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Abstract: The pneumatic muscle is an actuator well known for its inherited compliance. In the last years, there 

have been a lot of applications of these actuators, mainly oriented toward medical devices. However, there are 

few papers that use muscle as a model associated with mechanical structures. These actuators are difficult to 

control because their stiffness depends on the applied pressure, determining a non-linear behavior. This article 

presents a model, created in Matlab, considering the muscle as a kinematic structure. The model is simulated as 

an individual structure and a PID controller is applied to test the response. Then, these results are validated by 

experimental tests done in the laboratory on different types of muscles. Comparison results validate the accuracy 

of the model. 
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1. Introduction 

The pneumatic artificial muscle (PAM), well known as the McKibben actuator, was invented by 

Richard Gaylor in 1958 [1,2]. The actuator was used by Joseph L. McKibben for an artificial limb of a 

disabled person. 

PAM reproduces the behavior of skeletal muscles by generating pulling force when they are 

pressurized [3,4].  

In the literature, some studies generate an equivalent kinematic model of the PAM. The most 

modeled muscle is the McKibben muscle, which consists of an inner tube covered by a braided shell 

[5]. The inner tube is usually made of an elastomeric material that allows large deformations under 

relatively small pressures. The functioning principle is illustrated in Figure 1 [3].  

 

Figure 1. McKibben PAM operating principle [3] 

Thus, when the PAM is filled with compressed gas, it expands into a radial direction and 

contracts in axial direction, generating a significant force (for example FESTO DMSP-40-9000N the 

maximum theoretical force is up to 6000 [N] – [6]). The threads are almost inextensible. 
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Over time, the most underlined advantages of PAM were high force-to-weight ratio, flexibility, 

no mechanical vibration, smooth speed adjustment [7], longer operating life (for example FESTO 

DMSP-40-9000N has the 1 million load cycles endurance limit at 6000N – [6]) relatively low cost 

compared to classical pneumatic actuators. However, the most challenging problem is still the highly 

non-linear characteristics due to compressibility of air and the properties of elastic material. These 

are the reasons that make PAM difficult to model and control, with relatively low repeatability 

accuracy. 

During the last years significantly increase the application for these actuators. Thus, they are 

appropriated to be used as compliant actuators in rehabilitation application such as robots [8,9], 

elbow exoskeletons [10,11], and medical devices [12,13]. They have also been used in manipulators 

[14,15] driving systems because of the main advantage: a higher power/ weight ratio [16]. 

All these researches are focused to solve or compensate PAM's hysteresis, caused by friction 

within the braiding nets and between the braiding nets and the rubber tube. This disadvantage 

determines a significant reduction of positional control accuracy [17–22]. 

There is significant research that indicates that the higher modeling accuracy of PAM (including 

the hysteresis model), the better performance for the trajectory control [18]. Thus, it becomes crucial 

both from a technical and cost point of views, to obtain a precise mechanical model for PAM. In 

literature modeling of PAM has two approaches. The first one is the empirical model regardless of 

the mechanical nature of the inner tube that describes the relationship between applied pressure and 

generated force [4]. These analyses were done by Gaylord (a double helix braided pneumatic muscle) 

[2], Wickramatunge and Leephakpreeda (model based on a calibrated spring) [23], Song et al. 

(Artificial Neural Network model) [24], Reynolds (three-element model consisting of a contractile 

force generating, a spring element and a damping element) [25] or Zhang et al. (finite element model 

that simulates the dynamic behavior of PAMs) [26]. 

The second approach takes into consideration the mechanical nature of the inner tube and also 

all the surrounding elements. There are also here different concepts included: energy conservation 

[27], the relation between inflation pressure and actuation force or elastic energy effect on PAM force. 

A different approach is that in [3] where is developed a model based on the theory of limiting chain 

extensibility, a model available for McKibben PAMs. 

Thus, in conclusion, there is a great challenge to obtain satisfactory control performance of a 

PMA-driven devices especially because of the highly nonlinear, time-varying, hysteresis properties 

of this type of actuator [28,29]. 

2. Static Model 

The working principle of PAMs is based on three parameters: internal pressure, loading force 

and relative shortening (the degree of muscle shortening). 

