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Abstract: Ambient vibration energy is widely being harnessed as a source of electrical energy to
drive low-power devices. The vibration energy harvester (VEH) of interest employs an
electromagnetic transduction mechanism, whereby ambient mechanical vibration is converted to
electrical energy. The limitations affecting the performance of VEHs, with an electromagnetic
transduction structure, include its operational bandwidth as well as the enclosure-size constraint.
In this study, an analysis and design of a nonlinear VEH system is conducted, using the Output
Frequency Response Function (OFRF) representations of the actual system model. However, the
OFRF representations are determined from the Generalised Associated Linear Equation (GALE)
decompositions of the system of interest. The effect of both nonlinear damping and stiffness
characteristics, to respectively extend the average power and operational bandwidth of the VEH
device, is demonstrated.

Keywords: nonlinear systems, vibration energy harvester (VEH), output frequency response
function (OFRF), generalised associated linear equations (GALEs), frequency domain

1. Introduction

Several studies have been conducted towards broadening the operational bandwidth of a
Vibration Energy Harvester (VEH), beyond the resonant region [1-7]. To extend the operational
bandwidth of a VEH system, the authors in [1] investigated a broadband energy harvester whose
function is based on a combination of nonlinear stiffening effect and multimodal energy harvesting
in order to attain a high bandwidth over a broad range of excitations (0.1-2.0g). In [2], the author
extended some previous studies on using movable masses to extend the bandwidth of VEHs. The
author demonstrated a novel method that involved embedding liquid in the system’s mass, used to
extend the bandwidth of the VEH or tune the frequency without a significant reduction in the power
output. Ramlan et al., in [3], demonstrated the potential benefits of nonlinear stiffness characteristics
in energy harvesters. Two implementations of nonlinear stiffness characteristics were considered in
the study. For the first implementation, using a bi-stable snap-through mechanism, it was shown that
more electrical power was harvested, compared to a tuned linear device, for a given input excitation.
Likewise, for the second implementation, using a hardening spring, it was also demonstrated that
the bandwidth could also be extended, in comparison with an equivalent linear device. It should be
noted that an equivalent linear VEH device provides the same maximum throw, at resonance, as the
nonlinear VEH device of interest. Meanwhile, the maximum throw is dependent on the size of the
VEH system (typically the electromagnetic-type) and is defined as the maximum distance that the
mass of the VEH system can travel. This constitutes a mass-displacement constraint for
electromagnetic-type energy harvesters. Wang et al., in [4], presented a novel automated method that
tracks the resonant frequency of a VEH. The authors achieved this by employing a pair of cylindrical
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movable magnetic sliders on a cantilever beam, which increased the bandwidth of the VEH, as the
slider could track the resonant frequency on the cantilever beam without manual involvement or
external energy input. In [5], the authors suggested tuning the resonant frequency of a VEH system
to align with that of the excitation frequency and set the electrical damping to be equal to the parasitic
damping. The system was implemented using Power electronics circuits, which enabled the
adjustment of both the damping characteristics and the resonant frequency, thus improving its
efficiency. Studies in [6] and [7] focused on the comparison of the bandwidth provided by a Duffing-
type energy harvester, with that of an equivalent linear harvester. The results obtained also
demonstrated that a nonlinear harvester provided a larger bandwidth compared to the linear
equivalent. Most of the published works have compared the Duffing-type VEH with its equivalent
linear device. In addition, several parameter optimisations have been suggested to achieve similar
results. Such parameter optimisations include the use of a mechanical damping [6], the integration of
an optimum electrical load [7,8], and the application of multi-stage harvester models [9,10].

It has been evidently established in literature [11-15] that a nonlinear stiffness behaviour, as
depicted in Figure 1, can be implemented using several geometric arrangements of permanent
magnets, whose lines of flux cut across defined arrangements of copper coils. In [11], a nonlinear
dual-function multi-modal energy harvester and vibration absorber (EHVA) for harvesting energy
and suppressing vibration in low-medium frequency band, was presented. Two different methods
were employed to extend the operating bandwidth of the system. These include the design of the
multi-modal shapes of the EHVA as well as the hysteresis property of nonlinear softening springs,
implemented by a novel permanent magnets structure. The authors in [12] investigated the steady
state response of a specific VEH system under the condition of external and internal resonance, with
focus on the double jump phenomenon. The frequency response curve shows the existence of
resonance peaks tilting to the left and right of the natural frequency of the system. Wang and Zhu in
[13] coupled a magnetic multi-stable device to a pendulum VEH in order expand its bandwidth,
specifically in low-frequency operation. In [14], an experimental and theoretical study for designing
a nonlinear electromagnetic converter-based magnetic spring was conducted. In this study, a special
emphasis was given to the magnetic force acting on the moving magnet, based on two parameters —
the volume of the magnets and the geometry of the two fixed magnets (i.e., disc or ring). Meanwhile,
the authors in [15] numerically analysed a magnetic-spring-based electromagnetic energy harvester
with piecewise nonlinear stiffness. It was demonstrated that the piecewise nonlinear stiffness
behaviour, developed due to the interactions of the moving magnet’s flux on the coil, facilitated the
response of the system in a wider frequency range, enabling generate more electrical energy.

