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Abstract: We discuss two queueing-inventory systems with catastrophes in the warehouse.

Catastrophes occur according to Poisson process and upon arrival of a catastrophe all inventory in the

system is instantly destroyed. But consumer customers in the system (in the server or in the buffer)

continue still waiting for the replenishment of the stock. The arrivals of the consumer customers

follow a Markovian Arrival Process (MAP) and they can be queued in an infinite buffer. Service time

of a consumer customer follows a phase-type distribution. The system receives negative customers

whose have Poisson flows to service facility and upon arrival of a negative customer one consumer

customer is pushed out from the system, if any. One of two replenishment policies can be used in the

system: either (s, S) or (s, Q). If upon arrival of the consumer customer, the inventory level is zero,

then according to the Bernoulli scheme, this customer is either lost (lost sale scheme) or join the queue

(backorder sale scheme). The system is formulated by a four-dimensional continuous-time Markov

chain. Steady state distribution is obtained using the matrix-geometric method. A comprehensive

numerical study is performed on the performance measures under various replenishment policies.

Finally, an optimization study is presented.

Keywords: queueing-inventory system; catastrophe; negative customer; (s, S)-type policy;

(s, Q)-type policy; Matrix geometric method; MAP arrival; phase-type distribution
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1. Introduction

Until the early 90s of the last century, in the theory of operations research, models of queuing

systems (QS) and models of inventory control systems (ICS) were studied separately. In other words,

it was believed that in ICS there is no server for releasing items to consumers (i.e., a self-service rule

is used), and in QS, only an idle server is required to service customers (i.e., no additional items are

required). However, in real ICSs, the release of items to consumer customers (c-customers) requires

the presence of a service station in which the incoming c-customer is processed, and the processing

time is often a positive random variable. A classic example of such systems is the widespread systems

of gas stations. These ICSs with positive service time can also be considered as QSs, in which in order

to service c-customers, in addition to an idle server, a positive level of certain inventory is required.

Note that ICSs with positive service time are called queuing-inventory systems (QIS) in [1,2].

However, QIS models were first proposed earlier in [3,4] and have been intensively studied by various

authors over the past three decades. For a detailed overview of known results on QIS models, see

[5–7].

To classify QISs models, their various properties can be taken as a basis. Based on the type

of QIS model being studied, the lifetime of the system’s inventory is taken as the basis for the

classification. The vast majority of work on QIS assumes that the system’s inventory never deteriorates.
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However, in real situations, system inventories often lose their quality over time and after a certain

time (deterministic or random) they become unsuitable for use. Such systems are called systems with

perishable inventory and have been studied in detail in numerous works, see, for example, [8–16].

Note that inventory damage can occur instantly as a result of some accidents, like power outage,

equipment failures, staff negligence, etc. A sequence of accidents can be considered as a flow of

destructive customers (d-customers).

Note that QIS models with d-customers have been hardly studied, although, as indicated above,

they are accurate models of systems in real life. In papers [17–20], it was assumed that upon arrival of

d-customers, the inventory level was instantly reduced only by one. However, there are many realistic

QISs in which upon arrival of d-customers all items damage together. Below this type of systems is

called QISs with catastrophes in warehouse. It is necessary to distinguish between models of QIS with

catastrophes in the warehouse and models of QIS with common lifetime (e.g., foods with the same

expiry date, medicines manufactured with the same expiry date and so on), see [21–24]. In models of

QISs with common lifetime, it is assumed that, at any given time, all items in the warehouse have the

same age; in other words, it is considered that all items of inventory arrived as a result of execution of

one batch of orders. However, in the model of QIS with catastrophes in the warehouse, this assumption

is not required.

Note that similar models of QS (but not QIS) with catastrophes are widely investigated in

available literature. In lieu of reviewing work related to models of QS with catastrophes, we highlight

representative papers [25–31] and refer readers to their reference lists. In QS a disaster events

immediately wipe out the system in that all customers waiting in the queue as well as the ones

getting service are removed from the system.

To increase the adequacy of the QIS model under study to real situations, we also take into account

the possibility of negative customers (n-customers) arriving to the service station. Negative customer

can be interpreted as customer that agitate c-customers in the system so that they do not buy the

inventory in that system. In other words, n-customers do not require the inventory, but upon arrival

they force one c-customer out of the system, i.e. they can be considered as d-customers in the service

station of QIS.

One of the main shortcomings of the known works devoted to QIS is that they analyze models

with either backorders or lost sales, i.e. QIS models that simultaneously use both backorders and lost

sales are practically not considered. However, in realistic QIS an arrived c-customer either join the

queue (backorder) or lost the system without inventory (lost sale) if upon its arrival an inventory level

is zero, i.e. hybrid sale rule is frequently used in realistic QISs. Regardless of popularity, models of

QISs with hybrid sales are poorly understood due to their complexity.

The model of single-server perishable QIS (without d-customers) with finite waiting room for

c-customers under (s, Q), Q = S − s > s + 1, replenishment policy for the first time was considered in

[32]. It was assumed that both types of c-customers and n-customers arrive according to a Markovian

arrival process (MAP) and the service time of c-customers, lead time and life time of each item have

exponential distributions with finite means; a n-customer at an arrival epoch removes random number

of waiting c-customers. The joint probability distribution of the number of c-customers in the system

and the inventory level is obtained and key performance measures of the system are calculated. Similar

double sources model of QIS was considered in a recent paper [33].

The motivation for this study is that models of QIS with warehouse catastrophes under realistic

assumptions have been practically unstudied. To our best knowledge, only in recent paper [34]

assuming the all kind of customers are arrived according to an independent Poisson processes and all

other underlying random variables to be exponentially distributed (Poisson/exponential assumptions),

authors study the such kind of models in steady-state under various replenishment policies. This

paper is a continuation of the research begun in [34] under more realistic assumptions related to

system operation, i.e. here we assume that c-customers arrive according to MAP, c-customers

and n-customers arrives according to an independent Poisson processes, the service times to be
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of phase-type distribution (PH-distribution), and lead times to be exponentially distributed. Under

these assumptions we use matrix-analytic methods to study the QISs models with catastrophes in

warehouse in steady-state under two replenishment policies: (s, S) and (s, Q) policies.

More specifically, the main differences between our model and the model considered in known

works are as follows: (i) we consider model of QISs with catastrophes in warehouse; (ii) the model

with infinite queue for c-customers is investigated; (iii) service time of c-customers have phase time

(PH) distribution; (iv) only c-customers represents MAP flow; (v) hybrid sale rule is used, i.e. some

customers may join the queue (backorder scheme) or be lost (lose sale scheme) according to the

Bernoulli scheme if the inventory level is zero at the time of their arrival.

The paper is organized as follows. In Section 2 the proposed queueing-inventory system is

thoroughly described. Section 3 demonstrates the construction of the generator matrices for the

underlying processes and provides the steady-state analysis of the systems. That is, Subsection 3.1

includes matrices and analysis for the model-1 under (s, S)-policy, and Subsection 3.2 includes ones for

the model-2 under (s, Q)-policy. Expressions for various essential performance measures to assess the

both system’s efficiency are formulated in Section 4. Section 5 presents numerical analysis to highlight

separately the qualitative behaviour of the queueing-inventory system under each inventory policy;

the effect of the system parameters on the performance measures under various arrival process and

service time distribution in Subsection 5.1 and optimization study for the each inventory policy in

Subsection 5.2. Finally, concluding remarks are given in Section 6.

At this point, we define some notation for use in sequel. e is a unit column vector; ej is a unit

column vector is of dimension j; ej(i) is a unit column vector with 1 in the ith position and 0 elsewhere;

and Ik is an identity matrix of order k. The symbols ⊗ and ⊕ represent the Kronecker product and the

Kronecker sum, respectively. If A is a matrix of order m × n and if B is a matrix of order p × q, then the

Kronecker product of the two matrices is given by A ⊗ B, a matrix of order mp × nq; the Kronecker

sum of two square matrices, say, G of order g and H of h, is given by G ⊕ H = G ⊗ Ih + Ig ⊗ H, a

square matrix of order gh. The transpose notation is denoted by ′.

