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Abstract: We discuss two queueing-inventory systems with catastrophes in the warehouse.
Catastrophes occur according to Poisson process and upon arrival of a catastrophe all inventory in the
system is instantly destroyed. But consumer customers in the system (in the server or in the buffer)
continue still waiting for the replenishment of the stock. The arrivals of the consumer customers
follow a Markovian Arrival Process (M AP) and they can be queued in an infinite buffer. Service time
of a consumer customer follows a phase-type distribution. The system receives negative customers
whose have Poisson flows to service facility and upon arrival of a negative customer one consumer
customer is pushed out from the system, if any. One of two replenishment policies can be used in the
system: either (s, S) or (s, Q). If upon arrival of the consumer customer, the inventory level is zero,
then according to the Bernoulli scheme, this customer is either lost (lost sale scheme) or join the queue
(backorder sale scheme). The system is formulated by a four-dimensional continuous-time Markov
chain. Steady state distribution is obtained using the matrix-geometric method. A comprehensive
numerical study is performed on the performance measures under various replenishment policies.
Finally, an optimization study is presented.

Keywords: queueing-inventory system; catastrophe; negative customer; (s,S)-type policy;
(s, Q)-type policy; Matrix geometric method; MAP arrival; phase-type distribution
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1. Introduction

Until the early 90s of the last century, in the theory of operations research, models of queuing
systems (QS) and models of inventory control systems (ICS) were studied separately. In other words,
it was believed that in ICS there is no server for releasing items to consumers (i.e., a self-service rule
is used), and in QQS, only an idle server is required to service customers (i.e., no additional items are
required). However, in real ICSs, the release of items to consumer customers (c-customers) requires
the presence of a service station in which the incoming c-customer is processed, and the processing
time is often a positive random variable. A classic example of such systems is the widespread systems
of gas stations. These ICSs with positive service time can also be considered as QSs, in which in order
to service c-customers, in addition to an idle server, a positive level of certain inventory is required.

Note that ICSs with positive service time are called queuing-inventory systems (QIS) in [1,2].
However, QIS models were first proposed earlier in [3,4] and have been intensively studied by various
authors over the past three decades. For a detailed overview of known results on QIS models, see
[5-7].

To classify QISs models, their various properties can be taken as a basis. Based on the type
of QIS model being studied, the lifetime of the system’s inventory is taken as the basis for the
classification. The vast majority of work on QIS assumes that the system’s inventory never deteriorates.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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However, in real situations, system inventories often lose their quality over time and after a certain
time (deterministic or random) they become unsuitable for use. Such systems are called systems with
perishable inventory and have been studied in detail in numerous works, see, for example, [8-16].
Note that inventory damage can occur instantly as a result of some accidents, like power outage,
equipment failures, staff negligence, etc. A sequence of accidents can be considered as a flow of
destructive customers (d-customers).

Note that QIS models with d-customers have been hardly studied, although, as indicated above,
they are accurate models of systems in real life. In papers [17-20], it was assumed that upon arrival of
d-customers, the inventory level was instantly reduced only by one. However, there are many realistic
QISs in which upon arrival of d-customers all items damage together. Below this type of systems is
called QISs with catastrophes in warehouse. It is necessary to distinguish between models of QIS with
catastrophes in the warehouse and models of QIS with common lifetime (e.g., foods with the same
expiry date, medicines manufactured with the same expiry date and so on), see [21-24]. In models of
QISs with common lifetime, it is assumed that, at any given time, all items in the warehouse have the
same age; in other words, it is considered that all items of inventory arrived as a result of execution of
one batch of orders. However, in the model of QIS with catastrophes in the warehouse, this assumption
is not required.

Note that similar models of QS (but not QIS) with catastrophes are widely investigated in
available literature. In lieu of reviewing work related to models of QS with catastrophes, we highlight
representative papers [25-31] and refer readers to their reference lists. In QS a disaster events
immediately wipe out the system in that all customers waiting in the queue as well as the ones
getting service are removed from the system.

To increase the adequacy of the QIS model under study to real situations, we also take into account
the possibility of negative customers (n-customers) arriving to the service station. Negative customer
can be interpreted as customer that agitate c-customers in the system so that they do not buy the
inventory in that system. In other words, n-customers do not require the inventory, but upon arrival
they force one c-customer out of the system, i.e. they can be considered as d-customers in the service
station of QIS.

One of the main shortcomings of the known works devoted to QIS is that they analyze models
with either backorders or lost sales, i.e. QIS models that simultaneously use both backorders and lost
sales are practically not considered. However, in realistic QIS an arrived c-customer either join the
queue (backorder) or lost the system without inventory (lost sale) if upon its arrival an inventory level
is zero, i.e. hybrid sale rule is frequently used in realistic QISs. Regardless of popularity, models of
QISs with hybrid sales are poorly understood due to their complexity.

The model of single-server perishable QIS (without d-customers) with finite waiting room for
c-customers under (s, Q), Q = S —s > s + 1, replenishment policy for the first time was considered in
[32]. It was assumed that both types of c-customers and n-customers arrive according to a Markovian
arrival process (M AP) and the service time of c-customers, lead time and life time of each item have
exponential distributions with finite means; a n-customer at an arrival epoch removes random number
of waiting c-customers. The joint probability distribution of the number of c-customers in the system
and the inventory level is obtained and key performance measures of the system are calculated. Similar
double sources model of QIS was considered in a recent paper [33].

The motivation for this study is that models of QIS with warehouse catastrophes under realistic
assumptions have been practically unstudied. To our best knowledge, only in recent paper [34]
assuming the all kind of customers are arrived according to an independent Poisson processes and all
other underlying random variables to be exponentially distributed (Poisson/exponential assumptions),
authors study the such kind of models in steady-state under various replenishment policies. This
paper is a continuation of the research begun in [34] under more realistic assumptions related to
system operation, i.e. here we assume that c-customers arrive according to MAP, c-customers
and n-customers arrives according to an independent Poisson processes, the service times to be
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of phase-type distribution (PH-distribution), and lead times to be exponentially distributed. Under
these assumptions we use matrix-analytic methods to study the QISs models with catastrophes in
warehouse in steady-state under two replenishment policies: (s, S) and (s, Q) policies.

More specifically, the main differences between our model and the model considered in known
works are as follows: (i) we consider model of QISs with catastrophes in warehouse; (ii) the model
with infinite queue for c-customers is investigated; (iii) service time of c-customers have phase time
(PH) distribution; (iv) only c-customers represents MAP flow; (v) hybrid sale rule is used, i.e. some
customers may join the queue (backorder scheme) or be lost (lose sale scheme) according to the
Bernoulli scheme if the inventory level is zero at the time of their arrival.

The paper is organized as follows. In Section 2 the proposed queueing-inventory system is
thoroughly described. Section 3 demonstrates the construction of the generator matrices for the
underlying processes and provides the steady-state analysis of the systems. That is, Subsection 3.1
includes matrices and analysis for the model-1 under (s, S)-policy, and Subsection 3.2 includes ones for
the model-2 under (s, Q)-policy. Expressions for various essential performance measures to assess the
both system’s efficiency are formulated in Section 4. Section 5 presents numerical analysis to highlight
separately the qualitative behaviour of the queueing-inventory system under each inventory policy;
the effect of the system parameters on the performance measures under various arrival process and
service time distribution in Subsection 5.1 and optimization study for the each inventory policy in
Subsection 5.2. Finally, concluding remarks are given in Section 6.

