF model. Instead, when the membrane potential U(t) reaches a certain threshold U (spiking
threshold), it is instantaneously reset to a lower value Urst (reset potential) and the leaky integration
process starts a new one with the initial value Ur. To mention just a little bit of realism to the dynamics
of the LIF model, it is possible to add an absolute refractory period Awsimmediately after U(t) hits
Usm. During the absolute refractory period, U(t) might be clamped to U~ and the leaky integration
process is re-initiated following a delay of Awsafter the spike. More generally, the membrane potential
(3) can be presented as
U@) =%, o; Dt Ut — &) 4)
where u(t) is a fixed casual temporal kernel that is an operation that allows scale covariance and
scale invariance in a causal-temporal and recursive system over time [33] and w;, i = 1,.., N denotes
the strength of neuron synapses. Following Equation (2), the neuron's output m!(t) (membrane
potential after the neuron firing) can be described as follows [29]
mt@) =vit -1+ Wt l=1,..,N (5)
where v! denotes the membrane potential before the neuron fires, W' is the weight in I-th layer (!
denoted layer index), and x'~1(t) is the input from the last layer. Thus, to avoid the loss of
information the reset-by-subtraction” mechanism was introduced [34]
vi() —vi(t — 1) = w"1() — (H(m'(t) — 8Y)6") (6)
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where v!(t) is membrane potential after firing, m'(t) — membrane potential before firing,
H(m'(t) — 0") refers to the output spikes of all neurons, and €' is a vector of the firing threshold 6'.
There are also some applications of the concepts of the meta-neuron model in SNNs [35]. The main
differences between the LIF neuron and meta neurons stay in the integration process, where meta
neurons use a 2nd-order ordinary differential equation and an additional hidden variable. The basic
differences between ANN and SNN (taking into account the type of neuron models) are presented in
Figure 1.
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Figure 1. The scheme of the basic differences between ANN and SNN takes into account the type of
neuron models.

4.1. Convolutional Neural Network

The most commonly used deep neural network (DNN) in medical image classification is the
two-dimensional (2D) Convolutional Neural Network (CNN) [36,37]. In the Figure 2. The basic
scheme of the SNN is presented. Its principle of operation is based on linear algebra, in particular
matrix multiplication. CNNs consist of three types of layers: a convolutional layer, a pooling layer,
and a fully connected layer. In fact, most computations are performed in the convolutional layer or
layers. The image (pixels) is converted into binary values and patterns are searched. Every
convolutional layer operates a dot product between two matrices, namely one matrix is a set of
learnable parameters (kernel), and the second matrix is a limited part of the receptive field. Each
subsequent layer contains a filter/kernel that allows you to classify features with greater efficiency.
A pooling layer reduces the number of parameters in the input, which causes the loss of part of the
information calculated in the common layer/layers, however, it allows for improvement in the
efficiency of the CNN network. This operation is performed by sliding windows [38]. Next, the
output of these two layers is transformed into a one-dimensional vector, i.e. input to the fully
connected layer. In this last type of layer, image classification based on the features extracted in the
previous layers is performed, i.e. the object in the image is recognized. The output yi(_f) from CNN

can be described as follows

k 1 k
Yi(,j) = 0(2iey Lom=1 xi(+)l—1,j+m—1 Wz(.nz +b®)(7)

where xi('lj) denotes input to the network at the spatial location (i,j), o is the activation

function, Wz(.frz is the weight of the mth kernel at the Ith channel producing the kth feature map, and

b®) is the bias for kth feature map.

In the case of large datasets, CNN achieves high efficiency and is resistant to noise [39]. The
crucial disadvantages of CNNs in image processing are high computational requirements and
difficulties in achieving high efficiency in the case of small datasets (i.e. if the dataset is too small the
network may overfit to training data, and poorly recognize new data).
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Figure 2. The basic scheme of the simple Convolutional Neural Network.

4.2. Recurrent Neural Network

Another neural network commonly applied in medical data analysis is the Recurrent Neural
Network (RNN) [40]. In the Figure 3. The basic scheme of the RNN is presented. This type of network
contains at least one feedback connection. The output of RNN can be expressed as [41]

Vi = Wiy H(Wyphi_y + Wypx; + bp)h; + b, @®)

where x;, i —1,..,N, Wy, Wy, , Wy, denotes weight matrices,b,, b, are bias vectors,and H is
the non-linear activation function, for example, ReLU, Sigmoid f(x) = ﬁ, Tanh Function
eX_g=X

(Hyperbolic Tangent)f (x) = . The network operation is recursive since the hidden layer state

eX+e™X
depends on the current input and the previous state of the network. Thus, the hidden state h;_; is
the memory of past inputs.

Thus, the RNN can operate on the sequential dataset and has an internal memory. It may have
many inputs. However, RNNs exhibit learning-related problems, namely vanishing gradients (i.e. in
the case of small gradients the updates of parameters are irrelevant) or exploding gradients (i.e.
superposition of large error gradients leading to large parameter updates). These contribute to the

long training process, low level of accuracy, and low network performance.

Input Layer X Hidden Layer H Output signal Z

X©

— x@

Figure 3. The basic scheme of the simple Recurrent Neural Network.

4.3. Spiking Neural Networks

Besides the Artificial Neural Networks, i.e. CNNs, and RNNs, one can also be applied to the
medical signals bio-inspired neural networks like Spiking Neural Networks [41,42]. In the Figure 4.
The basic scheme of the SNN is presented. SNNs encode information taking into account spike
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signals, and shells are promising in effectuating more complicated tasks, while the more
spatiotemporal information is encoded with spike patterns [43]. They are mostly based on the LIF
neuron model. SNNs were formulated to map organic neurons, i.e. the appearance of the presynaptic
spike at synapse triggers the input signal i(t) (the value of the current) that in the simplified cases
can be written as follows
i) = J;"S;(s — t)exp (;—:)ds )

where 7, denotes synaptic time constant, S; is a presynaptic spike train, t is time [44]. In
contrast, the majority of DNNs do not take into account temporal dynamics [45]. In fact, SNNs show
promising capability in playing a similar performance as living brains. Moreover, the binary
activation in SNNs enables the development of dedicated hardware for neuromorphic computing
[46]. The potential benefits are low energy usage and greater parallelizability due to the local
interactions.

