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Abstract: The quadratic unconstrained binary optimization (QUBO) is a classic NP-hard problem with an 

enormous number of applications. Local search strategy (LSS) is one of the most fundamental algorithmic 

concepts that has been successfully applied to a wide range of hard combinatorial optimization problems. One 

LSS that has gained the attention of researchers is the r-flip (also known as r-Opt) strategy. Given a binary 

solution with n variables, the r-flip strategy ‘flips’ r binary variables to get a new solution if the changes 
improve the objective function. The main purpose of this paper is to develop several results for implementation 

of r-flip moves in QUBO, including a necessary and sufficient condition that when a 1-flip search reaches local 

optimality, the number of candidates for implementation of the r-flip moves can be reduced significantly. The 

results of the substantial computational experiments are reported to compare an r-flip strategy embedded 

algorithm and a multiple start tabu search algorithm on a set of benchmark instances and three very-large-scale 

QUBO instances. The r-flip strategy implemented within the algorithm makes the algorithm very efficient,  

very high-quality solutions within a short CPU time. 

Keywords: combinatorial optimization; quadratic unconstrained binary optimization; local optimality; r-flip 

local optimality 

 

1. Introduction 

The quadratic unconstrained binary optimization is a classic NP-hard problem with an 

enormous number of real has been used as a unifying approach to many combinatorial optimization 

problems [2,3]. Due to its practicality, as well as theoretical interest, over the years researchers have 

proposed many theoretical results as well as simple and sophisticated approaches as solution 

procedures [4–11]. However, due to the complexity and practicality of QUBO it is still necessary to 

provide results suitable for solving large-scale problems. In recent years, researchers have developed 

theoretical results to reduce algorithmic implementation difficulty of QUBO, [12–17]. Our result in 

this paper also helps to reduce size and difficulty of algorithmic implementation of these problems. 

The quadratic unconstrained binary optimization (QUBO) can be formulated as, 

𝑀𝑎𝑥 𝑓(𝑥) = ∑ 𝑞𝑖𝑥𝑖 + 12𝑛
𝑖=1 ∑ ∑ 𝑞𝑖,𝑗𝑥𝑖𝑥𝑗 ,   𝑠. 𝑡.  𝑥𝑖 ∈ {0,1}, 𝑖 = 1, ⋯ , 𝑛𝑛

𝑗≠𝑖
𝑛

𝑖=1  (1) 

In (1), 
𝟏𝟐 𝑞𝑖,𝑗 is the i,j-th entry of a given n by n symmetric matrix Q. QUBO is often referred to as 

the 𝑥𝑇𝑄𝑥  model [18]. Since 𝑥𝑖2 = 𝑥𝑖 , and Q may be written as an upper triangular matrix by 

doubling each entry of the upper triangle part of the matrix and letting 𝑞𝑖,𝑖 = 𝑞𝑖, then we can write 

(1) as (2). 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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𝑀𝑎𝑥 𝑓(𝑥) = ∑ ∑ 𝑞𝑖,𝑗𝑥𝑖𝑥𝑗 = 𝑥𝑇𝑄𝑥, 𝑠. 𝑡. 𝑥_𝑖 ∈ {0,1}, 𝑖 = 1, ⋯ , 𝑛 𝑛
𝑗≥𝑖

𝑛
𝑖=1  (2) 

Local search strategy (LSS) is one of the most fundamental algorithmic concepts that has been 

successfully applied to a wide range of hard combinatorial optimization problems. The basic 

ingredient of almost all sophisticated heuristics is some variation of LSS. One LSS that has been used 

by many researchers as a stand-alone or as a basic component of more sophisticated algorithms is the 

r-flip (also known as r-Opt) strategy [12,19–23]. In Figure A6, we present a comprehensive review of 

r-flip strategies applied to QUBO. Let N={1,2,…,n}. Given a binary solution, 𝑥 = (𝑥1, ⋯ , 𝑥𝑛) of 𝑥𝑇𝑄𝑥, 

the r-flip search chooses a subset, 𝑆 ⊆ 𝑁, with |𝑆| ≤ 𝑟, and builds a new solution, 𝑥′, where 𝑥𝑖′ = 1 −𝑥𝑖   for all 𝑖 ∈ 𝑆. If 𝑥′ improves the objective function, it is called an improving move (or improving 

subset S). The r-flip search starts with a solution x, chooses an improving subset S, and flips all 

elements in S. The process continues until there is no subset S with |𝑆| ≤ 𝑟  that improves the 

objective function. The result is called a locally optimal solution with respect to the r-flip move (or r-Opt). 

Often in strategies where variable neighborhood searches, such as fan-and-filter (F&F) [24,25], 

variable neighborhood search (VNS) [26,27], and multi-exchange neighborhood search (MENS)[19–23] are 

used, the value of r dynamically changes as the search progresses. Generally, there are two reasons 

for a dynamically changing search space strategy.  

a) The execution of an implementation of an r-flip local search, for larger value of r, can be 

computationally expensive to execute. This is because the size of the search space is of order n 

chosen r, and for fixed values of n, it grows quickly in r for value of 𝑟 ≤ ⌊𝑛/2⌋. Hence, smaller 

values of r, especially r equal to 1 and 2, have shown considerable success. 

b) In practice, a r-flip local search process with a small value of r (e.g., r=1) can quickly reach local 

optimality. Thus, as a way to escape 1-flip local optimality, researchers have tried to dynamically 

change the value of r as the search progressed. This gives an opportunity to expand the search 

to a more diverse solution space.  

A clever implementation of (a) and (b) in an algorithm can not only save computational time, 

since the smaller value of r is less computationally expensive, but it can also possibly reach better 

solutions because the larger values of r provide an opportunity to search more a diverse part of the 

solution space. 

1.1. Previous works 

The development of closed form formulas for r-flip moves is desirable for developing heuristics 

for solving very-large-scale problem instances because it can reduce computational time consumed 

by an implementation of an algorithm. Alidaee, Kochenberger [12] introduced several theorems 

showing closed form r-flip formulas for general Pseudo-Boolean Optimization. Authors in [13,14] 

recently provided closed form formulas for evaluating r-flip rules in QUBO. In particular, Theorem 6 

in [12] is specific to the 𝑓(𝑥) = 𝑥𝑇𝑄𝑥 problem. To explain the closed form formula for the r-flip rule 

in 𝑥𝑇𝑄𝑥, we first introduce a few definitions. Refer to Figure A6 for an exhaustive literature of r-flip 

rules applied to QUBO.  

Given a solution 𝑥 = (𝑥1, ⋯ , 𝑥𝑛), the derivative of f(x) with respect to 𝑥𝑖 is defined as:  𝐸(𝑥𝑖) = 𝑞𝑖 + ∑ 𝑞𝑗,𝑖𝑥𝑗𝑗<𝑖 + ∑ 𝑞𝑖,𝑗𝑥𝑗 , 𝑖 = 1, ⋯ , 𝑛𝑗>𝑖  (3) 

Fact 1. Given a solution vector 𝑥 = (𝑥1, ⋯ , 𝑥𝑖 , ⋯ , 𝑥𝑛),  and a solution 𝑥′ = (𝑥1, ⋯ , 1 − 𝑥𝑖 , ⋯ , 𝑥𝑛)  

obtained by flipping the ith element of x, we have: ∆𝑓 = 𝑓(𝑥′) − 𝑓(𝑥) = (𝑥𝑖′ − 𝑥𝑖)𝐸(𝑥𝑖) . (4) 

It is well known that any locally optimal solution to an instance of the QUBO problem with 

respect to a 1-flip search satisfies,  𝐸𝑖𝑡ℎ𝑒𝑟 ((𝑥𝑖 = 0) 𝑖𝑓𝑓 𝐸(𝑥𝑖) ≤ 0) 𝑜𝑟 (𝑥𝑖 = 1 𝑖𝑓𝑓 E(𝑥𝑖) ≥ 0), 𝑓𝑜𝑟 𝑖 = 1, ⋯ , 𝑛 (5) 
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Furthermore, after changing x to x’, the update for 𝐸(𝑥𝑗) , j=1,…,n, can be calculated as follows: ∀𝑗 < 𝑖, 𝐸(𝑥𝑗) ← 𝐸(𝑥𝑗) + 𝑞𝑗,𝑖(𝑥𝑖′ − 𝑥𝑖)  ∀𝑗 > 𝑖, 𝐸(𝑥𝑗) ← 𝐸(𝑥𝑗) + 𝑞𝑖,𝑗(𝑥𝑖′ − 𝑥𝑖) (6) 𝑗 = 𝑖, 𝐸(𝑥𝑗) ← 𝐸(𝑥𝑗)  

Note that 𝑥𝑖′ − 𝑥𝑖  may be written as 1 − 2𝑥𝑖, which can simplify the implementation process. 