At this point, we define some notation for use in sequel. e is a unit column vector; e; is a unit
column vector is of dimension j; e;(i) is a unit column vector with 1 in the i position and 0 elsewhere;
and I is an identity matrix of order k. The symbols ® and & represent the Kronecker product and the
Kronecker sum, respectively. If A is a matrix of order m x n and if B is a matrix of order p X g, then the
Kronecker product of the two matrices is given by A ® B, a matrix of order mp x ng; the Kronecker
sum of two square matrices, say, G of order g and H of 1, is givenby G H = G® I, + I ® H, a
square matrix of order gh. The transpose notation is denoted by ’.

2. Model description

We analyze a queueing-inventory system with negative customers and catastrophes in the
warehouse as demonstrated in Figure 1.

Damaging of
T all inventory
Catastrophes order
i) Backorder sale scheme: (POLN with k) Inventory: Supplier
If IL=0, the c-customer joins the queue w.p. 6 (s, 8)-policy / (s, @)-policy .
ii) Lost sale scheme: Replenishment
If IL=0, the c-customer leaves the system unserved w.p. 8, with exp(n)

MAP (D, D. A
Do D)m Queue Service process- PH(f, T) of order n (———
arrival of c-customer (Infinite size) Served c-customer

departs.

4

arrival of n-customer (Poisson with 17)

i) 1f QL>0, one c-customer is pushed out from the queue.
ii) If QL=0 and the server is busy, the c-customer in the server is pushed out.
iii) If no customer in the system, n-customer does not affect.

Figure 1. Block diagram of the QIS with negative customer and catastrophe in warehouse.

®  The c-customers (consumer customers) arrive in the system according to Markovian arrival

process (MAP) with representation (Do, D1),,. The underlying Markov chain of the MAP is

governed by the matrix D (= Dy + D;). Such that, the matrix Dy denotes the transition rates

without arrival while the matrix D denotes the transition rates with arrival. So, the arrival rate of

c-customers is given by AT = §D;je where § is the stationary probability vector of the generator
matrix D and it is satisfied

6D =0, de =1. 1)
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For further details on MAP and their usefulness in QIS modelling, the reader may refer to [35-40].

e The service times of the c-customers follow phase-type distribution with representation (B, T)
where B is the initial probability vector, e = 1, T is an infinitesimal generator matrix holding the
transition rates among the 7 transient states, and T" is a column vector contains the absorption
rates into state 0 from the transient states. It is clear that Te + T° = 0. The phase-type distribution
has the service rate u = 1/[B(—T) e].

®  The system also receives n-customers (negative customers) that the arrivals occur according to
Poisson process with rate A~. When a n-customer arrives in the system, there are three possible
cases; (i) if there is least one c-customer in the queue (QL > 0) at the time an n-customer arrives,
then only the c-customer is pushed out from the queue (i.e., the servicing of the c-customer in
the server continues), (ii) if the queue has no c-customer (QL = 0) and the server is busy with a
c-customer, then the c-customer in the server is forced out of the system. However in this case, the
inventory level does not change, since it is assumed that stocks are released after the completion
of servicing a c-customer and (iii) the received n-customer does not affect the operation of the
system if there are no c-customers in the system (in the queue and in the server).

e  Hybrid sales scheme is used in the system. When a c-customer arrives in the system, if the
inventory level is zero (IL = 0), then the c-customer either joins the queue of infinite capacity
with probability 6; (called backorder sale scheme), or leaves the system unserved with probability
0> (called lost sale scheme). Note that 6 + 6, = 1. If th inventory level occurs to be zero
with completion servicing of a c-customer, the c-customer in the queue (if any) waits for a
replenishment.

* Inthe warehouse part of the system, catastrophic events can occur according to Poisson process
with parameter x. At the moment of arrival of such an event, all the items in the system are
instantly destroyed. As a result of the catastrophes, even the item, which is at the status of
release to the c-customer, is destroyed. The c-customer whose service was interrupted due to a
catastrophe is returned to the queue. We can say that the catastrophe only destroys the items of
the system and does not force c-customers out of the system. If the inventory level is zero, then
the disaster does not affect the operation of the system warehouse.

e Two inventory replenishment policies are considered in this study. That is, as (s, S)-type policy
for the Model-1 and an (s, Q)-type policy for the Model-2. The lead time of an order follows
exponential distribution with parameter # for both replenishment policies. In a (s, S)-type policy
(sometimes this policy is called "Up to S"), when the inventory level drops to the reorder point
s, 0 < s < S, an order is placed for replenishment and upon replenishment the inventory
level becomes S. This policy states that the replenishment quantity varies in order to fill the
maximum capacity of the inventory when the reorder is placed. In a (s, Q)-type policy, when the
inventory level drops to the reorder point s, s < %, an order quantity of a Q = S — s is placed for
replenishment and upon replenishment the inventory level becomes sum of the current items in
the inventory and order quantity. This policy states that the replenishment quantity is always
fixed.

3. The steady-state analysis

In this section, the steady-state analysis of the queueing-inventory model described in Section 2
is performed. That is, we discuss Model-1 with (s, S)-type replenishmet policy in Subsection 3.1 and
Model-2 with (s, Q)-type replenishmet policy in Subsection 3.2.

Let K(t), I(t), J1(t) and J>(t) denote, respectively, the number of c-customers in the system,
the inventory level, the phase of the service and the phase of the arrival, at time ¢. The process
{(K(t),I(t), J1(t), J2(t)), t > 0} is a continuous-time Markov chain (CTMC) and the state space in the
lexicographical ordering is given by

Q= {(0i,jp):0<i<S jp=1,.,mU
{(k,i,jl,jz) k>0,0<i<S§, jl =1,..,n, jz = 1,...,71’1}.
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The level {(0,i,j) : 0 < i <S, j, = 1,..,m} of dimension m(S + 1) corresponds to the case when
there are no c-customers in the system and the inventory level is i. The arrival process is in one of m
phases. The level {(k,i,j1,j2) :k >0,0<i<S, j; =1,..,n, j» =1,..,m} of dimension mn(S + 1)
corresponds to the case when there are k c-customers in the system and the inventory level is i. The
service process and the arrival process are in one of n phases and in one of m phases, respectively.

3.1. Model-1 with (s, S)-type replenishment policy

The infinitesimal generator matrix of the Markov chain governing the queueing-inventory system
under (s, S)-type policy has a block-tridiagonal matrix structure and is given by

By Ap
Co

B
G= C @)

0= >
e

The matrices Ag and A in the upper diagonal of the matrix G have dimensions m (S +1) x mn(S + 1)
and mn(S + 1) x mn(S + 1), respectively.

B ® D161 I, ® D16,
,B®D1 In ®Dl
ﬁ@Dl In ®D1

The matrices Cy and C in the lower diagonal of the matrix G have dimensions mn(S +1) x m(S +1)
and mn(S +1) x mn(S + 1), respectively.

