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Abstract: The spectrums of one type of object under different conditions have the same features (up, down,
protruding, concave) at the same spectral positions, which can be used as primary parameters to evaluate the
difference among remotely sensed pixels. Wavelet-feature correlation ratio Markov clustering algorithm
(WECRMCA) for the remotely sensed data is proposed based on an accurate description of abrupt spectral
features and an optimized Markov clustering in the wavelet feather space. The peak points can be captured
and identified by applying a wavelet transform to spectral data. The correlation ratio between two samples is
a statistical calculation of the matched peak point positions on the wavelet feature within an adjustable
spectrum domain or a range of wavelet scales. The evenly sampled data can be used to create class centers,
depending on the correlation ratio threshold at each Markov step, accelerating the clustering speed by avoiding
the computation of Euclidean distance for traditional clustering algorithms, such as K-means and ISODATA.
Markov clustering applies several strategies, such as a simulated annealing method and gradually shrinking
the clustering size, to control the clustering convergence. At each clustering temperature, it can obtain the best
class centers quickly. The experimental results of the Airborne Visible/ Infrared Imaging Spectrometer
(AVIRIS) and Thermal Mapping (TM) data have verified its acceptable clustering accuracy and high
convergence velocity.

Keywords: hyper-spectral images; wavelet, simulated annealing; Markov clustering

1. Introduction

Identifying suspected targets from remotely sensed data is paramount in everyday life and
research. The researchers have extensively investigated numerous clustering algorithms, including
cutting-edge technologies, for remotely sensed images, such as Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) and Thermal Mapping (TM) data. However, several limitations exist in these
algorithms. One widely used clustering algorithm is K-means clustering, which, unfortunately,
cannot automatically determine the number of classes [1-4]. Moreover, it exhibits slow convergence
due to its reliance on minimal spatial distance [5,6].

The approaches ISODATA [7,8] and ISMC [9,10] can determine the class number through self-
iteration. Nevertheless, the challenge lies in determining their parameters, particularly in adjusting
distance parameters with changing dimensions. On the other hand, orthogonal projection
classification suffers from projection fluctuation issues under the restriction of the number of bands
[11,12]. Cui introduced a feature extraction method that computes vectorized pixel values from a
localized window, enhancing Bag-of-Words (BoW) performance. However, this approach may lead
to a reduction in classification accuracy [13,14]. Peng et al. proposed a graph-based structural deep
spectral-spatial clustering network to sufficiently explore the structure information among pixels.
They designed a self-expression-embedded multi-graph auto-encoder to explore high-order
structure associations among pixels, thereby capturing robust spectral-spatial features and global
clustering structure [15].

Furthermore, Firat et al. developed a hybrid 3D residual spatial-spectral convolution network to
extract deep spatiospectral features using 3D CNN and ResNet architecture [16]. Acharyya combined
wavelet theory and neuro-fuzzy techniques for segmentation purposes [17,18]. However, their
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feature extraction approach solely considers the absolute values of wavelet coefficients, neglecting
the specific spectral patterns, and the computational requirements take time and effort.

A wavelet-feature correlation ratio Markov clustering algorithm (WFCRMCA) is proposed to
differentiate the pixels according to the spectrum similarity between pixels. Of course, the spectrums
of one object under different conditions are different. Still, they have the same features (up, down,
protruding, concave, see Figure 1) at the same spectral positions, which are the main parameters to
evaluate the difference among remotely sensed pixels [19,20]. Therefore, these characteristic positions
can denote class features. Fortunately, band-pass wavelet filters can decompose the data at different
scales to detect these characteristics.
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Figure 1. Five points at different spatial positions within the same class have the same features at the
exact spectral locations.