2. Model description

We analyze a queueing-inventory system with negative customers and catastrophes in the

warehouse as demonstrated in Figure 1.

𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷0,𝐷𝐷1 𝑚𝑚 Queue
(Infinite size)

Supplier

Served c-customer

departs.

Service process- PH(𝛽𝛽,𝑇𝑇) of order 𝑛𝑛
arrival of c-customer

i) Backorder sale scheme:

If IL=0, the c-customer joins the queue w.p. 𝜃𝜃1
ii) Lost sale scheme:

If IL=0, the c-customer leaves the system unserved w.p. 𝜃𝜃2

arrival of n-customer (Poisson with 𝜆𝜆−)

i)  If QL>0, one c-customer is pushed out from the queue.

ii)  If QL=0 and the server is busy, the c-customer in the server is pushed out.

iii) If no customer in the system, n-customer does not affect.

Catastrophes

(Poisson with 𝜅𝜅)

Damaging of 

all inventory

Replenishment

with exp(η)
Inventory:𝑠𝑠, 𝑆𝑆 -policy / 𝑠𝑠,𝑄𝑄 -policy

order

Figure 1. Block diagram of the QIS with negative customer and catastrophe in warehouse.

• The c-customers (consumer customers) arrive in the system according to Markovian arrival

process (MAP) with representation (D0, D1)m. The underlying Markov chain of the MAP is

governed by the matrix D (= D0 + D1). Such that, the matrix D0 denotes the transition rates

without arrival while the matrix D1 denotes the transition rates with arrival. So, the arrival rate of

c-customers is given by λ+ = δD1e where δ is the stationary probability vector of the generator

matrix D and it is satisfied

δD = 0, δe = 1. (1)
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For further details on MAP and their usefulness in QIS modelling, the reader may refer to [35–40].
• The service times of the c-customers follow phase-type distribution with representation (β, T)n

where β is the initial probability vector, βe = 1, T is an infinitesimal generator matrix holding the

transition rates among the n transient states, and T
0 is a column vector contains the absorption

rates into state 0 from the transient states. It is clear that Te + T
0 = 0. The phase-type distribution

has the service rate µ = 1/[β(−T)−1
e].

• The system also receives n-customers (negative customers) that the arrivals occur according to

Poisson process with rate λ−. When a n-customer arrives in the system, there are three possible

cases; (i) if there is least one c-customer in the queue (QL > 0) at the time an n-customer arrives,

then only the c-customer is pushed out from the queue (i.e., the servicing of the c-customer in

the server continues), (ii) if the queue has no c-customer (QL = 0) and the server is busy with a

c-customer, then the c-customer in the server is forced out of the system. However in this case, the

inventory level does not change, since it is assumed that stocks are released after the completion

of servicing a c-customer and (iii) the received n-customer does not affect the operation of the

system if there are no c-customers in the system (in the queue and in the server).
• Hybrid sales scheme is used in the system. When a c-customer arrives in the system, if the

inventory level is zero (IL = 0), then the c-customer either joins the queue of infinite capacity

with probability θ1 (called backorder sale scheme), or leaves the system unserved with probability

θ2 (called lost sale scheme). Note that θ1 + θ2 = 1. If th inventory level occurs to be zero

with completion servicing of a c-customer, the c-customer in the queue (if any) waits for a

replenishment.
• In the warehouse part of the system, catastrophic events can occur according to Poisson process

with parameter κ. At the moment of arrival of such an event, all the items in the system are

instantly destroyed. As a result of the catastrophes, even the item, which is at the status of

release to the c-customer, is destroyed. The c-customer whose service was interrupted due to a

catastrophe is returned to the queue. We can say that the catastrophe only destroys the items of

the system and does not force c-customers out of the system. If the inventory level is zero, then

the disaster does not affect the operation of the system warehouse.
• Two inventory replenishment policies are considered in this study. That is, as (s, S)-type policy

for the Model-1 and an (s, Q)-type policy for the Model-2. The lead time of an order follows

exponential distribution with parameter η for both replenishment policies. In a (s, S)-type policy

(sometimes this policy is called "Up to S"), when the inventory level drops to the reorder point

s, 0 ≤ s < S, an order is placed for replenishment and upon replenishment the inventory

level becomes S. This policy states that the replenishment quantity varies in order to fill the

maximum capacity of the inventory when the reorder is placed. In a (s, Q)-type policy, when the

inventory level drops to the reorder point s, s < S
2 , an order quantity of a Q = S − s is placed for

replenishment and upon replenishment the inventory level becomes sum of the current items in

the inventory and order quantity. This policy states that the replenishment quantity is always

fixed.

3. The steady-state analysis

In this section, the steady-state analysis of the queueing-inventory model described in Section 2

is performed. That is, we discuss Model-1 with (s, S)-type replenishmet policy in Subsection 3.1 and

Model-2 with (s, Q)-type replenishmet policy in Subsection 3.2.

Let K(t), I(t), J1(t) and J2(t) denote, respectively, the number of c-customers in the system,

the inventory level, the phase of the service and the phase of the arrival, at time t. The process

{(K(t), I(t), J1(t), J2(t)), t ≥ 0} is a continuous-time Markov chain (CTMC) and the state space in the

lexicographical ordering is given by

Ω = {(0, i, j2) : 0 ≤ i ≤ S, j2 = 1, ..., m}
⋃

{(k, i, j1, j2) : k > 0, 0 ≤ i ≤ S, j1 = 1, ..., n, j2 = 1, ..., m}.
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The level {(0, i, j2) : 0 ≤ i ≤ S, j2 = 1, ..., m} of dimension m(S + 1) corresponds to the case when

there are no c-customers in the system and the inventory level is i. The arrival process is in one of m

phases. The level {(k, i, j1, j2) : k > 0, 0 ≤ i ≤ S, j1 = 1, ..., n, j2 = 1, ..., m} of dimension mn(S + 1)

corresponds to the case when there are k c-customers in the system and the inventory level is i. The

service process and the arrival process are in one of n phases and in one of m phases, respectively.

3.1. Model-1 with (s, S)-type replenishment policy

The infinitesimal generator matrix of the Markov chain governing the queueing-inventory system

under (s, S)-type policy has a block-tridiagonal matrix structure and is given by

G =

















B0 A0

C0 B A

C B A

C B A

. . .
. . .

. . .

















. (2)

The matrices A0 and A in the upper diagonal of the matrix G have dimensions m(S + 1)× mn(S + 1)

and mn(S + 1)× mn(S + 1), respectively.

A0 =













β ⊗ D1θ1

β ⊗ D1

. . .

β ⊗ D1













, A =













In ⊗ D1θ1

In ⊗ D1

. . .

In ⊗ D1













.

The matrices C0 and C in the lower diagonal of the matrix G have dimensions mn(S + 1)× m(S + 1)

and mn(S + 1)× mn(S + 1), respectively.

C0 =













(en ⊗ Im)λ−

T
0 ⊗ Im (en ⊗ Im)λ−

. . .
. . .

T
0 ⊗ Im (en ⊗ Im)λ−













,

C =

















Iλ−

T
0β ⊗ Im Iλ−

T
0β ⊗ Im Iλ−

. . .
. . .

T
0β ⊗ Im Iλ−

















.

The matrices B0 and B in the main diagonal of the matrix G have dimensions m(S + 1)× m(S + 1)

and mn(S + 1)× mn(S + 1), respectively.

B0 =



























D0θ1 − ηI ηI

κI D0 − (η + κ)I ηI

...
. . .

...