Linear

Nonlinear
i \
(Softening)
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(Hardening)

Harvester responses

Ambient vibration frequency

Figure 1. Effect of nonlinear stiffness on the resonant frequency.
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Similarly, system damping characteristics have been employed in optimising the energy
harvested by vibration energy harvesters [16-24]. In [16], the authors presented an unconventional
way of achieving a tuneable resonant frequency (from high frequency to ultralow frequency) and
extending both the bandwidth and peak of the energy harvested, simultaneously, by utilising distinct
structurally supported displacement-dependent nonlinear damping property. This work was further
extended by the authors in [17], where a scissor-like energy harvesting system, with equivalent
nonlinear damping and linear stiffness characteristics, was developed. It was demonstrated that the
scissor-structure provided beneficial nonlinear damping effects, thereby significantly improving the
magnitude of the power harvested, as well as the bandwidth over which it was harvested. The
beneficial effect of antisymmetric nonlinear damping to energy harvesters, was demonstrated by the
authors in [18], when the system is subject to ambient random vibrations. Meanwhile, in [19], a VEH
which  employs a complementary metal-oxide-semiconductor-compatible 3D  micro-
electromechanical system coils and a ferromagnetic core, was presented. In order to describe the
nonlinear electromagnetic damping coefficient and nonlinear attraction between the magnet and the
ferromagnetic core, a systematic model was proposed. Thereafter, a vibration model was developed
by considering nonlinear stiffness and damping coefficient to derive the dynamic characteristics and
output performance of the system. The authors in [20] proposed a novel H-bridge circuit-based
electromagnetic damper which enables a bi-directional flow of electrical energy between the
electromagnetic damper and the energy storage. It was also demonstrated that this process enables
the realisation of diverse damping behaviour with salient self-powered feature.

The authors in [21,22] also employed nonlinear damping in extending the energy harvested by
a vibration energy harvester. Based on the findings in [21] and [22], an analysis, design, and
optimisation of a nonlinear VEH system was conducted in [23] and [24]. While no mass-displacement
constraint was considered in [23], this was considered in [24]. In these studies, an optimum cubic
damping parameter was designed for a desired power level, using the Output Frequency Response
Function (OFRF) method. The OFRF of a nonlinear system is determined based on the class of
nonlinear differential equation (NDE) the system belongs to and it shows the relationship between
the output spectrum of the system and its nonlinear parameters [25,26]. It, thus, describes the system
characteristics. The OFRF representation of the system studied in [25-29], were determined using the
Least-Squares (LS) approach. However, this method requires several numerical simulations, using a
(training) set of values of the system design parameters, to obtain the respective system output
responses [30].

Vazquez et al. in [31], based on the characteristics of the nth-order Volterra operator being a
multi-linear function of a combination of input signals, modelled the behaviour of the Volterra
operators using their Associated Linear Equation (ALE) decompositions. These ALE decompositions,
as discussed in [31,32], can be used as an analytical tool for analysing the Volterra class of nonlinear
systems such as the Duffing equation. Based on this, it was further revealed in [33,34] that the ALE
decompositions, for a Volterra class of nonlinear systems, can be used to determine a more accurate
OFRF representation of the system, using a significantly lesser number of numerical simulations,
compared to the LS approach. These methods were further extended in [35] to the Generalised
Associated Linear Equation (GALE) decompositions, which considered a general class of nonlinear
damping.

In this study, an analysis and design of a nonlinear VEH system is conducted, using the OFRF
representations of the system output spectra, which are determined from the GALE decompositions
of the nonlinear VEH model. In addition to using a nonlinear damping component to extend the
average power of the VEH, a stiffness nonlinearity is also integrated to widen the operational
frequency range of the harvesting device. It should be noted that the current study is an extension of
the initial work by the authors in [34]. To the best of the authors” knowledge, this is the first time the
OFRF method, derived using the GALE decompositions, is employed in the design and optimisation
of a nonlinear vibration energy harvester. Using the OFRF model, derived from the GALE
decompositions, simplifies the design process since a polynomial of the system’s performance
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metrics, is derived in terms of the design parameters. A sequel study involving an experiemental
validation of the design, is currently ongoing.

Subsequent sections of this paper are organised as follows—Section 2 presents the model
formulation of the system of interest. In Section 3, the OFRF method is introduced, while Section 4
describes the determination of the OFRF structure. Section 5 discusses the evaluation of the GALE
decompositions and in Section 6, the determination of the OFRF model, using the decomposed GALE
contributions is demonstrated. Section 7 provides the results obtained and their corresponding
discussions while the research findings are concluded in Section 7.

2. Model Formulation

A single degree-of-freedom (SDOF) vibration-based energy harvester, as illustrated in Error!
Reference source not found. 2, having a suspended mass, m and an oscillating support-base with
displacement y(¢), is given. The mass is separated from the base using an isolation system modelled
as a nonlinear damping system, connected parallel to a nonlinear spring. The damping system
comprises a mechanical viscous damping, ¢, and an electrical damping, c;. The electrical damping
arises from the electromagnetic force generated by virtue of the non-Ohmic load resistance connected
across the EM damper. The linear and cubic stiffness coefficients are k, and k, respectively.

m
x(n)f,
- - Nonlinear
kl > k3 Cl C3 loaf
y(?) —
f\J_ nergy. aryes ng
[\ il clrcult

Figure 2. SDOF of a vibration energy harvester with nonlinear stiffness and damping.

The model of the SDOF VEH is a class of NDE and the equation of motion of the mass with
respect to the relative displacement z=Xx—Yy is given as

mi+cz+c2 +kz+kz =—-mi (1)

For a harmonic base displacement with amplitude, Y, frequency, wand zero phase shift, the
base displacement is given as y = Y sin(wt) . Therefore Equation (1) becomes

mi+cz+c +kz+kz =moYsin(wt)  (2)

The nonlinear damping device absorbs an instantaneous power equal to the product of the
instantaneous damper force and relative velocity of the VEH. Therefore, it yields an average power
given as

T

P, =%j(csz'3)~z'dt )

0
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For a single-frequency harmonic oscillation, where z = Zsin(wr), yields

P =zew'Z' @
In addition, it can be deduced that the output frequency response Z, of system (2), is a function
of w, as well as the nonlinear parameters, ¢, and k, . This implies that P, , derived in Equation (4),

is also a function of ¢;, k; and w. Note that the resonant frequency is the frequency of interest, as

the maximum power is extracted at this frequency.

