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Abstract: Ambient vibration energy  is widely being harnessed as a source of electrical energy to 
drive  low‐power  devices.  The  vibration  energy  harvester  (VEH)  of  interest  employs  an 
electromagnetic transduction mechanism, whereby ambient mechanical vibration  is converted to 
electrical  energy.  The  limitations  affecting  the  performance  of  VEHs, with  an  electromagnetic 
transduction structure, include its operational bandwidth as well as the enclosure‐size constraint. 
In this study, an analysis and design of a nonlinear VEH system is conducted, using the Output 
Frequency Response Function  (OFRF) representations of  the actual system model. However,  the 
OFRF  representations are determined  from  the Generalised Associated Linear Equation  (GALE) 
decompositions  of  the  system  of  interest.  The  effect  of  both  nonlinear  damping  and  stiffness 
characteristics, to respectively extend the average power and operational bandwidth of  the VEH 
device, is demonstrated. 

Keywords:  nonlinear  systems,  vibration  energy  harvester  (VEH),  output  frequency  response 
function (OFRF), generalised associated linear equations (GALEs), frequency domain 

 

1. Introduction 

Several  studies  have  been  conducted  towards  broadening  the  operational  bandwidth  of  a 
Vibration Energy Harvester  (VEH), beyond  the  resonant  region  [1–7]. To  extend  the operational 
bandwidth of a VEH system, the authors  in  [1]  investigated a broadband energy harvester whose 
function is based on a combination of nonlinear stiffening effect and multimodal energy harvesting 
in order to attain a high bandwidth over a broad range of excitations (0.1–2.0g). In [2], the author 
extended some previous studies on using movable masses to extend the bandwidth of VEHs. The 
author demonstrated a novel method that involved embedding liquid in the system’s mass, used to 
extend the bandwidth of the VEH or tune the frequency without a significant reduction in the power 
output. Ramlan et al., in [3], demonstrated the potential benefits of nonlinear stiffness characteristics 
in energy harvesters. Two implementations of nonlinear stiffness characteristics were considered in 
the study. For the first implementation, using a bi‐stable snap‐through mechanism, it was shown that 
more electrical power was harvested, compared to a tuned linear device, for a given input excitation. 
Likewise, for the second implementation, using a hardening spring, it was also demonstrated that 
the bandwidth could also be extended, in comparison with an equivalent linear device. It should be 
noted that an equivalent linear VEH device provides the same maximum throw, at resonance, as the 
nonlinear VEH device of interest. Meanwhile, the maximum throw is dependent on the size of the 
VEH system (typically the electromagnetic‐type) and is defined as the maximum distance that the 
mass  of  the  VEH  system  can  travel.  This  constitutes  a  mass‐displacement  constraint  for 
electromagnetic‐type energy harvesters. Wang et al., in [4], presented a novel automated method that 
tracks the resonant frequency of a VEH. The authors achieved this by employing a pair of cylindrical 
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movable magnetic sliders on a cantilever beam, which increased the bandwidth of the VEH, as the 
slider could  track  the resonant  frequency on  the cantilever beam without manual  involvement or 
external energy input. In [5], the authors suggested tuning the resonant frequency of a VEH system 
to align with that of the excitation frequency and set the electrical damping to be equal to the parasitic 
damping.  The  system  was  implemented  using  Power  electronics  circuits,  which  enabled  the 
adjustment  of  both  the  damping  characteristics  and  the  resonant  frequency,  thus  improving  its 
efficiency. Studies in [6] and [7] focused on the comparison of the bandwidth provided by a Duffing‐
type  energy  harvester,  with  that  of  an  equivalent  linear  harvester.  The  results  obtained  also 
demonstrated  that  a  nonlinear  harvester  provided  a  larger  bandwidth  compared  to  the  linear 
equivalent. Most of the published works have compared the Duffing‐type VEH with its equivalent 
linear device. In addition, several parameter optimisations have been suggested to achieve similar 
results. Such parameter optimisations include the use of a mechanical damping [6], the integration of 
an optimum electrical load [7,8], and the application of multi‐stage harvester models [9,10].   