κI D0 − (η + κ)I ηI

κI D0 − κI

...
. . .

κI D0 − κI



























,
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B =



























b0 ηI

κI b1 ηI

...
. . .

...

κI b1 ηI

κI b2
...

. . .

κI b2



























where

b0 = In ⊗ D0θ1 − (η + λ−)I, b1 = (T ⊕ D0)− (η + κ + λ−)I and b2 = (T ⊕ D0)− (κ + λ−)I

3.1.1. Stability condition

Let π = (π0, π1, π2, · · · , πS) be the steady-state probability vector of the finite generator F =

A + B + C. The probability vector πi of dimension mn means that the inventory level is i, the service

process and the arrival process are in one of n phases and in one of m phases, respectively. That is, π

satisfies

πF = 0 and πe = 1. (3)

The steady-state equations in (3) can be rewritten as

π0[(In ⊗ D1θ1) + (In ⊗ D0θ1)− ηI] + π1[(T
0β ⊗ Im) + κI] + [π2 + · · ·+ πS] + κI = 0,

πi [(In ⊗ D1) + (T ⊕ D0)− (κ + η)I] + πi+1(T
0β ⊗ Im) = 0, 1 ≤ i ≤ s,

πi [(In ⊗ D1) + (T ⊕ D0)− κI] + πi+1(T
0β ⊗ Im) = 0, s + 1 ≤ i ≤ S − 1,

[π0 + · · ·+ πs]ηI + πS[(In ⊗ D1) + (T ⊕ D0)− κI] = 0,

(4)

with the normalizing condition
S

∑
i=0

πie = 1.

Theorem 1. The defined queuing-inventory system under an (s, S)-policy is stable if and only if the following

condition is satisfied:

ρ =
(1 − θ2π0e)λ+

µ(1 − π0e) + λ−
< 1. (5)

Proof of Theorem 1. The defined queueing-inventory system is a QBD process thus it will be stable if

and only if πAe < πCe (See in [35]). That is,

[

θ1π0 +
S

∑
j=1

π j

]

(In ⊗ D1)e < λ− +
S

∑
j=1

π j(T
0β ⊗ Im)e. (6)

Adding the equations given in (4), the following equation is obtained

θ1π0(In ⊗ D) +
S

∑
j=1

π j

[

(T + T
0β)⊕ D

]

= 0. (7)

Post-multiplying the equation in (7) by (en ⊗ Im) and using the arrival rate of the c-customers λ+ =

δD1e and the normalizing condition in (4), the left-side of the inequality in (6) is given

[

θ1π0 +
S

∑
j=1

π j

]

(In ⊗ D1)e =
[

θ1π0e +
S

∑
j=1

π je

]

λ+ = (1 − θ2π0e)λ+.

Post-multiplying the equation in (7) by (In ⊗ em) and using the service rate µ = 1/[β(−T)−1
e] and the

normalizing condition in (4), we get
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S

∑
j=1

π j(T
0β ⊗ Im)e = µ(1 − π0e).

The right-side of the inequality in (6) is obtained. So, the proof of Theorem is completed.

The probability vector π0 in (5) can be calculated by solving the equations given in (4).

Not: In the paper [34], the authors studied the queueing-inventory system in which we have

discussed in here by considering Poisson arrival and exponentially distributed service times. They

obtained the closed-form solution of the probabilities for the special case. We suggest the paper in [34]

to see the stability condition of the system under Poisson arrival and exponential service.

3.1.2. The steady-state probability vector of the matrix G

Let x = (x(0), x(1), x(2), · · · ) denote the steady-state probability vector of the generator matrix

G in (2). That is, x satisfies

x G = 0 and x e = 1. (8)

m(S + 1) dimensional row vector x(0) is further partitioned into vectors represented as

x(0) = [x(0, 0), x(0, 1), · · · , x(0, S)] and the dimension of the each vector is m. The vector x(0, i)

gives the steady-state probability that there are no c-customers in the system, the inventory level is

i, 0 ≤ i ≤ S, and the arrival process is in one of m phases.

mn(S + 1) dimensional row vector x(k), k ≥ 1, is further partitioned into vectors represented

as x(k) = [x(k, 0), x(k, 1), · · · , x(k, S)] and the dimension of the each vector is mn. The vector x(k, i)

gives the steady-state probability that there are k c-customers in the system, the inventory level is

i, 0 ≤ i ≤ S, and the service process and the arrival process are in one of n phases and m phases,

respectively.

Under the stability condition given in (5) the steady-state probability vector x is obtained (See

[35]) as

x(k) = x(1)Rk−1, k > 1, (9)

where the matrix R is the minimal nonnegative solution to the following matrix quadratic equation

R
2
C + RB + A = 0, (10)

and the vector x(0) and x(1) are obtained by solving

x(0)B0 + x(1)C0 = 0,

x(0)A0 + x(1)[B + RC] = 0,
(11)

subject to the normalizing condition

x(0)e + x(1)(I − R)−1
e = 1. (12)

3.2. Model-2 with (s, Q)-type replenishment policy

The infinitesimal generator matrix of the Markov chain governing the queueing-inventory system

under (s, Q)-type policy has a block-tridiagonal matrix structure and is given by
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G̃ =

















B̃0 A0

C0 B̃ A

C B̃ A

C B̃ A

. . .
. . .

. . .

















. (13)

The matrices A0, A, C0 and C are the same in the both generator matrices in (2) and (13).

Considering a different replenishment policy only the modification occurs in the main diagonal. The

matrices B̃0 and B̃ in the main diagonal of the matrix G̃ are given by

B̃0 =



























D0θ1 − ηI ηI

κI D0 − (η + κ)I ηI

...
. . .

. . .

κI D0 − (η + κ)I ηI

κI D0 − κI

...
. . .

κI D0 − κI



























,

B̃ =



























b0 ηI

κI b1 ηI

...
. . .

. . .

κI b1 ηI

κI b2
...

. . .

κI b2



























where

b0 = In ⊗ D0θ1 − (η + λ−)I, b1 = (T ⊕ D0)− (η + κ + λ−)I and b2 = (T ⊕ D0)− (κ + λ−)I

3.2.1. Stability condition

Let π̃ = (π̃0, π̃1, π̃2, · · · , π̃S) be the steady-state probability vector of the finite generator F̃ =

A + B̃ + C. The probability vector π̃i of dimension mn means that the inventory level is i, the service

process and the arrival process are in one of n phases and in one of m phases, respectively. That is, π

satisfies

π̃F̃ = 0 and π̃e = 1. (14)

The steady-state equations in (14) can be rewritten as

π̃0[(In ⊗ D1θ1) + (In ⊗ D0θ1)− ηI] + π̃1[(T
0β ⊗ Im) + κI] + [π̃2 + · · ·+ π̃S] + κI = 0,

π̃i [(In ⊗ D1) + (T ⊕ D0)− (κ + η)I] + π̃i+1(T
0β ⊗ Im) = 0, 1 ≤ i ≤ s,

π̃i [(In ⊗ D1) + (T ⊕ D0)− κI] + π̃i+1(T
0β ⊗ Im) = 0, s + 1 ≤ i ≤ Q − 1,

π̃i−QηI + π̃i [(In ⊗ D1) + (T ⊕ D0)− κI] + π̃i+1(T
0β ⊗ Im) = 0, Q ≤ i ≤ S − 1,

π̃sηI + π̃S[(In ⊗ D1) + (T ⊕ D0)− κI] = 0,

(15)

with the normalizing condition
S

∑
i=0

π̃ie = 1.

The system is a QBD process thus it will be stable if and only if π̃Ae < π̃Ce. The stability condition

is given in the equation (16). The proof of Theorem 2 can be performed similar to Theorem 1 in the

equation (5).
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Theorem 2. The defined queuing-inventory system under an (s, Q)-policy is stable if and only if the following

condition is satisfied:

ρ̃ =
(1 − θ2π̃0e)λ+

µ(1 − π̃0e) + λ−
< 1. (16)

The probability vector π̃0 can be calculated by solving the equations given in (15).

