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Zhaohui Wang * 
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27410, zwang3@ncat.edu 

Abstract: The spectrums of one type of object under different conditions have the same features (up, down, 

protruding, concave) at the same spectral positions, which can be used as primary parameters to evaluate the 

difference among remotely sensed pixels. Wavelet-feature correlation ratio Markov clustering algorithm 

(WFCRMCA) for the remotely sensed data is proposed based on an accurate description of abrupt spectral 

features and an optimized Markov clustering in the wavelet feather space. The peak points can be captured 

and identified by applying a wavelet transform to spectral data. The correlation ratio between two samples is 

a statistical calculation of the matched peak point positions on the wavelet feature within an adjustable 

spectrum domain or a range of wavelet scales. The evenly sampled data can be used to create class centers, 

depending on the correlation ratio threshold at each Markov step, accelerating the clustering speed by avoiding 

the computation of Euclidean distance for traditional clustering algorithms, such as K-means and ISODATA. 

Markov clustering applies several strategies, such as a simulated annealing method and gradually shrinking 

the clustering size, to control the clustering convergence. At each clustering temperature, it can obtain the best 

class centers quickly. The experimental results of the Airborne Visible/ Infrared Imaging Spectrometer 

(AVIRIS) and Thermal Mapping (TM) data have verified its acceptable clustering accuracy and high 

convergence velocity. 

Keywords: hyper-spectral images; wavelet, simulated annealing; Markov clustering 

 

1. Introduction 

Identifying suspected targets from remotely sensed data is paramount in everyday life and 

research. The researchers have extensively investigated numerous clustering algorithms, including 

cutting-edge technologies, for remotely sensed images, such as Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) and Thermal Mapping (TM) data. However, several limitations exist in these 

algorithms. One widely used clustering algorithm is K-means clustering, which, unfortunately, 

cannot automatically determine the number of classes [1-4]. Moreover, it exhibits slow convergence 

due to its reliance on minimal spatial distance [5,6].  

The approaches ISODATA [7,8] and ISMC [9,10] can determine the class number through self-

iteration. Nevertheless, the challenge lies in determining their parameters, particularly in adjusting 

distance parameters with changing dimensions. On the other hand, orthogonal projection 

classification suffers from projection fluctuation issues under the restriction of the number of bands 

[11,12]. Cui introduced a feature extraction method that computes vectorized pixel values from a 

localized window, enhancing Bag-of-Words (BoW) performance. However, this approach may lead 

to a reduction in classification accuracy [13,14]. Peng et al. proposed a graph-based structural deep 

spectral-spatial clustering network to sufficiently explore the structure information among pixels. 

They designed a self-expression-embedded multi-graph auto-encoder to explore high-order 

structure associations among pixels, thereby capturing robust spectral-spatial features and global 

clustering structure [15].  

Furthermore, Firat et al. developed a hybrid 3D residual spatial-spectral convolution network to 

extract deep spatiospectral features using 3D CNN and ResNet architecture [16]. Acharyya combined 

wavelet theory and neuro-fuzzy techniques for segmentation purposes [17,18]. However, their 
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feature extraction approach solely considers the absolute values of wavelet coefficients, neglecting 

the specific spectral patterns, and the computational requirements take time and effort.  

A wavelet-feature correlation ratio Markov clustering algorithm (WFCRMCA) is proposed to 

differentiate the pixels according to the spectrum similarity between pixels. Of course, the spectrums 

of one object under different conditions are different. Still, they have the same features (up, down, 

protruding, concave, see Figure 1) at the same spectral positions, which are the main parameters to 

evaluate the difference among remotely sensed pixels [19,20]. Therefore, these characteristic positions 

can denote class features. Fortunately, band-pass wavelet filters can decompose the data at different 

scales to detect these characteristics.  

 

Figure 1. Five points at different spatial positions within the same class have the same features at the 

exact spectral locations. 

WFCRMCA can statistically control the clustering accuracy by adjusting parameters such as 

Tstart, Tend, and Tstep. A new conception, correlation ratio clustering, is proposed to reflect the similarity 

between two wavelet-transformed samples. With an accurate description of the abrupt spectral 

features, wavelet correlation coefficients can differentiate pixels along spectral dimensions. 