It has been evidently established  in  literature  [11–15]  that a nonlinear stiffness behaviour, as 
depicted  in  Figure  1,  can  be  implemented  using  several  geometric  arrangements  of  permanent 
magnets, whose  lines of  flux cut across defined arrangements of copper coils. In  [11], a nonlinear 
dual‐function multi‐modal energy harvester and vibration absorber (EHVA) for harvesting energy 
and suppressing vibration in low‐medium frequency band, was presented. Two different methods 
were employed to extend the operating bandwidth of the system. These include the design of the 
multi‐modal shapes of the EHVA as well as the hysteresis property of nonlinear softening springs, 
implemented by a novel permanent magnets structure. The authors in [12] investigated the steady 
state response of a specific VEH system under the condition of external and internal resonance, with 
focus  on  the  double  jump  phenomenon.  The  frequency  response  curve  shows  the  existence  of 
resonance peaks tilting to the left and right of the natural frequency of the system. Wang and Zhu in 
[13] coupled a magnetic multi‐stable device  to a pendulum VEH  in order expand  its bandwidth, 
specifically in low‐frequency operation. In [14], an experimental and theoretical study for designing 
a nonlinear electromagnetic converter‐based magnetic spring was conducted. In this study, a special 
emphasis was given to the magnetic force acting on the moving magnet, based on two parameters – 
the volume of the magnets and the geometry of the two fixed magnets (i.e., disc or ring). Meanwhile, 
the authors in [15] numerically analysed a magnetic‐spring‐based electromagnetic energy harvester 
with  piecewise  nonlinear  stiffness.  It  was  demonstrated  that  the  piecewise  nonlinear  stiffness 
behaviour, developed due to the interactions of the moving magnet’s flux on the coil, facilitated the 
response of the system in a wider frequency range, enabling generate more electrical energy. 

 
Figure 1. Effect of nonlinear stiffness on the resonant frequency. 
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Similarly,  system  damping  characteristics  have  been  employed  in  optimising  the  energy 
harvested by vibration energy harvesters [16–24]. In [16], the authors presented an unconventional 
way of achieving a tuneable resonant frequency  (from high  frequency to ultralow frequency) and 
extending both the bandwidth and peak of the energy harvested, simultaneously, by utilising distinct 
structurally supported displacement‐dependent nonlinear damping property. This work was further 
extended  by  the  authors  in  [17], where  a  scissor‐like  energy harvesting  system, with  equivalent 
nonlinear damping and linear stiffness characteristics, was developed. It was demonstrated that the 
scissor‐structure provided beneficial nonlinear damping effects, thereby significantly improving the 
magnitude  of  the power harvested,  as well  as  the  bandwidth  over which  it was harvested. The 
beneficial effect of antisymmetric nonlinear damping to energy harvesters, was demonstrated by the 
authors in [18], when the system is subject to ambient random vibrations. Meanwhile, in [19], a VEH 
which  employs  a  complementary  metal‐oxide‐semiconductor‐compatible  3D  micro‐
electromechanical system coils and a ferromagnetic core, was presented.    In order to describe the 
nonlinear electromagnetic damping coefficient and nonlinear attraction between the magnet and the 
ferromagnetic core, a systematic model was proposed. Thereafter, a vibration model was developed 
by considering nonlinear stiffness and damping coefficient to derive the dynamic characteristics and 
output performance  of  the  system. The  authors  in  [20] proposed  a novel H‐bridge  circuit‐based 
electromagnetic  damper  which  enables  a  bi‐directional  flow  of  electrical  energy  between  the 
electromagnetic damper and the energy storage. It was also demonstrated that this process enables 
the realisation of diverse damping behaviour with salient self‐powered feature.   

The authors in [21,22] also employed nonlinear damping in extending the energy harvested by 
a  vibration  energy  harvester.  Based  on  the  findings  in  [21]  and  [22],  an  analysis,  design,  and 
optimisation of a nonlinear VEH system was conducted in [23] and [24]. While no mass‐displacement 
constraint was considered in [23], this was considered  in [24]. In  these studies, an optimum cubic 
damping parameter was designed for a desired power level, using the Output Frequency Response 
Function  (OFRF) method. The OFRF  of  a  nonlinear  system  is  determined  based  on  the  class  of 
nonlinear differential equation (NDE) the system belongs to and it shows the relationship between 
the output spectrum of the system and its nonlinear parameters [25,26]. It, thus, describes the system 
characteristics. The OFRF representation of the system studied in [25–29], were determined using the 
Least‐Squares (LS) approach. However, this method requires several numerical simulations, using a 
(training)  set  of  values  of  the  system design parameters,  to  obtain  the  respective  system  output 
responses [30]. 

Vazquez et al.  in  [31], based on  the characteristics of  the nth‐order Volterra operator being a 
multi‐linear  function  of  a  combination  of  input  signals, modelled  the  behaviour  of  the Volterra 
operators using their Associated Linear Equation (ALE) decompositions. These ALE decompositions, 
as discussed in [31,32], can be used as an analytical tool for analysing the Volterra class of nonlinear 
systems such as the Duffing equation. Based on this, it was further revealed in [33,34] that the ALE 
decompositions, for a Volterra class of nonlinear systems, can be used to determine a more accurate 
OFRF  representation of  the system, using a significantly  lesser number of numerical simulations, 
compared  to  the LS  approach. These methods were  further  extended  in  [35]  to  the Generalised 
Associated Linear Equation (GALE) decompositions, which considered a general class of nonlinear 
damping. 