3.2.2. The steady-state probability vector of the matrix G̃

Let x̃ = (x̃(0), x̃(1), x̃(2), · · · ) denote the steady-state probability vector of the generator matrix

G̃ in (13). That is, x̃ satisfies

x̃ G̃ = 0 and x̃ e = 1. (17)

m(S + 1) dimensional row vector x̃(0) is further partitioned into vectors represented as

x̃(0) = [x̃(0, 0), x̃(0, 1), · · · , x̃(0, S)] and the dimension of the each vector is m. The vector x̃(0, i)

gives the steady-state probability that there are no c-customers in the system, the inventory level is

i, 0 ≤ i ≤ S, and the arrival process is in one of m phases.

mn(S + 1) dimensional row vector x̃(k), k ≥ 1, is further partitioned into vectors represented

as x̃(k) = [x̃(k, 0), x̃(k, 1), · · · , x̃(k, S)] and the dimension of the each vector is mn. The vector x̃(k, i)

gives the steady-state probability that there are k c-customers in the system, the inventory level is

i, 0 ≤ i ≤ S, and the service process and the arrival process are in one of n phases and m phases,

respectively.

The steady-state probability vector x̃ is obtained by using the matrix-geometric solution given in

(9)-(12). Recall that the matrices B̃0 and B̃ are used for this solution.

4. Performance measures of Model-1 and Model-2

In this section, some performance measures of the queueing-inventory system under (s, S)-type

and (s, Q)-type policies are listed. The following first seven items are valid for the both models. But,

we recall that one should use the probabilities x and x̃ for the (s, S)-type policy (Model-1) and for the

(s, Q)-type policy (Model-2), respectively. On the other hand, the last item (item 8) includes different

formula for each model.

1. The probability that there is no c-customer in the system

Pidle = x(0)e.

2. The mean number of c-customers in the system

E(N) =
∞

∑
k=1

k x(k)e = x(1)(I − R)−2
e.

3. The mean loss rate of c-customers because of no inventory

EI(LR) = λ+θ2

[

x(0, 0)em +
∞

∑
k=1

x(k, 0)emn

]

.

4. The mean loss rate of c-customers because of n-customer

EN(LR) = λ−
[

1 − x(0)e
]

.
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5. The mean loss rate of c-customers

E(LR) = EI(LR) + EN(LR).

6. The mean number of items in the inventory

E(I) =
S

∑
i=1

i x(0, i)em +
∞

∑
k=1

S

∑
i=1

i x(k, i)emn.

7. The mean reorder rate

E(RR) = µ
∞

∑
k=1

i x(k, s + 1)emn + κ
[ S

∑
i=1

x(0, i)em +
∞

∑
k=1

S

∑
i=1

x(k, i)emn

]

.

8. The mean order size

E1(OS) =
S

∑
i=S−s

i x(0, S − i)em +
∞

∑
k=1

S

∑
i=S−s

i x(k, S − i)emn.

E2(OS) = Q
[ s

∑
i=0

x̃(0, i)em +
∞

∑
k=1

s

∑
i=0

x̃(k, i)emn

]

.

5. Numerical study

For the arrival process, the following five sets of values for D0 and D1 are considered. The

arrival processes have the same mean of 1 but each one of them is qualitatively different. The values

of the standard deviation of the inter-arrival times of the arrival processes with respect to ERLA

are, respectively, 1, 1.41421, 3.17451, 1.99336, and 1.99336. The MAP processes are normalized to

have a specific arrival rate λ+ as given in [41]. The arrival processes labeled MNCA and MPCA

have negative and positive correlation for two successive inter-arrival times with values -0.4889 and

0.4889, respectively, whereas the first three arrival processes have zero correlation for two successive

inter-arrival times.

Erlang distribution (ERLA):

D0 =

(

−2 2

0 −2

)

, D1 =

(

0 0

2 0

)

.

Exponential distribution (EXPA):

D0 =
(

−1
)

, D1 =
(

1
)

.

Hyperexponential distribution (HEXA):

D0 =

(

−1.9 0

0 −0.19

)

, D1 =

(

1.71 0.19

0.171 0.019

)

.

MAP with negative correlation (MNCA):

D0 =







−1.00222 1.00222 0

0 −1.00222 0

0 0 −225.75






, D1 =







0 0 0

0.01002 0 0.9922

223.4925 0 2.2575






.

MAP with positive correlation (MPCA):
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D0 =







−1.00222 1.00222 0

0 −1.00222 0

0 0 −225.75






, D1 =







0 0 0

0.9922 0 0.01002

2.2575 0 223.4925






.

For the service times, we consider three phase-type distributions with parameter (β, T). The

phase-type distributions have the same mean of 1 but each one of them is qualitatively different. The

values of the standard deviation of the distributions are, respectively, 0.70711, 1, and 2.24472. The

distributions are normalized at a specific value for the service rate µ.

Erlang distribution (ERLS):

β =
(

1, 0
)

, T =

(

−2 2

0 −2

)

.

Exponential distribution (EXPS):

β =
(

1
)

, T =
(

−1
)

.

Hyperexponential distribution (HEXS):

β =
(

0.9, 0.1
)

, T =

(

−1.9 0

0 −0.19

)

.

5.1. The Effect of parameters on performance measures

We discuss the behavior of the performance measures under various the service time distributions

and the arrival processes for the Model-1 with (s, S)-policy and Model-2 with (s, Q)-policy in

Tables 2–13. Towards this end, the reorder point is fixed by s = 3 and the maximum inventory

level is fixed by S = 10. The values of the other parameters can be seen in Table 1.

Table 1. The values of the parameters in Tables 2–13

As it is varied It is fixed

the arrival rate of c-customers: λ+ λ− = 1, µ = 8, η = 1, κ = 1, θ1 = 0.6

the arrival rate of n-customers: λ− λ+ = 5, µ = 8, η = 1, κ = 1, θ1 = 0.6

the service rate of c-customers: µ λ+ = 5, λ− = 1, η = 1, κ = 1, θ1 = 0.6

the rate of the catastrophic events: κ λ+ = 5, λ− = 1, µ = 8, η = 1, θ1 = 0.6

the probability that c-customer joins the queue when the
inventory level is zero: θ1

λ+ = 5, λ− = 1, µ = 8, η = 1, κ = 1

Firstly, we investigate the effects of the rates λ+, λ−, µ and κ on the mean number of c-customers

in the system E(N) under the various scenarios in Table 2 for Model-1 with (s, S)-policy and in Table 3

for Model-2 with (s, Q)-policy.

As expected, the mean number of c-customers in the system increases with increasing values of

λ+ in Table 2. When looking only at ERLA arrivals, it is seen that the variability in PH-distribution is

important. Especially in high traffic intensity situations. For example, at λ+ = 5 (high intensity), the

values of E(N) are 7.559, 8.458 and 16.444 for ERLS, EXPS, and HEXS, respectively, and at λ+ = 4.2

(low intensity), the values occur 3.239, 3.490 and 5.611 for ERLS, EXPS, and HEXS, respectively. Similar

comment can be made when HEXA arrivals occur. On the other hand, variability in MAP affects the

values of E(N) more compared to the variability in PH-distribution. Let’s look ERLS services. The

values of E(N) are 3.239 for ERLA and 7.730 for HEXA at λ+ = 4.2; are 7.559 for ERLA and 20.759 for
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HEXA at λ+ = 5. Also, we can say that the values of E(N) dramatically increases in the case of HEXS

(service with high variability) compared to the other PH-distributions.

As values of κ increase, the values of E(N) increase in Table 2. Comments similar to those above

can be made regarding the effect of variability in MAP process and PH-distribution.