3. The Output Frequency Response Function (OFRF)

Equation (2) describes the dynamic model of the VEH system, which is a typical base-excited
duffing-equation, with an integrated nonlinear damping. A similar system has been studied using
methods such as, the Harmonic balance method [36], and multiple scales [37]. However, the
aforementioned methods only facilitate the analytical study of nonlinear systems. On the other hand,
the OFRF, which is employed in this study, does not only facilitate the analytical study of nonlinear
systems but also enables the design and optimization of such systems. However, for the OFRF
method to perform appropriately, the system of interest must operate within a stable regime. The
main benefit of the OFRF method is that it can provide an explicit analytical relationship between the
design objective and the system nonlinear parameters. This can significantly facilitate the system’s
design and optimization process. A comprehensive explanation of the OFRF concept can be found in

[25-30].
Let us examine the differential equation in Equation (5), which describes a class of Volterra
systems
L& & d“z(t) ¥y d“y(
3323 bk TR [T £ 20 =0
m=1 p=0ky,.k;=0 i=1 i=p+1

where M is the maximum degree of nonlinearity, in terms of the system’s input, y(f) and output,
z(t), and K is the order of the derivative. According to the OFRF method, as described in [26], the

output frequency response of Equation (5) can be described by a polynomial function in terms of the
system nonlinear parameters as

m USY <
Z(jcu)zz---Z‘I’«ﬁ,...,&sh)(J’W)’ﬁh-~-’{séih (6)
6=0 Ssn=0

where »n, are the maximum order of «,, for i=1,...,S, in the polynomial expression of the output
spectrum, Z(jw) of Equation (6). The OFRF coefficients, ¥, . (jw) are frequency functions with

complex values. They are also dependent on the system linear parameters and system input, where
6,=0,...,n, and i=1,...,S,.In addition, ...k} is known as the OFRF structure. They are a set of

monomials in terms of the system nonlinear characteristic parameters. If the set of monomials in the
OFRF polynomial, of the nth-order output spectrum, is denoted as 9t and the vector of the
frequency function, is denoted as ©(jw), the OFRF can be then be described as

Z(jw)=M-0(jw)  (7)

where


https://doi.org/10.20944/preprints202311.0930.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2023 doi:10.20944/preprints202311.0930.v1

Here, S, is the maximum order of nonlinearity considered for this study and the set of
monomials E, can be derived using the method in [15] as

K n—1 n—(m—p) K
E” = U [CO’” (kl""’kn)] U 7U U U ([Cp,(ﬁ-p)(klﬂ""kﬁ)]®En7(M71)),P)
k. nk, =0 m—p=1  p=1 kj...k,=0 (9)
n K
U U ((epomk,)|®E,,)
p=2k;,...k,=0

Note that the character ‘® ’ is the Kronecker product and given by

n—p+1

E,,= U (Ei ®En—i,p—])7 E,, =E,E =[] (10)

n,p
=1

Then the set of monomials can be obtained as 9 = U E,

n=1

4. Determination of the OFRF Structure

Firstly, the OFRF representations of the output spectrum of system (2), Z(jw) and the
harvestable average power of Equation (4), P, , are obtained in terms of the design parameters, c,
and k,.Itis observed that Equation (2) belongs to the class of Volterra system of Equation (4) in [25],
with M =3 and K=2. The system parameters are obtained as ¢,,(2)=m, ¢,(1)=c¢,, ¢,0)=k,
€, (000)=k;, c;,(111)=¢;, and ¢,,(0) = —mw’Y .

If the set of monomials in the OFRF representation of the nth-order output spectrum of system
(2), is denoted by 9, and the complex-valued OFRF coefficients is denoted by O(jw), then the
OFREF representation can be written as

Z(jw) = M-O(jw) (11)
Applying the algorithm, as presented in [38], to obtain the OFRF monomials, 91, up to the 7th
order, yields
E =[]
E,=[c k
3 [ ;; 3] , (12)
Es =[¢; ¢k k]
E, =[¢ ck ok k]

M =B, =Ly, ks, sk, k2,63 62y 5k
Therefore, n=l
It should be noted that for improved accuracy, higher orders can be considered. Furthermore,
the OFRF representation, as presented in Equation (11), which comprises the monomials obtained, as

presented in Equation (12), and its respective OFRF coefficients, ©, (jw) (yet to be determined),

nlr

can be represented in the form

Sy
Zopp(Jw) = ZEW '@m (jw) (13)
n=1

where r=0,2,...,h and / is the maximum number of elements in E,. Rewriting Equation (13)
yields
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Zopre(jw) = @1\0 (jw) +¢ '@3\10“}) +k, '@3\2 (jw)
+C§ : 65\1 (.]w) + C3k3 : 65\2 (Jw) +k32 : @5\3 (JL‘J) + 033 : @7\1 (Jw) (14)
+cik, 05, (jw) + cik; 055(jw) +k; -0,,(jw)

Thus, to determine the OFRF coefficients, O, (jw), the GALE decompositions of system (2) are

nlr
first computed up to the 7th-order. In the next section, the evaluation of the GALE decompositions,
for the NDE system of interest, is demonstrated.