In this study, an analysis and design of a nonlinear VEH system is conducted, using the OFRF 
representations of the system output spectra, which are determined from the GALE decompositions 
of  the nonlinear VEH model.  In addition  to using a nonlinear damping component  to extend  the 
average  power  of  the VEH,  a  stiffness  nonlinearity  is  also  integrated  to widen  the  operational 
frequency range of the harvesting device. It should be noted that the current study is an extension of 
the initial work by the authors in [34]. To the best of the authors’ knowledge, this is the first time the 
OFRF method, derived using the GALE decompositions, is employed in the design and optimisation 
of  a  nonlinear  vibration  energy  harvester.  Using  the  OFRF  model,  derived  from  the  GALE 
decompositions,  simplifies  the  design  process  since  a  polynomial  of  the  system’s  performance 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 November 2023                   doi:10.20944/preprints202311.0930.v1

https://doi.org/10.20944/preprints202311.0930.v1


  4 

 

metrics,  is derived  in  terms of  the design parameters. A sequel study  involving an experiemental 
validation of the design, is currently ongoing. 

Subsequent  sections  of  this  paper  are  organised  as  follows—Section  2  presents  the model 
formulation of the system of interest. In Section 3, the OFRF method is introduced, while Section 4 
describes the determination of the OFRF structure. Section 5 discusses the evaluation of the GALE 
decompositions and in Section 6, the determination of the OFRF model, using the decomposed GALE 
contributions  is  demonstrated.  Section  7  provides  the  results  obtained  and  their  corresponding 
discussions while the research findings are concluded in Section 7. 

2. Model Formulation 

A single degree‐of‐freedom  (SDOF) vibration‐based energy harvester, as  illustrated  in Error! 
Reference source not found. 2, having a suspended mass,  m   and an oscillating support‐base with 
displacement  ( )y t , is given. The mass is separated from the base using an isolation system modelled 
as  a  nonlinear  damping  system,  connected  parallel  to  a  nonlinear  spring.  The  damping  system 
comprises a mechanical viscous damping,  1c   and an electrical damping,  3c . The electrical damping 
arises from the electromagnetic force generated by virtue of the non‐Ohmic load resistance connected 
across the EM damper. The linear and cubic stiffness coefficients are  1k   and  3k   respectively. 

 
Figure 2. SDOF of a vibration energy harvester with nonlinear stiffness and damping. 

The model of the SDOF VEH  is a class of NDE and the equation of motion of the mass with 
respect to the relative displacement  z x y= -     is given as 

3 3

1 3 1 3mz c z c z k z k z my+ + + + =-     (1) 

For a harmonic base displacement with amplitude,Y ,  frequency,  wand zero phase shift,  the 
base displacement is given as  sin( )y Y tw= . Therefore Equation (1) becomes 

3 3 2

1 3 1 3 sin( )mz c z c z k z k z m Y tw w+ + + + =     (2) 

The nonlinear damping device  absorbs  an  instantaneous power  equal  to  the product of  the 
instantaneous damper force and relative velocity of the VEH. Therefore, it yields an average power 
given as 

 3

3

0

1
T

avP c z zdt
T

     (3) 
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For a single‐frequency harmonic oscillation, where  sin( )z Z tw= , yields 

4 4

3

3

8
avP c Zw=  (4) 

In addition, it can be deduced that the output frequency response  Z , of system (2), is a function 
of  w , as well as the nonlinear parameters, 3c   and  3k . This implies that  avP , derived in Equation (4), 
is also a function of  3c ,  3k   and  w . Note that the resonant frequency is the frequency of interest, as 
the maximum power is extracted at this frequency. 

3. The Output Frequency Response Function (OFRF) 

Equation (2) describes the dynamic model of the VEH system, which is a typical base‐excited 
duffing‐equation, with an integrated nonlinear damping. A similar system has been studied using 
methods  such  as,  the  Harmonic  balance  method  [36],  and  multiple  scales  [37].  However,  the 
aforementioned methods only facilitate the analytical study of nonlinear systems. On the other hand, 
the OFRF, which is employed in this study, does not only facilitate the analytical study of nonlinear 
systems  but  also  enables  the  design  and  optimization  of  such  systems. However,  for  the OFRF 
method to perform appropriately, the system of  interest must operate within a stable regime. The 
main benefit of the OFRF method is that it can provide an explicit analytical relationship between the 
design objective and the system nonlinear parameters. This can significantly facilitate the system’s 
design and optimization process. A comprehensive explanation of the OFRF concept can be found in 
[25–30]. 