Input Layer X Hidden Layer H Output signal Z

|
MJL”L ‘ X HW 7 SR
11 — eFesre Il

X H@ 7@ " [ “

i_ " M J‘,‘J_ x H™ A ‘.- MJW

Figure 4. The basic scheme of the simple Spiking Neural Network.

5. Learning algorithms

The heart of Artificial Intelligence is its learning algorithms. At their core, strive to automate the
learning process, enabling machines to recognize patterns, make decisions, and predict outcomes
based on data. Their design is often a balance between theoretical rigor and practical applicability.
While mathematics and statistics provide the foundation, translating these into algorithms that can
operate on vast and diverse datasets requires creative programming skills [22]. One can distinguish
many types of network training algorithms [47]. Below we briefly discuss the most important of them.

5.1. Back Propagation Algorithm

The most commonly used learning algorithm is the back propagation (BP) algorithm. Ititers
overweight optimizations via error propagation in the neural networks. BP plays a pivotal role in
enabling neural networks to recognize complex and non-linear patterns from large datasets
[23,48,49]. From the mathematical point of view, it is a calculation of the cost function, which
minimizes the calculated error of the output using gradient descent or delta rule [50]. It can be split
into three stages: forward calculation, backward calculation, and computing the updated biases and
weights. The input to the hidden layer H; is the weighted sum of the outputs of the input neurons
and can be described as [51]

Hj = by, + Xisq X (10)
where x; is the input to the network (input layer), n is the number of neurons in the input layer,
b;, is the bias input layer, and w;; denotes the weight associated with the i-th input neuron and the
j-th hidden neuron. The output yy, is as follows

Yie = b + X2 wy F(H()) (11)
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where F(H(j)) is a transfer function, k is the number of neurons in the hidden layer, and by, is the
bias of the hidden layer. The most commonly used transfer function is the sigmoid transfer function

F(H(j)) = m The back propagation algorithm is especially effective when used in multi-

layered neural architectures such as feed-forward neural networks, convolutional neural networks,
and recurrent neural networks [26]. In image recognition, CNNs, energized by BP, can independently
identify hierarchical features, from basic edges to detailed structures. Similarly, RNNs, amplified by
BP, are adept at sequence-driven tasks like machine translation or speech recognition, as they
incorporate previous data to influence present outputs. It is one of the most effective deep learning
methods. However, BP requires large amounts of data and enormous computational efforts.

5.2. ANN-SNN Conversion

Artificial Neural Networks and Spiking Neural Networks are both computational models
inspired by biological neural networks. While ANNs have been the mainstream for most deep
learning applications due to their simplicity and effectiveness, SNNs are gaining traction because
they mimic the behavior of real neurons more closely by using spikes or binary events for
communication. To obtain a similar accuracy of the SNN-based algorithm as the algorithm using
ANN, for example, the BP-type training rule consumes a lot of hardware resources. And the already
existing platforms have limited optimization possibilities. Thus, the conversion of ANNs to SNNs
seeks to harness the energy efficiency and bio-realism of SNNs without reinventing the training
methodologies [28], while it is based on the ReLU activation function and LIF neuron model [52]. The
basic principle of the conversion of ANNs to SNNs is mapping the activation value of the ANN
neuron to the average postsynaptic potential (in fact, firing Rate) of SNN neurons, and the change of
the membrane potential (i.e. the basic function of spiking neurons) can be expressed by the
combination of the Equation (2) and Equation (6)[29]

i) — vt — 1) = wixi-1(t) — s'(t)6! (12)

Here s'(t) refers to the output spikes of all neurons in layer I at time ¢.

Tuning the right thresholds is paramount for the SNN to effectively and accurately represent
information. Incorrectly set thresholds could lead to either too frequent or too rare spiking,
potentially affecting the accuracy of the SNN post-conversion [35]. On the other hand, the
neuromorphic hardware platforms that support SNNs natively can primarily offer energy efficiency
benefits by converting ANNs to SNNs. Due to their event-driven nature, SNNs can be more
computationally efficient [36]. However, the challenge lies in maintaining accuracy post-conversion.
Some information might be lost during the transition, and not all ANN architectures and layers neatly
convert to their SNN equivalents. The conversion from ANNs to SNNs is a promising direction,
merging the advanced training methodologies of ANNSs with the energy efficiency of SNNs. As we
delve deeper into the realm of neuromorphic computing, this conversion process will play a pivotal
role in bridging traditional deep learning with biologically-inspired neural models [37,38].

5.3. Supervised Hebbian Learning (SHL)

Taking into account Artificial Intelligence, Supervised Hebbian Learning (SHL)can be described
as a general methodology for weight changes [53]. Thus, this weight increases when two neurons fire
at the same time, while it decreases when two neurons fire independently. According to this rule, the
change in weight can be written

Aw = gt — t4) (13)

where 7 is the learning rate (in fact, the small scalar that may vary with time, > 0), t°* the
actual time of the postsynaptic spike, while t? is the time of firing of the second presynaptic spike
[54,55]. The crucial disadvantage of Hebbian learning is the fact that when the number of hidden
layers increases the efficiency decreases, while in the case of 4 layers is still competitive [56].
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5.4. Reinforcement Learning with Supervised Models

According to the additional constraints in the SHL rule, Reinforcement Learning with
Supervised Models (ReSuMe) was proposed [54]. ReSuMe, is a dynamic hybrid learning paradigm.
It effectively combines the resilience of Reinforcement Learning (RL) with the precision of Supervised
Learning (SL). This fusion empowers ReSuMe to leverage feedback-driven mechanisms inherent in
RL and take advantage of labeled guidance typical for SL [37-39]. The difference between SHL is that
the learning signal is expected not to have or have a marginal direct effect on the value of the
postsynaptic somatic membrane potential [57], thus the synaptic weights are modified as follows