(en @ Iy)A~
'L, (en®@Iy)A~
Co= _ ,
T & I (en ®Im)/\7
IA~
T°8®I, I\~

C— TR, I\~

BRI, I\~

The matrices By and B in the main diagonal of the matrix G have dimensions m (S + 1) x m(S + 1)
and mn(S+1) x mn(S + 1), respectively.

Doy — 11 nI
kI Dy — (1 +x)I nl
By = kI Dy — (n+x)I nl ,
kI Dy —«I

xl Dg — I

doi:10.20944/preprints202311.0961.v1
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bo 1]1

kI by nl
B=| «I by nl

xI b2

9] by

where
bp=1,®Dgby — (1 + A7), by=(T®&Dy) — (n+x+A )[and by = (TS Dy) — (k+ A7 )I

3.1.1. Stability condition

Let Tt = (71'0, T, 7T, -, 71'5) be the steady-state probability vector of the finite generator F =

A + B + C. The probability vector 7r; of dimension mn means that the inventory level is i, the service

process and the arrival process are in one of n phases and in one of m phases, respectively. That is, T
satisfies

wF =0 and e = 1. 3)

The steady-state equations in (3) can be rewritten as

7to[(In ® D161) + (I, ® Dob1) — yI] + w1 [(T°BQ L) +«I] + [mr2 + - - + 7ws] +xI =0,
7i[(In @ D1) + (T® Do) — (k + )I] + i1 (T°B& L) =0, 1<i<s,
mi[(Iy @ D1) + (T® Do) — kI + i1 (T°BRILy) =0, s+1<i<S-—1,

[0+ -+ ms|nl + s [(I, ® Dy) + (T@®Dg) —«kI] =0,

@)

with the normalizing condition

Theorem 1. The defined queuing-inventory system under an (s, S)-policy is stable if and only if the following

condition is satisfied:
(1 — 927‘[06)}\+
el 1. 5
(1 —moe) + A~ < ©)

Proof of Theorem 1. The defined queueing-inventory system is a QBD process thus it will be stable if
and only if tAe < rtCe (See in [35]). That is,

S S
[elno +y nj] (IL@Dy)e < A~ + Y (TP B0 1y)e. ©6)
j=1 j=1

Adding the equations given in (4), the following equation is obtained

01770(I, ® D) + i i [(T+1°B) D] =0. 7)

j=1
Post-multiplying the equation in (7) by (e, ® I,;) and using the arrival rate of the c-customers AT =
d0D;e and the normalizing condition in (4), the left-side of the inequality in (6) is given

S S
[91n0 +y nj] (I, ® Dy )e = [91 moe+ Y nje} AT = (1—6ymmpe) AT
j=1 j=1

Post-multiplying the equation in (7) by (I, ® e;;) and using the service rate 4 = 1/[B(—T) 'e] and the
normalizing condition in (4), we get


https://doi.org/10.20944/preprints202311.0961.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 November 2023 doi:10.20944/preprints202311.0961.v1

7 of 23

s
) nj(10ﬁ®1m)e = u(1— moe).
j=1

The right-side of the inequality in (6) is obtained. So, the proof of Theorem is completed. O

The probability vector 7r( in (5) can be calculated by solving the equations given in (4).

Not: In the paper [34], the authors studied the queueing-inventory system in which we have
discussed in here by considering Poisson arrival and exponentially distributed service times. They
obtained the closed-form solution of the probabilities for the special case. We suggest the paper in [34]
to see the stability condition of the system under Poisson arrival and exponential service.

3.1.2. The steady-state probability vector of the matrix G

Letx = (x(0), x(1), x(2), ---) denote the steady-state probability vector of the generator matrix
G in (2). That is, x satisfies
xG=0and xe=1. (8)

m(S 4+ 1) dimensional row vector x(0) is further partitioned into vectors represented as
x(0) = [x(0,0),x(0,1),---,x(0,S)] and the dimension of the each vector is m. The vector x(0, 1)
gives the steady-state probability that there are no c-customers in the system, the inventory level is
i, 0 <i < S, and the arrival process is in one of m phases.

mn(S + 1) dimensional row vector x(k), k > 1, is further partitioned into vectors represented
as x(k) = [x(k,0),x(k,1),--- ,x(k,S)] and the dimension of the each vector is mn. The vector x(k, i)
gives the steady-state probability that there are k c-customers in the system, the inventory level is
i, 0 <i < S, and the service process and the arrival process are in one of n phases and m phases,
respectively.

Under the stability condition given in (5) the steady-state probability vector x is obtained (See
[35]) as
x(k) = x(1)RF1, k>1, ©9)

where the matrix R is the minimal nonnegative solution to the following matrix quadratic equation
R’C+RB+A =0, (10)
and the vector x(0) and x(1) are obtained by solving

x(O)Bo +x(1)C0 =0,

x(0)Ag + x(1)[B+RC] = 0, (11)

subject to the normalizing condition

x(0)e+x(1)(I-R) le=1. (12)

3.2. Model-2 with (s, Q)-type replenishment policy

The infinitesimal generator matrix of the Markov chain governing the queueing-inventory system
under (s, Q)-type policy has a block-tridiagonal matrix structure and is given by
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By Ag
Ch B A
G= C B A (13)
C B A

The matrices A, A,Cy and C are the same in the both generator matrices in (2) and (13).
Considering a different replenishment policy only the modification occurs in the main diagonal. The
matrices By and B in the main diagonal of the matrix G are given by

D6, — I nl
kI Dy — (7 +x)I nl
By = I Do — (7 +x)I nl |,

xl Dy —xI

xl Dy — I
bo 171
Il by nl

B=| «I by nl
xl bz
kI by
where

bp=1,@Dgb1 — (n+ A7), by =(T®Dy) — (n+x+A" )land by = (T® Dy) — (k + A7 )I
3.2.1. Stability condition

Let 7t = (ftg, 7t1, 7tp, - - , 7&s) be the steady-state probability vector of the finite generator F =
A+ B + C. The probability vector 7t; of dimension mn means that the inventory level is i, the service
process and the arrival process are in one of n phases and in one of m phases, respectively. That is, 7T
satisfies
AF =0 and 7te = 1. (14)
The steady-state equations in (14) can be rewritten as

7o[(In @ D161) + (In @ Dob1) — yI] + A1 [(T°B @ Iy) + 1] + [fea +- -+ + fs] +xI =0,

#ti[(Iy ® D1) + (T® Do) — (x + )| + 7ip1 (TP @ L) =0, 1<i<s,
(I ®Dy) + (T® Do) — I + ;1 (T°B®L,) =0, s+1<i<Q-1, (15
7ol + 7ti[(In @ D) + (T® Do) — &I + 741 (T°B @ L) =0, Q<i<s—1,

syl + 7ts[(I, @ D) + (T® Do) —xI] =0,

with the normalizing condition
S
Z T e = 1.
i=0

The system is a QBD process thus it will be stable if and only if 7tAe < 7t Ce. The stability condition
is given in the equation (16). The proof of Theorem 2 can be performed similar to Theorem 1 in the
equation (5).
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Theorem 2. The defined queuing-inventory system under an (s, Q)-policy is stable if and only if the following

condition is satisfied:
(1 — 92771'08))\+
= < 1. 16
(1 — 7rpe) + A~ (16)

The probability vector 7ty can be calculated by solving the equations given in (15).