A simple 1-flip search is provided in Figure 1. Note that in line 3 we chose a sequence to implement 

Fact 1. Using such a strategy has experimentally proven to be very effective in several recent studies 

[28]. 

Before we present the algorithms in this study for the r-flip strategy, the notations used are given 

as follows: 

n     The number of variables 

x     A starting feasible solution  

x*     The best solution found so far by the algorithm 

K     The largest value of k for r-flip, k≤r  

π(i)     The i-th element of x in the order  π(1)⋯π(n) 
S  ={i:xi is tentatively chosen to receive a new value to produce a new solution xi'} restricting 

consideration to |S| = r    

D     The set of candidates for an improving move 

Tabu_ten  The maximum number of iterations for which a variable can remain Tabu 

Tabu(i)      A vector representing Tabu status of x 𝐸(𝑥𝑖)        Derivative of f(x) with respect to 𝑥𝑖 𝐸(𝑥) = (𝐸(𝑥1), … , 𝐸(𝑥𝑛)) The vector of derivatives 

x(.)             A vector representing the solution of x  

E(.)             A vector representing the value of derivative 𝐸(𝑥𝑖) 

Algorithm 1. 1-flip Local Search. 

Initialize: n, x, evaluate the vector E(x) 

Flag=1 

1  Do while (Flag=1) 

2      Flag=0 

3      Randomly choose a sequence 𝜋(1), … , 𝜋(𝑛)  of integers 1,…,n. 

4      Do i= 𝜋(1), … , 𝜋(𝑛) 

5          If (𝐸(𝑥𝑖) < 0  and  𝑥𝑖 = 1) or (𝐸(𝑥𝑖) > 0 and  𝑥𝑖 = 0): 

                 𝑥𝑖 = 1 − 𝑥𝑖 , update the vector E(x) using Equation (6), Flag=1 

6      End do 

7  End while 

Figure 1. Pseudo-code for a 1-flip local search subroutine for maximization problems. 

The result of Fact 1 has been extended to the r-flip search, given below.  

(Theorem 6, Alidaee, Kochenberger [12]) Let x be a given solution of QUBO and x’ obtained from 
x by r-flip move (for a chosen set S) where 𝑆 ⊆ 𝑁, |S|=r, the change in the value of the objective 

function  is:  ∆𝑓 = 𝑓(𝑥′) − 𝑓(𝑥) = ∑(𝑥′𝑖 − 𝑥𝑖)𝐸(𝑥𝑖)𝑖∈𝑆 + ∑ (𝑥′𝑖 − 𝑥𝑖)(𝑥′𝑗 − 𝑥𝑗)𝑞𝑖,𝑗𝑖,𝑗∈𝑆,𝑖<𝑗   (7) 

Furthermore, after changing x to x’ the update for 𝐸(𝑥𝑗),j=1,…,n, can be calculated as follows: ∀𝑗 ∈ 𝑁\𝑆, 𝐸(𝑥𝑗) ← 𝐸(𝑥𝑗) + ∑(𝑥𝑖′ − 𝑥𝑖)𝑖∈𝑆 𝑞𝑖,𝑗  
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∀𝑗 ∈ 𝑆, 𝐸(𝑥𝑗) ← 𝐸(𝑥𝑗) + ∑ (𝑥𝑖′ − 𝑥𝑖)𝑖∈𝑆\{𝑗} 𝑞𝑖,𝑗  (8) 

As explained in [12], the evaluation of change in the objective function (7) can be done in 𝑂(𝑟2), 

i.e., evaluating f(x’) from f(x). The update in (8) requires r calculations for each j in N\S, and r-1 

calculations for each j in S, Thus, overall, update for all n variables can be performed in O(nr).  

Note that for any two elements i,j=1,…,n, and i<j, we can define:  𝐸′(𝑥𝑖) = 𝐸(𝑥𝑖) − 𝑞𝑖 − 𝑞𝑖,𝑗𝑥𝑗 ,  𝐸′(𝑥𝑗) = 𝐸(𝑥𝑗) − 𝑞𝑗 − 𝑞𝑖,𝑗𝑥𝑖 . (9) 

Using (9), a useful way to express Equation (7) is Equation (10). 

∆𝒇 = ∑ [(1 − 2𝑥𝑖)𝐸′(𝑥𝑖) + ∑ (1 − 𝑥𝑖 − 𝑥𝑗)𝑗∈𝑆,𝑗≤𝑖 𝑞𝑖,𝑗]                       𝑖∈𝑆  (10) 

A simple exhaustive r-flip search is provided in Figure 2. The complexity of the problem 

indicates that the use of a larger value of r in the r-flip local search can make the implementation of 

the search process more time consuming. Meanwhile, the larger value of r can provide an opportunity 

to search a more diverse area of search space and thus possibly reach better solutions. To overcome 

such conflicts, researchers often use r=1 (and occasionally r=2) as the basic components of their more 

complex algorithms, such as F&F, VNS, and MENS. Below, in Theorem 1 and Proposition 1, we prove 

that after reaching the locally optimal solution with respect to a 1-flip search, the implementation of 

an r-flip search can significantly be reduced. Further, related results are also provided to allow the 

efficient implementation of an r-flip search within an algorithm.  

Algorithm 2. Exhaustive r-flip Local Search. 

Initialize: n, x, evaluate the vector E(x), value of r 

Flag=1 

1   Do while (Flag=1) 

2   Flag=0 

3   For each combination 𝑆 ⊂ 𝑁 and |𝑆| ≤ 𝑟, evaluate ∆𝑓, Equation (7): 

               If ∆𝑓 > 0:  

                    𝑥𝑖 = 1 − 𝑥1, for 𝑖 ∈ 𝑆, update E(x) using Equation (8), Flag=1 

4   End While 

Figure 2. Pseudo-code for an exhaustive r-flip local search subroutine for maximization problems. 

2. New Results on Closed-form Formulas  

We first introduce some notations. For m<n, define (m, n) to be the number of combinations of m 

elements out of n, and let 𝜑 = Max𝑖,𝑗∈𝑁{|𝑞𝑖,𝑗|} , and 𝑀 = 𝜑 ∗ (2, 𝑟). Furthermore, Lemma 1 and Lemma 2, 

presented below, help to prove the results. Note that, Lemma 1 is direct deduction from previous 

results [12].  

Lemma 1. Given a locally optimal solution 𝑥 = (𝑥1, ⋯ , 𝑥𝑛) with respect to a 1-flip search, we 

have: (𝑥′𝑖 − 𝑥𝑖)𝐸(𝑥𝑖) ≤ 0, for i=1,…,n. (11) 

Proof. Condition of local optimality in (5) indicates that: (𝐸(𝑥𝑖) ≥ 0  iff  𝑥𝑖 = 1), and (𝐸(𝑥𝑖) ≤ 0,  iff  𝑥𝑖 = 0).  

Using this condition, we thus have: 

( ' ) ( ) 0,   for 1, , .
i i i

x x E x i n−  =
 

Lemma 2. Let 𝑥 = (𝑥1, ⋯ , 𝑥𝑛)  be any solution of the problem; then, we have: 
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∑ (𝑥𝑖′ − 𝑥𝑖)(𝑥𝑗′ − 𝑥𝑗)𝑖,𝑗∈𝑆 𝑞𝑖,𝑗 ≤ 𝑀 (12) 

Proof. For each pair of elements, 𝑖, 𝑗 ∈ 𝑆, the left-hand-side can be 𝑞𝑖,𝑗 or −𝑞𝑖,𝑗. Since |S|=r, the 

summation on the left-hand-side is at most equal to M.  