In Table 2, the mean number of c-customers in the system decreases with increasing the arrival

rate of n-customers λ− or the service rate of c-customers µ as expected. The effect of variability in MAP

process and PH-distribution on the values of E(N) is seen as µ (or λ−) increases. Again, variability in

the MAP process (variability in the inter-arrival times in other words) appears to be more significant

compared to variability in PH-distribution, especially when the system has high traffic intensity (i.e.,

see the cases of µ = 7.6 or λ− = 1).

All comments made for Table 2 can also be made for Table 3. Compared to the values in Table 2, it

can be seen that the values of E(N) in Table 3 are higher, especially at high traffic intensity. In addition,

we can say that the variability in MAP process or PH-distribution is more effective when the inventory

policy is (s, Q). That is, as the system becomes denser, the increment or decrement becomes faster.

Table 2. E(N) under (s, S)-policy

ERLA HEXA

Values of the parameters ERLS EXPS HEXS ERLS EXPS HEXS

4.2 3.239 3.490 5.611 7.730 8.133 10.894
4.4 3.848 4.179 6.994 9.530 10.046 13.654

λ+ 4.6 4.663 5.106 8.925 11.967 12.646 17.501
4.8 5.811 6.426 11.789 15.438 16.373 23.198
5 7.559 8.458 16.444 20.759 22.140 32.449

0.4 3.401 3.707 6.344 9.298 9.772 13.120
0.6 4.384 4.808 8.496 11.889 12.534 17.199

κ 0.8 5.686 6.291 11.589 15.463 16.380 23.117
1 7.559 8.458 16.444 20.759 22.140 32.449

1.2 10.577 12.023 25.194 29.468 31.767 49.303

7.6 9.620 10.940 22.927 27.554 29.633 45.447
8 7.559 8.458 16.444 20.759 22.140 32.449

µ 8.4 6.323 6.989 12.837 16.701 17.717 25.201
8.8 5.499 6.018 10.549 14.009 14.802 20.592
9.2 4.909 5.329 8.975 12.095 12.741 17.411

1 7.559 8.458 16.444 20.759 22.140 32.449
1.4 4.317 4.701 7.931 11.502 12.095 16.254

λ− 1.8 2.957 3.159 4.778 7.644 7.979 10.175
2.2 2.216 2.331 3.200 5.555 5.767 7.059
2.6 1.753 1.822 2.296 4.262 4.405 5.205
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Table 3. E(N) under (s, Q)-policy

ERLA HEXA

Values of the parameters ERLS EXPS HEXS ERLS EXPS HEXS

4.2 3.701 4.001 6.579 9.563 10.081 13.596
4.4 4.560 4.976 8.584 12.213 12.924 17.831

λ+ 4.6 5.811 6.412 11.701 16.100 17.133 24.402
4.8 7.803 8.737 17.165 22.329 23.979 35.903
5 11.486 13.156 29.116 33.888 37.021 61.022

0.4 4.462 4.861 8.427 13.026 13.702 18.572
0.6 5.900 6.499 11.895 17.145 18.173 25.651

κ 0.8 7.997 8.947 17.641 23.348 25.032 37.437
1 11.486 13.156 29.116 33.888 37.021 61.022

1.2 18.705 22.381 63.549 55.978 63.556 131.820

7.6 16.591 19.688 52.949 50.813 57.091 111.116
8 11.486 13.156 29.116 33.888 37.021 61.022

µ 8.4 8.971 10.066 20.110 25.573 27.542 42.060
8.8 7.472 8.265 15.396 20.636 22.028 32.114
9.2 6.477 7.086 12.507 17.370 18.426 26.003

1 11.486 13.156 29.116 33.888 37.021 61.022
1.4 5.187 5.675 9.862 14.842 15.683 21.456

λ− 1.8 3.270 3.498 5.346 9.048 9.451 12.058
2.2 2.354 2.476 3.412 6.281 6.516 7.939
2.6 1.822 1.892 2.386 4.682 4.833 5.677

Secondly, we discuss the effects of the rates λ+, λ−, κ and the probability θ1 on the mean number

of items in the inventory E(I) under the various scenarios in Table 4 for Model-1 with (s, S)-policy and

in Table 5 for Model-2 with (s, Q)-policy.

Table 4. E(I) under (s, S)-policy

ERLA HEXA MPCA

Values of the parameters ERLS HEXS ERLS HEXS ERLS HEXS

4 3.266 3.324 3.345 3.408 3.334 3.397
4.2 3.209 3.275 3.280 3.350 3.268 3.338

λ+ 4.4 3.154 3.228 3.217 3.294 3.204 3.281
4.6 3.099 3.182 3.154 3.238 3.141 3.226
4.8 3.046 3.138 3.092 3.184 3.080 3.172

0.2 4.000 4.088 4.140 4.227 4.054 4.147
0.4 3.696 3.797 3.807 3.907 3.747 3.851

κ 0.6 3.431 3.537 3.513 3.616 3.475 3.582
0.8 3.199 3.303 3.255 3.358 3.234 3.339
1 2.994 3.094 3.030 3.130 3.020 3.120

0.1 3.655 3.665 3.774 3.795 3.767 3.796
0.3 3.500 3.526 3.606 3.643 3.598 3.639

θ1 0.5 3.343 3.390 3.432 3.487 3.422 3.478
0.7 3.191 3.259 3.256 3.328 3.245 3.316
0.9 3.039 3.127 3.077 3.165 3.068 3.155

1 2.994 3.094 3.030 3.130 3.020 3.120
1.4 3.108 3.184 3.159 3.242 3.150 3.231

λ− 1.8 3.212 3.260 3.270 3.336 3.266 3.328
2.2 3.306 3.325 3.368 3.416 3.368 3.412
2.6 3.391 3.380 3.453 3.483 3.459 3.486
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Table 5. E(I) under (s, Q)-policy

ERLA HEXA MPCA

Values of the parameters ERLS HEXS ERLS HEXS ERLS HEXS

4 2.266 2.289 2.275 2.303 2.250 2.277
4.2 2.214 2.240 2.221 2.252 2.200 2.231

λ+ 4.4 2.162 2.192 2.167 2.201 2.150 2.184
4.6 2.109 2.143 2.113 2.150 2.101 2.138
4.8 2.057 2.095 2.060 2.100 2.051 2.091

0.2 2.949 2.984 2.976 3.015 2.960 3.000
0.4 2.634 2.671 2.648 2.689 2.633 2.675

κ 0.6 2.382 2.421 2.390 2.432 2.377 2.420
0.8 2.176 2.217 2.180 2.223 2.171 2.215
1 2.005 2.047 2.007 2.050 2.001 2.045

0.1 2.559 2.563 2.624 2.635 2.581 2.594
0.3 2.456 2.467 2.496 2.515 2.454 2.473

θ1 0.5 2.335 2.354 2.351 2.377 2.320 2.345
0.7 2.193 2.219 2.195 2.225 2.177 2.207
0.9 2.030 2.059 2.027 2.059 2.020 2.053

1 2.005 2.047 2.007 2.050 2.001 2.045
1.4 2.121 2.152 2.124 2.161 2.112 2.148

λ− 1.8 2.218 2.236 2.222 2.252 2.205 2.233
2.2 2.301 2.303 2.306 2.327 2.285 2.303
2.6 2.371 2.355 2.378 2.389 2.353 2.362

As the number of c-customers (by λ+ or θ1) or catastrophic events (by κ) in the system increase,

the mean inventory level in the system decreases. As expected, the values of E(I) increase with the

increment of the n-customer in the system (λ−). On the other hand, the values of E(I) increase with

increasing variability (from ERLS to HEXS for PH-distribution or from ERLA to HEXA for MAP

process). Also, it is seen that when the system is dense, the effect of variation in arrival process is

greater than the effect of variation in service times in Table 4 and Table 5. We note the values in Table 5

(at (s, Q)-policy) are slightly lower.