Expanding spectral bands of multi-spectral images increases the number of characteristic points to 

enrich the features of classes. WFCRMCA forms the clustering space and initial class centers by 

evenly sampled pixels. Without the initial parameter problem of the K-means algorithm, WFCRMCA 

can quickly reach the best class centers at each clustering temperature and obtain optimal class 

centers on the whole scope at high speed by gradually decreasing the clustering scale and 

temperature. Several theorems are provided and proved to strengthen the WFCRMCA in the 

Methods section. In the Results section, WFCRMCA receives favorable results for clustering Landsat 

TM images and AVIRIS hyperspectral images. 

2. Methods 

Although the spectral curves of the same objects under different conditions are somewhat 

different, they have the same feature points (upward, downward, maximum, and minimum) at the 

same spectral positions (Figure 1). The WFCRMCA could detect abrupt signals through band-pass 

wavelet transform, such as crossing zero and extreme points. But crossing the zero point cannot be 

ensured a pulse signal, and perhaps is a smoothly changed signal, so the extreme points between 

adjacent zero points are much more critical. The signs in spectral vector format are classified 

according to the priority of importance from low to high: downward, upward, protruding, and 

concave (Figure 2).  
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Figure 2. The wavelet band-pass filter and four kinds of abrupt signals. a-d are the four critical signals: 

upward-maximal point, downward-minimal point, protruding crossing zero point, and concave 

crossing zero point. ψ(t) is the band-pass wavelet filter, a’-d’ are the output of the four signals through 
the wavelet filter. 

Figure 2 is the result of four kinds of abrupt signals processed by ψ(t) (Equation 1, [21], 1st 

derivative Gauss function θ(t)). For some remotely sensed images affected by too many mixed pixels, 

the position of critical points will probably deviate or have many little fluctuations, so WFCRMCA 

could eliminate unimportant signals by setting a maximum threshold and only clustering the partial 

minutia at a high-level scale. 𝜃(𝑡) = 1√2𝜋 𝑒−𝑡2 2⁄ , 𝜓(𝑡) = 𝑑𝜃𝑑𝑡 = − 1√2𝜋 𝑡𝑒−𝑡2 2⁄  (1) 

Wavelet feature clustering algorithms only analyze minutia data by detecting and determining 

the positions of abrupt signals. Using a fast binary Mallet wavelet algorithm [22] in Equation 2 to 

extract wavelet coefficients, WFCRMCA can mark the upward-maximal points (Figure 2a/a') and 

downward-minimal points (Figure 2b/b') along the spectrum. WFCRMCA will overlook the weak 

signals if Tpeak is large enough, leading to a failure in identifying some valuable signs among hidden 

objects. {𝑐𝑗,𝑘 = ∑ ℎ𝑛−2𝑘𝑐𝑗−1,𝑛𝑛𝑑𝑗,𝑘 = ∑ 𝑔𝑛−2𝑘𝑐𝑗−1,𝑛𝑛 ,  𝑗 = 1, 2, … , 𝑆𝑐𝑎𝑙𝑒 (≤ ⌊𝑙𝑜𝑔2𝑏⌋) (2) 

The WFCRMCA uses rij (correlation coefficient, CR), which works like a distance but not 

Euclidean distance as clustering criteria, to evaluate the difference between two spectral vectors on 

partial minutia. Equation 3 uses Scale2-scale minutia of Scale-scale wavelet coefficients to cluster, ti,k is 

the kth feature of ith sampled vector, N(·) is the number of feature positions that match criteria. 

WFCRMCA could use binary values to mark whether the position is valuable enough to attend 

clustering. When 𝑆𝑐𝑎𝑙𝑒2 = 𝑆𝑐𝑎𝑙𝑒 = ⌊𝑙𝑜𝑔2𝑏⌋ , the bit number attending clustering comparison is 𝑏∑ 1 2𝑖⁄⌊𝑙𝑜𝑔2𝑏⌋𝑖=1 ≈ 𝑏 − 1. 𝑟𝑖𝑗 = 𝑁(𝑡𝑖,𝑘 = 𝑡𝑗,𝑘, 𝑘 ∈ Ω)𝑁(𝑡𝑖,𝑘 ≠ 𝑡𝑗,𝑘, 𝑘 ∈ Ω) + 𝑁(𝑡𝑖,𝑘 = 𝑡𝑗,𝑘, 𝑘 ∈ Ω) 
𝑖𝑓 𝑆𝑐𝑎𝑙𝑒2 = 𝑆𝑐𝑎𝑙𝑒 , Ω = [0, 𝑏 ∑ 12𝑘𝑆𝑐𝑎𝑙𝑒