3.2.2. The steady-state probability vector of the matrix G
Let¥ = (%(0), (1), %(2), ---) denote the steady-state probability vector of the generator matrix
G in (13). That is, ¥ satisfies
#¥G=0and ¥e=1. (17)

m(S 4+ 1) dimensional row vector ¥(0) is further partitioned into vectors represented as
%(0) = [#(0,0),%(0,1),---,%(0,S)] and the dimension of the each vector is m. The vector %(0, 1)
gives the steady-state probability that there are no c-customers in the system, the inventory level is
i, 0 <i < S, and the arrival process is in one of m phases.

mn(S + 1) dimensional row vector ¥(k), k > 1, is further partitioned into vectors represented
as (k) = [%(k,0),%(k,1),- -+ ,%(k,S)] and the dimension of the each vector is mn. The vector %(k, i)
gives the steady-state probability that there are k c-customers in the system, the inventory level is
i, 0 <i < S, and the service process and the arrival process are in one of n phases and m phases,
respectively.

The steady-state probability vector ¥ is obtained by using the matrix-geometric solution given in
(9)-(12). Recall that the matrices By and B are used for this solution.

4. Performance measures of Model-1 and Model-2

In this section, some performance measures of the queueing-inventory system under (s, S)-type
and (s, Q)-type policies are listed. The following first seven items are valid for the both models. But,
we recall that one should use the probabilities x and % for the (s, S)-type policy (Model-1) and for the
(s, Q)-type policy (Model-2), respectively. On the other hand, the last item (item 8) includes different
formula for each model.

1. The probability that there is no c-customer in the system
Pigre = x(0)e.

2. The mean number of c-customers in the system
E(N) =Y kx(k)e=x(1)(I-R) .
k=1

3. The mean loss rate of c-customers because of no inventory
E;j(LR) = A70, [x(O, 0)em + Y x(k,O)emn]
k=1

4. The mean loss rate of c-customers because of n-customer

En(LR) = A~ [1-x(0)e].
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5. The mean loss rate of c-customers
E(LR) = E;(LR) + EN(LR).

6.  The mean number of items in the inventory

S c© S
= Zix(O,i)em + Z Zix(k, i)emn.
i=1 k=1i=1

7. The mean reorder rate

S o S
E(RR) —ysz (k, s+1)emn+1<[2x (0,i)em + Y Y x(ki emn}
k=1 i=1 k=1i=1
8. The mean order size
S ) S
(08)="Y ix(0,S—i)em+ Y, Y ix(k,S—i)emn
i=S—s k=1i=S—s

S (0] S

5. Numerical study

For the arrival process, the following five sets of values for Dy and D are considered. The
arrival processes have the same mean of 1 but each one of them is qualitatively different. The values
of the standard deviation of the inter-arrival times of the arrival processes with respect to ERLA
are, respectively, 1, 1.41421, 3.17451, 1.99336, and 1.99336. The M AP processes are normalized to
have a specific arrival rate A" as given in [41]. The arrival processes labeled MNCA and MPCA
have negative and positive correlation for two successive inter-arrival times with values -0.4889 and
0.4889, respectively, whereas the first three arrival processes have zero correlation for two successive
inter-arrival times.

Erlang distribution (ERLA):

2 2 00

Exponential distribution (EXPA):

DO:(71),D1:(1).

Hyperexponential distribution (HEXA):

~19 0 171 0.19
D = D = .
0 ( 0 —019 ) 1 ( 0.171 0.019 )

MAP with negative correlation (MNCA):

—1.00222  1.00222 0 0 0 0
Dy = 0 —1.00222 0 , D1 = 0.01002 0 0.9922
0 0 —225.75 2234925 0 22575

MAP with positive correlation (MPCA):

doi:10.20944/preprints202311.0961.v1
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—1.00222  1.00222 0 0 0 0
Dy = 0 —1.00222 0 , D1 =1 09922 0 0.01002
0 0 —225.75 22575 0 223.4925

For the service times, we consider three phase-type distributions with parameter (8, T). The
phase-type distributions have the same mean of 1 but each one of them is qualitatively different. The
values of the standard deviation of the distributions are, respectively, 0.70711, 1, and 2.24472. The
distributions are normalized at a specific value for the service rate .

Erlang distribution (ERLS):

Exponential distribution (EXPS):

ﬁz(l),Tz(—l).

Hyperexponential distribution (HEXS):

p=(0901), T= ( 7(1)’9 _(?.19 )

5.1. The Effect of parameters on performance measures

We discuss the behavior of the performance measures under various the service time distributions
and the arrival processes for the Model-1 with (s,S)-policy and Model-2 with (s, Q)-policy in
Tables 2-13. Towards this end, the reorder point is fixed by s = 3 and the maximum inventory
level is fixed by S = 10. The values of the other parameters can be seen in Table 1.

Table 1. The values of the parameters in Tables 2-13

As it is varied It is fixed

the arrival rate of c-customers: AT AT=1, u=8n=1x=1, 0, =06
the arrival rate of n-customers: A~ AT =5 u=8y5=1x=1,6,=06
the service rate of c-customers: p At=5A"=11n=14x=16,=06
the rate of the catastrophic events: « AT =5 A"=1u=81n=100=06

the probability that c-customer joins the queue when the

+_ - _ _ _ _
inventory level is zero: 6, AT=5 AT =L =8 =1 k=1

Firstly, we investigate the effects of the rates A", A~, y and « on the mean number of c-customers
in the system E(N) under the various scenarios in Table 2 for Model-1 with (s, S)-policy and in Table 3
for Model-2 with (s, Q)-policy.

As expected, the mean number of c-customers in the system increases with increasing values of
AT in Table 2. When looking only at ERLA arrivals, it is seen that the variability in PH-distribution is
important. Especially in high traffic intensity situations. For example, at AT =5 (high intensity), the
values of E(N) are 7.559, 8.458 and 16.444 for ERLS, EXPS, and HEXS, respectively, and at AT = 4.2
(low intensity), the values occur 3.239, 3.490 and 5.611 for ERLS, EXPS, and HEXS, respectively. Similar
comment can be made when HEXA arrivals occur. On the other hand, variability in MAP affects the
values of E(N) more compared to the variability in PH-distribution. Let’s look ERLS services. The
values of E(N) are 3.239 for ERLA and 7.730 for HEXA at At = 4.2; are 7.559 for ERLA and 20.759 for
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HEXA at A" = 5. Also, we can say that the values of E(N) dramatically increases in the case of HEXS
(service with high variability) compared to the other PH-distributions.

As values of k increase, the values of E(N) increase in Table 2. Comments similar to those above
can be made regarding the effect of variability in MAP process and PH-distribution.

In Table 2, the mean number of c-customers in the system decreases with increasing the arrival
rate of n-customers A~ or the service rate of c-customers p as expected. The effect of variability in MAP
process and PH-distribution on the values of E(N)) is seen as y (or A ™) increases. Again, variability in
the M AP process (variability in the inter-arrival times in other words) appears to be more significant
compared to variability in PH-distribution, especially when the system has high traffic intensity (i.e.,
see the casesof y = 7.6 or A~ =1).