Swii(t) = alS.(6) - S;O15(6)  (19)

where a denoted learning rate, S, is desired/targeted spike train, §;(t) is the output of the
network (spike train), and S;(t) expresses the low-pass filtered input spike train. ReSuMe guided
one of its most salient features exploration. By leveraging labeled data via SL, ReSuMe can effectively
steer RL exploration, ensuring agents avoid falling into the trap of suboptimal policies. The hybrid
nature of ReSuMe also grants it a unique resilience, especially in the face of noisy data or in reward-
scarce environments. Moreover, its adaptability is noteworthy, making it an ideal choice for tasks
that combine immediate feedback (through SL) with long-term strategic maneuvers (through RL).
However, like all things, ReSuMe is not without challenges. A potential bottleneck in ReSuMe is
computational complexity, as managing both RL and SL can sometimes strain computational
resources. Another challenge is the precise tuning of the A coefficient. The key is to find a balance
where neither RL nor SL overly dominates the learning process. By melding immediate feedback
from supervised learning with a deep reinforcement learning strategy, ReSuMe establishes itself as a
formidable tool in Machine Learning [49,50,52].

5.5. Chronotron

The Chronotron, by its essence, challenges and reshapes our understanding of how information
can be encoded and processed in neural structures [50,55]. Traditional neural models have
predominantly focused on the spatial domain, emphasizing the architecture and interconnections
between neurons. While this spatial component is undeniably critical, it offers only a part of the full
informational symphony that the brain plays. Just as the rhythm and cadence of a song contribute as
much to its essence as its melody, in the vast theater of the brain, timing is not just a factor; it is a
storyteller in its own right. The brilliance of the Chronotron lies in its ability to discern and respond
to this temporal narrative. Unlike its counterparts, which often treat time as a secondary parameter,
the Chronotron places it center stage. As a consequence, it acknowledges and leverages the intricate
interplay of spatial and temporal dynamics in neural computation. This means that it doesn't just
consider which neurons are firing, but also pays meticulous attention to when they fire concerning
one another. Thus, the membrane potential is

u(t) =90 + 5w, 3,5 t)  (15)
J
Where the models the 7 model's refractoriness is caused by the past presynaptic spikes, wjis the
synaptic efficacy, tl( is the time of appearance of the f-th presynaptic spike on the j synapse,
& (t, t{ )denotes normalized kernel [58]. When u(t) reaches the threshold level, a spike is fired. And
u(t) is reset to the value of reset potential. In this approach, it is crucial to find the appropriate error
functions, i.e. such an error function that enables the minimization with a gradient descent method
[59]. The advantage of this learning rule is the fact that it uses the same coding for inputs and outputs.
Chronotron's hallmark, its granularity, can sometimes surge computational demands, especially

during intense training. And like many cutting-edge neural frameworks, harnessing Chronotron's
full potential can be intricate, necessitatin' fine-tuned parameters and rich, well-timed data.

5.6. Bio-inspired Learning Algorithms

Brain-inspired Artificial Intelligence approaches, in particular spiking neural networks, are
becoming a promising energy-efficient alternative to traditional artificial neural networks [60].
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However, the performance gap between SNNs and ANNs has been a significant obstacle to the wild
SNNs application (applicable SNNs). To fully use the potential of SNNs, including the detection of
the non-regularities in biomedical signals, and designing more specific networks, the mechanisms of
their training should be improved, one of the possible directions of development is the bio-inspiring
learning algorithms. Below we briefly discuss the most important of them.

5.6.1. Spike Timing Dependent Plasticity

Spike Timing Dependent Plasticity (STDP) is rooted in the idea that the precise timing of neural
spikes critically affects changes in synaptic strength [61]. This principle highlights the intricate dance
between time and neural activity, showcasing the dynamics of our neural circuits. This biologically
plausible learning rule is a timing-dependent specialization of Hebbian learning (13) [62]. STDP shed
light on the intricate interplay between timing and synaptic modification. It is based on the change
in synaptic weight function

AW =n(1+ OHW; tpre = tpost) (16)

where 77 denotes the learning speed, { is Gaussian white noise with zero mean, while
H(W; tye — tpes) is the function, that determines the long-term potentiation (LTP, ie. presynaptic
and postsynaptic neurons emit a high rate) and depression (LTD, i.e. presynaptic neurons emit a high
rate) in the time window tp.e — tpos [63]

tyre—t
a,(W)exp (— Iprer—f‘ml) for tpre — tpost < 0

H(W; tpre - tpost) (17)

—a_(W)exp (— lt’"e;ﬂ) for t,re — tpost > 0

where a(W) is a scaling function that determines the weight dependence, while T denotes the
time constant for depression [61-63]. STDP's significance is underpinned by its numerous
advantages. Chiefly, it offers a biologically authentic model by 'mimicking the temporal dynamics
observed in real neural 'systems. Furthermore, its event-centric nature promotes unsupervised
learning, enabling networks to autonomously adjust based on the temporal patterns present in input
data. This time-based sensitivity equips STDP to adeptly process data with spatiotemporal attributes
and detect intricate temporal relationships within neuronal signals [64,65]. However, STDP is not
without its complexities. A prominent challenge is the fine-tuning of parameters. The exact values
assigned to constants like a(w)and t can substantially dictate the behavior and efficacy of STDP-
informed networks. Balancing these values requires a meticulous approach. Moreover, the precision
demanded by STDP's time-centric nature often calls for higher computational rigor, especially within
simulation contexts. STDP stands as a testament to the elegance and intricacy of neural systems. By
emphasizing the role of spike timing, STDP offers a vivid depiction of how synaptic interactions
evolve [66,67].