𝑘=1 − 1] 
𝑖𝑓 𝑆𝑐𝑎𝑙𝑒2 < 𝑆𝑐𝑎𝑙𝑒, Ω = [𝑏 ∑ 12𝑘𝑆𝑐𝑎𝑙𝑒−𝑆𝑐𝑎𝑙𝑒2

𝑘=1 , 𝑏 ∑ 12𝑘𝑆𝑐𝑎𝑙𝑒
𝑘=1 − 1] 

(3) 
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2.1. Expanding Bands Method for Multi-spectral Images 

As the band number of multi-spectral images (TM images have only seven bands) is not high 

enough for the wavelet transform to extract efficient feature points, WFCRMCA expurgates the bands 

with great noise and expands the rest with 2nd order and nonlinear correlated functions so that 

WFCRMCA can detect more wavelet features. The expanding multi-spectral bands' method [11] is 

listed as follows. 

1. Second-order correlated bands include the auto-correlated bands ( {Bi2}i=1b ) and the cross-

correlated bands ({BiBj}i,j=1,i≠jb
). 

2. Nonlinear correlated bands include the bands stretched out by the square root ({√𝐵𝑖}𝑖=1𝑏 ) and 

those stretched out by the logarithmic function ({𝑙𝑜𝑔𝐵𝑖}𝑖=1𝑏 ). 

The bands created by 1) and 2), together with the 1st order bands, which are original ({𝐵𝑖}𝑖=1𝑏 ), 

assemble a new remotely sensed data with (b2+7b)/2 bands. 

2.2. Markov Chain Clustering in Wavelet Feature Space 

Wavelet-feature Markov clustering algorithm, i.e., WFCRMCA, first denoises the original data 

to make the spectral features more accurate, then uses a band-pass wavelet filter to detect all dot 

vectors for sharp points, including upward-maximal and downward-minimal points. As a result, 

simulated annealing Markov chain decomposition in state space, formed by evenly spatially sampled 

data, could realize the best centers at each temperature and sub-finest centers on the whole scope. 

According to the peculiarity of simulated annealing Markov clustering, each clustering center is 

one state, and the space is a definite Markov state chain. If two classes (or states) merge, according to 

CR, it has nothing to do with other states. For example, for Markov chain 𝐈 = {1,2,⋯ , 𝑛}  in definite 

state space {𝐗(𝑛)}, if any two states communicate, they must be in the same class. Thus, the whole 

state space (pixels) could be separated into a few isolated classes according to transferred 

communication. T, which is defined as a threshold value of CR rij, is used as an annealing temperature 

to control the clustering process. 

Def. 1: If 𝑃𝑖𝑗1 = 𝑟𝑖𝑗 − 𝑇 > 0 for states i and j, they have one-step transferred communication denoted as 𝑖 1↔𝑗. 
Theorem 1: Communication can be transferred. If 𝑖 𝑚↔𝑘 and 𝑘 𝑛↔𝑗(𝑝𝑖𝑘𝑚 > 0, 𝑝𝑘𝑗𝑛 > 0 ), 𝑖 𝑚+𝑛↔  𝑗 (𝑝𝑖𝑗𝑚+𝑛 >0). 
Proof of Theorem 1.  

According to Chapman-Kolmogorov equation: 𝑝𝑖𝑗𝑚+𝑛 = ∑ 𝑝𝑖𝑔𝑚 ∙ 𝑝𝑔𝑗𝑛𝑔𝜖𝐼 ≥ 𝑝𝑖𝑘𝑚 ∙ 𝑝𝑘𝑗𝑛 > 0. i.e., 𝑖 𝑚+𝑛↔  𝑗.  

 

Figure 3. Closed set composed of five class centers. 