WEFCRMCA can statistically control the clustering accuracy by adjusting parameters such as
Tstart, Tend, and Tstep. A new conception, correlation ratio clustering, is proposed to reflect the similarity
between two wavelet-transformed samples. With an accurate description of the abrupt spectral
features, wavelet correlation coefficients can differentiate pixels along spectral dimensions.
Expanding spectral bands of multi-spectral images increases the number of characteristic points to
enrich the features of classes. WFCRMCA forms the clustering space and initial class centers by
evenly sampled pixels. Without the initial parameter problem of the K-means algorithm, WFCRMCA
can quickly reach the best class centers at each clustering temperature and obtain optimal class
centers on the whole scope at high speed by gradually decreasing the clustering scale and
temperature. Several theorems are provided and proved to strengthen the WFCRMCA in the
Methods section. In the Results section, WFCRMCA receives favorable results for clustering Landsat
TM images and AVIRIS hyperspectral images.

2. Methods

Although the spectral curves of the same objects under different conditions are somewhat
different, they have the same feature points (upward, downward, maximum, and minimum) at the
same spectral positions (Figure 1). The WFCRMCA could detect abrupt signals through band-pass
wavelet transform, such as crossing zero and extreme points. But crossing the zero point cannot be
ensured a pulse signal, and perhaps is a smoothly changed signal, so the extreme points between
adjacent zero points are much more critical. The signs in spectral vector format are classified
according to the priority of importance from low to high: downward, upward, protruding, and
concave (Figure 2).
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Figure 2. The wavelet band-pass filter and four kinds of abrupt signals. a-d are the four critical signals:
upward-maximal point, downward-minimal point, protruding crossing zero point, and concave

crossing zero point. i(t) is the band-pass wavelet filter, a’-d” are the output of the four signals through
the wavelet filter.

Figure 2 is the result of four kinds of abrupt signals processed by y(t) (Equation 1, [21], 1
derivative Gauss function 6(t)). For some remotely sensed images affected by too many mixed pixels,
the position of critical points will probably deviate or have many little fluctuations, so WFCRMCA
could eliminate unimportant signals by setting a maximum threshold and only clustering the partial
minutia at a high-level scale.

o(t) = \/%_ne‘tz/z,tp(t) = % = —\/%_nte‘tz/z (1)
Wavelet feature clustering algorithms only analyze minutia data by detecting and determining
the positions of abrupt signals. Using a fast binary Mallet wavelet algorithm [22] in Equation 2 to
extract wavelet coefficients, WFCRMCA can mark the upward-maximal points (Figure 2a/a’) and
downward-minimal points (Figure 2b/b') along the spectrum. WFCRMCA will overlook the weak
signals if Tpeax is large enough, leading to a failure in identifying some valuable signs among hidden

objects.

{Cj,k =% hn—szj—l,n
dj,k =2n gn—zkcj—Ln'
The WFCRMCA uses rij (correlation coefficient, CR), which works like a distance but not
Euclidean distance as clustering criteria, to evaluate the difference between two spectral vectors on
partial minutia. Equation 3 uses Swi2-scale minutia of Swi-scale wavelet coefficients to cluster, tix is
the kth feature of it sampled vector, N(-) is the number of feature positions that match criteria.
WEFCRMCA could use binary values to mark whether the position is valuable enough to attend
clustering. When S.4100 = Scaie = llog,b], the bit number attending clustering comparison is

bYlo92bl 1 2t b — 1.

J=12,..,5q. (< llogzb]) 2)

B N(ti,k = tj,k'k € Q)
Ty = N(ti # tj k € Q)+ N(ti = tjp k € Q)

Scale
i 1
if Scatez = Scate,2 = |0,b Z oKk 1 (3)
k=1
Scale=Scalez Scale

. 1 1
lf Scalez < Scale;ﬂ =|b Z F'b Z Z_k -1
k=1 k=1
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2.1. Expanding Bands Method for Multi-spectral Images

As the band number of multi-spectral images (TM images have only seven bands) is not high
enough for the wavelet transform to extract efficient feature points, WFCRMCA expurgates the bands
with great noise and expands the rest with 2nd order and nonlinear correlated functions so that
WEFCRMCA can detect more wavelet features. The expanding multi-spectral bands' method [11] is
listed as follows.