5.6.2. Spike-Driven Synaptic Plasticity

Spike-Driven Synaptic Plasticity (SDSP) offers the ability to elucidate the causality in neural
communication. It operates on a fundamental principle: the sequence and timing of spikes determine
whether a synapse strengthens or weakens. If a neuron consistently fires just before its downstream
counterpart, it's a strong indication of its influential role in the latter's activity. This "pre-before-post"
firing often leads to synaptic strengthening, cementing the relationship between the two neurons.
Conversely, if the sequence is reversed, with the downstream neuron firing before its predecessor,
the connection may weaken, reflecting a lack of causal influence [68,69]. This causative aspect of SDSP
provides valuable insights into the learning mechanisms of the brain. It suggests that our neural
circuits are continually evolving, adjusting their connections based on the flow of spike-based
information. Such adaptability ensures that our brains remain receptive to new information, enabling
us to learn and adjust to ever-changing environments. Moreover, SDSP emphasizes the significance
of precise spike timing. In the realm of neural computation, milliseconds matter. Small shifts in spike
timing can change a synapse's fate, showcasing the brain's precision and sensitivity. This
meticulousness in spike-driven modifications underscores the importance of timing in neural
computations, hinting at the brain's capacity to encode and process temporal patterns with
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remarkable accuracy [70]. In this learning rule the changes in synaptic weights can be expressed as
[64]

—|At|/ .
Aw = nt+e /rtifAt>0

_ ey , (18)
n +e =, otherwise
where 17, > 0 and n_ < 0 denotes the learning parameters, T, and 7_ are time constraints,
and At is the difference between post- and pre-synaptic spikes. This representation, while
streamlined, encapsulates the principle that the mere presence of a spike can induce modifications
in the synaptic weight, either strengthening or weakening the connection based on the specific
neural context and the directionality of the spike's influence [71-73].

The appeal of Spkie-Driven Synaptic Plasticity is manifold its primary virtue is its biological
relevance. Focusing on individual spike occurrences mirrors the granular events that take place in
real neural systems. Such an approach facilitates the modeling of neural networks in scenarios where
individual spike occurrences are of paramount importance. Furthermore, by anchoring plasticity on
singular events, this model is inherently suitable for real-time learning and rapid adaptability in
dynamic environments [74].

A crucial challenge lies in the accurate capture and interpretation of individual spikes, especially
in densely firing neural environments. Moreover, the plasticity model's sensitivity to' single events
'means that it can' be susceptible to noise, requiring sophisticated filtering mechanisms to discern
genuine learning events from spurious spikes. SDS elucidates the profound influence of singular
neuronal events on the grand tapestry of neural learning and adaptation [73].

5.6.3. Tempotron Learning Rule

One of the most interesting biological-inspired learning algorithms is the tempotron principle
[65,76,77] It is designed to adapt synaptic weights based on the temporal precise patterns of incoming
spikes, rather than only the frequency of such spikes. While traditional neural models might
emphasize synaptic weights or connection topologies, tempotron underscores that the 'when' of a
neural event can be as informative, if not more so, than the 'where' or Thow often' [78-80]. The
tempotron learning rule is based on the LIF neuron model. It fires when (4) exceeds the threshold
(binary decision). Thus, one can define the potential of the neuron’s membrane as a weighted sum of
postsynaptic potentials (PSPs) from all appearance spikes [77]

v(t) = X @ X, K(E = ;) + Vit (19)

where w; denotes synaptic efficacy, t; is the firing time of the ith afferents, V, .z is resting

potential, and K is the normalized PSP kernel

K(t—t) = Vo(exp (=2) —exp (C=2))  (20)

where T, is the decay time constant of membrane integration, while 7 denotes the decay time
constant of synaptic currents.While the Vy normalized the PSP that the maximum kernel value is
equal to 1. The neuron is fired when the value of the potential of the neuron’s membrane (19) is
greater than the value of the firing threshold. Next, the potential of the neuron’s membrane (19)
smoothly decreases to the value of V... In the case of the segmentation/classification task, the input
to the neuron may belong to one of two classes, namely P*when a stimulus occurs (i.e. pattern is
presented) the neuron should fire), and P~ when the pattern is presented neuron should not fired.
Each input consists of N spike trains. In turn, the tempotron learning rules are as follows

Aw; = AZti<tmux K(tmax — t:)(21)

where t,,,, is the time when the potential of the neuron’s membrane (19) reaches a maximum
value. While 2 is the constant that is greater than zero in the case of P*, and smaller than zero in the
case P~. In this operation, tempotron introduces gradient-decent dynamics, i.e. minimizing the cost
function for each input pattern measures the maximum voltage that is generated by the erroneous
patterns. In comparison to the STDP learning rule, tempotron can make the appropriate decision
under a supervisory signal, by tuning fewer parameters than STDP. Thus, tempotron uses LTP and
LTD mechanisms like STDP. The advantage of the tempotron learning rule is the speed of learning.
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6. Neural networks and learning algorithms in the medical image segmentation process