Let us examine  the differential  equation  in Equation  (5), which describes a  class of Volterra 
systems 

1

k kK

, 1 k k
1 11 0 k ,...k 0

( ) ( )
(k , k ) 0

i i

i i

m

pM m m

p m p m

i i pm p

d z t d y t
c

dt dt
-

= = += = =

=åå å     (5) 

where  M   is the maximum degree of nonlinearity, in terms of the system’s input,  ( )y t   and output, 
( )z t , and  K   is the order of the derivative. According to the OFRF method, as described in [26], the 

output frequency response of Equation (5) can be described by a polynomial function in terms of the 
system nonlinear parameters as 

S1 N

1 SN

1 SN N

1 SN

( , , ) 1 S

0 0

( j ) ( j )
nn

Z d d
d d

d d

w w k k
= =

= Yå å    (6) 

where 
i
n   are the maximum order of  ik , for  1, ,

N
i S    in the polynomial expression of the output 

spectrum,  (j )Z w   of Equation (6). The OFRF coefficients, 
1 SN( , , ) ( j )d d wY    are frequency functions with 

complex values. They are also dependent on the system linear parameters and system input, where 
0, ,i in     and  1, , Ni S  . In addition,  1 SN

N
1 S

d dk k   is known as the OFRF structure. They are a set of 
monomials in terms of the system nonlinear characteristic parameters. If the set of monomials in the 
OFRF  polynomial,  of  the  nth‐order  output  spectrum,  is  denoted  as  M   and  the  vector  of  the 
frequency function, is denoted as  ( j )wQ , the OFRF can be then be described as 

T( j ) ( j )Z w w= ⋅QM   (7) 

where 

1

Ns

n

n=

= EM   (8) 
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Here,  NS   is  the maximum  order  of  nonlinearity  considered  for  this  study  and  the  set  of 
monomials  nE   can be derived using the method in [15] as 

( )

( )

1 n 1 n

1 n

n ( )K n 1 K

0, 1 n ,( ) 1 ( ),

k , ,k 0 1 1 k , ,k 0

n K

,0 1 ,

2 k , ,k 0

(k , ,k ) (k , ,k )

(k , ,k )

m p

n n p m- p m n m p p

m p p

p m n p

p

c c

c

- --

- -
= - = = =

= =

é ù é ù
ê ú ê úé ùé ùE = È ÄEê úë ûê ú ê ë û úê ú ê úë û ë û
é ù
ê úé ùÈ ÄEê úê ë û úê úë û

 



 



   

 
  (9) 

Note that the character ‘   ’ is the Kronecker product and given by 

( )
n 1

, n , 1 n,1 n 1
1

, , [1]
p

n p i i p
i

- +

- -
=

E = E ÄE E =E E =   (10) 

Then the set of monomials can be obtained as 
1

Ns

n

n=

= EM    

4. Determination of the OFRF Structure 

Firstly,  the  OFRF  representations  of  the  output  spectrum  of  system  (2),  ( j )Z w   and  the 
harvestable average power of Equation (4),  avP , are obtained in terms of the design parameters,  3c  
and  3k . It is observed that Equation (2) belongs to the class of Volterra system of Equation (4) in [25], 

with  3M =   and  K 2= . The system parameters are obtained as  10 (2)c m ,  10 1(1)c c ,  10 1(0)c k , 

30 3(000)c k ,  30 3(111)c c , and  2

01(0)c m Yw=- .   
If the set of monomials in the OFRF representation of the nth‐order output spectrum of system 

(2),  is denoted by  M , and  the complex‐valued OFRF coefficients  is denoted by  ( j )wQ ,  then  the 
OFRF representation can be written as 

( j ) ( j )Z w w= ⋅QM   (11) 

Applying the algorithm, as presented in [38], to obtain the OFRF monomials,  M , up to the 7th 
order, yields 

1

3 3 3

2 2

5 3 3 3 3

3 2 2 3

7 3 3 3 3 3 3

[1]

[ ]

[ ]

[ ]

c k

c c k k

c c k c k k

E =

E =

E =

E =

  (12) 

Therefore, 
2 2 3 2 2 3

3 3 3 3 3 3 3 3 3 3 3 3

1

[1, , , , , , , , , ]
Ns

n

n

c k c c k k c c k c k k
=

= E =M

 
It should be noted that for improved accuracy, higher orders can be considered. Furthermore, 

the OFRF representation, as presented in Equation (11), which comprises the monomials obtained, as 
presented  in Equation  (12), and  its respective OFRF coefficients, 

| ( j )n r wQ   (yet  to be determined), 
can be represented in the form 

OFRF | |

1

( j ) ( j )
NS

n r n r

n

Z w w
=

= E ⋅Qå   (13) 

where  0,2, ,r h    and  h   is  the maximum number of elements  in  nE . Rewriting Equation  (13) 
yields 
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3 3 7|2 3 3 7|3 3 7|4
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  (14) 

Thus, to determine the OFRF coefficients, 
| ( j )n r wQ , the GALE decompositions of system (2) are 

first computed up to the 7th‐order. In the next section, the evaluation of the GALE decompositions, 
for the NDE system of interest, is demonstrated. 