1. Second-order correlated bands include the auto-correlated bands ({B?}",) and the cross-
correlated bands ({BiB]-}b ).

ij=1,i%j

b

2. Nonlinear correlated bands include the bands stretched out by the square root ({\/E}izl) and
those stretched out by the logarithmic function ({logB;}?-,).

The bands created by 1) and 2), together with the 1st order bands, which are original ({B;}2_,),
assemble a new remotely sensed data with (b2+7b)/2 bands.

2.2. Markov Chain Clustering in Wavelet Feature Space

Wavelet-feature Markov clustering algorithm, i.e., WFCRMCA, first denoises the original data
to make the spectral features more accurate, then uses a band-pass wavelet filter to detect all dot
vectors for sharp points, including upward-maximal and downward-minimal points. As a result,
simulated annealing Markov chain decomposition in state space, formed by evenly spatially sampled
data, could realize the best centers at each temperature and sub-finest centers on the whole scope.

According to the peculiarity of simulated annealing Markov clustering, each clustering center is
one state, and the space is a definite Markov state chain. If two classes (or states) merge, according to
CR, it has nothing to do with other states. For example, for Markov chain I = {1,2,---,n} in definite
state space {X(n)}, if any two states communicate, they must be in the same class. Thus, the whole
state space (pixels) could be separated into a few isolated classes according to transferred
communication. T, which is defined as a threshold value of CR 73, is used as an annealing temperature
to control the clustering process.

1
Def. 1: If P; = r;; — T > 0 for states i and j, they have one-step transferred communication denoted as i < j.

+
Theorem 1: Communication can be transferred. If i Sk and k ﬁ)j(p{,’{l >0,pg; >0), imj (p-"?*” >

i
0).

Proof of Theorem 1.

According to Chapman-Kolmogorov equation:

m+n _ m n m n .  min
bi; = delpig "Pgj 2 Pix "Pxj > 0.1e, i

X

(1-x)/5

J
o x O
Figure 3. Closed set composed of five class centers.

Def. 2: If feature i in wavelet characteristic space has pi=1, then i is an absorptive state, forming a single-dot
set {i}.
Theorem 2. After Markov clustering, all wavelet features in wavelet feature space are frequently returned
states.
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Proof of Theorem 2.

i). A single-dot set is an absorptive, frequently returned state.

ii). As simulated annealing clustering causes T to be reduced gradually, the k+1th clustering
iteration is supposed to create a non-single dot set. For instance, m pixels {1, 2,..., m} are absorbed
into one class. T* is the CR threshold of the k" iteration, and cy,..., i, ... j, ..., and cn are the created
clustering centers of the k iteration. Thus, r;; < T*.

During the k+1t* iteration, T**' = T* — T, where Tu is the depressed step of T at each
iteration. If T <r; <Tk, then p;;=1r; —T""' =1;j + Tyep, —T¥ >0 and p;; <TK -T*?1 =

Tstep, O 1 & j, theni and j are merged together.

If Tswp is small enough (i.e., the temperature is reduced slowly), and i, j, [ are absorbed in k+1t
iteration, p;; = py = Pji ® Tstep SO that it could be supposed as Figure 3 that p; =x,p;; =
1-x)/(m-1),i#j,i,je{1,2,---,m—1}.

As m states communicate with each other, other m-1 states could be seen as one state j, let pi=pj=x,
pi=l-x, thus

fi=x+ 10—+ 0 —x)x+-+ 0 —x)x"+ -
=x+(1-x)?A+x+x%2+-)=1

So state i is frequently returned state. As m states communicate, the merged m states are
frequently returned.

Theorem 3: The sufficient and necessary condition of closed set C is that, for arbitrary elements i € C,j & C,
there exists p{” = 0,n > 1 (referring [23,24]).