Image segmentation has a crucial role in creating both, medical diagnosing supported by image
analysis and virtual object creation like the medical digital twin (DT) of organs [66,67], holograms of
the human organs [81,82], and virtual medical simulators [68,83]. One can split the image
segmentation process into semantic segmentation (i.e. assigning a label or category to each pixel),
instance segmentation (i.e. identifying and separating individual objects in an image and assigning a
label to it), and panoptic segmentation (i.e. more complex tasks, which involves the two
segmentations above) [77,78]. The application of Al enables to increase in the efficiency and speed of
these processes [84]. In Table 1. the comparison of the Al-based algorithms applied in medical image
scan segmentation taking into account the neuron model, the type of neural network, learning rule,
and biological plausibility is shown. It turned out that the most commonly used in image
segmentation are CNNSs, in particular, Unet architecture and its variations [71,72,74,75,85]. In [73] the
authors modified this neural network structure by adding dense and nested skip connections
(UNet++), while [Yao et al., 2020] added the residual blocks and attention modules to enable the
network to learn deeper features and increase the effectiveness of segmentation. To connect the
efficiency of segmentation with access to global semantic information, often CNNs are combined with
transformer blocks [85-87]. Another CNNs-based algorithm commonly used in medical image
segmentation is You Only Look Once (YOLO), which is open-source software used under the GNU
General Public License v3.0 license [88]. It uses one fully connected layer, the number (depending on
the version) of convolution layers that are pre-trained with the CNN (YOLO v1 ImageNet, YOLO v2
Darknet-19, YOLO v3 Darknet-53, YOLO v4 CSPNet, YOLO v5 EfficientNet, YOLO v6 EfficientNet-
L2, YOLO v7 ResNET, YOLO v8 RestNet), and pooling layer. The algorithm divides the input in the
form of a photo into specific segmentations and then uses CNN to generate bounding boxes and class
predictions. Recently, in image classification, SNN has become more popular [78,79] due to its low
power consumption. However, SNN training rules require refinement to achieve ANN accuracy.
Another interesting algorithm for natural image segmentation with was recently developed (April
2023) by Meta is the Segmentation Anything Model (SAM) [89,90]. This Al-based algorithm enables
cutting out any object from the image with a single click. It uses CNNs and transformer-based
architectures for image processing, in particular, transformers-based architectures are applied to
extract the features, compute the embedding, and pomp the encoder. The first attempt has been made
to apply it in the field of medical imaging, however, in medical segmentation, it is still not so accurate
in comparison to other application fields [91,92]. The imperfections of the SAM algorithm in the field
of medical image segmentation are mainly connected to insufficient numbers of training data. In [93],
the authors proposed to apply the Med SAM Adapter to overcome the above limitations. The pre-
training method like Masked Autoencoder (MAE), Contrastive Embedding-Mixup (e-Mix), and
Shuffled Embedding Prediction (ShED) was applied. There is a lot of work in the area of medical
image segmentation using machine learning, but relatively little addresses the issue related to the
network learning process itself (along with data, a key element in achieving high accuracy of the
process) [94], see Table 1. Thus, the most commonly used learning algorithms in medical image
segmentation are still on the low level of biological plausibility. On the other hand, in other image
segmentation, in particular, biologically plausible learning algorithms are applied, for example, in
the field of the images of handwritten digits [77].

Table 1. The comparison of the Al-based algorithms applied in medical image scan segmentation.

Network Neuron Average Data sets - Input Learning Biological Ref.
Type model Accuracy [%] training/testing/validatio parameters rule plausibilit
n sets [%] or y
training/testing sets [%]
ANN Perceproto 99.10 mammography images mammography BP low [95]
n lack of information images — 33
features
extracted by
Region of
Interest (ROI)
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CNN Perceproto 98.70 Brain tumor, MRI color MRI image scan, BP low [96]
n images 12 features
70/15/15 (mean, SD,
entropy, Energy,
contract,
homogeneity,
correlation,
variance,
covariance,
RMS, skewness,
kurtosis)
CNN Perceproto 93.00 Echocardiograms Disease lack of low [97]
n 60/40 classification, information
cardiac chamber
segmentation,
viewpoints
classification in
echocardiogram
s
CNN Perceproto 94.58 brain tumor images brain tumor lack of low [98]
n 50/25/25 images information
CNN Perceproto 91.10 IVUS frames, EA after IVUS frames, EA | lack of low [99]
n OCT/IVUS registration after OCT/IVUS information
registration
CNN Perceproto 98.00 2-D ultrasound Classification of lack of low [100]
n 49/49/2 the cardiac view | information
into 7 classes
CNN Perceproto 99.30 coronary cross-sectional Detection of lack of low [101]
n images motion artifacts information
80/20 in coronary
CCTA,
classification of
coronary cross-
sectional images
CNN Perceproto 99.00 MRI image scan Bounding box lack of low [102
n 60/40 localization of information ]
LV in short-axis
MRI slices
CNN and Perceproto 96.00 Doppler US cardiac valve Automatic lack of low [103]
doc2vec n images generation of information
94/4/2 text for Doppler
US cardiac valve
images
Deep CNN Perceproto 97.00 Vessel segmentation proposing a lack of low [104]
+ complex n lack of information supervised information
data segmentation
preparation technique that
uses a deep
neural network.
Using structured
prediction
CNN and Perceproto 90.70 Automated Cardiac CT image scans BP low [105]
Transforme | n Diagnosis Challenge
r encoders (ACDC), CT image scans
from Synapse
60/40
CNN, and Perceproto 95.24 (REs-Net50) | MRIimage scan of the MRI image scan BP low [106]
RNN n 97.18(IncepnetV3 brain of the brain,
) 80/20 modality, mask
98.03 (Dense-Net) images
CNN, and Perceproto 95.74 (REs- skin image skin image BP low [107]
RNN n Net50) lack of information
97.14(DarkNet-
53)
SNN LIF 81.95 baseline T1-weighted The ANN- low [108]
whole brain MRI image hippocampus SNN
scan section of the conversio
lack of information MRIimage scan | n
SNN LIF 92.89 burn images 256 x 256 burn BP low [109]
lack of information image encoded
into 24 x 256 x
256 feature maps
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SNN LIF 89.57 skin images (melanoma skin images surrogate low [110]
and non-melanoma) converted into d gradient
lack of information spikes using descent
Poisson
distribution
SNN LIF 99.60 MRI scan of brain tumors 2D MRI scan of YO-LO-2- low [111]
80/10/10 brain tumors based
transfer
learning
SNN LIF 95.17 microscopic images of microscopic Spike- low [112]
breast tumor images of breast | Prop
lack of information tumor

The segmented structures (in this case organs and their disorders) may be next applied to the
development of the 3D virtual environment [105]. These 3D objects may be implemented through for
example, holograms displayed in the head-mounted display (HDMs) like Mixed Reality glasses in
medical diagnostics [113], pre-operative imaging [114], surgical assistance [115,116], robotics surgery
[117], and medical education [81,82]. However, the crucial issue is connected with the quality of
obtained segmented structures, and this process can be significantly accelerated and improved by the
use of Artificial Intelligence.