Def. 2: If feature i in wavelet characteristic space has pij=1, then i is an absorptive state, forming a single-dot 

set {i}.  

Theorem 2. After Markov clustering, all wavelet features in wavelet feature space are frequently returned 

states.  
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Proof of Theorem 2.  

i). A single-dot set is an absorptive, frequently returned state. 

ii). As simulated annealing clustering causes T to be reduced gradually, the k+1th clustering 

iteration is supposed to create a non-single dot set. For instance, m pixels {1, 2,…, m} are absorbed 
into one class. Tk is the CR threshold of the kth iteration, and c1,…, i, … j, …, and cn are the created 

clustering centers of the kth iteration. Thus, 𝑟𝑖𝑗 < 𝑇𝑘. 

During the k+1th iteration, 𝑇𝑘+1 = 𝑇𝑘 − 𝑇𝑠𝑡𝑒𝑝 , where Tstep is the depressed step of T at each 

iteration. If 𝑇𝑘+1 < 𝑟𝑖𝑗 < 𝑇𝑘 , then 𝑝𝑖𝑗 = 𝑟𝑖𝑗 − 𝑇𝑘+1 = 𝑟𝑖𝑗 + 𝑇𝑠𝑡𝑒𝑝 − 𝑇𝑘 > 0  and 𝑝𝑖𝑗 < 𝑇𝑘 − 𝑇𝑘+1 =𝑇𝑠𝑡𝑒𝑝, so 𝑖 1↔𝑗, then i and j are merged together. 

If Tstep is small enough (i.e., the temperature is reduced slowly), and i, j, l are absorbed in k+1th 

iteration, 𝑝𝑖𝑗 = 𝑝𝑖𝑙 = 𝑝𝑗𝑙 ≈ 𝑇𝑠𝑡𝑒𝑝  so that it could be supposed as Figure 3 that 𝑝𝑖𝑖 = 𝑥, 𝑝𝑖𝑗 =(1 − 𝑥) (𝑚 − 1)⁄ , 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ {1,2,⋯ ,𝑚 − 1}. 
As m states communicate with each other, other m-1 states could be seen as one state j, let pii=pjj=x, 

pij=1-x，thus  𝑓𝑖𝑖 = 𝑥 + (1 − 𝑥)2 + (1 − 𝑥)2𝑥 +⋯+ (1 − 𝑥)2𝑥𝑛 +⋯= 𝑥 + (1 − 𝑥)2(1 + 𝑥 + 𝑥2 +⋯) = 1 
 

So state i is frequently returned state. As m states communicate, the merged m states are 

frequently returned. 

Theorem 3: The sufficient and necessary condition of closed set C is that, for arbitrary elements 𝑖 ∈ 𝐶, 𝑗 ∉ 𝐶, 

there exists 𝑝𝑖𝑗(𝑛) = 0, 𝑛 ≥ 1 (referring [23,24]). 

Theorem 4: Definite states of Markov chain in wavelet feature space can be uniquely decomposed without 

overlap into a definite number of frequently returned states, including closed sets C1, …, Cm and single dot sets 

Cm+1, …, Cn, existing: 

1. Any two states in Ch (ℎ𝜖[1, 𝑛]) are communicated. 

2. When ℎ ≠ 𝑔, (ℎ, 𝑔𝜖[1, 𝑛]), any state in Cg cannot communicate with any state in Ch (referring 

[23, 24]). 

Therefore, every state is frequently returned in the wavelet feature space at each temperature, 

and the number of isolated closed sets equals the number of classes. Then, the whole wavelet Markov 

chain feature state space has a decomposable expression that consists of several closed sets without 

overlap. 

2.3. Adjustment of Clustering Centers 

When two classes are merged whose correlation ratio rij is bigger than T, the numbers of each 

feature (including crossing zero part) are separately added up at the corresponding position ([0, b-1], 

the number of wavelet coefficients is approximately b). In addition, their sample numbers are also 

added up separately. 