Theorem 4: Definite states of Markov chain in wavelet feature space can be uniquely decomposed without
overlap into a definite number of frequently returned states, including closed sets Ci, ..., Cwm and single dot sets
Cu1, ..., Cn, existing:

1. Any two states in Cn (he[1,n]) are communicated.
2. When h # g, (h,ge[1,n]), any state in Cg cannot communicate with any state in Cn (referring

[23, 24]).

Therefore, every state is frequently returned in the wavelet feature space at each temperature,
and the number of isolated closed sets equals the number of classes. Then, the whole wavelet Markov
chain feature state space has a decomposable expression that consists of several closed sets without
overlap.

2.3. Adjustment of Clustering Centers

When two classes are merged whose correlation ratio rij is bigger than T, the numbers of each
feature (including crossing zero part) are separately added up at the corresponding position ([0, b-1],
the number of wavelet coefficients is approximately b). In addition, their sample numbers are also
added up separately.

Similar to the traditional clustering method, reasonable adjustment of clustering centers is based
on the statistic of intra-class features. For each position, the feature that occurs most frequently is
chosen as the common feature of the new class, and then b common features will be created. If several
features come up at the same frequency, the feature with the highest priority (for example,
downward-minimal or concave point > upward-maximal or protruding point) is chosen. Then,
among all the class centers merged into one new class at this iteration, choose one pixel with the
biggest CR with common features as a new class center. According to Equations 4 and 5, N Bf + is the
statistic number of feature k on the I* position in class i, t' is the feature of the I* position, which can
be downward (0), upward (1), protruding (2), and concave (3). R(c1,c2) is the correlation ratio between
vector c1and ¢z, Z, is the set of class centers absorbed by class i, and M, is the common features of
class 1.
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M,, = {t“tl -tV NBL > NBL, 1€ [0,b—1],j # k,j €[03] = t' = k}, ¢
ec

(4)

dx € Zci,R(x, Mci) > R(y, Mci),y FX,YEL,>c=x (5)

During the clustering process, many pixels with high similarity are merged, causing the number
of class centers that will attend the following iterative clustering comparison to decrease sharply. As
only newly created centers follow next-cycle clustering, WFCRMCA has a high clustering speed.

2.4. Wavelet-Feature Markov Clustering Algorithm

Based on the preceding theoretical analysis, the WFCRMCA uses a simulated annealing
technique to gradually decrease CR threshold T through Markov chain decomposition in wavelet
feature space at each temperature, obtaining the best clustering centers of the whole space. Supposed
that ci is the class center of class i, S. is the pixel set of class i, C is the set of all classes, Z.i is the set of
class centers absorbed by class i at the current temperature, Nc is class number, N;s is the number of
sampled pixels (initial class centers are sampled pixels s;,i € [0, Ny — 1]), R(c1,¢2) is the CR between
ctand c2, N (Zc,-) is the number of class centers absorbed by class i, N (Sci) is the pixel number in
class i, Tsuart is the initial value of CR T, and Tens is the lowest CR threshold. The detailed process of
WFCRMCA is provided in the flow chart in Figure 4. The simulated annealing Markov chain
decomposition clustering in wavelet feature space is listed as follows:
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neighbor crossing zero points on each minutia section,

mark upward-maximal point as 1 and down-ward-minimal
point as 2 at the corresponding position.

According to Stepx*Stepy sampling distance,
sample evenly the pixels and create Ns sampled pixels.

l

| T =Tars Tyigna =1.0 |

S|

<

Y

For all present class centers, N > Ty N Ni<Tpna N,

P;=r;-T>0, then class j is absorbed into class i.

l

Re-adjusting the newly created centers: choosing
one pixel with the biggest CR with common
features as a new class center.

[T=T-Tslcp, Tsignal= Tsignal /2

]

)

Each pixel is clustered into one class
whose center has the maximal CR.

Figure 4. Flow chart of WFCRMCA.