7. Data availability

One of the key issues in the development of Al algorithms in the field of medicine is the
availability and quality of data, i.e. access to electronic health records (EHRs) [118,119]. Thus, the
medical data should be anonymized. In Table 2 a summary of publicly available retrospective image
scan medical databases is presented. Some authors also provide anonymized data upon request. It is
worth stressing that data, including medical image scans, are subjected to various types of biases
[120].

Table 2. A summary of publicly available retrospective image scan medical databases.

Database Data Data type Amount of data Availability

source

Physionet [121] EEG, x-ray images, | Auditory evoked potential EEG-Biometric dataset — 240 | Publics
polysomnographic, | measurements from 20 subjects

The Brno University of Technology Smartphone PPG
Database (BUT PPG) - 12 polysomnographic
recordings

CAP Sleep Database - 108 polysomnographic
recordings

CheXmask Database: a large-scale dataset of anatomical
segmentation masks for chest x-ray images — 676 803
chest radiographs

Electroencephalogram and eye-gaze datasets for robot-
assisted surgery performance evaluation— EEG from 25
subjects

Siena Scalp EEG Database — EEG from 14 subjects
Physionet [121] EEG, x-ray images, | Computed Tomography Images for Intracranial | Restricted

polysomnographic, | Hemorrhage Detection and Segmentation — 82 CT After | access
Traumatic Brain Injury (TBI)

A multimodal dental dataset facilitating machine
learning research and clinic service -574 CBCT images
from 389 patients

KURIAS-ECG: a 12-lead electrocardiogram database
with standardized diagnosis ontology- EEG 147 subjects
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VinDr-PCXR: An open, large-scale pediatric chest X-ray
dataset for interpretation of common thoracic diseases —
adult chest radiography (CXR) 9125 subjects

VinDr-SpineXR: A large annotated medical image
dataset for spinal lesions detection and classification from
radiographs - 10466 spine X-ray images from 5000

studies

National ~ Sleep
Research

Resource

[122]

Polysomnography

Apnea Positive Pressure Long-term Efficacy Study —
1516 subject

Efficacy Assessment of NOP Agonists in Non-Human
Primates — 5 subjects

Maternal Sleep in Pregnancy and the Fetus — 106
subjects

Apnea, Bariatric surgery, and CPAP study — 49 subjects
Best Apnea Interventions in Research — 169 subjects
Childhood Adenotonsillectomy Trial — 1243 subjects
Cleveland Children’s Sleep and Health Study — 517
subjects

Cleveland Family Study — 735 subjects

Cox & Fell (2020) Sleep Medicine Reviews — 3 subjects
Heart Biomarker Evaluation in Apnea Treatment — 318
subjects

Hispanic Community Health Study / Study of Latinos —
16415 subjects

Home Positive Airway Pressure — 373 subjects
Honolulu-Asia Aging Study of Sleep Apnea — 718
subjects

Learn — 3 subjects

Mignot Nature Communications — 3000 subjects
MrOS Sleep Study — 2237 subjects

NCH Sleep DataBank — 3673 subjects

Nulliparous Pregnancy Outcomes Study Monitoring
Mothers-to-be — 3012 subjects

Sleep Heart Health Study — 5804 subjects

Stanford Technology Analytics and Genomics in Sleep —
1881 subjects

Study of Osteoporotic Fractures — 461 subjects
Wisconsin Sleep Cohort — 1123 subjects

Publics on
request  (no
commercial

use)

Open Access
Series of Imaging
Studies -

Brain

Qasis

[123]

MRI

disease

Alzheimer’s

OASIS-1 - 416 subjects
OASIS-2 - 150 subjects
OASIS-3 - 1379 subjects
OASIS-4 - 663 subjects

Publics on
request  (no
commercial

use)

openeuro

[124]

MRI, PET, MEG,
EEG, iEEG

data (various types

and

of disorders,
depending on the
database)

595 MRI public datasets, 23 304 subjects
8 PET public datasets — 19 subjects

161 EEG public dataset — 6790 subjects
23 iEEG public dataset — 550 subjects

32 MEG public dataset — 590 subjects

Publics

brain tumor

dataset

[125]

MRI, brain tumor

MRI - 233 subjects

Publics

Cancer Ima-ging
Ar-chive (TCIA)

[126]

MR, CT, Positron
Emission
Tomography,
Computed

HNSCC-mIF-mIHC-comparison — 8 subjects
CT-Phantom4Radiomics — 1 subject
Breast-MRI-NACT-Pilot — 64 subjects
Adrenal-ACC-Ki67-Seg — 53 subjects

Publics (Free
access,

registration

required)
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Radiography,
Digital
Radiography,
Nuclear Medicine,
Other (a category
used in DICOM for
images that do not
fitinto the standard
modality
categories),
Structured
Reporting
Pathology Various

CT Lymph Nodes — 176 subjects
UCSF-PDGM - 495 subjects

UPENN-GBM - 630 subjects
Hungarian-Colorectal-Screening — 200 subjects
Duke-Breast-Cancer-MRI — 922 subjects
Pancreatic-CT-CBCT-SEG - 40 subjects
HCC-TACE-Seg — 105 subjects
Vestibular-Schwannoma-SEG — 242 subjects
ACRIN 6698/1-SPY2 Breast DWI — 385 subjects
I-SPY2 Trial — 719 subjects

HER?2 tumor ROIs - 273 subjects
DLBCL-Morphology — 209 subjects
CDD-CESM - 326 subjects
COVID-19-NY-SBU - 1,384 subjects
Prostate-Diagnosis — 92 subjects
NSCLC-Radiogenomics — 211 subjects

CT Images in COVID-19 - 661 subjects
QIBA-CT-Liver-Phantom — 3 subjects
Lung-PET-CT-Dx — 363 subjects
QIN-PROSTATE-Repeatability — 15 subjects
NSCLC-Radiomics — 422 subjects
Prostate-MRI-US-Biopsy — 1151 subjects
CRC_FFPE-CODEX_CellNeighs — 35 subjects
TCGA-BRCA - 139 subjects