Similar to the traditional clustering method, reasonable adjustment of clustering centers is based 

on the statistic of intra-class features. For each position, the feature that occurs most frequently is 

chosen as the common feature of the new class, and then b common features will be created. If several 

features come up at the same frequency, the feature with the highest priority (for example, 

downward-minimal or concave point > upward-maximal or protruding point) is chosen. Then, 

among all the class centers merged into one new class at this iteration, choose one pixel with the 

biggest CR with common features as a new class center. According to Equations 4 and 5, 𝑁𝐵𝑙,𝑘𝑐𝑖  is the 

statistic number of feature k on the lth position in class i, 𝑡𝑙 is the feature of the lth position, which can 

be downward (0), upward (1), protruding (2), and concave (3). R(c1,c2) is the correlation ratio between 

vector c1 and c2, 𝒁𝑐𝑖 is the set of class centers absorbed by class i, and 𝑴𝑐𝑖 is the common features of 

class i.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 November 2023                   doi:10.20944/preprints202311.1054.v1

https://doi.org/10.20944/preprints202311.1054.v1


 6 

 

𝐌𝑐𝑖 = {𝑡0𝑡1⋯𝑡𝑏−1|𝑁𝐵𝑙,𝑘𝑐𝑖 > 𝑁𝐵𝑙,𝑗𝑐𝑖 , 𝑙 ∈ [0, 𝑏 − 1], 𝑗 ≠ 𝑘, 𝑗 ∈ [0,3] ⇒ 𝑡𝑙 = 𝑘}, 𝑐𝑖∈ 𝐂 
(4) 

∃𝑥 ∈ 𝐙𝑐𝑖 , 𝑅(𝑥,𝐌𝑐𝑖) > 𝑅(𝑦,𝐌𝑐𝑖), 𝑦 ≠ 𝑥, 𝑦 ∈ 𝐙𝑐𝑖 ⇒ 𝑐𝑖 = 𝑥 (5) 

During the clustering process, many pixels with high similarity are merged, causing the number 

of class centers that will attend the following iterative clustering comparison to decrease sharply. As 

only newly created centers follow next-cycle clustering, WFCRMCA has a high clustering speed. 

2.4. Wavelet-Feature Markov Clustering Algorithm  

Based on the preceding theoretical analysis, the WFCRMCA uses a simulated annealing 

technique to gradually decrease CR threshold T through Markov chain decomposition in wavelet 

feature space at each temperature, obtaining the best clustering centers of the whole space. Supposed 

that ci is the class center of class i, Sci is the pixel set of class i, C is the set of all classes, Zci is the set of 

class centers absorbed by class i at the current temperature, Nc is class number, Ns is the number of 

sampled pixels (initial class centers are sampled pixels 𝑠𝑖 , 𝑖 ∈ [0,  𝑁𝑠 − 1]), R(c1,c2) is the CR between 

c1 and c2, 𝑁(𝐙𝑐𝑖) is the number of class centers absorbed by class i, 𝑁(𝐒𝑐𝑖) is the pixel number in 

class i, Tstart is the initial value of CR T, and Tend is the lowest CR threshold. The detailed process of 

WFCRMCA is provided in the flow chart in Figure 4. The simulated annealing Markov chain 

decomposition clustering in wavelet feature space is listed as follows: 
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Figure 4. Flow chart of WFCRMCA. 

1. Input parameters: 

Stepx and Stepy are the sampling distances along horizontal or vertical directions; 

b, m, n are separately the band number, column number, and row number of original remotely 

sensed images; 

Scale is wavelet transform scale; 

Scale2 is the number of minutia scale attending clustering (i.e., Scale-Scale2 ~ Scale minutia sections) 

2. Data preprocessing. Delete bands primarily affected by noise and atmosphere, such as the 1-6th, 

33rd, 107-114th,153-168th, and 222-224th bands of AVIRIS. Multi-spectral images need to 

expand bands. 

3. Apply band-pass Scale-scale wavelet filter (for example, Equation 6, [25, 26]) to all pixels, search 

extreme points above noise threshold Tpeak between neighbor crossing zero points on each 

minutia section, and mark upward-maximal point as 1 and downward-minimal point as 2 at the 

corresponding position. H = {0.0,0.125,0.375,0.375,0.125,0.000}, G = {−0.0061, −0.0869, −0.5798,0.5798,0.0869,0.0061} (6) 
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4. According to Stepx*Stepy sampling distance, sample the pixels and create Ns sampled pixels 

evenly. 