The tube of a PAM can be considered a thick-walled circular cylinder (Figure 2) [3]. 

 

Figure 2. Deformation of PAMs [3] 

The static model is derived from principle of virtual mechanical work (Figure 3), based on the 

manufacturing principle of the PAM. 

The feature are: L is the PAM’s length; D - diameter; b – length of muscle’s thread; n – turns of 

thread;  - net’s angle (between thread and cylinder axis). Static model may be determined by 

neglecting the non-cylindrical parts of PAMs and losses. Considering this hypothesis, the net angle 

is directly dependent on the inflation degree, and b and n are maintaining constant. 
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Figure 3. Geometry of PAMs [3] 

Thus, from Figure 3 results: 

𝐿 = 𝑏 ∙ 𝑐𝑜𝑠𝜃 (1) 

𝐷 =
𝑏 ∙ 𝑠𝑖𝑛𝜃

𝑛 ∙ 𝜋
 (2) 

The volume of the associated cylinder is: 

𝑉 =
𝜋 ∙ 𝐷2

4
𝐿 =

𝑏2

𝑛 ∙ 𝜋
𝑠𝑖𝑛2𝜃 ∙ 𝑐𝑜𝑠𝜃 (3) 

To determine the force of PAM as function of input pressure and length it should be applied the 

conservation of mechanical energy. To do that there may. Thus 

𝑑𝑊𝑖 = ∫ (𝑃𝑎𝑏𝑠 − 𝑃𝑎𝑡𝑚)𝑑𝑙𝑖𝑑𝑠𝑖
𝑆𝑖

 (4) 

result 

𝑑𝑊𝑖 = (𝑃𝑎𝑏𝑠 − 𝑃𝑎𝑡𝑚) ∫ 𝑑𝑙𝑖𝑑𝑠𝑖
𝑆𝑖

= 𝑃𝑚𝑑𝑉 (5) 

where: Pabs is absolute inner pressure; Patm – atmospheric pressure; Pm – measured pressure; si – total 

inner surface; ds – surface vector; dli – change in length of inner surface; dV – change in volume. 

Mechanical energy at the output is generated by muscle contraction as response of volume 

change: 

𝑑𝑊𝑒 = −𝐹𝑑𝐿 (6) 

Knowing the mechanical energy conservation principle: 

𝑑𝑊𝑖 = 𝑑𝑊𝑒 (7) 

Thus, based on relations (5) and (7) 

𝑃𝑚𝑑𝑉 = −𝐹𝑑𝐿 (8) 

𝐹 = −𝑃𝑚

𝑑𝑉

𝑑𝐿
 (9) 

Using the geometric relations to determine the volume variation relative to length, (9) becomes: 

𝐹 = −𝑃𝑚

𝑑𝑉

𝑑𝐿
= −𝑃𝑚

𝑑𝑉
𝑑𝜃
𝑑𝐿
𝑑𝜃

= 𝑃𝑚

𝑏2(2𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃)

4𝜋𝑛
 (10) 

The lattice of PAM is shown in Figure 4. 
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Figure 4. Lattice of PAM 

where: C is PAM’s circumference; l – length of one rhombus.  

To determine the length of muscle’s thread and the number of turns, there should be known the 

number of rhombus in both directions (nL, respectively nC). Thus, 

𝐿 = 2𝑛𝐿𝑐𝑜𝑠𝜃 (11) 

𝐶 = 2𝑛𝐶𝑠𝑖𝑛𝜃 (12) 

Considering eq. (1), (2), (11) and (12), it may be determined: 

𝑏 = 2𝑛𝐿𝑙 (13) 

𝑛 =
𝑛𝐿

𝑛𝐶

 (14) 

According to (13) and (14), to characterize a PAM are necessary only the parameters of the 

rhombus. 

The above results are obtained considering the maximum value of . To be able to implement 

control, the mathematical model should not be get based on this angle because it is extremely difficult 

to be measured during running. It is much easier to measure, for example, the length of the muscle. 

So, for the simulation and control stage, these equations should only be written as force, pressure, 

and length dependence, measurable quantities at any moment of operation. This dependence may be 

determined using geometric equations resulted from Figure 3. 