Theorem 1: Let 𝜑  and M be as defined above and let 𝑥 = (𝑥1, ⋯ , 𝑥𝑛)  be a locally optimal 

solution of 𝑥𝑇𝑄𝑥 with respect to a 1-flip search.  A subset 𝑆 ⊆ 𝑁, with |S|=r, is an improving r-flip 

move if and only if we have:   ∑|𝐸(𝑥𝑖)|𝑖∈𝑆 ≤ ∑ (𝑥𝑖′ − 𝑥𝑖)𝑖,𝑗∈𝑆 (𝑥𝑗′ − 𝑥𝑗)𝑞𝑖,𝑗 (13) 

Proof: Using (7), a subset 𝑆 ⊆ 𝑁 of r elements is an improving r-flip move if and only if we have:  ∆𝑓 = 𝑓(𝑥′) − 𝑓(𝑥) = ∑(𝑥𝑖′ − 𝑥𝑖)𝐸(𝑥𝑖)𝑖∈𝑆 + ∑ (𝑥𝑖′ − 𝑥𝑖)(𝑥𝑗′ − 𝑥𝑗)𝑖,𝑗∈𝑆 𝑞𝑖,𝑗 > 0  (14) 

Since x is a locally optimal solution with respect to a 1-flip search, it follows from Lemma 1 that 

inequality (14) is equivalent to (15); that completes the proof. ∑ (𝑥𝑖′ − 𝑥𝑖)(𝑥𝑗′ − 𝑥𝑗)𝑖,𝑗∈𝑆 𝑞𝑖,𝑗 > − ∑(𝑥𝑖′ − 𝑥𝑖)𝐸(𝑥𝑖)𝑖∈𝑆 = ∑|𝐸(𝑥𝑖)|𝑖∈𝑆  (15) 

Proposition 1: Let 𝜑 and M be as defined above and let 𝑥 = (𝑥1, ⋯ , 𝑥𝑛) be any locally optimal 

solution of the 𝑥𝑇𝑄𝑥 problem with respect to a 1-flip search.  If a subset 𝑆 ⊆ 𝑁, with |S|=r, is an 

improving r-flip move, then we must have:  ∑ |𝐸(𝑥𝑖)|𝑖∈𝑆 < 𝑀. 

Proof: Since x is a locally optimal solution with respect to a 1-flip search and S is an improving 

r-flip move, by Theorem 1, we have: ∑|𝐸(𝑥𝑖)|𝑖∈𝑆 <  ∑ (𝑥𝑖′ − 𝑥𝑖)(𝑥𝑗′ − 𝑥𝑗)𝑖,𝑗∈𝑆 𝑞𝑖,𝑗  (15) 

Using Lemma 2; we also have (16); which completes the proof.  ∑|𝐸(𝑥𝑖)|𝑖∈𝑆 <  ∑ (𝑥𝑖′ − 𝑥𝑖)(𝑥𝑗′ − 𝑥𝑗)𝑖,𝑗∈𝑆 𝑞𝑖,𝑗 ≤ 𝑀 (16) 

The consequence of Theorem 1 is as follows. Given a locally optimal solution x with respect to a 

1-flip search, if there is no subset of S with |S|=r that satisfies (13), then x is also locally optimal 

solution with respect to an r-flip search. Furthermore, if there is no subset S of any size that (13) is 

satisfied, then x is also locally optimal solution with respect to an r-flip search for all 𝑟 ≤ 𝑛. Similar 

statements are also true regarding Proposition 1. 

The result of Proposition1 is significant in the implementation of an r-flip search. It illustrates 

that, after having a 1-flip search implemented, if an r-flip search is next served as a locally optimal 

solution, only those elements with the sum of absolute value of derivatives less than M are eligible 

for consideration. Furthermore, when deciding about the elements of an r-flip search, we can easily 

check to see if any element 𝑥𝑖 by itself or with a combination of other elements is eligible to be a 

member of an improving r-flip move S.  Example 1 below illustrates this situation. 

Example 1. Consider an 𝑥𝑇𝑄𝑥 problem with n variables. Let 𝑥 = (𝑥1, ⋯ , 𝑥𝑛) be a given locally 

optimal solution with respect to a 1-flip search. Consider S={i,j,k,l} for a possible 4-flip move. In order 

to have S for an improving move, all 15 inequalities, given below in (17), must be satisfied. Of course, 

if the last inequality in (17) is satisfied, all other inequalities are also satisfied. This means each subset 

of the S is also an improving move. This is important in any dynamic neighborhood search strategies 

k-flip moves for 𝑘 ≤ 𝑟 in consideration.  
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Here we have  𝜑 = 𝑀𝑎𝑥𝑖,𝑗∈𝑁 {|𝑞𝑖𝑗|}, and 𝑀 = 6 ∗ 𝜑: |𝐸(𝑥𝑎)| < 𝑀,  for 𝑎 = 𝑖, 𝑗, 𝑘, 𝑙, |𝐸(𝑥𝑎)| + |𝐸(𝑥𝑏)| < 𝑀,  for (𝑎 ≠ 𝑏), 𝑎, 𝑏 = 𝑖, 𝑗, 𝑘, 𝑙, |𝐸(𝑥𝑎)| + |𝐸(𝑥𝑏)| + |𝐸(𝑥𝑐)| < 𝑀,  for (𝑎 ≠ 𝑏 ≠ 𝑐), 𝑎, 𝑏, 𝑐 = 𝑖, 𝑗, 𝑘, 𝑙, |𝐸(𝑥𝑎)| + |𝐸(𝑥𝑏)| + |𝐸(𝑥𝑐)| + |𝐸(𝑥𝑑)| < 𝑀,  for 𝑎 = 𝑖, 𝑏 = 𝑗, 𝑐 = 𝑘, 𝑑 = 𝑙 
(17) 

Obviously, choosing the appropriate subset S to implement a move is critical. There are many 

ways to check for an improving subset S. Below, we explain two such strategies. In addition, a 

numerical example is given in the Appendix. 

2.1. Strategy 1 

We first define a set, D(n), of candidate for improving moves. Given a locally optimal solution x 

with respect to a 1-flip move, let the elements of x be ordered in ascending absolute value of 

derivatives, as given in (18).  |𝐸(𝑥𝜋(1))| ≤ ⋯ ≤ |𝐸(𝑥𝜋(𝑛))|  (18) 

Here, 𝜋(𝑖) means the i-th element of x in the order (𝜋(1), ⋯ , 𝜋(𝑛)). Let K be the largest value of 

k=1,2,…,n where the inequality (19) is satisfied. The set D(n) is now defined by (20).  ∑ |𝐸(𝑥𝜋(𝑖))|𝑘𝑖=1 < 𝑀,  for 𝑘 = 1,2,3, ⋯,n (19) 𝑫(𝒏) = {𝒙𝝅(𝟏), ⋯ , 𝒙𝝅(𝑲)}  (20) 

Lemma 3. Any subset 𝑆 ⊆ 𝐷(𝑛) satisfies the necessary condition for an improving move. 

Proof. It follows from Proposition 1. 

There are some advantages to having elements of x in an ascending order, i.e., inequalities (18):  

I. the smaller the value of |𝐸(𝑥𝑖)| is, the more likely that 𝑥𝑖 is involved in an improving k-flip 

move for k<=r (this might be due to the fact that, the right-hand-side value M in (19) for given r 

is constant. Thus, smaller values of |𝐸(𝑥𝑖)|  on the left-hand-side might help to satisfy the 

inequality easier.) 

II. because the elements of D(n) are in an ascending order of absolute values of derivatives, a 

straightforward implementable series of alternatives to be considered for improving subsets, S, 

may be the elements of the set given in (21). Note that there are a lot more subsets of D(n) 

compared to the sets in (21) that are the candidates for consideration in possible k-flip moves. 