5. Apply simulated annealing Markov state decomposition clustering to Scale-Scale2~Scale scale 

minutia sections of sampled data. 

a) Set initial temperature T as Tstart, the clustering signal standard Tsignal (ratio of intra-class sampled 

pixel number over the number of total sampled pixels) is 1.0, and each pixel is one class center 

(beginning with Ns class centers). In the end, according to step b-e, apply Markov chain 

decomposition in state space to the wavelet features of sampled pixels by gradually depressing 

signal size.  𝑁𝑐 = 𝑁𝑠, 𝐂 = {𝑐0, 𝑐1, ⋯ , 𝑐𝑁𝑐−1}, 𝐒𝑐𝑖 = {𝑠𝑖}, 𝑐𝑖 ∈ 𝐂, 𝑖 ∈ [0, 𝑁𝑐 − 1] (7) 

b) Make judgments to all present class centers. If class i is a significant signal in which the number 

of pixels is more prominent than 𝑇𝑠𝑖𝑔𝑛𝑎𝑙𝑁𝑠, move to the next class. Otherwise, search forward 

one by one for another class j whose size is smaller than 𝑇𝑠𝑖𝑔𝑛𝑎𝑙𝑁𝑠 , and make clustering 

judgments between class j and i.  

c) According to Equation 8, if the CR between centers of two classes (i and j) meets the condition 

Pij=rij-T>0, then class j is absorbed into class i. Continuing this process b) until the last class is 

detected.  𝐙𝑐𝑖 = {𝑐𝑖}, 𝑐𝑖 ∈ 𝐂, ∀𝑐𝑖 , 𝑐𝑖 ∈ 𝐂, 𝑖𝑓 𝑁(𝐒𝑐𝑖) < T𝑠𝑖𝑔𝑛𝑎𝑙𝑁𝑠, 𝑁 (𝐒𝑐𝑗) < T𝑠𝑖𝑔𝑛𝑎𝑙𝑁𝑠, 𝑅(𝑐𝑖 , 𝑐𝑗) > 𝑇 ⟹ 𝑁𝐵𝑙,𝑘𝑐𝑖 = 𝑁𝐵𝑙,𝑘𝑐𝑖 + 𝑁𝐵𝑙,𝑘𝑐𝑗 (𝑙 ∈ [0, 𝑏 − 1], 𝑘 ∈ [0,2]), 𝐙𝑐𝑖 = 𝐙𝑐𝑖 ∪ {𝑐𝑗}, 𝐒𝑐𝑖 = 𝐒𝑐𝑖 ∪ 𝐒𝑐𝑗 , 𝐂 = 𝐂 − {𝑐𝑗}, 𝑁𝑐 = 𝑁𝑐 − 1 

(8) 

d) According to Equations 4 and 5, re-adjust the newly created centers: among all the class centers 

merged into one new class at this iteration, choose one pixel with the biggest CR with common 

features as a new class center. 

e) Let T=T-Tstep decrease clustering temperature, and Tsignal= Tsignal /2 to reduce clustering size. 

Repeat steps a)-d) until T is reduced to the appointed small signal threshold Tend or set class 

number is reached. 

6. According to the clustering centers created by 5), each pixel is clustered into one class whose 

center has the maximal CR. 

3. Results 

The WFCRMCA uses Microsoft Visual C++ language and basic libraries for the code of the 

proposed algorithm. The TM and AVIRIS data analysis demonstrate the merits and defects of the 

wavelet feature clustering algorithms, say, WFCRMCA. Classified pixels are shown in white. 

3.1. Multi-Spectral Data 

For Mississippi (Figure 5a, 512*512, 8bit, [27]) TM multi-spectral images, the 6th band heavily 

affected by the atmosphere is crossed out. The other six bands are expanded to 39: original data: 1-6, 

second-order auto-correlated bands: 7-12, second-order cross-correlated bands: 13-27, square root 

function: 28-33, and logarithmic function: 34-39.  