5. Evaluation of the Generalised Associated Linear Equations (GALEs)

For a nonlinear system of the Volterra class given in system (2), the following substitutions can
be made

0=, (15)

Rewriting system (2) in a general form, by leaving all the linear elements on the LHS and
substituting Equation (15) yields

n=1 n=l1 n=1
L 0 / L x
mw’Y sin(wt) — Y ¢, [ZZ'n -k [ZZ"]
j=3 =1 =3 =1

The GALE decompositions of system (16) can be obtained for the nth order, for n=12,...,Sy,

,(16)

where S, is the maximum order of the system nonlinearity considered, as demonstrated in [34,35]
thus,

Sy Sy Sy
mE zn—l—clg z,,—t—klg Z, =
n=1 n=1 n=l1

2 .
mw’Y sin(wt)

Sy n=3  mmiHl nlbimji—ejon n—jimeje— i (17)
_ZZCZZ'" Z Z ZiZj e Zi

n=l1 1:3 ll:l l‘,:l l,:O

Sy n=3 ol amjHmjjia i jia
)LD DD DI DRI

n=l j=3  ji=l ji=l Ji=0

where the summation of all the sub-indices of Z; and z on the RHS has to be equal to ni.e,
(ji+--+j=n) and (j,+...+j,=n). In computing the GALE decompositions, the low-order output
responses contribute to the immediate higher-order responses up to the maximum order considered.
For an estimation of the total output responses up to the S, th-order and its corresponding output

spectrums,

=320
=l (18)

Z(jw) =57, (jw)

n=1

For §, =7, the following GALE decompositions are obtained
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mz, + ¢z, + kz, = mw’Y sin(wt)
mz, +cz, +hz, = —k,z, — ¢,z (19)
mz, +cz, +kz, = —3k,z}z, — 3¢,2 2,

mz, + ¢z, +kz, = =3k,(z,z; +z]2,) — 3¢, (2,21 + 2 %)
The continuous-time output response of system (2) and its corresponding output spectrum,
where Z, (jw)= fft(z,(¢)) , are respectively expressed as
{z(t) =20+ 2,0 + 2, + 2, () 20)
Z(jw) = Z,(jw) + Z;(jw) + Z5(jw) + Z; (jw)

The cumulative structure of the individual nth-order GALE contributions, up to the 7th -order,
is presented in Figure 3. Similarly, Figure 4 shows the output spectrum for each nth-order
contribution of the GALE decompositions, up to the 7th-order. It is observed that at resonance there
is a significant contribution by the individual decompositions. Meanwhile, Figure 5 demonstrates the
nth-order contributions of the GALE decompositions, up to the 9th-order for a range of nonlinear
damping values.

u(z‘) 1% Ord Zl(t)
| eaLe
1 39 Order Z3 (t)
GALE
u 5" Order ZS (t)
GALE (f)
1 7" Ord z;(7) “
GALE +—
. ——
: ' '
: : i : '
E E ; . -
: — Nth Order Zn (t )
7| ALE

Figure 3. A representation of the individual GALE contributions to the general output response of
system (2).
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Figure 4. Graph of individual nth order GALE contributions to the output response of system (2), at

the fundamental frequency.
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Figure 5. Nth-order GALE contributions for N = 3, 5,7 and 9 at &, =200, and ¢, = 0.300, 0.325, 0.350,

0.375, and 0.400.
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6. Determination of the OFRF Model using the GALE Contributions

Equation (20) shows the output spectrum of system (2) determined from the Fast Fourier
Transform of the GALE contributions obtained. The nth-order output spectrum of each GALE
contribution is equal to the corresponding nth-order component of the OFRF representation thus

Z s (JW) = Z e (jw)

Sy Sy
>Z,(jw)=)_E, 6, (jw)
n=l1 n=1

From Equation (21), it can be deduced that

(1)

Z,(jw) =0, (jw)
Zy(jw) = ¢;- Oy (jw) + k; - Oy, (jw)
Z,(jw) = ¢; -0y, (jw) + c5k; - O, (jw) +h5 - Oy (jw) (22)
Z,(jw) = ¢;-05,(jw) + ciky - 0, (jw) + ¢;k7 - O3 (jw)
+k3 -0, (jw)

Subsequent analysis in this study has been done using the following system parameter values
presented in Table 1 with Q=w/w, .

Table 1. Model parameters used for the simulations.

Parameters Notations Values
Mass (kg) m 1
Linear spring stiffness (N.m™) K, 25
Linear damping coefficient (N.s.m™) ¢ 2
Magnitude of base excitation (m) Y 0.05
Resonant frequency (rad.s™) w, 6.4
Natural frequency (rad.s™) w, 5

To obtain the OFRF coefficients up to the 7th-order, five simulations are required using five
different values of c,(c,,) and k,(k,,), where r=1,2,3,4,5., as given in Table 2.

Table 2. Simulation (Training) values of model design parameters.

Model nonlinear Sim1 Sim2 Sim3 Sim4 Sim5
parameter value value value value value
¢;(N.s”.m?) 0.300 0.325 0.350 0.375 0.400

k; (N.m”) 0 55 110 165 220

The OFRF coefficients can be determined for any frequency of interest using Equation (23) given
as
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euo (jw)=Z,(jw)
0,,(jw)]_|e, kﬂ}l[zﬂuw)
@3|2 (jw) Cs k32 Zs, (jw)
. -1 .
65\1 (jw) C321 Cyks, k321 Z5,(jw)
@5\2 (Jw)|= C322 Cyokes, k322 Zs,(jw) (23)

95\30"") 0323 Cyskss k323 Zg,(jw)

O4GW| & Gk ek ks h Z3(jw)
O(W)| _|es, ek, cpksy k| [Zn(jw)
©75(jw) 6333 6323k33 C33k323 k333 Z55(jw)
67\4 (Jw) 034 C§4k34 034k324 k334 Z74 (Jw)

Therefore, the GALE-generated OFRF representation of the output spectrum of system (2) can
be expressed as