Here we only gave one possible efficient implementable strategy. 𝑆 ∈ {{𝜋(1), 𝜋(2)}, {𝜋(1), 𝜋(2), 𝜋(3)}, ⋯ , {𝜋(1), ⋯ , 𝜋(𝐾)}}  (21) 

It is important to note that, if Proposition 1 is used in the process of implementing an algorithm, 

given a locally optimal solution x with respect to a 1-flip search, after an r-flip implementation for a 

subset |S|=r with r>1, the locally optimal solution with respect to a 1-flip search for the new solution, 

x’, can be destroyed. Thus, if an r-flip search needed to be continued, a 1-flip search might be 

necessary on solution x’ before a new r-flip move can continue. However, there are many practical 

situations where this problem may be avoided for many subsets, especially when the problem is very-

large-scale, i.e., the value of n is large, and/or Q is sparse. Proposition 2 is a weaker condition of 

Proposition 1 that can help to overcome up to some point in the aforementioned problem.  

In the proof of Theorem 1 and Proposition 1, we only used a condition of optimality for a 1-flip 

search satisfied for the members of the subset S. We now define a condition as follows and call it 

‘condition of optimality with respect to a 1-flip search for a set S’, or simply ‘condition of optimality for S’. 
Given a solution x, the condition of optimality for any subset 𝑆 ⊆ 𝑁 is satisfied if and only if we 

have: 𝐸𝑖𝑡ℎ𝑒𝑟  (𝑥𝑖 = 0  𝑖𝑓𝑓 𝐸(𝑖) ≤ 0)  𝑜𝑟  (𝑥𝑖 = 1  𝑖𝑓𝑓 𝐸(𝑖) ≥ 0),  for 𝑖 ∈ 𝑆  (22) 

Of course, if we have N in (22) instead of S, x is a locally optimal solution as was defined in Fact 

1.  
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For m<n, let (m, n) be the number of combinations of m elements out of n elements, and 𝜑𝑆 =max𝑖,𝑗∈𝑆 {|𝑞𝑖,𝑗|}, and 𝑀𝑆 = 𝜑𝑆 ∗ (2, 𝑟). With these definitions now we state Proposition 2. 

Proposition 2 (weak necessary condition): Let 𝑆 ⊆ 𝑁, |S|=r, and 𝜑𝑆, and 𝑀𝑆 as defined above. 

Given any solution 𝑥 = (𝑥1, ⋯ , 𝑥𝑛) of 𝑥𝑇𝑄𝑥, and assume the condition of optimality is satisfied for a 

subset S. If S is an r-flip improving move, we must have ∑ |𝐸(𝑥𝑖)|𝑖∈𝑆 < 𝑀𝑆. 

Proof: Similar to proof of Proposition 1. 

Notice that the values of 𝜑𝑆  and 𝑀𝑆 in Proposition 2 depend on S; however, these values can 

be updated efficiently as the search progresses. As explained above, in situations where the problem 

is very-large-scale and/or Q is sparce, for many variables, the values of derivatives are ‘unaffected’ 
by the change of values of elements in S. This means a large set of variables still satisfies the condition 

of optimality, and thus the search can continue without applying a 1-flip search each time before 

finding a new set S for r-flip implementation. 

2.2. Strategy 2 

Another efficient and easily implementable strategy is when instead of (19), we only use an 

individual element to create a set of candidates for applying an r-flip search, set D(1) as defined 

below. Corollary 1 is a special case of Proposition 1 that suffices such a strategy.  𝐷(1) = {𝑥𝑖 : |𝐸(𝑥𝑖)| < 𝑀}  (23) 

Corollary 1: Let 𝜑  and M be as defined before, given a solution 𝑥 = (𝑥1, ⋯ , 𝑥𝑛) of 𝑥𝑇𝑄𝑥, if the 

1-flip local search cannot further improve the value of f(x), and 𝑖 ∈ 𝑆 with 𝑆 ⊆ 𝑁 where an r-flip 

move of elements of S improves f(x), then we must have |𝐸(𝑥𝑖)| < 𝑀. 

To gain insight into the use of Corollary 1, we did some experimentation to find the size of the 

set D(1) for different sizes of instances. The steps of the experiment to find the size of D(1) are given 

below. Problems considered are taken from literature [27], and used by many researchers. We only 

used the larger-scale problems with 2500 to 6000 variables, a total of 38 instances.  

Find_D(): Procedure for finding the size of the set D(1): 

• Step 1. Randomly initialize a solution to the problem. For each value of r calculate M. Apply the 

algorithm in Figure 1 and generate a locally optimal solution x with respect to a 1-flip search. 

However, in Step 5 of Figure 1 only consider those derivatives with |𝐸(𝑥𝑖)| < 𝑀  

• Step 2. Find the number of elements in the set D(1) for x.   

• Step 3. Repeat Step 1 and 2, 200 times for each problem, and find the average number of elements 

in the set D(1) for the same size problem, density, and r value. 

The results of the experiment are shown in Table 1. From Table 1, in general we can say that as 

the density of matrix Q increases, the size of D(1) decreases for all problem sizes and values of r. This 

is, of course, due to the fact that the larger density of Q makes the derivative of each element in an x 

more related to other elements. As the size of a problem increases, the size of D(1) also increases. 

An interesting observation in our experiment was that, in most cases, the size of D(1) for better 

locally optimal solutions were smaller than those with the worse locally optimal solutions. This 

indicates that as the search reaches closer to the globally optimal solutions, the time for an r-flip 

search decreases when we take advantage of Corollary 1. 

Table 1. Size of the set D(1). 

 r=2 r=3 r=4 

 Density 

P

r

0

.

0

.

0

.

0

.

0

.

0

.

0

.

0

.

0

.

0

.

0

.

0

.
2 < < < < < < < < < < < <

3 < < < < < < < < < < < <

4 < < < < < < < < < < < <

5 < < < < < < < < < < < <

6 < < < < < < < < < < < <
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2.3. Implementation details 

We first implement two strategies in Sections 2.1 and 2.2 via Algorithm 3 for Strategy 1 (see 

Figure 3), and Algorithm 4 for Strategy 2 (see Figure 4),  then propose Algorithm 5 for Strategy 2 

embedded with a simple tabu search algorithm for the improvement in Figure 5. 

Algorithm 3. r-flip Local Search: Strategy 1 

Initialize: n, x, evaluate vector E(x), value of r, M 

Flag=1 

1  Do while (Flag=1) 

2       Flag=0 

3       Call 1-flip local search: Algorithm 1 

4       Sort variables according to |𝐸(𝑥𝜋(𝑖))| ≤ |𝐸(𝑥𝜋(𝑖+1))|, using Inequality (19) evaluate value of K 

5       For 𝑗 = 𝜋(1), ⋯ , 𝜋(𝐾): 
6              For 𝑆𝑗 = {𝜋(1), ⋯ , 𝜋(𝑗)}, evaluate 𝑀𝑆𝑗 
                     If  ∑ |𝐸(𝑥𝜋(𝑖))|𝑗𝑖=1 < 𝑀𝑆𝑗, evaluate ∆f  using Equation (7). 

7              If ∆𝑓>0: 

                      𝑥𝑖 = 1 − 𝑥𝑖, for 𝑖 ∈ 𝑆𝑗 , update E(x) using Equation (8), Flag=1, go to Step 1 

8       End for 

9    End while 

Figure 3. Pseudo-code for hybrid r-flip/1-flip local search, Strategy 1, for maximization problems. 

Algorithm 4. r-flip Local Search: Strategy 2 

Initialize: n, x, evaluate E(x), value of r, M 

Flag=1  

1   Do while (Flag=1) 

2         Flag=0, and 𝑆 = ∅ 

3         Call 1-flip local search: Algorithm 1 

4         Randomly choose a sequence 𝜋(1), ⋯ , 𝜋(𝑛)  of integers 1, ⋯ , 𝑛 

5         For  𝑗 = 𝜋(1), ⋯ , 𝜋(𝑛): 

6                If |𝐸(𝑥𝑗)| < 𝑀, and |𝑆 ∪ {𝑗}| ≤ 𝑟 evaluate ∆𝑓 for 𝑆 ∪ {𝑗} using Equation (7) 

7                If ∆𝑓>0: 

                      𝑥𝑖 = 1 − 𝑥𝑖, for 𝑖 ∈  𝑆 ∪ {𝑗}, update E(x) using Equation (8), 𝑆 = 𝑆 ∪ {𝑗}, 
                       Flag =1, go to Step 1 

8         End for 

9   End while 

Figure 4. Pseudo-code for hybrid r-flip/1-flip local search, Strategy 2, for maximization problems. 