Thirdly, we examine the effects of the rates λ+, λ−, κ and the probability θ1 on the mean reorder

rate in Tables 6–7 and the mean order size in Tables 8–9 under the various scenarios.

As seen in Tables 4–5, the decrease in the mean number of items in the inventory occurs with

the increase in the number of customers in the system (by increasing the λ+ and θ1 rates) or with the

increase of catastrophes events (by increasing the κ rate). The more customers there are, the more

item in the inventory is needed. Therefore, it is seen that by increasing the values of λ+ (by increasing

the values of κ or θ1), the values of the mean reorder rate increase in Tables 6–7 and the values of

the mean order size in Tables 8–9. On the other hand, it is obvious that as n-customers come more

frequently, the number of c-customers in the system will decrease (i.e., less item in the inventory will

be needed). For the system under (s, S)-policy, it is seen that the values of E(RR) and E1(OS) decrease

with increasing λ− in Table 6 and Table 8, respectively. Similarly, the values of E(RR) and E2(OS)

decrease with increasing λ− in Table 7 and Table 9, respectively, for the system under (s, Q)-policy.

In all four parts (parts related to λ+, κ, θ1, λ− ) of Table 6 or Table 7, the values of the mean

reorder rate decrease with increasing the variability in PH-distribution (ERLS and HEXS). On the

other hand, with increasing the variability in MAP (ERLA and HEXA), the values of the mean reorder

rate decrease in some parts (i.e., part κ in Table 6) and first increase and then decrease in some parts

(i.e., part λ− in Table 6). Similarly, when looking at the four parts of Table 8 or Table 9, it is seen that

with the increase in the variability of PH-distribution, the values of the mean order size increase in

some parts (i.e., part θ1 in Table 8), decrease in some parts (i.e., part κ in Table 9), and first increase and

then decrease in some parts (i.e., part λ+ in Table 9). That is, we cannot talk about a specific behavior
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regarding the effect of variation. Tables 8–9 also shows an irregular behavior with increasing variation

in MAP.

Table 6. E(RR) under (s, S)-policy

ERLA HEXA MPCA

Values of the parameters ERLS HEXS ERLS HEXS ERLS HEXS

4 0.642 0.607 0.646 0.609 0.633 0.598
4.2 0.653 0.615 0.655 0.615 0.643 0.605

λ+ 4.4 0.663 0.621 0.663 0.620 0.653 0.612
4.6 0.673 0.628 0.672 0.626 0.663 0.619
4.8 0.682 0.634 0.680 0.632 0.673 0.626

0.2 0.511 0.472 0.496 0.466 0.496 0.464
0.4 0.572 0.526 0.561 0.521 0.558 0.516

κ 0.6 0.620 0.570 0.613 0.566 0.607 0.561
0.8 0.659 0.608 0.655 0.605 0.649 0.600
1 0.691 0.639 0.689 0.637 0.683 0.633

0.1 0.587 0.566 0.594 0.571 0.581 0.559
0.3 0.604 0.580 0.613 0.585 0.599 0.573

θ1 0.5 0.629 0.598 0.634 0.601 0.621 0.589
0.7 0.656 0.617 0.658 0.617 0.646 0.607
0.9 0.682 0.635 0.682 0.634 0.675 0.628

1 0.691 0.639 0.689 0.637 0.683 0.633
1.4 0.672 0.627 0.671 0.625 0.663 0.618

λ− 1.8 0.656 0.614 0.656 0.615 0.646 0.606
2.2 0.640 0.603 0.644 0.606 0.632 0.596
2.6 0.627 0.593 0.632 0.598 0.620 0.587

Table 7. E(RR) under (s, Q)-policy

ERLA HEXA MPCA

Values of the parameters ERLS HEXS ERLS HEXS ERLS HEXS

4 0.777 0.699 0.762 0.687 0.752 0.678
4.2 0.788 0.705 0.774 0.694 0.766 0.687

λ+ 4.4 0.798 0.711 0.785 0.701 0.779 0.695
4.6 0.807 0.716 0.796 0.708 0.792 0.704
4.8 0.816 0.721 0.807 0.714 0.804 0.711

0.2 0.623 0.576 0.608 0.569 0.610 0.568
0.4 0.692 0.627 0.679 0.619 0.679 0.618

κ 0.6 0.747 0.667 0.735 0.660 0.734 0.658
0.8 0.790 0.699 0.780 0.693 0.779 0.691
1 0.825 0.725 0.817 0.720 0.816 0.719

0.1 0.697 0.646 0.684 0.636 0.666 0.619
0.3 0.729 0.668 0.714 0.656 0.698 0.640

θ1 0.5 0.762 0.690 0.746 0.677 0.733 0.665
0.7 0.792 0.708 0.779 0.698 0.771 0.691
0.9 0.820 0.723 0.814 0.719 0.811 0.717

1 0.825 0.725 0.817 0.720 0.816 0.719
1.4 0.806 0.715 0.794 0.706 0.789 0.701

λ− 1.8 0.789 0.704 0.774 0.693 0.766 0.686
2.2 0.773 0.693 0.757 0.682 0.746 0.672
2.6 0.758 0.682 0.742 0.672 0.728 0.659
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Table 8. E1(OS) under (s, S)-policy

ERLA HEXA MPCA

Values of the parameters ERLS HEXS ERLS HEXS ERLS HEXS

4 5.891 5.928 5.953 5.983 5.896 5.927
4.2 5.960 5.998 6.012 6.043 5.960 5.993

λ+ 4.4 6.028 6.066 6.071 6.103 6.025 6.058
4.6 6.095 6.133 6.130 6.163 6.090 6.125
4.8 6.161 6.200 6.188 6.222 6.155 6.191

0.2 4.852 4.828 4.797 4.772 4.795 4.767
0.4 5.267 5.257 5.247 5.234 5.222 5.210

κ 0.6 5.629 5.636 5.632 5.635 5.599 5.604
0.8 5.947 5.970 5.962 5.982 5.930 5.952
1 6.227 6.265 6.247 6.281 6.220 6.257

0.1 5.545 5.567 5.607 5.625 5.547 5.562
0.3 5.654 5.682 5.732 5.754 5.671 5.691

θ1 0.5 5.806 5.840 5.876 5.903 5.816 5.843
0.7 5.980 6.020 6.032 6.066 5.982 6.017
0.9 6.167 6.215 6.199 6.241 6.166 6.212

1 6.227 6.265 6.247 6.281 6.220 6.257
1.4 6.087 6.127 6.125 6.158 6.085 6.118

λ− 1.8 5.966 6.010 6.021 6.055 5.973 6.005
2.2 5.861 5.912 5.931 5.969 5.880 5.912
2.6 5.770 5.831 5.853 5.896 5.802 5.835

Table 9. E2(OS) under (s, Q)-policy

ERLA HEXA MPCA

Values of the parameters ERLS HEXS ERLS HEXS ERLS HEXS

4 4.605 4.611 4.613 4.614 4.573 4.574
4.2 4.666 4.669 4.671 4.670 4.637 4.637

λ+ 4.4 4.725 4.726 4.728 4.724 4.700 4.698
4.6 4.784 4.781 4.784 4.778 4.763 4.759
4.8 4.841 4.835 4.840 4.832 4.825 4.818

0.2 4.036 4.006 3.993 3.959 3.994 3.959
0.4 4.319 4.293 4.294 4.265 4.288 4.259

κ 0.6 4.548 4.527 4.535 4.511 4.524 4.501
0.8 4.738 4.722 4.732 4.714 4.720 4.704
1 4.897 4.888 4.896 4.885 4.886 4.876

0.1 4.236 4.248 4.241 4.247 4.181 4.182
0.3 4.365 4.375 4.379 4.382 4.322 4.323

θ1 0.5 4.521 4.529 4.532 4.534 4.485 4.486
0.7 4.691 4.696 4.698 4.698 4.665 4.668
0.9 4.872 4.875 4.875 4.876 4.861 4.865

1 4.897 4.888 4.896 4.885 4.886 4.876
1.4 4.771 4.770 4.773 4.766 4.750 4.745

λ− 1.8 4.659 4.671 4.668 4.668 4.634 4.634
2.2 4.562 4.589 4.579 4.586 4.536 4.542
2.6 4.476 4.519 4.501 4.518 4.452 4.464

The results in Tables 6–9 are for specific values of the parameters. The increases or decreases seen

with increasing of variability depend on the values of the parameters. So, what we can clearly say is

that the values of the mean order rate and the mean order size will definitely be affected by variability

(instead of increase or decrease with variability).
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When Table 6 and Table 7 are compared (when Table 8 and Table 9 are compared), it is seen that

the results in the system under (s, Q)-policy are larger (smaller) than the results in the system under

(s, S)-policy. Additionally, as the values of the performance measures faster increase (or decrease) with

the increase of the values of the parameters in the system under (s, Q)-policy.