Z(jwscy,ky) = euo (jw)+¢ -@3‘1(ju.)) +hy @3\2 (jw) + C32 : 65\1 (jw)
+e3ky - O, (Jw) 4 k5 - Oy (jw) 4¢3 -0, (jw) + ks - O, (jw) (24)
+e3k5 0,5 (jw) k3 -0, (jw)

The OFREF coefficients of Equation (24) have been determined using the GALE approach. The
benefit of using the GALE approach is that the number of numerical simulations required to
determine the OFRF of the system is significantly reduced [33]. To obtain the respective OFRF
representation of the average power harvestable by the VEH system, via the nonlinear damping
system, the OFRF representation of the output spectrum in Equation (24) is substituted in Equation
(4) to yield

3 .
Po(wsesh) = 2ew'ZGwen k)l (25)

The OFRF representation of the quartic magnitude of the output spectrum,

Z(jwic; k)| can

also be derived and represented in a polynomial form [20] as

7 n o
|1ZGwies, k) =S v (W) (26)

n=0 m=0

where N =7 is the maximum nth order nonlinearity while v, . . are functions of frequency and

m,—i

represent the OFRF coefficients of |Z( jw;c3,k3)|4 . Therefore, the average power can be represented as

7 n
P (w,cy,k;) = %w“ ~ZZUW% (W) k™ (27)

n=0 m=0

The OFRF-based results are obtained and compared with that determined using the Runge-
Kutta 4 algorithm (ODE45 in MATLAB) for both the output spectrum of system (2) and the average
power harvested by the VEH system. The comparisons were conducted for different combinations of
parameter values beyond the training set of the nonlinear parameters ¢, and &;. The results are
presented in Figures 6 and 7 for the pair of parameters, ¢, = 0.45 Ns®m?3, k,;=250 Nm3and c,;=0.25
Ns’m=, k= 270Nm?3, respectively. In the next section, results obtained from the GALE-generated
OFRF representations, presented in Equations (24) and (27), are provided and their implications
discussed extensively.
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Figure 6. GALE-OFRF vs numerical simulation results for the (a) output spectra and (b) average
power respectively at ¢,;=0.45and &, =250.
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Figure 7. GALE-OFRF vs numerical simulation results for the (a) output spectra and (b) average
power respectively at ¢; =0.25and &, =270.

7. Results and Discussion

The OFRF representation of the output spectrum, Z of system (2) was derived using the GALE
decompositions evaluated from the same system. The OFRF representation of the output spectrum
was subsequently used to estimate the average power generated by the electromagnetic damper. This
was performed for a pair of nonlinear parameter values, ¢, and k; beyond the range over which
the OFRF representation was determined ie. ¢, €[0.3,0.4] Nsm?® and £k, €[0,220] Nm?3. As
observed in Figures 6 and 7, the OFRF representation accurately represents the actual output
spectrum and average power of the VEH, respectively. These results clearly demonstrate a good
match between the OFRF representation and the more accurate results from direct numerical
simulations. This demonstrates the benefits of the OFRF methodology as it evidently describes the
system dynamics over the entire spectrum. Note that the wobbles observed around the resonant
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regions in Figures 6 and 7 are due to the use of parameters beyond the design (training) range. Using
parameters further beyond the design range will cause the system to approach instability.

In the implementation of such a nonlinear VEH system, the cubic damping nonlinearity can be
contributed by an electromagnetic damper whose characteristics is dependent on that of the load
resistance of the energy harvesting circuit. The hardening stiffness nonlinearity can be realised by the
application of magnetic springs, wherein a mass of permanent magnet is levitated between two
stationary magnets [39]. However, such magnetic springs can also contribute a damping component
typically referred to as magnetic damping [40].

7.1. Effect of a hardening spring and cubic damping on the VEH system

Nonlinearities contributed by a hardening-type spring stiffness is integrated into a standard
linear harvesting device, to expand the bandwidth over which power can be harvested. The
bandwidth expansion is caused by a shift in the resonant frequency to higher frequencies. To
demonstrate the effect of integrating a hardening-type stiffness characteristic to the dynamics of a
VEH system with cubic damping nonlinearity, numerical studies are conducted. The integration of a
hardening spring-effect can be implemented by employing magnetic springs [39]. Using the OFRF
representations provided in Equations (24) and (25), the effect of the stiffness parameter, k,can be
observed in Figure 8. It is clearly seen to extend the operational bandwidth of the nonlinear VEH
system due to the shift in the resonant frequency of the output spectra. The operational bandwidth
of the VEH system, with and without stiffness characteristic, are denoted as A}, and AQ,
respectively. In addition to this, an apparent increase in the dynamic range of the nonlinear VEH
system can also be observed. This is logical as the average power of the nonlinear VEH system, given
in Equation (25), is a function of the excitation frequency, w. Several studies in literature focused on
increasing the bandwidth of linear VEH devices with the integration of a hardening-type stiffness
and compared the duffing-type harvester with a standard linear harvester. Figure 9 shows the effect
of varying the nonlinear stiffness characteristics on the output spectrum and average power of the
nonlinear VEH system. In Figure 9a, while the relative displacement of the VEH system remains
relatively constant as &, increases, it is evident in Figure 9b that the average power of the VEH

device increases, within the resonant region, Q2=1.2, as k; increases. However, the power

remains relatively constant within the low and high frequency regions, where 2«1 and Q>>1
respectively.

Furthermore, the effect of a variation of the nonlinear cubic damping c,, on the VEH system,
was also investigated. This was demonstrated by varying ¢, while fixing k;, as shown in Figure 10.
It is revealed that while the maximum span of the VEH system reduces by an insignificant amount,
the average power harvested increases significantly around and beyond the resonant region. It
should be noted that to implement the nonlinear cubic damping force characteristics, the current
flowing through the nonlinear load (Energy harvesting circuit) should be proportional to the cube of
the voltage across it [21].