Algorithm 5. Hybrid r-flip/1-flip Local Search embedded with a simple tabu search algorithm  

Initialize: n, x, tabu list, evaluate E(x), value of r, M, tabu tenure  

Call local search: Algorithm 4  

Do while (until some stopping criteria, e.g., CPU time limit, is reached)   

   Call Destruction()     

   Call Construction()  

   Call randChange() 

End while 

Figure 5. Pseudo-code for hybrid r-flip/1-flip local search embedded with a simple tabu search 

algorithm. 

In the Destruction() procedure, there are three steps:  

• step 3a. Find the variable that is not on the tabu list and lead to the small change to the solution 

when the variable is flipped. 

• step 3b. Change its value, place it on the tabu list to update the tabu list, update E(x).  
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• step 3c. Test if there is any variable that is not on the tabu list and can improve the solution. If 

not, go to Step 3a. 

In the Construction() procedure, there are four steps: 

• step 4a. Test all the variables that are not on the tabu list. If a solution better than the current best 

solution is found, change its value, place it on the tabu list, update E(x) , update the tabu list, 

and go to Step 1.  

• step 4b. Find the index i corresponding to the greatest value of E(xi), change its value of xi, place 

it on the tabu list to update the tabu list, update E(x). 

• step 4c. If this is the fifteenth iteration in the Construction() procedure, go to Step 1. 

• step 4d. Test if there is any variable that is not on the tabu list and can improve the solution. If 

not, go to Step 3a. If yes, go to Step 4a. 

The randChange() procedure is invoked occasionally and randomly to select an x for the 

Destruction() using a random number generator. There is less than a 2% probability of invoking after 

the Construction() procedure. To get the 2% probability, a random number generator is used to create 

an integer between 1 to 1000. If the value of integer is smaller than 20, the randChange() is invoked. 

The variable chosen in the randChange() will lead to the change of E(x) for Destruction(). 

Any local search algorithm, e.g., Algorithm 3 or 4, can be used in Step 1 of this simple tabu search 

heuristic. However, a limited preliminary implementation of Algorithm 3 and 4 within the Algorithm 

5 suggested that due to its simplicity of implementation and computational saving time, the 

Algorithm 4 with slight modification was quite effective, thus we used it in Step 1 of the Algorithm 

5. The slight modification was as follows. If the solution found by a 1-flip is worse than the current 

best-found solution, quit the local search and go to Step 2. 

In order to determine whether the hybrid r-flip/1-flip local search algorithms with two strategies 

(Algorithms 3 and 4) do better than the hybrid r-flip/1-flip local search embedded with a simple tabu 

search implementation, we compared Algorithms 3 and 4 to Algorithm 5. 

The goal of the new strategies is to reach local optimality on large scale instances with less 

computing time. We report the comparison of three algorithms of a 2-flip on very-large-scale QUBO 

instances in the next section.    

3. Computational results 

In this study, we perform substantial computational experiments to evaluate the proposed 

strategies for problem size, density, and r value. We compare the performance of Algorithms 3, 4, 

and 5 for r=2 on very-large-scale QUBO instances. We also compare the best algorithm among 

Algorithms 3, 4, and 5 to one of the best algorithms for 𝑥𝑇𝑄𝑥, i.e., Palubeckis’s multiple start tabu 
search. We code the algorithms in C++ programming language.  

In [29], there are five multiple start tabu search algorithms, and MST2 algorithm had the best 

results reported by the author. We choose MST2 algorithm with the default values for the parameters 

recommended by the author [29]. In MST2 algorithm, the number of iterations as the stopping criteria 

for the first tabu search start subroutine is 25000 * size of problem, then MST2 algorithm reduces the 

number of iterations to 10000*size of problem as the stopping criteria for the subsequent tabu search 

starts. Within the tabu search subroutine, if an improved solution is found, then MST2 algorithm 

invokes a local search immediately. The CPU time limit in MST2 algorithm is checked at the end of 

the tabu search start subroutine. Thus, the computing time might exceed the CPU time limit for large 

instances when we choose short CPU time limits.  

All algorithms in this study are compiled by GNU C++ compiler v4.8.5 and run on a single core 

of Intel Xeon Quad-core E5420 Harpertown processors, which have a 2.5 GHz CPU with 8 GB 

memory. All computing jobs were submitted through the Open PBS Job Management System to 

ensure both methods using the same CPU for memory usage and CPU time limits on the same 

instance.  

Preliminary results indicated that Algorithms 3, 4, and 5  perform well on instances with the 

size less than 3,000 and low density. All algorithms found the best-known solution with the CPU time 

limit of 10 seconds. Thus, we only compare the results of large instances with high density and  size 
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from 3,000 to 8,000 by MST2 algorithm and the best algorithm among Algorithms 3, 4, and 5. These 

benchmark instances with the size from 3,000 to 8,000 have been reported by other researchers [6,30].  

In addition, we generate some very-large-scale QUBO instances with high density and size of 30,000 

using the same parameters from the benchmark instances. We use a CPU time limit of 600 seconds 

and r=2 for Algorithms 3, 4, and 5 on the very-large-scale instances in Table 2. We adopted the 

following notation for computational results: 

OFV The value of the objective function for the best solution found by each algorithm. 

BFS  Best found solution among algorithms within the CPU time limit. 

TB[s] Time to reach the best solution in seconds of each algorithm. 

AT[s] Average computing time out of 10 runs to reach OFV. 

DT  %Deviation of computing time out of 10 runs to reach OFV. 

Table 2 shows the results of comparison for Algorithms 3, 4, and 5 on very-large-scale instances 

out of 10 runs. Algorithm 5 produces a better solution than Algorithms 3 and 4 with r=2; thus, we use 

Algorithm 5 with r=1 and r=2 to compare to MST2 algorithm. We impose a CPU time limit of 60 

seconds and 600 seconds per run with 10 runs per instance on Algorithm 5 and MST2 algorithm. We 

choose tabu tenure value of 100 for 1-flip and 2-flip. The instance data and solutions files are available 

on this data repository1. 

Table 2. Results of Algorithms 3, 4 and 5 on p30000 instances with the CPU time limit of 600 seconds 

and r=2. 

Instance 

ID 

 

size 

 

density 

Algorithm 3 Algorithm 4 Algorithm 5 

OFV TB[s] OFV TB[s] OFV TB[s] 

p30000_1  30000 0.5 127239168 591 127292467 591 127336719 592 

p30000_2  30000 0.8 158439036 572 158472098 555 158526518 571 

p30000_3  30000 1 179192241 584 179219781 587 179261723 590 

In our implementation, we choose the CPU time limit as the stopping criteria and check the CPU 

time limit before invoking the tabu search in Algorithm 5. Because MST2 algorithm and Algorithm 5 

are not single point-based search methods, the choice of the CPU time limit as the stopping criteria 

seems to be a fair performance comparison method between algorithms. 

Table 3 describes the size and density of each instance and the number of times out of 10 runs to 

reach the OFV as well as solution deviation within the CPU time limit for MST2 algorithm and 

Algorithm 5 with r=1 and r=2. MST2 algorithm produces a stable performance and reaches the same 

OFV frequently out of 10 runs.  Algorithm 5 starts from a random initial solution and can search a 

more diverse solution space in a short CPU time limit. When the CPU time limit is changed to 600 

seconds, MST2 algorithm and Algorithm 5 produce a better solution quality in terms of relative 

standard deviation[31]. The relative standard deviation (RSD) in Table 3 inside the parenthesis  is 

measured by: 𝑅𝑆𝐷 = 100 𝜎𝜇, 𝜎 = √∑(𝑓(𝑥) − 𝑓(𝑥)̅̅ ̅̅ ̅̅ )2 𝑛⁄  and 𝜇 = 𝑓(𝑥)̅̅ ̅̅ ̅̅  , where f(x) is the OFV of each 

run and 𝑓(𝑥)̅̅ ̅̅ ̅̅  is the mean value of OFV out of n=10 runs. For some instances, the relative standard 

deviation (RSD) is less than 5.0E-4 even though not all runs found the same OFV. We use 0.000 as the 

value of RSD when the value is rounded up to three decimal points.  