Finally, we examine the effects of system parameters on the mean lost rate of c-customers in the

system. Let’s recall, c-customers can lost in the system studied in two cases; If there is no inventory at

the time the c-customer comes to the system, he does not enter the system with probability θ2 (he is

said to be lost)- this case is indicated by EI(LR) in Tables 10–11, and the arrival of n-customers to the

system causes the loss of one c-customer- this case is denoted by EN(LR) in Tables 12–13.

As the value of λ+ or κ increases, the probability that the inventory is stock-out increases. This

increases the rate at which c-customers are lost due to lack of item in the inventory. On the other hand,

as λ− increases, the probability of the inventory falling to zero decreases (as it reduces the number of

c-customers in the system), which causes the values of EI(LR) to decrease. As an interesting result,

it is seen that as θ1 probability increases, the values of EI(LR) decrease even though the number of

c-customers in the system increases. All results can be seen in Table 10 for the system under (s, S)-policy

and Table 11 for the system under (s, Q)-policy.

As expected, as long as there are c-customers in the system, c-customers will disappear as

n-customers arrive. Therefore, it can be seen in Table 12 and Table 13 that EN(LR) values increase as

the values of all parameters increase.

Table 10. EI(LR) under (s, S)-policy

ERLA HEXA MPCA

Values of the parameters ERLS HEXS ERLS HEXS ERLS HEXS

4 0.838 0.850 0.857 0.870 0.860 0.875
4.2 0.887 0.901 0.906 0.921 0.908 0.925

λ+ 4.4 0.937 0.954 0.956 0.973 0.957 0.976
4.6 0.989 1.008 1.006 1.026 1.007 1.028
4.8 1.041 1.064 1.057 1.080 1.057 1.081

0.2 0.645 0.670 0.679 0.702 0.673 0.698
0.4 0.790 0.815 0.819 0.843 0.816 0.841

κ 0.6 0.910 0.936 0.934 0.959 0.932 0.958
0.8 1.010 1.037 1.029 1.054 1.028 1.055
1 1.095 1.122 1.109 1.134 1.108 1.135

0.1 1.838 1.845 1.867 1.878 1.877 1.894
0.3 1.437 1.447 1.468 1.480 1.476 1.493

θ1 0.5 1.039 1.050 1.063 1.076 1.068 1.084
0.7 0.635 0.646 0.649 0.660 0.650 0.663
0.9 0.217 0.222 0.220 0.226 0.221 0.226

1 1.095 1.122 1.109 1.134 1.108 1.135
1.4 1.074 1.094 1.093 1.114 1.094 1.117

λ− 1.8 1.058 1.073 1.080 1.098 1.083 1.102
2.2 1.046 1.058 1.069 1.085 1.074 1.091
2.6 1.037 1.047 1.060 1.074 1.067 1.082
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Table 11. EI(LR) under (s, Q)-policy

ERLA HEXA MPCA

Values of the parameters ERLS HEXS ERLS HEXS ERLS HEXS

4 0.883 0.902 0.907 0.926 0.905 0.926
4.2 0.939 0.961 0.961 0.984 0.958 0.982

λ+ 4.4 0.996 1.022 1.017 1.042 1.013 1.040
4.6 1.055 1.085 1.073 1.102 1.070 1.100
4.8 1.115 1.149 1.130 1.163 1.127 1.161

0.2 0.772 0.808 0.809 0.843 0.799 0.836
0.4 0.906 0.943 0.936 0.971 0.928 0.965

κ 0.6 1.014 1.052 1.037 1.073 1.031 1.069
0.8 1.103 1.141 1.119 1.156 1.116 1.153
1 1.177 1.216 1.188 1.225 1.186 1.223

0.1 1.887 1.901 1.931 1.948 1.930 1.954
0.3 1.486 1.503 1.530 1.550 1.529 1.553

θ1 0.5 1.087 1.106 1.119 1.139 1.117 1.139
0.7 0.674 0.691 0.690 0.707 0.688 0.706
0.9 0.234 0.242 0.237 0.245 0.236 0.244

1 1.177 1.216 1.188 1.225 1.186 1.223
1.4 1.144 1.174 1.164 1.194 1.161 1.192

λ− 1.8 1.117 1.141 1.144 1.170 1.141 1.168
2.2 1.097 1.117 1.127 1.150 1.125 1.149
2.6 1.081 1.098 1.113 1.134 1.113 1.134

Table 12. EN(LR) under (s, S)-policy

ERLA HEXA MPCA

Values of the parameters ERLS HEXS ERLS HEXS ERLS HEXS

4 0.759 0.752 0.724 0.727 0.745 0.745
4.2 0.787 0.782 0.756 0.761 0.776 0.777

λ+ 4.4 0.815 0.813 0.788 0.794 0.806 0.809
4.6 0.843 0.843 0.819 0.827 0.836 0.840
4.8 0.871 0.873 0.851 0.860 0.865 0.871

0.2 0.743 0.736 0.747 0.748 0.756 0.755
0.4 0.790 0.787 0.783 0.788 0.796 0.798

κ 0.6 0.830 0.830 0.818 0.825 0.831 0.835
0.8 0.866 0.869 0.851 0.860 0.864 0.870
1 0.898 0.903 0.882 0.893 0.894 0.902

0.1 0.438 0.417 0.446 0.434 0.459 0.446
0.3 0.601 0.583 0.572 0.567 0.586 0.578

θ1 0.5 0.713 0.702 0.675 0.676 0.696 0.693
0.7 0.802 0.799 0.771 0.778 0.791 0.795
0.9 0.882 0.889 0.864 0.878 0.878 0.889

1 0.898 0.903 0.882 0.893 0.894 0.902
1.4 1.173 1.166 1.142 1.148 1.161 1.163

λ− 1.8 1.410 1.384 1.363 1.359 1.387 1.379
2.2 1.615 1.562 1.554 1.536 1.579 1.559
2.6 1.790 1.707 1.720 1.685 1.744 1.710
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Table 13. EN(LR) under (s, Q)-policy

ERLA HEXA MPCA

Values of the parameters ERLS HEXS ERLS HEXS ERLS HEXS

4 0.778 0.776 0.755 0.762 0.772 0.777
4.2 0.809 0.810 0.788 0.798 0.805 0.812

λ+ 4.4 0.840 0.844 0.822 0.834 0.836 0.845
4.6 0.870 0.877 0.856 0.870 0.868 0.879
4.8 0.900 0.910 0.889 0.905 0.899 0.912

0.2 0.783 0.783 0.794 0.800 0.800 0.805
0.4 0.828 0.832 0.829 0.839 0.837 0.846

κ 0.6 0.867 0.874 0.862 0.875 0.871 0.882
0.8 0.901 0.911 0.893 0.909 0.901 0.915
1 0.930 0.944 0.923 0.940 0.929 0.945

0.1 0.435 0.415 0.452 0.439 0.469 0.459
0.3 0.604 0.589 0.587 0.583 0.602 0.597

θ1 0.5 0.726 0.719 0.700 0.704 0.719 0.720
0.7 0.828 0.831 0.808 0.821 0.824 0.833
0.9 0.924 0.942 0.915 0.938 0.923 0.943

1 0.930 0.944 0.923 0.940 0.929 0.945
1.4 1.206 1.208 1.187 1.200 1.201 1.212

λ− 1.8 1.441 1.424 1.410 1.414 1.430 1.431
2.2 1.642 1.597 1.600 1.590 1.624 1.612
2.6 1.813 1.738 1.764 1.738 1.789 1.764

5.2. Optimization

For the described two models, the function of the expected total cost, ETC, is constructed and

an optimization discussion about inventory policies is provided for some specific parameters. In the

equation (18), we note that Ei(OR) is the mean order size of the system with (s, S)-policy for i = 1 and

of the system with (s, Q)-policy for i = 2.