All comments made for Table 2 can also be made for Table 3. Compared to the values in Table 2, it
can be seen that the values of E(N) in Table 3 are higher, especially at high traffic intensity. In addition,
we can say that the variability in MAP process or PH-distribution is more effective when the inventory
policy is (s, Q). That is, as the system becomes denser, the increment or decrement becomes faster.

Table 2. E(N) under (s, S)-policy

ERLA HEXA
Values of the parameters ERLS EXPS HEXS ERLS EXPS HEXS
42 3.239 3.490 5.611 7.730 8.133  10.894
44 3.848 4179 6994 9530 10.046 13.654
AT 4.6 4.663 5.106 8.925 11967 12.646 17.501
48 5.811 6.426 11.789 15438 16.373 23.198
5 7.559 8.458  16.444 20.759 22140 32.449
0.4 3.401 3.707 6.344 9.298 9.772  13.120
0.6 4384  4.808 8.496 11.889 12534 17.199
K 0.8 5.686 6.291 11.589 15463 16.380 23.117
1 7.559 8458 16.444 20.759 22140 32.449
1.2 10.577 12.023 25.194 29.468 31.767 49.303
7.6 9.620 10.940 22927 27.554 29.633 45.447
8 7.559 8.458 16.444 20.759 22.140 32.449
U 8.4 6.323 6989 12.837 16.701 17.717 25.201
8.8 5.499 6.018 10.549 14.009 14.802 20.592
9.2 4.909 5.329 8975 12.095 12741 17.411
1 7.559 8.458  16.444 20.759 22140 32.449
1.4 4317  4.701 7931 11502 12.095 16.254
AT 1.8 2957  3.159 4.778 7.644 7979 10.175
22 2.216 2.331 3.200 5.555 5.767 7.059

2.6 1.753 1.822 2296 4262 4405  5.205
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Table 3. E(N) under (s, Q)-policy

ERLA HEXA
Values of the parameters ERLS EXPS HEXS ERLS EXPS HEXS
42 3.701 4.001 6.579 9.563 10.081 13.596
44 4.560 4976 8584 12213 12924 17.831
AT 4.6 5.811 6.412 11.701 16.100 17.133  24.402
4.8 7.803 8737 17.165 22329 23979  35.903
5 11486 13.156 29.116 33.888 37.021 61.022
0.4 4.462 4.861 8427 13.026 13.702 18.572
0.6 5.900 6.499 11.895 17.145 18.173 25.651
K 0.8 7.997 8.947 17.641 23.348 25.032 37.437
1 11486 13.156 29.116 33.888 37.021 61.022
1.2 18.705 22381 63.549 55978 63.556 131.820
7.6 16.591 19.688 52949 50.813 57.091 111.116
8 11486 13.156 29.116 33.888 37.021 61.022
u 8.4 8971 10.066 20.110 25573 27542  42.060
8.8 7.472 8.265 15396 20.636 22.028 32.114
9.2 6.477 7.086 12507 17.370 18426  26.003
1 11486 13.156 29.116 33.888 37.021 61.022
1.4 5187  5.675 9.862 14.842 15.683  21.456
AT 1.8 3270 3498 5346  9.048 9451  12.058
22 2354 2476 3.412 6.281 6.516 7.939
2.6 1.822 1.892 2.386 4.682 4.833 5.677

Secondly, we discuss the effects of the rates A, A, k and the probability 6; on the mean number
of items in the inventory E(I) under the various scenarios in Table 4 for Model-1 with (s, S)-policy and
in Table 5 for Model-2 with (s, Q)-policy.

Table 4. E(I) under (s, S)-policy

ERLA HEXA MPCA
Values of the parameters ERLS HEXS ERLS HEXS ERLS HEXS
4 3266 3324 3345 3408 3334  3.397
4.2 3209 3275 3280 3350 3.268 3.338
AT 4.4 3154 3228 3217 3294 3204 3.281
4.6 3.099 3182 3.154 3238 3.141 3.226
4.8 3.046 3138 3.092 3184 3.080 3.172
0.2 4.000 4.088  4.140 4227 4.054 4.147
0.4 3.696 3797 3807 3907 3.747 3.851
K 0.6 3.431 3,537 3513 3616 3475 3.582
0.8 3199 3303 3255 3358 3.234 3.339
1 2994 3.094 3.030 3130 3.020 3.120
0.1 3.655 3.665 3774 3795 3767  3.796
0.3 3500 3.526 3.606 3.643 3.598  3.639
01 0.5 3.343 3390 3432 3487 3422 3478
0.7 3191 3259 3256 3328 3245 3.316
0.9 3.039 3127 3.077 3165 3.068 3.155
1 2994 3.094 3.030 3130 3.020 3.120
1.4 3108 3.184 3.159 3242 3150 3.231
AT 1.8 3212 3260 3270 3336 3.266  3.328
2.2 3306 3325 3368 3416 3.368 3.412

2.6 3391 3380 3453 3483 3459 3.486
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Table 5. E(I) under (s, Q)-policy

ERLA HEXA MPCA
Values of the parameters ERLS HEXS ERLS HEXS ERLS HEXS
4 2266 2289 2275 2303 2250 2277
42 2214 2240 2221 2252 2200 2.231
AT 44 2162 2192 2167 2201 2150 2.184
4.6 2109 2143 2113 2150 2101 2138
4.8 2.057 209 2060 2100 2051 @ 2.091
0.2 2949 2984 2976 3.015 2960  3.000
0.4 2.634 2671 2648 2689 2633 2.675
K 0.6 2382 2421 2390 2432 2377 2420
0.8 2176 2217 2180 2223 2171 2215
1 2.005 2.047 2007 2.050 2.001 2.045
0.1 2559 2563 2624 2635 2581 2594
0.3 2456 2467 2496 2515 2454 2473
01 0.5 2335 2354 2351 2377 2320 2345
0.7 2193 2219 2195 2225 2177 2207
0.9 2.030 2059 2027 2059 2020 2.053
1 2.005 2.047 2007 2050 2001 2.045
1.4 2121 2152 2124 2161 2112 2148
AT 1.8 2218 2236 2222 2252 2205 2233
22 2301 2303 2306 2327 2285  2.303
2.6 2371 2355 2378 2389 2353 2362

As the number of c-customers (by A™ or 6) or catastrophic events (by «) in the system increase,
the mean inventory level in the system decreases. As expected, the values of E(I) increase with the
increment of the n-customer in the system (A ™). On the other hand, the values of E(I) increase with
increasing variability (from ERLS to HEXS for PH-distribution or from ERLA to HEXA for MAP
process). Also, it is seen that when the system is dense, the effect of variation in arrival process is
greater than the effect of variation in service times in Table 4 and Table 5. We note the values in Table 5
(at (s, Q)-policy) are slightly lower.

Thirdly, we examine the effects of the rates A™, A~, x and the probability 6; on the mean reorder
rate in Tables 6—7 and the mean order size in Tables 8-9 under the various scenarios.