It is supposed that Tstart=0.95 during the discussion of parameters' influence on Mississippi's 

clustering results. If only the original six bands are processed by two-scale wavelet decomposition, 

only four classes are created because features need to be stronger. As the first iteration absorbs too 

many classes, the intra-class adjustment costs most of the time. The experiment also shows that 

second-order correlation expanded bands (7th -27th) provide more class information, but nonlinear 

correlation developed bands (28th-39th) make the clustering results stable. 

The expanding spectrum method increases data processing complexity; however, if there are 

only several classes, the clustering speed is low because the big class has to spend more time 
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calculating the center. Therefore, this method will keep the clustering speed for multi-spectral data. 

Table 1 shows that this method could identify the potential specific classes, leading to higher 

clustering accuracy. 

Figure 6 is the clustering result of the parameters in Table 2. It can be seen that class 1 is plow 

land or meadow (Figure 6a), class 2 is beach (Figure 6b), class 3 is river channel (Figure 6c), class 6 is 

dyke (Figure 6f), and class 9 is the slope on the bank (Figure 6i). The clustering results maintain 

significant signals and efficiently embody the minor signs. If the data are divided into 18 classes by 

the K-means algorithm, one iteration, on average, uses 60 seconds, so this clustering method, 

according to features on the spectral curves of remotely sensed objects, is more flexible on parameter 

choice and has quicker clustering speed than standard clustering algorithm (such as K-means). 

Table 1. Expanded bands number comparison (3*3 sampling, Scale = Scale2 =5,Tsignal=0.1,Tstep=0.01). 

Band number  Tcr1 Tcr2 Class number 

6(Scale=2) 0.8 0.8 4 

39 0.7 0.7 36 

Table 2. Mississippi TM clustering (sampling 5*5, Scale =4, Tpeak=5, Tstart =0.9,Tstep=0.05). 

Band no. Tcr1 Tcr2 Scale2 Class no. 

39 0.9 0.4 4 18 

 

Figure 5. (a) Mississippi TM 4th band image after gray balance. (b) Sook Lake AVIRIS 60th band image 

after gray balance. 
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Figure 6. Mississippi TM image, WFCRMCA clustering results: (a)-(i) are the eight significant 

signals. 

3.2. Hyper-Spectral Data 

For 224 bands Sook Lake (Figure 5b, 256*256, 16bit, [28,29]) AVIRIS hyperspectral images, the 

WFCRMCA crosses out heavily disturbed bands, such as 1-6th, 33rd, 107-114th, 153-168th, 222-224th 

bands, and use the remaining 190 bands to make algorithm analysis. 

In Table 3, when Tpeak=0, the number of classes is 133. If Tpeak is increased, the number of classes 

nonlinearly reduces, and clustering time depresses accordingly. When Tpeak>7, the number of classes 

begins to fluctuate, so the WFCRMCA usually chooses Tpeak=5.0, which could realize a fairly accurate 

classification. 

In Table 4, with more minutiae attending clustering, the number of clustering classes increases 

sharply: two of five scale components cluster eight categories; obviously, that does not separate the 

objects; however, four-scale components cause objects to be dispersed and expand the class number. 

Depressing Tend could effectively decrease the class number. 

If high three scales of five scales wavelet decomposition are chosen to attend clustering and 

Tpeak=5.0, 17 classes are created (the main clustering results are seen in Figure 7), the time is 21s, 

division result is favorable; hereinto, class 1 is the basin (Figure 7a), class 4 is for the mountain peaks 

(Figure 7d), class 5 is the water body of the Sook Lake (Figure 7e). 

Table 3. Sook lake AVIRIS hyper-spectral image, WFCRMCA clustering parameter Tpeak comparison 

(5*5 sampling, band number 190, Scale=5, Scale2=4, Tstart=0.9, Tstep=0.05). 

Tpeak Tend Class number 

0 0.4 133 

2 0.4 65 

5 0.4 38 

7 0.4 26 

10 0.4 22 

15 0.4 24 
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Table 4. Sook lake AVIRIS hyper-spectral image WFCRMCA clustering parameters Tend and Scale2 

comparison (5*5 sampling, band number is 190, Scale =5, Tpeak=5, Tstart =0.9, Tstep=0.05). 

Tend Scale2 Class number Time/sec. 