1. Input parameters:

Stepx and Stepy are the sampling distances along horizontal or vertical directions;

b, m, n are separately the band number, column number, and row number of original remotely
sensed images;

Sale is wavelet transform scale;

Seake2 is the number of minutia scale attending clustering (i.e., Scale-Scale2 ~ Scale minutia sections)

2. Data preprocessing. Delete bands primarily affected by noise and atmosphere, such as the 1-6th,
33rd, 107-114th,153-168th, and 222-224th bands of AVIRIS. Multi-spectral images need to
expand bands.

3. Apply band-pass Scale-scale wavelet filter (for example, Equation 6, [25, 26]) to all pixels, search
extreme points above noise threshold Tpeak between neighbor crossing zero points on each
minutia section, and mark upward-maximal point as 1 and downward-minimal point as 2 at the
corresponding position.

H = {0.0,0.125,0.375,0.375,0.125,0.0003},

6
G ={-0.0061,—0.0869,—0.5798,0.5798,0.0869,0.0061} ©)
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4.  According to Stepx*Stepy sampling distance, sample the pixels and create Ns sampled pixels
evenly.

5. Apply simulated annealing Markov state decomposition clustering to Scale-Scale2~Scale scale
minutia sections of sampled data.

a) Setinitial temperature T as Tstr, the clustering signal standard Tsignai (ratio of intra-class sampled
pixel number over the number of total sampled pixels) is 1.0, and each pixel is one class center
(beginning with Ns class centers). In the end, according to step b-e, apply Markov chain
decomposition in state space to the wavelet features of sampled pixels by gradually depressing
signal size.

N = Ny, € = {co, ¢1,+, enp-1}, S, = {si} ¢ € Ci € [0, N, — 1] @)

b) Make judgments to all present class centers. If class i is a significant signal in which the number
of pixels is more prominent than Tg; 4,4, Ns, move to the next class. Otherwise, search forward
one by one for another class j whose size is smaller than Tg;g,,Ns, and make clustering
judgments between class j and i.

c) According to Equation 8, if the CR between centers of two classes (i and j) meets the condition
Pij=rij-T>0, then class j is absorbed into class i. Continuing this process b) until the last class is
detected.

Z., = {c;}ci € Ve ¢ € Cif N(S¢,) < TsignaiNs,

N (Scj) < Tsignale,R(Ci,Cj) >T = o
NB;. = NBji + NB,,(1 € [0,b— 1],k € [0,2]),
Lo =12cV {Cf}’ Se; =S¢ VS, C=C— {Cj}'Nc =N.—-1

d) According to Equations 4 and 5, re-adjust the newly created centers: among all the class centers
merged into one new class at this iteration, choose one pixel with the biggest CR with common
features as a new class center.

e) Let T=T-Tstep decrease clustering temperature, and Tsignal=Tsignal /2 to reduce clustering size.
Repeat steps a)-d) until T is reduced to the appointed small signal threshold Tend or set class
number is reached.

6. According to the clustering centers created by 5), each pixel is clustered into one class whose
center has the maximal CR.

3. Results

The WFCRMCA uses Microsoft Visual C++ language and basic libraries for the code of the
proposed algorithm. The TM and AVIRIS data analysis demonstrate the merits and defects of the
wavelet feature clustering algorithms, say, WECRMCA. Classified pixels are shown in white.

3.1. Multi-Spectral Data

For Mississippi (Figure 5a, 512¥512, 8bit, [27]) TM multi-spectral images, the 6t band heavily
affected by the atmosphere is crossed out. The other six bands are expanded to 39: original data: 1-6,
second-order auto-correlated bands: 7-12, second-order cross-correlated bands: 13-27, square root
function: 28-33, and logarithmic function: 34-39.

It is supposed that Ts=0.95 during the discussion of parameters' influence on Mississippi's
clustering results. If only the original six bands are processed by two-scale wavelet decomposition,
only four classes are created because features need to be stronger. As the first iteration absorbs too
many classes, the intra-class adjustment costs most of the time. The experiment also shows that
second-order correlation expanded bands (7t -27%) provide more class information, but nonlinear
correlation developed bands (28-39t) make the clustering results stable.