As seen in Tables 4-5, the decrease in the mean number of items in the inventory occurs with
the increase in the number of customers in the system (by increasing the A" and 6; rates) or with the
increase of catastrophes events (by increasing the « rate). The more customers there are, the more
item in the inventory is needed. Therefore, it is seen that by increasing the values of A™ (by increasing
the values of x or 6;), the values of the mean reorder rate increase in Tables 67 and the values of
the mean order size in Tables 8-9. On the other hand, it is obvious that as n-customers come more
frequently, the number of c-customers in the system will decrease (i.e., less item in the inventory will
be needed). For the system under (s, S)-policy, it is seen that the values of E(RR) and E;(OS) decrease
with increasing A~ in Table 6 and Table 8, respectively. Similarly, the values of E(RR) and E(OS)
decrease with increasing A~ in Table 7 and Table 9, respectively, for the system under (s, Q)-policy.

In all four parts (parts related to A, x, 61, A~ ) of Table 6 or Table 7, the values of the mean
reorder rate decrease with increasing the variability in PH-distribution (ERLS and HEXS). On the
other hand, with increasing the variability in MAP (ERLA and HEXA), the values of the mean reorder
rate decrease in some parts (i.e., part « in Table 6) and first increase and then decrease in some parts
(i.e., part A~ in Table 6). Similarly, when looking at the four parts of Table 8 or Table 9, it is seen that
with the increase in the variability of PH-distribution, the values of the mean order size increase in
some parts (i.e., part ¢, in Table 8), decrease in some parts (i.e., part « in Table 9), and first increase and
then decrease in some parts (i.e., part A in Table 9). That is, we cannot talk about a specific behavior
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regarding the effect of variation. Tables 8-9 also shows an irregular behavior with increasing variation
in MAP.

Table 6. E(RR) under (s, S)-policy

ERLA HEXA MPCA
Values of the parameters ERLS HEXS ERLS HEXS ERLS HEXS
4 0.642 0.607 0646 0.609 0.633  0.598
4.2 0.653 0.615 0.655 0.615 0.643  0.605
At 4.4 0.663 0.621 0.663 0.620 0.653 0.612
4.6 0.673  0.628 0.672 0.626 0.663  0.619
4.8 0.682 0.634 0680 0.632 0.673 0.626
0.2 0.511 0472 0496 0466 049  0.464
0.4 0572 0526 0561 0521 0558 0516
K 0.6 0.620 0570 0.613 0566 0.607  0.561
0.8 0.659  0.608 0.655 0.605 0.649  0.600
1 0.691 0.639 0689 0.637 0.683  0.633
0.1 0.587 0566 0594 0571 0581  0.559
0.3 0.604 0580 0613 0585 0599 0573
01 0.5 0.629 0598 0634 0.601 0.621  0.589
0.7 0.656 0.617 0.658 0.617 0.646  0.607
0.9 0.682 0.635 0682 0.634 0.675 0.628
1 0.691 0.639 0689 0.637 0.683 0.633
14 0.672  0.627 0671 0.625 0.663 0.618
AT 1.8 0.656 0.614 0.656 0.615 0.646  0.606
2.2 0.640 0.603 0.644 0.606 0.632  0.596
2.6 0.627 0593 0.632 0598 0.620  0.587

Table 7. E(RR) under (s, Q)-policy

ERLA HEXA MPCA
Values of the parameters ERLS HEXS ERLS HEXS ERLS HEXS
4 0777 0.699 0762 0.687 0752  0.678
4.2 0788 0705 0774 0.694 0.766  0.687
AT 4.4 0798 0711 0785 0701 0.779  0.695
4.6 0.807 0716 0796 0.708 0.792  0.704
4.8 0.816 0.721 0.807 0.714 0804 0.711
0.2 0.623 0576  0.608 0569 0.610 0.568
0.4 0.692 0.627 0.679 0.619 0.679  0.618
K 0.6 0.747  0.667 0735 0.660 0.734  0.658
0.8 0790 0699 0780 0.693 0.779  0.691
1 0.825 0725 0817 0720 0816 0.719
0.1 0.697 0.646 0.684 0.636 0.666 0.619
0.3 0729 0.668 0714 0.656 0.698  0.640
01 0.5 0762 0.690 0746 0.677 0.733  0.665
0.7 0792 0708 0779 0.698 0.771  0.691
0.9 0.820 0723 0814 0719 0811 0.717
1 0.825 0725 0817 0720 0816 0.719
14 0806 0715 0794 0.706 0.789  0.701
AT 1.8 0789 0704 0774 0.693 0.766  0.686
2.2 0773 0.693 0757 0.682 0.746  0.672

2.6 0.758 0.682 0.742 0.672 0.728  0.659
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Table 8. E1(OS) under (s, S)-policy

ERLA HEXA MPCA
Values of the parameters ERLS HEXS ERLS HEXS ERLS HEXS
4 5891 5928 5953 5983 589 5927
42 5960 5998 6.012 6.043 5960 5993
AT 4.4 6.028 6.066 6.071 6.103 6.025 6.058
4.6 6.095 6.133 6130 6.163 6.090 6.125
4.8 6.161 6200 6.188 6.222 6155 6.191
0.2 4852  4.828 4797 4772 4795 4767
04 5267 5257 5247 5234 5222 5210
K 0.6 5629 5636 5632 5635 5599 @ 5.604
0.8 5947 5970 5962 5982 5930 5.952
1 6.227  6.265 6247 6281 6220 6.257
0.1 5545 5567 5.607 5.625 5547 5562
0.3 5654 5682 5732 5754 5671 5.691
01 0.5 5806 5840 5876 5903 5816 5843
0.7 5980 6.020 6.032 6.066 5982  6.017
0.9 6.167 6215 6199 6241 6.166 6.212
1 6.227  6.265 6247 6281 6220 6.257
1.4 6.087 6127 6125 6.158 6.085  6.118
AT 1.8 5966 6.010 6.021 6.055 5973  6.005
22 5861 5912 5931 5969 5880 5912
2.6 5770 5831 5853 5896 5802 5.835

Table 9. E;(OS) under (s, Q)-policy

ERLA HEXA MPCA
Values of the parameters ERLS HEXS ERLS HEXS ERLS HEXS
4 4.605 4.611 4613 4.614 4573 4574
42 4666 4.669 4.671 4.670 4.637  4.637
AT 44 4725 4726 4728 4724 4700  4.698
4.6 4784 4781 4784 4778 4763  4.759
4.8 4841 4835 4840 4832 4825 4818
0.2 4036 4.006 3993 3959 3994 3.959
0.4 4319 4293 4294 4265 4288 4.259
K 0.6 4548 4527 4535 4511 4524 4501
0.8 4738 4722 4732 4714 4720 4704
1 4897 4888 4.896 4885 4.886 4.876
0.1 4236 4248 4241 4247 4181 4182
0.3 4365 4375 4379 4382 4322 4323
61 0.5 4521 4529 4532 4534 4485 4486
0.7 4691 4.696 4.698 4.698 4.665  4.668
0.9 4872 4875 4875 4876 4861  4.865
1 4897 4888 4896 4885 4886 4.876
1.4 4771 4770 4773 4766 4750  4.745
AT 1.8 4.659 4.671 4.668 4.668 4.634 4.634
2.2 4562 4589 4579 4586 4536  4.542
2.6 4476 4519 4501 4518 4452 4464

The results in Tables 6-9 are for specific values of the parameters. The increases or decreases seen
with increasing of variability depend on the values of the parameters. So, what we can clearly say is
that the values of the mean order rate and the mean order size will definitely be affected by variability
(instead of increase or decrease with variability).
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When Table 6 and Table 7 are compared (when Table 8 and Table 9 are compared), it is seen that
the results in the system under (s, Q)-policy are larger (smaller) than the results in the system under
(s, S)-policy. Additionally, as the values of the performance measures faster increase (or decrease) with
the increase of the values of the parameters in the system under (s, Q)-policy.