5. Evaluation of the Generalised Associated Linear Equations (GALEs) 

For a nonlinear system of the Volterra class given in system (2), the following substitutions can 
be made 

1

( ) ( )n

n

z t z t




   (15) 

Rewriting  system  (2)  in  a  general  form,  by  leaving  all  the  linear  elements  on  the LHS  and 
substituting Equation (15) yields 

1 1

1 1 1

2

3 1 3 1
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
(16) 

The GALE decompositions of system (16) can be obtained for the nth order, for  1,2, , Nn S  , 
where  NS   is the maximum order of the system nonlinearity considered, as demonstrated in [34,35] 
thus, 
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  (17) 

where  the  summation of  all  the  sub‐indices of  jz   and  jz

on  the RHS has  to  be  equal  to  n i.e.,

1( )lj j n     and 
1( )lj j n  
 

.  In  computing  the GALE decompositions,  the  low‐order output 

responses contribute to the immediate higher‐order responses up to the maximum order considered. 
For an estimation of the total output responses up to the  th-orderNS   and its corresponding output 
spectrums, 

1

1

( ) ( )

( j ) ( j )

N

N

S

n

n

S

n

n

z t z t

Z Zw w

=

=
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å

å
  (18) 

For  7NS  , the following GALE decompositions are obtained 
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  (19) 

The  continuous‐time output  response of  system  (2)  and  its  corresponding output  spectrum, 
where  ( ) ( ( ))n nZ z tw =j fft   , are respectively expressed as 

1 3 5 7

1 3 5 7

( ) ( ) ( ) ( ) ( )

( j ) ( j ) ( j ) ( j ) ( j )

z t z t z t z t z t

Z Z Z Z Zw w w w w

ì = + + +ïïíï = + + +ïî
(20) 

The cumulative structure of the individual nth‐order GALE contributions, up to the 7th ‐order, 
is  presented  in  Figure  3.  Similarly,  Figure  4  shows  the  output  spectrum  for  each  nth‐order 
contribution of the GALE decompositions, up to the 7th‐order. It is observed that at resonance there 
is a significant contribution by the individual decompositions. Meanwhile, Figure 5 demonstrates the 
nth‐order contributions of the GALE decompositions, up to the 9th‐order for a range of nonlinear 
damping values. 

 

Figure 3. A representation of the individual GALE contributions to the general output response of 
system (2). 
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Figure 4. Graph of individual nth order GALE contributions to the output response of system (2), at 
the fundamental frequency. 

 
Figure 5. Nth‐order GALE contributions for N = 3, 5,7 and 9 at  3k =200, and  3c = 0.300, 0.325, 0.350, 

0.375, and 0.400. 
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6. Determination of the OFRF Model using the GALE Contributions 

Equation  (20)  shows  the  output  spectrum  of  system  (2)  determined  from  the  Fast  Fourier 
Transform  of  the GALE  contributions  obtained.  The  nth‐order  output  spectrum  of  each  GALE 
contribution is equal to the corresponding nth‐order component of the OFRF representation thus 

ALEs OFRF

| |

1 1

( j ) ( j )

( j ) ( j )
N NS S

n n r n r

n n

Z Z

Z

w w

w w
= =

ì =ïïïïíï = E ⋅Qïïïî
å å

  (21) 

From Equation (21), it can be deduced that 

1 1|0
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( j ) ( j ) ( j ) ( j )
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Z

Z c k

Z c c k k

Z c c k c k

k

w w

w w w

w w w w

w w w w

w

=Q

= ⋅Q + ⋅Q

= ⋅Q + ⋅Q + ⋅Q

= ⋅Q + ⋅Q + ⋅Q

+ ⋅Q

  (22) 

Subsequent analysis in this study has been done using the following system parameter values 
presented in Table 1 with  / nw wW= . 

Table 1. Model parameters used for the simulations. 

Parameters  Notations  Values 
Mass (kg)  m   1   
Linear spring stiffness (N.m−1)  1k   25   
Linear damping coefficient (N.s.m−1)  1c   2   
Magnitude of base excitation (m)  Y   0.05   
Resonant frequency (rad.s−1)  rw   6.4   
Natural frequency (rad.s−1)  nw   5   

To obtain  the OFRF coefficients up  to  the 7th‐order,  five simulations are  required using  five 
different values of  3 3( )rc c and  3 3( )rk k , where  1, 2,3, 4,5.r = , as given in Table 2. 

Table 2. Simulation (Training) values of model design parameters. 