TCGA-LIHC - 97 subjects

TCGA-LUAD - 69 subjects

TCGA-OV - 143 subjects

TCGA-KIRC - 267 subjects
Lung-Fused-CT-Pathology — 6 subjects
AML-Cytomorphology_LMU - 200 subjects
Pelvic-Reference-Data — 58 subjects
CC-Radiomics-Phantom-3 — 95 subjects
MiMM_SBILab - 5 subjects

LCTSC - 60 subjects

QIN Breast DCE-MRI - 10 subjects
Osteosarcoma Tumor Assessment — 4 subjects
CBIS-DDSM - 1566 subjects

QIN LUNG CT - 47 subjects
CC-Radiomics-Phantom — 17 subjects
PROSTATEXx — 346 subjects

Prostate Fused-MRI-Pathology — 28 subjects
SPIE-AAPM Lung CT Challenge — 70 subjects
ISPY1 (ACRIN 6657) — 222 subjects
Pancreas-CT — 82 subjects

4D-Lung - 20 subjects

Soft-tissue-Sarcoma — 51 subjects
LungCT-Diagnosis — 61 subjects

Lung Phantom — 1 subject

Prostate-3T — 64 subjects

LIDC-IDRI - 1010 subjects

RIDER Phantom PET-CT - 20 subjects
RIDER Lung CT - 32 subjects
BREAST-DIAGNOSIS — 88 subjects
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CT COLONOGRAPHY (ACRIN 6664) — 825 sub-

jects

LUNA16 [127] CT, Lung Nodules | LUNA16- 888 CT scans Publics (Free
access to all
users)

MICCAI 2012 [128] MRI, Prostate | Prostate Segmentation in Transversal T2-weighted | Publics (Free

Prostate Imaging MR images - Amount of Data: 50 training cases access to all
users)

Challenge

IEEE Dataport [129] Ultrasound CNN-Based Image Reconstruction Method for | A part Public
Images, Brain | Ultrafast Ultrasound Imaging: 31,000 images and a part
MRI, Ultra- | OpenBHB: a Multi-Site Brain MRI Dataset for Age | restricted
widefield Prediction and Debiasing: >5,000 - Brain MRI. (Subscription)
fluorescein Benign Breast Tumor Dataset: 83 patients -
angiography Mammograms.
images, Chest X- | X-ray Bone Shadow Suppression: 4,080 images
rays, STROKE: CT series of patients with M1 thrombus
Mammograms, CT, | before thrombectomy: 88 patients
Lung Image | Automatic lung segmentation results
Database Nextmedproject - 718 of the 1012 LIDC-IDRI scans
Consortium  and | PRIME-FP20: Ultra-Widefield Fundus Photography
Image,  Thermal | Vessel Segmentation Dataset -15 images
Images Plantar Thermogram Database for the Study of

Diabetic Foot Complications - Amount of data: 122
subjects (DM group) and 45 subjects (control group)

AIMI [130] Brain MRI studies, | BrainMetShare- 156 subjects Publics (Free
Chest X-rays, | CheXlocalize: 700 subjects access)
echocardiograms, BrainMetShare: 156 subjects
CT COCA - Coronary Calcium and Chest CTs: Not

specified

CT Pulmonary Angiography: Not specified
CheXlocalize: 700 subjects

CheXpert: 65,240 subjects

CheXphoto: 3,700 subjects

CheXplanation: Not specified

DDI - Diverse Dermatology Images: Not specified
EchoNet-Dynamic: 10,030 subjects

EchoNet-LVH: 12,000 subjects

EchoNet-Pediatric: 7,643 subjects

LERA - Lower Extremity Radiographs: 182 subjects
MRNet: 1,370 subjects

MURA: 14,863 studies Multimodal Pulmonary
Embolism Dataset: 1,794 subjects

SKM-TEA: Not specified

Thyroid Ultrasound Cine-clip: 167 subjects
CheXpert:224,316 chest radiographs of 65,240
subjects

fast MRI [131] MRI fast MRI Knee: 1,500+ subjects Publics (Free

fast MRI Brain: 6,970 subjects aceess,
. registration
fast MRI Prostate: 312 subjects .
required)
ADNI [132] MRI, PET Scans Related to Alzheimer's Disease Publics (Free

access,
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registration
required)

Pediatric Brain [133] MRI Pediatric Brain Imaging Data-set Over 500 pediatric | Publics (Free
Imaging Dataset brain MRI scans access to all
users
ChestX-ray8 [134] | Chest X-ray Images | NIH Clinical Center Chest X-ray Dataset - Over | Publics (Free
100,000 images from more than 30,000 subjects access fo_all
users)
Breast Cancer | [135] MLO and CC | BCDR-FM (Film Mammography-based Repository) | Publics (Free
Digital images - Amount of Data: 1010 subjects access,
Repository BCDR-DM (Full Field Digital Mammography-based | registration
Repository) Amount of Data: 724 subjects required
Brain-CODE [136] Neuroimaging High-Resolution Magnetic Resonance Imaging of | Restricted
Mouse Model Related to Autism - 839 subjects (Application
for access is
required and
Open  Data
Releases)
RadImageNet [137] PET, CT, | 5 million images from over 1 million studies across | Publics subset
Ultrasound, MRI 500,000 subjects available; Full
dataset
with DICOM tags licensable;
Academic
access  with
restrictions
EyePACS [138] Retinal fundus | Images for Training and validation set- 57,146 | Available
images for diabetic images Test set - 8,790 images through the
Kaggle
retinopathy competition
screening
Medical [139] mp-MRI, MRI, CT 10 data sets Cases (Train/Test) Open source
Segmentation Brain 484/266 license,
Decathlon Heart 20/10 available for
Hippocampus 263/131 research use
Liver 131/70
Lung 64/32
Pancreas  282/139
Prostate 32/16
Colon 126/64
Hepatic Vessels 303/140
Spleen 41/20
DDSM [140] Mammography 2,500 studies with images, subjects info - 2620 cases | Publics (Free
images in 43 volumes categorized by case type access)
LIDC-IDRI [141] CT Images with 1018 cases with XML and DICOM files - Images | Images and
Annotations (DICOM, 125GB), DICOM Metadata Digest (CSV, | annotations