Finally, we examine the effects of system parameters on the mean lost rate of c-customers in the
system. Let’s recall, c-customers can lost in the system studied in two cases; If there is no inventory at
the time the c-customer comes to the system, he does not enter the system with probability 6, (he is
said to be lost)- this case is indicated by E;(LR) in Tables 10-11, and the arrival of n-customers to the
system causes the loss of one c-customer- this case is denoted by Ey(LR) in Tables 12-13.

As the value of A or k increases, the probability that the inventory is stock-out increases. This
increases the rate at which c-customers are lost due to lack of item in the inventory. On the other hand,
as A increases, the probability of the inventory falling to zero decreases (as it reduces the number of
c-customers in the system), which causes the values of E;(LR) to decrease. As an interesting result,
it is seen that as 6, probability increases, the values of Ej(LR) decrease even though the number of
c-customers in the system increases. All results can be seen in Table 10 for the system under (s, S)-policy
and Table 11 for the system under (s, Q)-policy.

As expected, as long as there are c-customers in the system, c-customers will disappear as
n-customers arrive. Therefore, it can be seen in Table 12 and Table 13 that Ex(LR) values increase as
the values of all parameters increase.

Table 10. E;(LR) under (s, S)-policy

ERLA HEXA MPCA
Values of the parameters ERLS HEXS ERLS HEXS ERLS HEXS
4 0.838 0.850 0.857 0.870 0.860 0.875
42 0.887 0901 0906 0921 0908  0.925
AT 44 0937 0954 0956 0973 0957 0.976
4.6 0989 1.008 1.006 1.026 1.007 1.028
4.8 1.041 1.064 1.057 1.080 1.057 1.081
0.2 0.645 0.670 0.679 0702 0.673  0.698
0.4 0790 0815 0819 0.843 0.816 0.841
3 0.6 0910 0936 0934 0959 0932 0.958
0.8 1.010 1.037 1.029 1.054 1.028 1.055
1 1.095 1122 1109 1134 1.108 1.135
0.1 1.838 1.845 1.867 1878 1.877 1.894
0.3 1437 1447 1468 1480 1476  1.493
01 0.5 1.039 1.050 1.063 1.076 1.068 1.084
0.7 0.635 0.646 0.649 0.660 0.650  0.663
0.9 0217 0222 0220 0226 0221 0.226
1 1.095 1.122 1109 1.134 1.108 1.135
1.4 1.074 1.094 1.093 1114 1.094 1117
AT 1.8 1.068 1.073 1.080 1.098 1.083 1.102
2.2 1.046 1.058 1.069 1.085 1.074 1.091

2.6 1.037 1.047 1.060 1.074 1.067 1.082
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Table 11. E;(LR) under (s, Q)-policy

ERLA HEXA MPCA
Values of the parameters ERLS HEXS ERLS HEXS ERLS HEXS
4 0.883 0902 0907 0926 0905 0.926
42 0939 0961 0961 0984 0958  0.982
AT 44 099% 1.022 1.017 1.042 1.013 1.040
4.6 1.055 1.085 1.073 1102 1.070 1.100
4.8 1115 1149 1130 1.163 1.127 1.161
0.2 0772 0.808 0809 0.843 0.799 0.836
0.4 0906 0943 0936 0971 0928  0.965
K 0.6 1.014 1.052 1.037 1.073 1.031 1.069
0.8 1.103  1.141 1119 1156 1116 1.153
1 1177 1216 1188 1225 1.186  1.223
0.1 1.887  1.901 1.931 1948 1930 1.954
0.3 1486 1503 1530 1550 1.529 1.553
01 0.5 1.087 1.106 1119 1139 1117 1.139
0.7 0674 0.691 0.690 0.707 0.688 0.706
0.9 0234 0242 0237 0245 0236 0.244
1 1177 1216 1188 1225 1.186  1.223
1.4 1.144 1174 1164 1194 1.161 1.192
AT 1.8 1117 1141 1.144 1170 1.141 1.168
22 1.097 1117 1127 1150 1.125 1.149
2.6 1.081 1.098 1113 1.134 1113 1.134

Table 12. Ex(LR) under (s, S)-policy

ERLA HEXA MPCA
Values of the parameters ERLS HEXS ERLS HEXS ERLS HEXS
4 0759 0752 0724 0727 0.745 0.745
42 0787 0782 0756 0.761 0776  0.777
AT 44 0.815 0.813 0.788 0.794 0.806  0.809
4.6 0.843 0843 0819 0.827 0.836  0.840
4.8 0871 0873 0.851 0.860 0.865 0.871
0.2 0743 0736 0747 0748 0.756  0.755
0.4 0790 0787 0783 0.788 0.796  0.798
K 0.6 0.830 0.830 0.818 0.825 0.831 0.835
0.8 0.866 0.869 0.851 0.860 0.864 0.870
1 0.898 0903 0882 0.893 0.894 0.902
0.1 0438 0417 0446 0434 0459 0446
0.3 0601 0583 0572 0567 0586 0.578
61 0.5 0713 0702 0.675 0.676 0.696  0.693
0.7 0802 0799 0771 0778 0.791  0.795
0.9 0.882 0889 0864 0878 0.878  0.889
1 0.898 0903 0.882 0.893 0.894  0.902
1.4 1173  1.166 1142 1.148 1.161 1.163
AT 1.8 1410 1384 1363 1359 1387 1379
2.2 1.615 1562 1554 1536 1579  1.559

2.6 1.790 1707 1720 1685 1744 1.710
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Table 13. Ex(LR) under (s, Q)-policy

ERLA HEXA MPCA
Values of the parameters ERLS HEXS ERLS HEXS ERLS HEXS
4 0778 0776 0755 0762 0772 0777
42 0.809 0.810 0.788 0.798 0.805 0.812
AT 4.4 0.840 0.844 0822 0834 0836 0845
4.6 0870 0877 085 0870 0.868  0.879
4.8 0.900 0910 0.889 0905 0.899 0912
0.2 0783 0783 0794 0.800 0.800  0.805
0.4 0.828 0.832 0.829 0.839 0837 0.846
K 0.6 0.867 0874 0862 0875 0871 0.882
0.8 0901 0911 0893 0909 0901 0915
1 0930 0944 0923 0940 0929 0945
0.1 0435 0415 0452 0439 0469 0459
0.3 0604 0589 0587 0583 0.602 0597
01 0.5 0726 0719 0700 0704 0.719 0.720
0.7 0.828 0.831 0808 0.821 0.824  0.833
0.9 0924 0942 0915 0938 0923  0.943
1 0930 0944 0923 0940 0929 0945
1.4 1206 1208 1187 1.200 1.201 1.212
AT 1.8 1441 1424 1410 1414 1430 1431
22 1642 1597 1.600 1590 1.624 1.612
2.6 1.813 1738 1764 1738 1789 1.764

5.2. Optimization

For the described two models, the function of the expected total cost, ETC, is constructed and
an optimization discussion about inventory policies is provided for some specific parameters. In the
equation (18), we note that E;(OR) is the mean order size of the system with (s, S)-policy for i = 1 and
of the system with (s, Q)-policy for i = 2.