The expanding spectrum method increases data processing complexity; however, if there are
only several classes, the clustering speed is low because the big class has to spend more time
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calculating the center. Therefore, this method will keep the clustering speed for multi-spectral data.
Table 1 shows that this method could identify the potential specific classes, leading to higher
clustering accuracy.

Figure 6 is the clustering result of the parameters in Table 2. It can be seen that class 1 is plow
land or meadow (Figure 6a), class 2 is beach (Figure 6b), class 3 is river channel (Figure 6c), class 6 is
dyke (Figure 6f), and class 9 is the slope on the bank (Figure 6i). The clustering results maintain
significant signals and efficiently embody the minor signs. If the data are divided into 18 classes by
the K-means algorithm, one iteration, on average, uses 60 seconds, so this clustering method,
according to features on the spectral curves of remotely sensed objects, is more flexible on parameter
choice and has quicker clustering speed than standard clustering algorithm (such as K-means).

Table 1. Expanded bands number comparison (3*3 sampling, Scate = Secate2 =5, Tsigna=0.1, Tstep=0.01).

Band number Tert T2 Class number
6(Scaie=2) 0.8 0.8 4
39 0.7 0.7 36

Table 2. Mississippi TM clustering (sampling 5*5, Scale =4, Tpeak=5, Tstart =0.9, Tstp=0.05).

Bandno. Tai Tea2 Sz Class no.
39 09 04 4 18

Figure 5. (a) Mississippi TM 4th band image after gray balance. (b) Sook Lake AVIRIS 60t band image
after gray balance.
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Figure 6. Mississippi TM image, WFCRMCA clustering results: (a)-(i) are the eight significant
signals.

3.2. Hyper-Spectral Data

For 224 bands Sook Lake (Figure 5b, 256*256, 16bit, [28,29]) AVIRIS hyperspectral images, the
WFCRMCA crosses out heavily disturbed bands, such as 1-6t%, 334, 107-114t%, 153-168th, 222-224th
bands, and use the remaining 190 bands to make algorithm analysis.

In Table 3, when Tpeak=0, the number of classes is 133. If Tpeakis increased, the number of classes
nonlinearly reduces, and clustering time depresses accordingly. When Tpea>7, the number of classes
begins to fluctuate, so the WFCRMCA usually chooses Tpeak=5.0, which could realize a fairly accurate
classification.

In Table 4, with more minutiae attending clustering, the number of clustering classes increases
sharply: two of five scale components cluster eight categories; obviously, that does not separate the
objects; however, four-scale components cause objects to be dispersed and expand the class number.
Depressing Tend could effectively decrease the class number.

If high three scales of five scales wavelet decomposition are chosen to attend clustering and
Tyea=5.0, 17 classes are created (the main clustering results are seen in Figure 7), the time is 21s,
division result is favorable; hereinto, class 1 is the basin (Figure 7a), class 4 is for the mountain peaks
(Figure 7d), class 5 is the water body of the Sook Lake (Figure 7e).

Table 3. Sook lake AVIRIS hyper-spectral image, WFCRMCA clustering parameter Tpek comparison
(5*5 sampling, band number 190, Scale=5, Scatez=4, Tstart=0.9, Tsep=0.05).

Thpeak Tend Class number
0 04 133
2 04 65
5 04 38
7 0.4 26
10 04 22

15 0.4 24
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Table 4. Sook lake AVIRIS hyper-spectral image WFCRMCA clustering parameters Tend and Scale2
comparison (5*5 sampling, band number is 190, Scle =5, Tpeak=5, Tstart =0.9, Tstep=0.05).

Tend Scale2 Class number Time/sec.
04 2 8 13
04 3 17 21
04 4 38 51
0.6 4 85 52

Figure 7. Sook Lake AVIRIS image WFCRMCA clustering result. a-f are the seven significant
signals.