In the current study, a hardening-type stiffness is integrated in a VEH system with cubic
damping nonlinearity. However, a comparison of the VEH with damping and stiffness nonlinearities,
against its linear equivalent, has not been considered here. This is due to the unavailability of a basis
for such comparison to be made. Comparisons of this nature have never been reported for
Electromagnetic-type VEH devices, with damping and stiffness nonlinearities, to the best of the
authors” knowledge.

Furthermore, most studies in literature considered the Duffing-type harvesters that exhibit the
jump phenomenon, and they were majorly designed to operate within the larger stable branch.
Nevertheless, it is imperative to note that if the VEH model experiences a jump phenomenon, the
sum of the GALE decompositions will not converge to the actual output spectrum around the jump
region. Therefore, the OFRF representations will poorly describe the actual output spectra of the
system and, consequently, will be an inappropriate method to conduct the system analysis and
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design. However, this problem is resolved here with the integration of both linear and nonlinear
damping characteristics.
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Figure 8. Effect of hardening stiffness on the (a) output spectrum and (b) average power of the
nonlinear VEH system.
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Figure 9. Effect of the variation of hardening stiffness on the (a) output spectrum and (b) average
power of the nonlinear VEH system.
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Figure 10. Effect of variation of cubic damping on the (a) output spectrum and (b) average power of

the nonlinear VEH system.

7.2. Optimisation of an unconstrained nonlinear VEH system

Using the OFRF representation of the average power as determined in Equation (27), an
optimisation problem can be formulated as

max £, (w,.¢5.k)

[es ks
02<¢, <05 (28)
s.
0<k, <400
The solution to the unconstrained optimisation problem is simple and can be determined using

the MATLAB fminsearch or fmincon function. Moreover, using the OFRF representations of Equations
(24) and (27), the relationships between the design parameters, ¢, k,, the output spectrum, and the
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average power, at the resonant frequency, can be established. These are presented using surface plots
in Figures 11 and 12. It can be deduced from Figure 12 that the average power is significantly sensitive
to the nonlinear stiffness characteristic, &, but less sensitive to the nonlinear damping characteristic,

¢,, atlower values of k,.However, at higher values of £, the average power increases to an optimal
value, as ¢, increases to 0.46, then it starts to decline. It should be noted that this design is only valid

within the design range of the parameters of interest.
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Figure 11. Output spectrum of system (2) against a variation of ¢, and &, at Q=12 .

Figure 12. Average power of the VEH device against a variation of c,and & at Q=1.2.

In Figure 13, the output spectrum and average power of the VEH system, for a variation of ¢,
and k,, are provided at Q<1 and Q>1.
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Figure 13. Output spectrum and Average power of VEH for a variation of ¢,and &, at (a) Q<1
and (b) Q>1.

8. Conclusions

In this study, the analysis and design of a vibration energy harvester with damping and stiffness
nonlinearities were considered. Nonlinear stiffness was introduced into the mechanical subsystem
of the vibration energy harvester, to improve the operational frequency range (bandwidth) of the
VEH system. However, the nonlinear damping was introduced to extend the average power of the
VEH system. While the nonlinear stiffness can be realised using magnetic springs or geometrically
horizontal springs, the nonlinear damping can be realised using an energy harvesting circuit with
nonlinear characteristics. Such an energy harvesting circuit will provide a current which varies
proportionally with the cubic power of the voltage.

A polynomial representation of the system model, i.e., the Output Frequency Response Function
(OFRF), was derived. However, the OFRF representation was determined using the Generalised
Associated Linear Equation (GALE) decompositions of the system model. It was observed that by
using the GALE method, the number of numerical simulations needed to determine the OFRF of the
actual system was considerably reduced. Subsequently, the GALE-generated OFRF representation of
the actual system was verified to ensure it clearly represented the system output spectra.

The effect of a hardening stiffness nonlinearity, as well as a nonlinear cubic damping, on the
VEH system, was investigated. The application of low-level excitation for this study ensured no jump
phenomenon was exhibited. This is because the GALE and OFRF concepts are applicable only to a
class of nonlinear systems stable at zero equilibrium and which can be described by a Volterra series
model. The exhibition of a jump, by the system model, will nullify the suitability of the methods
employed in this study.

The results obtained in this study show that the nonlinear stiffness characteristic extends the
operational bandwidth as well as the harvested power of the VEH system, hence improving its
performance. It was also revealed that employing a nonlinear cubic damping characteristic, in the
presence of a nonlinear stiffness characteristic, improved the performance of the VEH system. Using
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the OFRF representation, optimal values of the VEH design parameters can be determined for any
desired power level within and beyond the design range. Future studies will focus on the design of
VEH systems with damping and stiffness nonlinearities subject to mass-displacement constraints
inherent in practical VEH systems.

Author Contributions: Conceptualization, U.D.; methodology, U.D., Y.Z. and R.G,; software, U.D, R.G., Y.Z;
formal analysis, U.D.; investigation, U.D.; writing—original draft preparation, U.D.; writing—review and
editing, Y.Z. and R.G,; visualization, U.D. and G.W.; project administration, U.D. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Gupta, Rahul Kumar, et al. "Broadband energy harvester using non-linear polymer spring and
electromagnetic/triboelectric ~ hybrid  mechanism."  Scientific ~ reports 7.1  (2017):  41396.
[https://doi.org/10.1038/srep41396]

2. Jackson, N. "Tuning and widening the bandwidth of vibration energy harvesters using a ferrofluid
embedded mass." Microsystem Technologies 26.6 (2020): 2043-2051. [https://doi.org/10.1007/s00542-020-
04756-2]