Table 3. The solution quality of MST2 algorithm and Algorithm 5 with 60- and 600-seconds time CPU 

limits out of 10 runs. 

Instance 

ID 

 

size 

 

density 

MST2  

with 60s 

r-flip with 60s MST2 

with 600s 

r-flip with 600s 

r=1 r=2 r=1 r=2 

p3000_1 3000 0.5 10(0) 10(0) 10(0) 10(0) 10(0) 10(0) 

p3000_2 3000 0.8 10(0) 10(0) 10(0) 10(0) 10(0) 10(0) 

p3000_3 3000 0.8 4(0.01) 7(0.007) 10(0) 10(0) 10(0) 10(0) 

 
1 https://doi.org/10.18738/T8/WDFBR5 
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p3000_4 3000 1 10(0) 10(0) 10(0) 10(0) 10(0) 10(0) 

p3000_5 3000 1 10(0) 9(0.003) 7(0.002) 9(0.001) 10(0) 10(0) 

p4000_1 4000 0.5 10(0) 10(0) 10(0) 10(0) 10(0) 10(0) 

p4000_2 4000 0.8 10(0) 10(0) 10(0) 9(0.004) 10(0) 10(0) 

p4000_3 4000 0.8 10(0) 10(0) 10(0) 10(0) 10(0) 10(0) 

p4000_4 4000 1 1(0.033) 10(0) 10(0) 10(0) 10(0) 10(0) 

p4000_5 4000 1 10(0) 10(0) 10(0) 10(0) 10(0) 10(0) 

p5000_1 5000 0.5 6(0.000) 1(0.002) 2(0.002) 10(0) 3(0.002) 2(0.002) 

p5000_2 5000 0.8 10(0) 4(0.003) 1(0.002) 6(0.012) 10(0) 10(0) 

p5000_3 5000 0.8 10(0) 7(0.001) 3(0.002) 10(0) 10(0) 10(0) 

p5000_4 5000 1 10(0) 1(0.002) 1(0.001) 10(0) 3(0.002) 1(0.001) 

p5000_5 5000 1 6(0.021) 9(0.003) 4(0.004) 10(0) 10(0) 10(0) 

p6000_1 6000 0.5 10(0) 10(0) 4(0.001) 10(0) 10(0) 10(0) 

p6000_2 6000 0.8 10(0) 4(0.001) 4(0.001) 1(0.006) 10(0) 9(0) 

p6000_3 6000 1 9(0.002) 3(0.002) 1(0.007) 10(0) 10(0) 10(0) 

p7000_1 7000 0.5 1(0.002) 1(0.006) 1(0.007) 10(0) 2(0.002) 4(0.002) 

p7000_2 7000 0.8 7(0.000) 1(0.008) 1(0.008) 10(0) 1(0.004) 2(0.004) 

p7000_3 7000 1 8(0.011) 3(0.021) 5(0.023) 10(0) 10(0) 10(0) 

p8000_1 8000 0.5 10(0) 1(0.004) 1(0.005) 9(0.001) 10(0) 1(0.002) 

p8000_2 8000 0.8 10(0) 1(0.009) 1(0.008) 10(0) 7(0.003) 10(0) 

p8000_3 8000 1 10(0) 1(0.013) 1(0.01) 10(0) 4(0.001) 3(0.002) 

p30000_1 30000 0.5 1(0.002) 1(0.023) 1(0.019) 7(0.018) 1(0.017) 1(0.011) 

p30000_2 30000 0.8 10(0) 1(0.017) 1(0.016) 6(0.01) 1(0.019) 1(0.013) 

p30000_3 30000 1 10(0) 1(0.015) 1(0.019) 2(0.037) 1(0.025) 1(0.019) 

Table 4 reports the computational results of a CPU time limit of 60 seconds, and Table 5 reports 

the computational results of a CPU time limit of 600 seconds. In Table 4, MST2 algorithm matches 5 

out of 27 best solutions within the CPU time limit. The 1-flip strategy in Algorithm 5 matches 26 out 

of 27 best solutions while the 2-flip strategy in Algorithm 5 matches 18 out of 27 best solutions. For 

MST2 algorithm, the computing time to find the initial solution exceeded the CPU time limit of 60 

seconds for two large instances.  

When the CPU time limit is increased to 600 seconds, MST2 algorithm matches 10 out of 27 best 

solutions. The 1-flip strategy matches 25 out of 27 best solutions, and the 2-flip strategy matches 23 

out of 27 best solutions. The 1-flip and 2-flip strategies in Algorithm 5 perform well on the high-

density large instances. There is no clear pattern that the 2-flip strategy uses more time than a 1-flip 

strategy on finding the same OFV. The 1-flip and 2-flip strategies in Algorithm 5  choose the initial 

solution randomly and independently. The 1-flip strategy has a better performance when the CPU 

time limits are 60 and 600 seconds. 

Table 4. Results of MST2 algorithm and r-flip strategy in Algorithm 5 within the CPU time limit of 

60 seconds. 

Instance 

ID 
BFS (60s) 

MST2 (60s) r-flip (60s) 

OFV TB[s] 
OFV(r=1

) 
TB[s] OFV(r=2) TB[s] 

p3000_1 3931583 3931583 10 3931583 3 3931583 8 

p3000_2 5193073 5193073 25 5193073 2 5193073 2 

p3000_3 5111533 5111533 52 5111533 8 5111533 4 

p3000_4 5761822 5761437 10 5761822 2 5761822 2 

p3000_5 5675625 5675430 24 5675625 7 5675625 17 

p4000_1 6181830 6181830 40 6181830 3 6181830 4 

p4000_2 7801355 7797821 12 7801355 13 7801355 4 

p4000_3 7741685 7741685 31 7741685 5 7741685 8 

p4000_4 8711822 8709956 58 8711822 5 8711822 11 

p4000_5 8908979 8905340 27 8908979 4 8908979 13 

p5000_1 8559680 8556675 56 8559680 21 8559680 7 

p5000_2 10836019 10829848 34 10836019 59 10836019 11 
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p5000_3 10489137 10477129 28 10489137 20 10489137 16 

p5000_4 12251710 12245282 52 12251710 54 12251520 42 

p5000_5 12731803 12725779 56 12731803 17 12731803 16 

p6000_1 11384976 11377315 42 11384976 12 11384976 5 

p6000_2 14333855 14330032 39 14333855 27 14333767 14 

p6000_3 16132915 16122333 51 16130731 24 16132915 48 

p7000_1 14477949 14467157 56 14477949 41 14476263 21 

p7000_2 18249948 18238729 55 18249948 47 18246895 47 

p7000_3 20446407 20431354 59 20446407 15 20446407 12 

p8000_1 17340538 17326259 47 17340538 26 17340538 35 

p8000_2 22208986 22180465 55 22208986 54 22208683 53 

p8000_3 24670258 24647248 56 24670258 43 24669351 50 

p30000_

1  
127252438 

12673248

3 
60 

12725243

8 
58 127219336 60 

p30000_

2  
158384175 

15748136

6 
69 

15838417

5 
59 158339497 60 

p30000_

3  
179103085 

17809310

9 
89 

17910308

5 
58 179029747 54 

Table 5. Results of MST2 algorithm and r-flip strategy in Algorithm 5 within the CPU time limit of 

600 seconds. 