314 kB), Radiologist Annotations/Segmentations
(XML format, 8.62 MB), Nodule Counts by Patient
(XLS), Patient Diagnoses (XLS)

are available
for download
with  NBIA
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Data
Retriever,

usage under

CCBY 3.0
synapse [142] CT scans, Zip files CT scans- 50 scans with variable volume sizes and | Under IRB
resolutions supervision,

for raw data,
Labeled organ data -13 abdominal organs were | Available for
registration data manually labeled participants
Zip files for raw data - Raw Data: 30 training + 20
testing; Registration Data: 870 training-training +

600 training-testing pairs

Mini-MIAS [143] Mammographic 322 digitized films on 2.3GB 8mm tape - Images | free for

derived from the UK National Breast Screening | scientific

images
Programme and digitized with Joyce-Loebl | research
scanning microdensitometer to 50 microns, reduced | under a
to 200 microns and standardized to 1024x1024 pixels | license
for the database agreement
Breast Cancer | [144] microscopic 9,109 microscopic images of breast tumor tissue | free for
Histopathological . collected from 82 subjects scientific
images of breast
Database research
(BreakHis) tumor under a
license
agreement
Messidor [145] eye fundus color 1200 eye fundus color numerical images of the | free for
s posterior pole scientific
numerical images
research
under a
license
agreement

8. Discussion and conclusions

The effectiveness of learning algorithms is compared among others in terms of the number of
learning cycles, number of objective function calculations, number of floating-point multiplications,
computation time, and sensitivity to local minima. In addition to the selection of appropriate
parameters and network structure, the selection of an appropriate (effective) network learning
algorithm is of key importance. The most commonly applied learning algorithm in ANNSs is
backpropagation, however, it has a rather slow convergence rate and as a consequence, ANN has
more redundancy [146]. On the other hand, the training of the SNNs due to quite complicated
dynamics and the non-differentiable nature of the spike activity remains a challenge [147]. The three
types of ANN and SNN learning rules can be distinguished: unsupervised learning, indirect,
supervised learning, and direct supervised learning. Thus, a commonly used learning algorithm in
SNNss is the arithmetic rule SpikePropo, which is similar in concept to the backpropagation (BP)
algorithm, in which network parameters are iteratively updated in a direction to minimize the
difference between the final outputs of the network and target labels [148,149]. The main difference
between SNNs and ANNSs is output dynamics. However, arithmetic-based learning rules are not a
good choice for building biologically efficient networks. Other learning methods have been proposed
for this purpose, including bio-inspired algorithms like spike-timing-dependent plasticity [150],
spike-driven synaptic plasticity [151], and the tempotron learning rule [65,76,77]. STDP is
unsupervised learning, which characterizes synaptic changes solely in terms of the temporal
contiguity of presynaptic spikes and postsynaptic potentials or spikes [152], while spike-driven
synaptic plasticity is supervised learning and uses rate coding. However, still, ANN with BP learning
achieves a better classification performance than SNNs trained with STDP. To obtain better
performance the combination of layer-wise STDP-based unsupervised and supervised spike-based
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BP was proposed [153,154]. Other commonly used learning algorithms are ReSuMe [57], and
Chronotron [58]. The tempotron learning rule implements gradient-descent dynamics, which
minimizes a cost function that measures the amount by which the maximum voltage generated by
erroneous patterns deviates from the firing threshold. Tempotron learning is efficient in learning
spiking patterns where information is embedded in precise timing spikes (temporal coding). Instead,
[155] proposed a neuron normalization technique and an explicitly iterative neuron model, which
resulted in a significant increase in the SNNs' learning rate. However, training the network still
requires a lot of labeled samples (input data). Another learning algorithm is indirect. It firstly trains
ANN (created with perceptron’s) and thereupon transforms it into its SNN version with the same
network structure (i.e., ANN-SNN conversion) [156]. The disadvantage of such learning is the fact,
that reliably estimating frequencies requires a nontrivial passage of time, and this learning rule fails
to capture the temporal dynamics of a spiking system. The most popular direct supervised learning
is gradient descent, which uses the first-spike time to encode input [157]. It uses the first-spike time
to encode input signals and minimizes the difference between the network output and desired
signals, the whole process of which is similar to the traditional BP. Thus, the application of the
temporal coding-based learning rule, which could potentially carry the same information efficiently
using less number of spikes than the rate coding, can help to increase the speed of calculations. On
the other hand, active learning methods, including bio-inspired active learning (BAL), bio-inspired
active learning on Firing Rate (BAL-FR), and bio-inspired active learning on membrane potential
(BAL-M) have been proposed to reduce the size of the input data [158]. During the learning
procedure, the labeled data sets are used to train the empirical behaviors of patterns, while the
generalization behavior of patterns is extracted from unlabeled data sets. It leverages the difference
between empirical and generalization behavior patterns to select the samples unmatched by the
known patterns. This approach is based on the behavioral pattern differences of neurons in SNNs for
active sample selection, and can effectively reduce the sample size required for SNNs training.

The integration of Al and Metaverse is a fact and suggests that AI may become the dominant
approach for image scan segmentation and intelligent visual-content generation in the whole virtual
world, not just medical applications [6,159]. Recently, the Segment Anything Model (SAM) based on
Al was introduced for natural images [89], in [160] SAM was proposed to be applied to medical
images with a high level of accuracy. Better image segmentation contributes the higher-quality virtual
objects. Al application in the context of the Metaverse is connected with the identification and
categorization of meta-verse virtual items [161]. Moreover, Al may lead to more efficient
cybersecurity solutions in the virtual world [162]. However, this is closely related to the accuracy of
Al-based algorithms and, consequently, the accuracy of their training.
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