4. Discussion

For remotely sensed data with a high density of mixed pixels, choosing partial minutia wavelet
features in high-level scales could reduce the clustering difficulty caused by a significant amount of
minutia, and this also applies somewhat blur to achieve ideal clustering results. Multi-scale
classification from fine to coarse could be realized by this method. Furthermore, as the matching
speed of abrupt-point positions is very high, clustering time does not increase obviously with the
increment of referenced minutia. For example, multi-spectral data typically set Scue=Secie2; hyper-
spectral data could set Scaez=Scaie-2.

WECRMCA applies 1D wavelet transformation on satellite spectral data. Wavelet Transform can
represent a signal in both time and frequency domains simultaneously. It decomposes a signal into a
set of wavelets that are localized in both time and frequency, allowing me to analyze the signal's time-
localized features. Wavelet transform excels at capturing localized features and adaptability to non-
stationary signals. However, the Fourier Transform represents a signal in the frequency domain. It
decomposes a signal into a sum of sinusoidal components of different frequencies, providing
information about the frequency content of the signal. It doesn't capture information about when
these frequencies occur. Fourier transform is excellent for spectral analysis.

The ridgelet transformation and curvelet transformation are two well-known methods for high-
dimensional image analysis, but the wavelet transformation is better on the 1D spectral feature
extraction. In the ridgelet transform, ridgelets are adapted to higher-dimensional singularities; or
singularities on curves in dimension two, singularities on surfaces in dimension three, and
singularities on (n—1)-dimensional hypersurfaces in dimension n [30]. The curvelet transform uses
ridgelet transform as a component step, and it is good at 2D image reconstruction [31]. The proposed
WEFCRMCA is to use wavelet transform to analyze the 1D spectral data instead of 2D images.

WEFCRMCA accelerates clustering speed during the clustering process. The calculation of CR
only needs simply matching corresponding characteristic points without the time-consuming
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floating-point measure of Euclidean distance [1,2]. A great many sampled pixels with high similarity
are clustered together during the clustering process, depressing the number of class centers attending
clustering comparison; moreover, clustering centers of newly created classes are re-determined
according to common features. So, along with the process of this algorithm, the clustering speed
continues increasing.

This WFCRMCA only makes statistics of the number of each wavelet feature on every info-
position as the class feature and chooses the best pixel as the clustering center but does not directly
use the CR matrix to investigate the dependency degree between sampled pixels, resolving spatial
complexity problems.

Gradually depressing clustering size could let both small and large signals embody efficiently,
and too many noise signals are merged so that the WFCRMCA could detect the spatial position of
noise signals.

The WFCRMCA approach can be applied to any spectral data to differentiate targets. It has
demonstrated favorable performance for satellite multi-spectral images and super-spectral images.
The spectral analysis method can also be used in photoacoustic imaging and OCT.

The WFCRMCA also has several weak points. Even though most parameters are stable and can
be used in most cases, several parameters, such as Tpeak and Sz, still need to be adjusted manually
to increase clustering accuracy for specific applications. The Markov clustering method is not
parallelizable, though it can provide one optimal solution for clustering the wavelet coefficients at a
high convergent velocity. The future work will continue focusing on resolving these issues.

5. Conclusions

The wavelet feature correlation ratio is used to depict the distance between two pixels by
analyzing the wavelet features of spectral curves for remotely sensed data. Based on the particularity
of CR clustering, a wavelet-feature Markov clustering algorithm is proposed for searching the
optimal class centers. After spatial data are evenly sampled, sharp points on the band-pass wavelet
coefficients, including extreme points and crossing zero points, are captured and used for clustering
matching. WFCRMCA accelerates clustering speed by avoiding the time-consuming Euclidean
distance calculation used for general clustering algorithms. For multi-spectral data, nonlinear
correlation expanded bands provide more class information than second-order correlation developed
bands. Markov clustering based on simulated annealing realizes fast clustering convergence at each
temperature.
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