3. RamlanR,, Brennan M.].,, Mace B.R., and Kovacic I., "Potential benefits of a non-linear stiffness in an energy
harvesting device". Nonlinear dynamics 59, no. 4 (2010): 545-558. [https://doi.org/10.1007/s11071-009-9561-
5]

4.  Wang, K. et al. "Widening the bandwidth of vibration energy harvester by automatically tracking the
resonant frequency with magnetic sliders." Sustainable Energy Technologies and Assessments 58 (2023):
103368. [https://doi.org/10.1016/j.seta.2023.103368]

5. Mitcheson P.D., Toh T.T., Wong K.H., Burrow S.G., and Holmes A.S., "Tuning the resonant frequency and
damping of an electromagnetic energy harvester using power electronics". IEEE Transactions on Circuits
and Systems II: Express Briefs 58, no. 12 (2011): 792-796. [https://doi.org/10.1109/TCSII.2011.2173966]

6. Cammarano A., Neild S.A., Burrow S.G., and Inman D.J.,, "The bandwidth of optimized nonlinear
vibration-based energy harvesters'. Smart Materials and Structures 23, no. 5 (2014): 055019.
[https://doi.org/10.1088/0964-1726/23/5/055019]

7. Cammarano A., Gonzalez-Buelga A., Neild S.A., Burrow S.G., and Inman D.J., "Bandwidth of a nonlinear
harvester with optimized electrical load". In Journal of Physics: Conference Series, vol. 476, no. 1, p. 012071.
IOP Publishing, 2013. [https://doi.org/10.1088/1742-6596/476/1/012071]

8.  Cammarano, A., Neild, S. A., Burrow, S. G., Wagg, D. ., & Inman, D. J. (2014). Optimum resistive loads for
vibration-based electromagnetic energy harvesters with a stiffening nonlinearity. Journal of Intelligent
Material Systems and Structures, 25(14), 1757-1770. [https://doi.org/10.1177/1045389X14523854]

9. Fernando J.S. and Sun Q., "Bandwidth widening of vibration energy harvesters through a multi-stage
design". Journal of Renewable and Sustainable Energy 7, no. 5 (2015): 053110.
[https://doi.org/10.1063/1.4931794 ]

10. Zeng, B., & Zheng, S. (2020, August). A Compact and Broadband Rectifier for Ambient Electromagnetic
Energy Harvesting Application. In 2020 International Workshop on Electromagnetics: Applications and
Student Innovation Competition (IWEM) (pp- 1-2). IEEE.
[https://doi.org/10.1109/iWEM49354.2020.9237444]

11. Wang, Xi, Haomin Wu, and Bintang Yang. "Nonlinear multi-modal energy harvester and vibration
absorber using magnetic softening spring." Journal of Sound and Vibration 476 (2020): 115332.
[https://doi.org/10.1016/j.jsv.2020.115332]

12.  Karimpour, H., and M. Eftekhari. "Exploiting double jumping phenomenon for broadening bandwidth of
an energy harvesting device." Mechanical Systems and Signal Processing 139 (2020): 106614.
[https://doi.org/10.1016/j.ymssp.2019.106614]

13.  Wang, Tao, and Shigiang Zhu. "Analysis and experiments of a pendulum vibration energy harvester with
a magnetic multi-stable mechanism." IEEE Transactions on Magnetics 58.8 (2022): 1-7.
[https://doi.org/10.1109/TMAG.2022.3180834]

14. Naifar, Slim, Sonia Bradai, and Olfa Kanoun. "Design study of a nonlinear electromagnetic converter using
magnetic spring." The European Physical Journal Special Topics 231.8 (2022): 1517-1528.
[https://doi.org/10.1140/epjs/s11734-022-00498-6]


https://doi.org/10.20944/preprints202311.0930.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2023 doi:10.20944/preprints202311.0930.v1

21

15. Wang, Wei, Hongtao Wei, and Zon-Han Wei. "Numerical analysis of a magnetic-spring-based piecewise
nonlinear electromagnetic energy harvester." The European Physical Journal Plus 137.1 (2022): 56.
[https://doi.org/10.1140/epjp/s13360-021-02255-5]

16. Wei, Chongfeng, and Xingjian Jing. "Vibrational energy harvesting by exploring structural benefits and
nonlinear characteristics." Communications in Nonlinear Science and Numerical Simulation 48 (2017): 288-
306. [https://doi.org/10.1016/j.cnsns.2016.12.026]

17. Wei, Chongfeng, et al. "A tunable nonlinear vibrational energy harvesting system with scissor-like
structure." Mechanical Systems and Signal Processing 125 (2019): 202-214.
[https://doi.org/10.1016/j.ymssp.2018.06.007]

18. ZhuY., and Lang Z. Q., "Beneficial effects of antisymmetric nonlinear damping with application to energy
harvesting and vibration isolation under general inputs.” Nonlinear Dynamics 108.4 (2022): 2917-2933.
[https://doi.org/10.1007/s11071-022-07444-0]

19. Tao Zhi et al. "Theoretical model and analysis of an electromagnetic vibration energy harvester with
nonlinear damping and stiffness based on 3D MEMS coils." Journal of Physics D: Applied Physics 53.49
(2020): 495503. [https://doi.org/10.1088/1361-6463/abab4e]

20. Li J.Y, and Zhu S., "Tunable electromagnetic damper with synthetic impedance and self-powered
functions.” Mechanical Systems and Signal Processing 159 (2021): 107822.
[https://doi.org/10.1016/j.ymssp.2021.107822]

21. Tehrani M.G. and Elliott S.J., "Extending the dynamic range of an energy harvester using nonlinear
damping”.  Journal =~ of Sound and = Vibration 333, no. 3 (2014): 623-629.
[https://doi.org/10.1016/j.jsv.2013.09.035]