Model nonlinear 
parameter 

Sim1 
value 

Sim2 
value 

Sim3 
value 

Sim4 
value 

Sim5 
value 

3 -3

3 (N.s .m )c   0.300  0.325  0.350  0.375  0.400 
-3

3 (N.m )k   0  55  110  165  220 

The OFRF coefficients can be determined for any frequency of interest using Equation (23) given 
as 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 November 2023                   doi:10.20944/preprints202311.0930.v1

https://doi.org/10.20944/preprints202311.0930.v1


  11 

 

1|0 1

1

3|1 31 31 31

3|2 32 32 32

1
2 2

515|1 31 31 31 31

2 2

525|2 32 32 32 32

2 2

5|3 33 33 33 33 53

( j ) ( j )

( j ) ( j )

( j ) ( j )

( j )( j )

( j )( j )

( j ) ( j

Z

c k Z

c k Z

Zc c k k

Zc c k k

c c k k Z

w w

w w
w w

ww
ww

w

-

-

Q =

é ù é ù é ùQ
ê ú ê ú ê ú=ê ú ê ú ê úQ ë û ë ûë û

é ùé ùQ ê úê ú
ê úê úQ = ê úê ú
ê úê úQ ê úê úë û ë û

1
3 2 2 3

7|1 7131 31 31 31 31 31

3 2 2 3
7|2 7232 32 32 32 32 32

3 2 2 3
7|3 7333 33 33 33 33 33

3 2 2 3
7|4 7434 34 34 34 34 34

)

( j ) ( j )

( j ) ( j )

( j ) ( j )

( j ) ( j

Zc c k c k k

Zc c k c k k

Zc c k c k k

Zc c k c k k

w

w w
w w
w w
w w

-

é ù
ê ú
ê ú
ê ú
ê ú
ë û

é ùé ùQ ê úê ú
ê úê úQ ê úê ú = ê úê úQ ê úê ú
ê úê úQê ú ê úë û ë û )

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

  (23) 

Therefore, the GALE‐generated OFRF representation of the output spectrum of system (2) can 
be expressed as 

2

3 3 1|0 3 3|1 3 3|2 3 5|1

2 3 2

3 3 5|2 3 5|3 3 7|1 3 3 7|2

2 3

3 3 7|3 3 7|4
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w w w w

w w

=Q + ⋅Q + ⋅Q + ⋅Q

+ ⋅Q + ⋅Q + ⋅Q + ⋅Q

+ ⋅Q + ⋅Q

  (24) 

The OFRF coefficients of Equation (24) have been determined using the GALE approach. The 
benefit  of  using  the  GALE  approach  is  that  the  number  of  numerical  simulations  required  to 
determine  the OFRF  of  the  system  is  significantly  reduced  [33].  To  obtain  the  respective OFRF 
representation of  the average power harvestable by  the VEH  system, via  the nonlinear damping 
system, the OFRF representation of the output spectrum in Equation (24) is substituted in Equation 
(4) to yield 

44

3 3 3 3 3

3
( , , ) ( j ; , )

8
avP c k c Z c kw w w=   (25) 

The OFRF representation of the quartic magnitude of the output spectrum,  4

3 3( j ; , )Z c kw   can 
also be derived and represented in a polynomial form [20] as 

7
4

3 3 , 3 3

0 0

( j ; , ) ( )
n

m n m

m n m

n m

Z c k c kw u w -
-

= =

=åå   (26) 

where  7N    is  the maximum nth order nonlinearity while 
,m n mu -   are  functions of  frequency and 

represent the OFRF coefficients of  4

3 3( j ; , )Z c kw . Therefore, the average power can be represented as 

7
4 1

3 3 , 3 3

0 0

3
( , , ) ( )

8

n
m n m

av m n m

n m

P c k c kw w u w + -
-

= =

= ⋅åå  (27) 

The OFRF‐based  results are obtained and  compared with  that determined using  the Runge‐
Kutta 4 algorithm (ODE45 in MATLAB) for both the output spectrum of system (2) and the average 
power harvested by the VEH system. The comparisons were conducted for different combinations of 
parameter values beyond  the  training set of  the nonlinear parameters  3c   and  3k . The results are 
presented in Figures 6 and 7 for the pair of parameters, 3c = 0.45 Ns3m‐3,  3k = 250 Nm‐3and  3c = 0.25 
Ns3m‐3,  3k = 270Nm‐3,  respectively.  In  the next section, results obtained  from  the GALE‐generated 
OFRF  representations, presented  in Equations  (24)  and  (27),  are provided  and  their  implications 
discussed extensively.   
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Figure  6. GALE‐OFRF vs numerical  simulation  results  for  the  (a) output  spectra and  (b) average 
power respectively at  3c = 0.45 and  3k = 250. 
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Figure  7. GALE‐OFRF vs numerical  simulation  results  for  the  (a) output  spectra and  (b) average 
power respectively at  3c   = 0.25 and  3k   = 270. 