ETC = [ck + crEi(OS)] E(RR) + ¢4E(I) + cpskE(I) + c;E(LR) 4 ¢ E(N) (18)

where

¢k : the fixed cost of one order,

¢, : the unit cost of the order size,

¢, : the holding cost per item in the inventory per unit of time,
Cps : the damaging cost per item in the inventory,

¢; : the cost incured due to the loss of a c-customer,

cw © the waiting cost of a c-customer in the system.

Towards finding the optimum values of the inventory level (that minimize ETC) for the both
model, we fix AT =4, =1,y =8,7 =1,k = 1and 6; = 0.6 and vary the reorder points s = 3,5,7.
Also, we fix the unit values of the defined above costs by ¢, = 10, ¢, = 15, ¢, = 10, cps = 15,¢; = 350
and ¢, = 300. Under various distributions of the service times and arrival processes, we give the
optimum values of ETC and S in Table 14 for the system under (s, S)-policy and in Table 15 for the
system under (s, Q)-policy.

Let’s look at the cases of ERLA, EXPA and HEXA in Table 14. As the variability in arrival processes
increases (respectively, ERLA, EXA and HEXA), the optimum value of S also increases. For both ERLS
and EXPS services, the optimum S is generally the same, while the optimum cost varies slightly. In all
cases, HEXS services with high variability require more inventory in the system. When the reorder
point s is increased, the values of S generally do not change except for HEXA arrivals. However, in the
case of HEXA, the optimum S is seen to decrease as s increases.
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Table 14. Optimum values of ETC* and S* for the system under (s, S)-policy

s=3 s=5 s=7
MAP PH S* ETC* S* ETC* S* ETC*

ERLA  ERLS 12 1523.049 12 1526263 12  1538.455
EXPS 12 1577435 12 1579.782 12  1590.842
HEXS 14 2027.068 14 2025.895 14 2030.171

EXPA  ERLS 13 1657.027 13 1657.273 13  1665.452
EXPS 13 1714634 13 1714218 13  1721.526
HEXS 15 2169.740 15 2167.181 14  2169.473

HEXA  ERLS 18 2413463 17 2402938 16  2398.154
EXPS 18 2496819 17 2486.839 17  2482.051
HEXS 19 3043.694 19 3034463 18  3028.903

MNCA ERLS 13 1706.068 13 1706237 13  1714.395
EXPS 13 1760549 13 1760.072 13  1767.381
HEXS 15 2209.347 15 2206.767 15  2209.113

MPCA  ERLS 39 28273270 38 28245217 36 28217.794
EXPS 40 28343.298 39 28316.825 37 28290.718
HEXS 45 28862.495 43 28840.115 42 28818.031

In Table 14 let’s look at the MNCA and MPCA cases where there is correlation. In negatively
correlated arrivals (MNCA), the results in the HEXS service are significantly different from the others
and the increase in the values of s is of no significance. On the other hand, in positively correlated
arrivals (MPCA), the increase in the values of s and the increase in the variability in service times
are separately very important. That is, as the variability in PH-distribution increases, the values of S
increase, and as the reorder point increases, the values of S decrease.

First, it is noticeable that the optimum values of S in Table 15 are larger than the values in
Table 14, while there is not much difference between the optimum cost values. In other words, in the
(s, Q)-policy, there is a need to keep more inventory in the system. Although more inventory is carried,
the total cost is almost the same as under the (s, S)-policy.

Table 15. Optimum values of ETC* and S* for the system under (s, Q)-policy

s=23 s=5 s=7
MAP PH S* ETC* S* ETC* S* ETC*

ERLA ERLS 15 1522919 17 1529.208 19  1547.543
EXPS 15 1577272 17 1582.646 19  1599.781
HEXS 17 2026.762 19 2027477 21  2035.853

EXPA  ERLS 16 1656.737 18 1659.345 20 1672.515
EXPS 16 1714313 18 1716220 20 1728.459
HEXS 18 2169372 20 2168.303 22  2173.935

HEXA  ERLS 21 2412971 22 2403.011 23  2399.884
EXPS 21  2496.307 22  2486.853 24  2483.935
HEXS 22 3043.138 24 3034403 25 3029.949

MNCA ERLS 16 1705783 18 1708.339 20 1721.544
EXPS 16 1760236 18 1762111 20 1774.414
HEXS 18 2208.991 20 2207.933 21  2213.632

MPCA  ERLS 42 28273128 43 28244.999 43 28217.403
EXPS 43 28343163 44 28316.618 44 28290.344
HEXS 48 28862372 48 28840.132 49 28817.682
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The comments made for Table 14 regarding the variability of service times or arrival process can
also be said for Table 15. As variation increases, more inventory is needed. Also, positive correlation is
important for the system under (s, Q)-policy similar to the system under (s, S)-policy.

Finally, the important difference between the two tables is the effect of the reorder point s. As the
values of s increases, the values of S remain the same or decrease in Table 14 ( as we mentioned above).
In Table 15, as the values of s increases, the values of S remain the same or increase.

6. Discussion

We study two queueing-inventory systems with catastrophes in the warehouse. Upon arrival
of a catastrophe all inventory in the system is instantly destroyed. The arrivals of the c-customers
follow a Markovian Arrival Process (MAP) and they can be queued in an infinite buffer. Service
time of a c-customer follows a phase-type distribution. The system receives n-customers to service
facility and upon arrival of a n-customer one c-customer is pushed out from the system, if any. One
of two replenishment policies can be used in the system: either (s, S) or (s, Q). If upon arrival of the
c-customer, the inventory level is zero, then according to the Bernoulli scheme, this customer is either
lost (lost sale scheme) or join the queue (backorder sale scheme).

The system is formulated by a four-dimensional continuous-time Markov chain. Steady state
distribution is obtained using the matrix-geometric method. A comprehensive numerical study
is performed on the performance measures and an optimization under various the service time
distributions and the arrival processes. As a result of numerical studies, it is seen that the variability in
service distribution, the variability in the arrival process and the arrivals with positive correlation have
an impact on both the performance measures of the system and the optimum inventory policy. Also,
it has been observed that the effect of variability is more specifically in the system with (s, Q)-policy
than the system with (s, S)-policy.

For the future work, ones can improve the studied system by considering the batch service and/or
batch arrival.
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Abbreviations

The following abbreviations are used in this manuscript:

Qs Queueing System

QIS Queueing Inventory System
ICS Inventory Control System
MAP Markovian Arrival Process
PH Phase-type distribution

IL Inventory Level

QL Queue Length

CTMC Continuous Time Markov Chain
QBD Quasi-birth-and-death process
ETC Expected Total Cost
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