22. Hendijanizadeh M., Elliott S.J., and Ghandchi-Tehrani M., "The effect of internal resistance on an energy
harvester with cubic resistance load". The 22nd International Congress on Sound and Vibration (ICSV22),
Italy, (2015). [https://eprints.soton.ac.uk/380273/1/ICSV22_Mehdi_Final_2.pdf]

23. Diala U, Pope S., and Lang Z.Q., "Analysis and design of a nonlinear vibration-based energy harvester-a
frequency-based approach". In Advanced Intelligent Mechatronics (AIM), 2017 IEEE International
Conference on, pp. 1550-1555. IEEE, 2017. [https://doi.org/10.1109/AIM.2017.8014239]

24. Diala U, Lang Z.Q., and Pope S., "Analysis, design and optimization of a nonlinear energy harvester". In
24th  International =~ Congress on Sound and Vibration 2017 (ICSV  24) (2017).
[http://toc.proceedings.com/35564webtoc.pdf]

25. Lang Z.Q. and Billings S.A., "Output frequency characteristics of nonlinear systems". International Journal
of Control 64, no. 6 (1996): 1049-1067. [https://doi.org/10.1080/00207179608921674]

26. Lang Z.Q., Billings S.A., Yue R, and Li J., "Output frequency response function of nonlinear Volterra
systems". Automatica 43, no. 5 (2007): 805-816. [https://doi.org/10.1016/j.automatica.2006.11.013]

27. Zhu Y. and Lang Z.Q., "Design of Nonlinear Systems in the Frequency Domain: An Output Frequency
Response Function-Based Approach". IEEE Transactions on Control Systems Technology 26, no. 4 (2018):
1358-1371. [https://doi.org/10.1109/TCST.2017.2716379]

28. GuoP.F, Lang Z.Q., and Peng Z.K., "Analysis and design of the force and displacement transmissibility of
nonlinear viscous damper-based vibration isolation systems". Nonlinear Dynamics 67, no. 4 (2012): 2671-
2687. [https://doi.org/10.1007/s11071-011-0180-6]

29. ZhuY. and Lang Z. Q. (2017). Design of nonlinear systems in the frequency domain: an output frequency
response function-based approach. IEEE transactions on control systems technology, 26(4), 1358-1371.
[https://doi.org/10.1109/TCST.2017.2716379]

30. Jing X.J., Lang Z.Q., and Billings S.A., "Output frequency response function-based analysis for nonlinear
Volterra systems". Mechanical systems and signal processing 22, no. 1 (2008): 102-120.
[https://doi.org/10.1016/j.ymssp.2007.06.010]

31. Feijoo ]J.V., Worden K., and Stanway R., "Associated linear equations for Volterra operators". Mechanical
Systems and Signal Processing 19, no. 1 (2005): 57-69. [https://doi.org/10.1016/j.ymssp.2004.03.003]

32. Feijoo J.V.,, Worden K., and Stanway R., "Analysis of time-invariant systems in the time and frequency
domain by associated linear equations (ALEs)". Mechanical Systems and Signal Processing 20, no. 4 (2006):
896-919. [https://doi.org/10.1016/j.ymssp.2005.03.004]

33. Ibrahim N.N.L.N. and Lang Z.Q., “A new and efficient method for the determination of Output Frequency
Response Function of nonlinear vibration systems”, Transforming the Future of Infrastructure through
Smarter Information: Proceedings of the International Conference on Smart Infrastructure and
Construction, (2016). [https://www icevirtuallibrary.com/doi/abs/10.1680/tfitsi.61279.447]

34. Diala U.,, Gunawardena R., Zhu Y., and Lang Z. Q. (2018, September). Nonlinear design and optimisation
of a vibration energy harvester. In 2018 UKACC 12th international conference on control (CONTROL) (pp.
180-185). IEEE. [https://doi.org/10.1109/CONTROL.2018.8516821]

35. ZhuY.P,Lang Z. Q., Mao H. L., and Laalej H. (2022). Nonlinear output frequency response functions: A
new evaluation approach and applications to railway and manufacturing systems’ condition monitoring.
Mechanical Systems and Signal Processing, 163, 108179. [https://doi.org/10.1016/j.ymssp.2021.108179]


https://doi.org/10.20944/preprints202311.0930.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2023 doi:10.20944/preprints202311.0930.v1

22

36. Mofidian S. M., and Bardaweel H. (2018). Displacement transmissibility evaluation of vibration isolation
system employing nonlinear-damping and nonlinear-stiffness elements. Journal of Vibration and Control,
24(18), 4247-4259. [https://doi.org/10.1177/1077546317722702]

37. Huang D,, Li R, Zhou S, and Litak G. (2018). Theoretical analysis of vibration energy harvesters with
nonlinear damping and nonlinear stiffness. The European Physical Journal Plus, 133, 1-19.
[https://doi.org/10.1140/epjp/i2018-12298-0]

38. Peng Z.K. and Lang Z. Q. (2008). The effects of nonlinearity on the output frequency response of a passive
engine mount. Journal of Sound and Vibration, 318(1-2), 313-328. [https://doi.org/10.1016/j.jsv.2008.04.016]

39. Mofidian S.M., and Bardaweel H., "Investigation of Damping Nonlinearity in Duffing-Type Vibration
Isolation System with Geometric and Magnetic Stiffness Nonlinearities". In ASME 2017 International
Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2017.
[https://doi.org/10.1115/IMECE2017-70170]

40. Mofidian S.M. and Bardaweel H., "Theoretical study and experimental identification of elastic-magnetic
vibration isolation system". Journal of Intelligent Material Systems and Structures 29, no. 18 (2018): 3550-
3561. [https://doi.org/10.1177/1045389X18783869]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202311.0930.v1