Instance 

ID 

BFS 

(600s) 

MST2 (600s) r-flip (600s) 

OFV TB[s] 
OFV(r=1

) 
TB[s] OFV(r=2) TB[s] 

p3000_1  3931583 3931583 11 3931583 5 3931583 5 

p3000_2  5193073 5193073 25 5193073 1 5193073 3 

p3000_3  5111533 5111533 52 5111533 30 5111533 8 

p3000_4  5761822 5761822 269 5761822 1 5761822 2 

p3000_5  5675625 5675625 505 5675625 43 5675625 29 

p4000_1  6181830 6181830 40 6181830 4 6181830 2 

p4000_2  7801355 7800851 530 7801355 8 7801355 8 

p4000_3  7741685 7741685 30 7741685 5 7741685 2 

p4000_4  8711822 8711822 67 8711822 2 8711822 7 

p4000_5  8908979 8906525 65 8908979 4 8908979 13 

p5000_1  8559680 8559075 324 8559680 9 8559680 27 

p5000_2  10836019 10835437 541 10836019 17 10836019 21 

p5000_3  10489137 10488735 400 10489137 29 10489137 38 

p5000_4  12252318 12249290 265 12252318 127 12251848 143 

p5000_5  12731803 12731803 265 12731803 19 12731803 32 

p6000_1  11384976 11384976 406 11384976 8 11384976 39 

p6000_2  14333855 14333767 498 14333855 62 14333855 17 

p6000_3  16132915 16128609 239 16132915 60 16132915 71 

p7000_1  14478676 14477039 344 14478676 92 14478676 397 

p7000_2 18249948 18242205 587 18249948 115 18249844 43 

p7000_3 20446407 20431833 109 20446407 47 20446407 21 

p8000_1  17341350 17337154 546 17340538 45 17341350 141 

p8000_2 22208986 22207866 122 22208986 49 22208986 89 

p8000_3 24670924 24669797 402 24670924 185 24670924 386 

p30000_1  127336719 127323304 568 
12733291

2 
598 127336719 592 

p30000_2  158561564 158438942 573 
15856156

4 
580 158526518 571 

p30000_3  179329754 179113916 575 
17932975

4 
599 179261723 590 

Tables 6 and 7 present the time deviation of each algorithm on reaching the OFV for each 

instance. MST2 algorithm has less variation in computing time when it finds the same OFV while the 
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r-flip strategy in Algorithm 5 has a wider range of computing time. If the algorithm only finds the 

OFV once out of 10 runs, the time deviation will be zero. 

Table 6. Computing the time deviation of MST2 algorithm and r-flip strategy in Algorithm 5 within 

the time limit of 60 seconds. 

Instance 

ID 

MST2 1-flip 2-flip 

AT[s] DT AT[s] DT AT[s] DT 

p3000_1  12.5 15.663 15.7 84.075 24.1 56.875 

p3000_2  32.5 20.059 4.9 45.583 4.8 68.606 

p3000_3  54.3 5.901 29.3 46.180 12.0 60.477 

p3000_4  13.3 18.434 12.0 107.798 10.0 51.640 

p3000_5  30.4 15.829 33.2 45.470 32.3 48.240 

p4000_1  49.0 10.227 7.7 50.131 9.3 36.570 

p4000_2  14.2 9.848 22.1 62.351 21.1 70.476 

p4000_3  35.4 11.236 15.1 69.699 16.5 75.542 

p4000_4  58.0 0 22.2 65.408 35.4 45.780 

p4000_5  31.1 11.082 18.1 73.038 29.6 40.109 

p5000_1  56.8 2.339 4.0 0 10.0 42.426 

p5000_2  35.0 3.563 28.3 74.329 11.0 0 

p5000_3  30.0 8.607 38.9 33.038 33.0 50.069 

p5000_4  54.0 5.238 54.0 0 42.0 0 

p5000_5  57.2 1.317 38.8 40.504 30.5 63.379 

p6000_1  43.3 5.112 32.9 47.380 21.8 67.507 

p6000_2  39.8 4.238 31.8 51.521 42.3 46.315 

p6000_3  52.1 5.027 32.3 44.640 48.0 0 

p7000_1  56.0 0 41.0 0 21.0 0 

p7000_2 55.3 1.367 47.0 0 47.0 0 

p7000_3 59.0 0 42.0 56.293 35.2 45.958 

p8000_1  48.1 7.232 26.0 0 35.0 0 

p8000_2 55.9 0.566 54.0 0 53.0 0 

p8000_3 57.2 1.806 43.0 0 50.0 0 

p30000_1  60.0 0 58.0 0 60.0 0 

p30000_2  70.0 1.166 59.0 0 60.0 0 

p30000_3  90.3 0.912 58.0 0 54.0 0 

Table 7. Computing the time deviation of MST2 algorithm and r-flip strategy in Algorithm 5 within 

the time limit of 600 seconds. 

Instance 

ID 

MST2 1-flip 2-flip 

AT[s] DT AT[s] DT AT[s] DT 

p3000_1  11.9 16.067 21.3 62.678 37.8 130.045 

p3000_2  29.1 18.144 5.5 69.234 7.7 81.231 

p3000_3  58.5 16.889 126.4 99.610 143.6 116.812 

p3000_4  292.1 11.285 10.8 58.365 13.7 49.512 

p3000_5  543.9 6.365 109.1 88.328 164.3 72.144 

p4000_1  42.8 7.773 13.5 63.553 15.1 63.861 

p4000_2  552.2 2.597 30.7 49.923 37.0 110.712 

p4000_3  31.7 7.293 18.8 57.442 22.9 47.545 

p4000_4  70.8 4.094 42.2 102.331 48.7 115.376 

p4000_5  70.5 8.596 25.3 81.984 43.0 69.595 

p5000_1  337.2 4.265 70.7 126.287 48.0 61.872 

p5000_2  557.8 4.565 135.4 96.462 210.6 67.670 

p5000_3  428.5 7.257 115.8 96.524 115.5 104.238 

p5000_4  279.4 5.987 270.3 48.842 143.0 0 

p5000_5  287.1 9.234 194.5 94.641 172.7 92.268 

p6000_1  424.8 4.555 152.9 95.641 145.9 46.657 

p6000_2  498.0 0 142.5 97.375 73.8 122.070 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 November 2023                   doi:10.20944/preprints202311.1096.v1

https://doi.org/10.20944/preprints202311.1096.v1


 14 

 

p6000_3  252.3 5.571 248.0 51.129 318.1 61.672 

p7000_1  344.5 0.153 272.5 93.675 441.5 12.974 

p7000_2 587.0 0 115.0 0 265.1 76.694 

p7000_3 109.0 0 84.5 39.472 131.1 55.401 

p8000_1  548.6 1.398 251.3 63.346 141.0 0 

p8000_2 145.4 11.829 258.3 56.352 300.7 56.001 

p8000_3 514.3 11.365 368.8 43.667 417.3 12.797 

p30000_1  572.0 1.365 598.0 0 592.0 0 

p30000_2  581.5 1.526 580.0 0 571.0 0 

p30000_3  586.5 2.773 599.0 0 590.0 0 

The r-flip strategy can be embedded in other local search heuristics as an improvement 

procedure. The clever implementation of the r-flip strategy can reduce the computing time as well as 

improve the solution quality. We reported the time and solutions out of 10 runs for each instance. 

The time deviation and solution deviation of 10 runs with the short CPU time limits are computed 

due to the computing resources available to this study.  

4. Conclusion 

In this study, we explored the Quadratic Unconstrained Binary Optimization (QUBO) problem 

and introduced significant findings. We established a necessary and sufficient condition for the local 

optimality of an r-flip search after a 1-flip search has already achieved local optimality. Our 

computational experiments demonstrated a substantial reduction in candidate options for r-flip 

implementation. The new r-flip strategy efficiently solved extremely large QUBO instances within 

600 seconds, outperforming MST2 in terms of time taken to reach the best-known solutions on 

benchmark instances. These results are particularly promising for implementing variable 

neighborhood strategies on extensive problems or sparse matrices. 
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Appendix A Numerical example for Theorem 1 and Proposition 1 

Numerical Example. Consider the problem with Q matrix given below, Figure A.1. A locally 

optimal solution x with f(x)=1528 and the vector of derivatives, E(x) is shown in Figure A.2. For r=2, 

M=100, every two elements that satisfy Proposition 1 is shown in Figure A.3. However, only 

improving two elements are those shown in red font in Figure A.4. These are the two elements that 

satisfy Theorem 1. The new results of f(x) and E(x) on the two elements are shown in Figure A.4. In 

this simple problem, instead of comparing 380 two element combination we only need to compare 

21 combinations. Out of these 21 combinations we have 6 possible improving combinations in Figure 

A.5.  
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Figure A1. Matrix Q, for maximizing 𝑥𝑇𝑄𝑥. 

 

Figure A2. A locally optimal solution, x(.), and values of E(xi),i=1,…,n. 