0.4 2 8 13 

0.4 3 17 21 

0.4 4 38 51 

0.6 4 85 52 

 

Figure 7. Sook Lake AVIRIS image WFCRMCA clustering result. a-f are the seven significant 

signals. 

4. Discussion 

For remotely sensed data with a high density of mixed pixels, choosing partial minutia wavelet 

features in high-level scales could reduce the clustering difficulty caused by a significant amount of 

minutia, and this also applies somewhat blur to achieve ideal clustering results. Multi-scale 

classification from fine to coarse could be realized by this method. Furthermore, as the matching 

speed of abrupt-point positions is very high, clustering time does not increase obviously with the 

increment of referenced minutia. For example, multi-spectral data typically set Scale=Scale2; hyper-

spectral data could set Scale2=Scale-2. 

WFCRMCA applies 1D wavelet transformation on satellite spectral data. Wavelet Transform can 

represent a signal in both time and frequency domains simultaneously. It decomposes a signal into a 

set of wavelets that are localized in both time and frequency, allowing me to analyze the signal's time-

localized features. Wavelet transform excels at capturing localized features and adaptability to non-

stationary signals. However, the Fourier Transform represents a signal in the frequency domain. It 

decomposes a signal into a sum of sinusoidal components of different frequencies, providing 

information about the frequency content of the signal. It doesn't capture information about when 

these frequencies occur. Fourier transform is excellent for spectral analysis. 

The ridgelet transformation and curvelet transformation are two well-known methods for high-

dimensional image analysis, but the wavelet transformation is better on the 1D spectral feature 

extraction. In the ridgelet transform, ridgelets are adapted to higher-dimensional singularities; or 

singularities on curves in dimension two, singularities on surfaces in dimension three, and 

singularities on (n−1)-dimensional hypersurfaces in dimension n [30]. The curvelet transform uses 

ridgelet transform as a component step, and it is good at 2D image reconstruction [31]. The proposed 

WFCRMCA is to use wavelet transform to analyze the 1D spectral data instead of 2D images. 

WFCRMCA accelerates clustering speed during the clustering process. The calculation of CR 

only needs simply matching corresponding characteristic points without the time-consuming 
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floating-point measure of Euclidean distance [1,2]. A great many sampled pixels with high similarity 

are clustered together during the clustering process, depressing the number of class centers attending 

clustering comparison; moreover, clustering centers of newly created classes are re-determined 

according to common features. So, along with the process of this algorithm, the clustering speed 

continues increasing.  

This WFCRMCA only makes statistics of the number of each wavelet feature on every info-

position as the class feature and chooses the best pixel as the clustering center but does not directly 

use the CR matrix to investigate the dependency degree between sampled pixels, resolving spatial 

complexity problems.  

Gradually depressing clustering size could let both small and large signals embody efficiently, 

and too many noise signals are merged so that the WFCRMCA could detect the spatial position of 

noise signals.  

The WFCRMCA approach can be applied to any spectral data to differentiate targets. It has 

demonstrated favorable performance for satellite multi-spectral images and super-spectral images. 

The spectral analysis method can also be used in photoacoustic imaging and OCT.  

The WFCRMCA also has several weak points. Even though most parameters are stable and can 

be used in most cases, several parameters, such as Tpeak and Scale2, still need to be adjusted manually 

to increase clustering accuracy for specific applications. The Markov clustering method is not 

parallelizable, though it can provide one optimal solution for clustering the wavelet coefficients at a 

high convergent velocity. The future work will continue focusing on resolving these issues. 

5. Conclusions 

The wavelet feature correlation ratio is used to depict the distance between two pixels by 

analyzing the wavelet features of spectral curves for remotely sensed data. Based on the particularity 

of CR clustering, a wavelet-feature Markov clustering algorithm is proposed for searching the 

optimal class centers. After spatial data are evenly sampled, sharp points on the band-pass wavelet 

coefficients, including extreme points and crossing zero points, are captured and used for clustering 

matching. WFCRMCA accelerates clustering speed by avoiding the time-consuming Euclidean 

distance calculation used for general clustering algorithms. For multi-spectral data, nonlinear 

correlation expanded bands provide more class information than second-order correlation developed 

bands. Markov clustering based on simulated annealing realizes fast clustering convergence at each 

temperature.  
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