ETC =
[

ck + crEi(OS)
]

E(RR) + chE(I) + cpsκE(I) + clE(LR) + cwE(N) (18)

where

ck : the fixed cost of one order,

cr : the unit cost of the order size,

ch : the holding cost per item in the inventory per unit of time,

cps : the damaging cost per item in the inventory,

cl : the cost incured due to the loss of a c-customer,

cw : the waiting cost of a c-customer in the system.

Towards finding the optimum values of the inventory level (that minimize ETC) for the both

model, we fix λ+ = 4, λ− = 1, µ = 8, η = 1, κ = 1 and θ1 = 0.6 and vary the reorder points s = 3, 5, 7.

Also, we fix the unit values of the defined above costs by ck = 10, cr = 15, ch = 10, cps = 15, cl = 350

and cw = 300. Under various distributions of the service times and arrival processes, we give the

optimum values of ETC and S in Table 14 for the system under (s, S)-policy and in Table 15 for the

system under (s, Q)-policy.

Let’s look at the cases of ERLA, EXPA and HEXA in Table 14. As the variability in arrival processes

increases (respectively, ERLA, EXA and HEXA), the optimum value of S also increases. For both ERLS

and EXPS services, the optimum S is generally the same, while the optimum cost varies slightly. In all

cases, HEXS services with high variability require more inventory in the system. When the reorder

point s is increased, the values of S generally do not change except for HEXA arrivals. However, in the

case of HEXA, the optimum S is seen to decrease as s increases.
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Table 14. Optimum values of ETC∗ and S∗ for the system under (s, S)-policy

s = 3 s = 5 s = 7

MAP PH S
∗

ETC
∗

S
∗

ETC
∗

S
∗

ETC
∗

ERLA ERLS 12 1523.049 12 1526.263 12 1538.455
EXPS 12 1577.435 12 1579.782 12 1590.842
HEXS 14 2027.068 14 2025.895 14 2030.171

EXPA ERLS 13 1657.027 13 1657.273 13 1665.452
EXPS 13 1714.634 13 1714.218 13 1721.526
HEXS 15 2169.740 15 2167.181 14 2169.473

HEXA ERLS 18 2413.463 17 2402.938 16 2398.154
EXPS 18 2496.819 17 2486.839 17 2482.051
HEXS 19 3043.694 19 3034.463 18 3028.903

MNCA ERLS 13 1706.068 13 1706.237 13 1714.395
EXPS 13 1760.549 13 1760.072 13 1767.381
HEXS 15 2209.347 15 2206.767 15 2209.113

MPCA ERLS 39 28273.270 38 28245.217 36 28217.794
EXPS 40 28343.298 39 28316.825 37 28290.718
HEXS 45 28862.495 43 28840.115 42 28818.031

In Table 14 let’s look at the MNCA and MPCA cases where there is correlation. In negatively

correlated arrivals (MNCA), the results in the HEXS service are significantly different from the others

and the increase in the values of s is of no significance. On the other hand, in positively correlated

arrivals (MPCA), the increase in the values of s and the increase in the variability in service times

are separately very important. That is, as the variability in PH-distribution increases, the values of S

increase, and as the reorder point increases, the values of S decrease.

First, it is noticeable that the optimum values of S in Table 15 are larger than the values in

Table 14, while there is not much difference between the optimum cost values. In other words, in the

(s, Q)-policy, there is a need to keep more inventory in the system. Although more inventory is carried,

the total cost is almost the same as under the (s, S)-policy.

Table 15. Optimum values of ETC∗ and S∗ for the system under (s, Q)-policy

s = 3 s = 5 s = 7

MAP PH S
∗

ETC
∗

S
∗

ETC
∗

S
∗

ETC
∗

ERLA ERLS 15 1522.919 17 1529.208 19 1547.543
EXPS 15 1577.272 17 1582.646 19 1599.781
HEXS 17 2026.762 19 2027.477 21 2035.853

EXPA ERLS 16 1656.737 18 1659.345 20 1672.515
EXPS 16 1714.313 18 1716.220 20 1728.459
HEXS 18 2169.372 20 2168.303 22 2173.935

HEXA ERLS 21 2412.971 22 2403.011 23 2399.884
EXPS 21 2496.307 22 2486.853 24 2483.935
HEXS 22 3043.138 24 3034.403 25 3029.949

MNCA ERLS 16 1705.783 18 1708.339 20 1721.544
EXPS 16 1760.236 18 1762.111 20 1774.414
HEXS 18 2208.991 20 2207.933 21 2213.632

MPCA ERLS 42 28273.128 43 28244.999 43 28217.403
EXPS 43 28343.163 44 28316.618 44 28290.344
HEXS 48 28862.372 48 28840.132 49 28817.682
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The comments made for Table 14 regarding the variability of service times or arrival process can

also be said for Table 15. As variation increases, more inventory is needed. Also, positive correlation is

important for the system under (s, Q)-policy similar to the system under (s, S)-policy.

Finally, the important difference between the two tables is the effect of the reorder point s. As the

values of s increases, the values of S remain the same or decrease in Table 14 ( as we mentioned above).

In Table 15, as the values of s increases, the values of S remain the same or increase.

6. Discussion

We study two queueing-inventory systems with catastrophes in the warehouse. Upon arrival

of a catastrophe all inventory in the system is instantly destroyed. The arrivals of the c-customers

follow a Markovian Arrival Process (MAP) and they can be queued in an infinite buffer. Service

time of a c-customer follows a phase-type distribution. The system receives n-customers to service

facility and upon arrival of a n-customer one c-customer is pushed out from the system, if any. One

of two replenishment policies can be used in the system: either (s, S) or (s, Q). If upon arrival of the

c-customer, the inventory level is zero, then according to the Bernoulli scheme, this customer is either

lost (lost sale scheme) or join the queue (backorder sale scheme).

The system is formulated by a four-dimensional continuous-time Markov chain. Steady state

distribution is obtained using the matrix-geometric method. A comprehensive numerical study

is performed on the performance measures and an optimization under various the service time

distributions and the arrival processes. As a result of numerical studies, it is seen that the variability in

service distribution, the variability in the arrival process and the arrivals with positive correlation have

an impact on both the performance measures of the system and the optimum inventory policy. Also,

it has been observed that the effect of variability is more specifically in the system with (s, Q)-policy

than the system with (s, S)-policy.

For the future work, ones can improve the studied system by considering the batch service and/or

batch arrival.
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Abbreviations

The following abbreviations are used in this manuscript:

QS Queueing System

QIS Queueing Inventory System

ICS Inventory Control System

MAP Markovian Arrival Process

PH Phase-type distribution

IL Inventory Level

QL Queue Length

CTMC Continuous Time Markov Chain

QBD Quasi-birth-and-death process

ETC Expected Total Cost
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