7. Results and Discussion 

The OFRF representation of the output spectrum,  Z   of system (2) was derived using the GALE 
decompositions evaluated from the same system. The OFRF representation of the output spectrum 
was subsequently used to estimate the average power generated by the electromagnetic damper. This 
was performed for a pair of nonlinear parameter values,  3c   and  3k   beyond the range over which 
the  OFRF  representation  was  determined  i.e.,  3 [0.3, 0.4]c Î Ns3m‐3  and  3 [0, 220]k Î Nm‐3.  As 
observed  in  Figures  6  and  7,  the  OFRF  representation  accurately  represents  the  actual  output 
spectrum and average power of  the VEH,  respectively. These  results clearly demonstrate a good 
match  between  the  OFRF  representation  and  the  more  accurate  results  from  direct  numerical 
simulations. This demonstrates the benefits of the OFRF methodology as it evidently describes the 
system dynamics over  the entire  spectrum. Note  that  the wobbles observed around  the  resonant 
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regions in Figures 6 and 7 are due to the use of parameters beyond the design (training) range. Using 
parameters further beyond the design range will cause the system to approach instability. 

In the implementation of such a nonlinear VEH system, the cubic damping nonlinearity can be 
contributed by an electromagnetic damper whose characteristics  is dependent on  that of  the  load 
resistance of the energy harvesting circuit. The hardening stiffness nonlinearity can be realised by the 
application of magnetic  springs, wherein  a mass of permanent magnet  is  levitated between  two 
stationary magnets [39]. However, such magnetic springs can also contribute a damping component 
typically referred to as magnetic damping [40]. 

7.1. Effect of a hardening spring and cubic damping on the VEH system   

Nonlinearities  contributed by a hardening‐type spring  stiffness  is  integrated  into a standard 
linear  harvesting  device,  to  expand  the  bandwidth  over  which  power  can  be  harvested.  The 
bandwidth  expansion  is  caused  by  a  shift  in  the  resonant  frequency  to  higher  frequencies.  To 
demonstrate the effect of integrating a hardening‐type stiffness characteristic to the dynamics of a 
VEH system with cubic damping nonlinearity, numerical studies are conducted. The integration of a 
hardening spring‐effect can be implemented by employing magnetic springs [39]. Using the OFRF 
representations provided in Equations (24) and (25), the effect of the stiffness parameter,  3k can be 
observed  in Figure 8. It  is clearly seen to extend the operational bandwidth of the nonlinear VEH 
system due to the shift in the resonant frequency of the output spectra. The operational bandwidth 
of  the  VEH  system,  with  and  without  stiffness  characteristic,  are  denoted  as  2W   and  1W  
respectively. In addition  to  this, an apparent  increase  in  the dynamic range of the nonlinear VEH 
system can also be observed. This is logical as the average power of the nonlinear VEH system, given 
in Equation (25), is a function of the excitation frequency,  w . Several studies in literature focused on 
increasing the bandwidth of linear VEH devices with the integration of a hardening‐type stiffness 
and compared the duffing‐type harvester with a standard linear harvester. Figure 9 shows the effect 
of varying the nonlinear stiffness characteristics on the output spectrum and average power of the 
nonlinear VEH system.  In Figure 9a, while  the  relative displacement of  the VEH  system  remains 
relatively  constant as  3k   increases,  it  is evident  in Figure 9b  that  the average power of  the VEH 
device  increases,  within  the  resonant  region,  1.2W= ,  as  3k   increases.    However,  the  power 
remains  relatively  constant within  the  low and high  frequency  regions, where  1W   and  1W  
respectively. 

Furthermore, the effect of a variation of the nonlinear cubic damping  3c , on the VEH system, 
was also investigated. This was demonstrated by varying  3c  while fixing  3k , as shown in Figure 10. 
It is revealed that while the maximum span of the VEH system reduces by an insignificant amount, 
the  average  power  harvested  increases  significantly  around  and  beyond  the  resonant  region.  It 
should be noted  that  to  implement  the nonlinear cubic damping  force characteristics,  the current 
flowing through the nonlinear load (Energy harvesting circuit) should be proportional to the cube of 
the voltage across it [21]. 

In  the  current  study,  a  hardening‐type  stiffness  is  integrated  in  a VEH  system with  cubic 
damping nonlinearity. However, a comparison of the VEH with damping and stiffness nonlinearities, 
against its linear equivalent, has not been considered here. This is due to the unavailability of a basis 
for  such  comparison  to  be  made.  Comparisons  of  this  nature  have  never  been  reported  for 
Electromagnetic‐type VEH devices, with damping  and  stiffness nonlinearities,  to  the  best  of  the 
authors’ knowledge.     