In Figures A.1 and A.2, we have: 

E(x1)=  -30 + (50*1 - 68*0 - 66*0 + 94*1 - 100*0 - 20*1 - 4*0 + 80*0 + 94*1 + 0*0 + 86*1 + 76*1 + 98*1 - 36*0 

+ 76*1 + 52*1 - 8*0 + 48*1 + 42*0) = 624 

E(x2)= -7 + 50*1 + (50*0 + 28*0 + 60*1 + 56*0 - 54*1 + 78*0 + 4*0 + 30*1 - 42*0 - 28*1 - 50*1 + 90*1 - 42*0 + 

90*1 - 26*1 + 6*0 + 22*1 + 0*0) = 177 

E(x3) = -26 + (-68*1 + 50*1) + (-46*0 + 26*1 + 82*0 - 50*1 - 90*0 + 44*0 - 94*1 + 54*0 + 52*1 -50*1 + 54*1 - 

68*0 - 52*1 + 20*1 + 96*0 + 64*1 - 22*0) = -74 

E(x4) = -35 + (-66*1 + 28*1 - 46*0) + (8*1 – 82* 0 - 84*1 - 46*0 - 34*0 – 22*1 - 62*0 – 34*1 – 56*1 – 86*1 + 

18*0 + 44*1 – 84*1 + 2*0 – 72*1 – 60*0) = -459 

… for E(x5) to E(x19)  

E(x20) =22+ (42*1+0*1-22*0-60*0+14*1+2*0-70*1+94*0-16*0+0*1+52*0+28*1-96*1+64*1-34*0+10*1-

26*1+80*0-54*1)= - 66 

f(x1)= 1*( -30 + 50 + 94 – 20 + 94 + 86 + 76 + 98 + 76 + 52 + 48)=624 

f(x2)= 1*( -7 + 60 – 54 + 30 – 28 – 50 + 90 + 90 – 26 + 22)=127 

f(x3)= 0*(26 – 50 – 94 + 52 – 50 + 54 – 52 + 20 + 64)=0 

… for f(x4) to f(x19) 

f(x20)=0*(22)=0 

f(x) = 624 + 127 + 55 + 70 + 383 + 3 + 58 + 104 + 89 – 5 + 20 = 1528 

-30 50 -68 -66 94 -100 -20 -4 80 94 0 86 76 98 -36 76 52 -8 48 42

-7 50 28 60 56 -54 78 4 30 -42 -28 -50 90 -42 90 -26 6 22 0

-26 -46 26 82 -50 -90 44 -94 54 52 -50 54 -68 -52 20 96 64 -22

-35 8 -82 -84 -46 -34 -22 -62 -34 -56 -86 18 44 -84 2 -72 -60

31 -86 48 90 -50 -70 -50 8 -42 -80 10 92 64 -36 4 14

19 -66 -98 50 60 -94 88 76 100 -46 -72 -36 -66 -46 2

-4 -60 -20 86 36 94 -94 -52 -34 -36 12 -28 64 -70

-17 -74 -2 -32 50 -10 46 52 -68 -64 84 -46 94

-30 -14 54 6 -24 26 -80 -56 22 82 -64 -16

25 26 70 2 34 -68 100 70 -48 82 0

32 -22 -58 -56 62 86 -8 -90 -68 52

-47 72 -42 52 -40 2 10 58 28

40 -38 48 -16 76 92 -4 -96

-16 72 76 66 -70 -22 64

-31 -62 88 -66 0 -34

37 64 -72 -12 10

13 -6 -18 -26

-3 74 -80

20 -54

22

x(.)= 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0

E(.) 624 177 -74 -459 209 -7 44 -7 -120 523 -124 233 22 114 -3 431 375 -89 242 -66

f(x) 1528 624 127 0 0 55 0 70 0 0 383 0 3 58 104 0 89 -5 0 20 0
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Figure A3. Indicated elements satisfy Proposition 1. Only indicated two elements with red font can 

improve f(x), which satisfy Theorem 1. 

 

Figure A4. An improvement using 2-flip for the locally optimal solution, x, and values of 

E(xi),i=1,…,n. 

In Figures A.1 and A.4, we have: 

f(x1)= 1*( - 30 + 50 + 94 – 4 + 94 + 86 + 76 + 98 – 36 + 76 + 52 + 48 + 42)=646 

f(x2)= 1*(-7 + 60 + 78 + 30 – 28 – 50 + 90 – 42 + 90 – 26 + 22)=217 

…for f(x3) to f(x18) 

f(x19)=1*(20-54)=-34 

f(x20)=1*(22)=22 

f(x) = 646 + 217 + 121 + 35 + 315 + 83 + 10 + 240 – 39 + 99 – 31 – 34 + 22=1684 

 

Figure A5. All 6 possible improving combinations for the locally optimal solution (f(x)=1528). 

Table A1. An exhaustive search of r-flip rules for QUBO. 

Study r-flip rules 

Alidaee, B., G. Kochenberger, and H. Wang, 

Int. J. Appl. Metaheuristic Comput., 2010. 

[12] 

Proved several theoretical results for r-flip moves 

in the general psudo-boolean optimization 

including QUBO. 

Anacleto, E, Meneses, C, Ravelo, S, 

Computers & Operations Research, 

2020.[13] 

Two closed-form formulas for evaluating r-flip 

moves was presented. Effectiveness of the moves 

were evaluated experimentally. 

Anacleto, E, Meneses, C, and Liang, T, 

Computers & Operations Research, 

2021.[14] 

Considered r-flip move strategy for quadratic 

assignment problem that can be transferred to 

QUBO. Closed form formula as well as 

experimental evaluations considered. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3 X X X X

4

5

6 X X X X X X

7 X X X

8 X X X X

9

10

11

12

13 X X

14

15 X X

16

17

18

19

20

x(.)= 1 1 0 0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 1

E(.) 646 267 -204 -463 275 -83 -120 199 -270 367 -78 269 58 348 49 347 361 -123 78 64

f(x) 1684 646 217 0 0 121 0 0 35 0 315 0 83 10 240 -39 99 -31 0 -34 22

1 1 0 0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1684

1 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 1646

1 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 1 1633

1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1616

1 1 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 0 1 0 1601

1 1 1 0 1 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1530

1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 1528
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Debevre, P, Sugimura, M, and Parizy, M, 

Ieee Access, 2023.[3] 

Formulated the automotive paint shop problem as 

QUBO then 1 and several flips moves provided 

for solution. 

Glover, F, and Hao, J-K,  Int. J. 

Metaheuristics, 2010.[7] 

Efficiently evaluating of 2-flip moves for QUBO 

was presented. 

Glover, F, and Hao, J-K, Annals of 

Operations Research, 2016.[8] 

A class of approaches called f-flip strategies that 

include fractional value for f is provided for 

QUBO. 

Katayama, K, and Naihisa, H, in: W. Hart, 

N. Krasnogor, J.E. Smith (Eds.), Recent 

Advances in Memetic Algorithms, Springer, 

Berlin, 2004.[32] 

k-flip move in the context of a memetic algorithm 

was presented. 

Liang, R.N, Anacleto, E.A.J, and Meneses, 

C.N.  Computers & Operations Research, 

2023.[33] 

A closed-form formulae for psuedo boolean 

optimization as well as data structure for efficient 

implementation of 1-flip rule presented. 

Lozano, M, Molina, D, and Garcia-

Martinez, C, European Journal of 

Operational Research, 2011.[11] 

Considered maximum diversity problem which is 

a QUBO with added number of variables that 

must be equal to an integer m. A 2-flip strategy 

with computational experiment was presented. 

Lu, Z., Glover, F., & Hao, J.K.  in M. 

Caserta and S. Voss (Eds.): Metaheuristics 

International Conference 2011 Post-

Conference Book, Chapter 4. [34] 

Several combinations of neighborhood structures 

based on 1 and 2-flip strategy for QUBO within 

the context of tabu search present. 

Merz, P, and Freisleben, B,  Journal of 

Heuristics, 2002.[35] 

Provided 1 and several flips strategy for QUBO 

and provided computational experiment. 

Rosenberg, G., Vazifeh, M, Woods, B, and 

Haber, E, Computational Optimization and 

Applications, 2016.[30]  

A k-flip strategy in the context of quantum 

annealer.  
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