Furthermore, most studies in literature considered the Duffing‐type harvesters that exhibit the 
jump phenomenon,  and  they were majorly designed  to  operate within  the  larger  stable  branch. 
Nevertheless,  it  is imperative to note that if the VEH model experiences a  jump phenomenon, the 
sum of the GALE decompositions will not converge to the actual output spectrum around the jump 
region. Therefore,  the OFRF  representations will poorly describe  the actual output  spectra of  the 
system  and,  consequently, will  be  an  inappropriate method  to  conduct  the  system  analysis  and 
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design. However,  this problem  is  resolved here with  the  integration of both  linear and nonlinear 
damping characteristics. 

 

 
Figure  8. Effect  of  hardening  stiffness  on  the  (a)  output  spectrum  and  (b)  average power  of  the 
nonlinear VEH system. 
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Figure 9. Effect of  the variation of hardening stiffness on the  (a) output spectrum and  (b) average 
power of the nonlinear VEH system. 
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Figure 10. Effect of variation of cubic damping on the (a) output spectrum and (b) average power of 
the nonlinear VEH system. 

7.2. Optimisation of an unconstrained nonlinear VEH system 

Using  the  OFRF  representation  of  the  average  power  as  determined  in  Equation  (27),  an 
optimisation problem can be formulated as 
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  (28) 

The solution to the unconstrained optimisation problem is simple and can be determined using 
the MATLAB fminsearch or fmincon function. Moreover, using the OFRF representations of Equations 
(24) and (27), the relationships between the design parameters, 3c ,  3k , the output spectrum, and the 
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average power, at the resonant frequency, can be established. These are presented using surface plots 
in Figures 11 and 12. It can be deduced from Figure 12 that the average power is significantly sensitive 
to the nonlinear stiffness characteristic,  3k   but less sensitive to the nonlinear damping characteristic, 

3c , at lower values of  3k . However, at higher values of  3k , the average power increases to an optimal 
value, as  3c   increases to 0.46, then it starts to decline. It should be noted that this design is only valid 
within the design range of the parameters of interest. 

 
Figure 11. Output spectrum of system (2) against a variation of  3c   and  3k   at  1.2W=   . 

 
Figure 12. Average power of the VEH device against a variation of 

3c and 
3k   at  1.2W= . 

In Figure 13, the output spectrum and average power of the VEH system, for a variation of  3c  
and 

3k , are provided at  1W   and  1W . 
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Figure 13. Output spectrum and Average power of VEH for a variation of 

3c and 
3k   at (a)  1W

and (b)  1W . 

8. Conclusions 

In this study, the analysis and design of a vibration energy harvester with damping and stiffness 
nonlinearities were considered.   Nonlinear stiffness was introduced into the mechanical subsystem 
of  the vibration energy harvester,  to  improve  the operational  frequency range  (bandwidth) of  the 
VEH system. However, the nonlinear damping was introduced to extend the average power of the 
VEH system. While the nonlinear stiffness can be realised using magnetic springs or geometrically 
horizontal springs, the nonlinear damping can be realised using an energy harvesting circuit with 
nonlinear  characteristics.  Such  an  energy  harvesting  circuit will  provide  a  current which  varies 
proportionally with the cubic power of the voltage.   

A polynomial representation of the system model, i.e., the Output Frequency Response Function 
(OFRF), was derived. However,  the OFRF  representation was determined using  the Generalised 
Associated Linear Equation (GALE) decompositions of the system model. It was observed that by 
using the GALE method, the number of numerical simulations needed to determine the OFRF of the 
actual system was considerably reduced. Subsequently, the GALE‐generated OFRF representation of 
the actual system was verified to ensure it clearly represented the system output spectra. 

The effect of a hardening stiffness nonlinearity, as well as a nonlinear cubic damping, on the 
VEH system, was investigated. The application of low‐level excitation for this study ensured no jump 
phenomenon was exhibited. This is because the GALE and OFRF concepts are applicable only to a 
class of nonlinear systems stable at zero equilibrium and which can be described by a Volterra series 
model. The exhibition of a  jump, by  the system model, will nullify  the suitability of  the methods 
employed in this study. 

The results obtained  in  this study show  that  the nonlinear stiffness characteristic extends the 
operational  bandwidth  as well  as  the harvested power  of  the VEH  system, hence  improving  its 
performance. It was also revealed that employing a nonlinear cubic damping characteristic, in the 
presence of a nonlinear stiffness characteristic, improved the performance of the VEH system. Using 
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the OFRF representation, optimal values of the VEH design parameters can be determined for any 
desired power level within and beyond the design range. Future studies will focus on the design of 
VEH  systems with damping and  stiffness nonlinearities  subject  to mass‐displacement  constraints 
inherent in practical VEH systems. 
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