𝑐𝑜𝑠𝜃 =
𝐿

𝑏
 (15) 

𝑠𝑖𝑛𝜃 =
√𝑏2 − 𝐿2

𝑏
 (16) 

Substituting (15) and (16) into (3) and (10) results in the volume and force of PAM: 

𝑉 =
𝐿(𝑏2 − 𝐿2)

4𝜋𝑛2
 (17) 

𝐹 =
𝑃𝑚𝑏2

4𝜋𝑛2
(

3𝐿2

𝑏2
− 1) (18) 

Thus, as resulted in (18) the PAM has a behavior similar to that of a variable stiffness spring. The 

stiffness is determined as follows: 

𝑘 =
𝑑𝐹

𝑑𝐿
≅

3𝐿𝑃𝑚

2𝜋𝑛2
|

𝑑𝑃𝑚
𝑑𝐿

≈0
 (19) 

Considering Pm deduced from (10) the stiffness will be: 

𝑘 =
6𝐿

3𝐿2 − 𝑏2
𝐹 (20) 
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Using the model, there may be done some theoretical simulations (in Matlab) to raise the 

characteristics of stiffness (Figure 5) and force (Figure 6) related to the length of PAM (between 40 

and 50 [mm]), diameter (higher than 10[mm]) and input pressure (between 3 and 6 [bar]). 

 

Figure 5. Stiffness, k, as function of muscle length at different pressures 

 

Figure 6. Force, F, as function of muscle length at different pressures 

Force has a nonlinear variance with length, better underlined if the length of the muscle varies 

between 10 and 50 [mm] (Figure 7). 

The model described above does not consider the hysteresis determined by the ends of PAM. 

Therefore, it should be introduced an effectiveness term into the model. This term represents the 

measure of what percentage the actual force is to the predicted. The dependence between the force 

output and the length of PAM (Figure 7) certifies that the effectiveness is a function of pressure [30]. 
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Figure 7. Force, F, as function of muscle length (between 10 and 50 [mm]) at different pressures 

𝐹𝑎 = 𝐸𝑓(𝑃𝑚)𝐹𝑡ℎ (21) 

where: Fa is the actual force; Ef – effectiveness; Fth – theoretical force. 

To the above model it will be improves if there will be added the end effects. In other words to 

model the long-end effect that occurs when the actuator is inflated. The solution is given by the 

mechanical properties of the PAM’s materials because the stiffness of the braiding material is very 

high relative to actuator’s stiffness (at maximum length). This behavior may be associated with one 

of very high-stiffness spring. 

The model (18) predicts that if the length is smaller than the maximum, the force will be negative, 

which means that the actuator is pushing. If the length is less than the minimum length, the force 

output should become zero. Considering this and the end effect and effectiveness the model (18) 

becomes: 

𝐹 = {

𝑃𝑚𝑏2

4𝜋𝑛2
(

3𝐿2

𝑏2
− 1) 𝐸𝑓(𝑃𝑚) + 𝐹𝑚𝑎𝑥      𝑖𝑓   (𝐿 > 𝐿𝑚𝑖𝑛)

0                                                            𝑖𝑓   (𝐿 < 𝐿𝑚𝑖𝑛)

 (22) 

If consider the spring behavior, 

𝐹 = {
𝑘𝑏𝑟𝑎𝑖𝑑(𝐿 − 𝐿𝑚𝑎𝑥)     𝑖𝑓   (𝐿 > 𝐿𝑚𝑖𝑛)

0                                    𝑖𝑓   (𝐿 < 𝐿𝑚𝑖𝑛)
 (23) 

where kbraid is the braid material stiffness. 

The static model of PAM (22) will be verified through experimental data. Also, this static model 

was the base for the dynamic model and then will represent the target of the new model in simulation. 

3. Experimental validation of static model 

Experiments were done using the following components: two PAMS (MAS-10-N-100-AA-MCFK 

and MAS-20-750N-AA-MC-O-ER-BG), a force cell (RDP LOAD CELL MCL/1kN), a flow cell (SFE3-

F500-L-W18-2PB-K), a pressure cell (SDE-1-D10), a 3/2 electro-pneumatic valve all from Festo (Figure 

8). 

The main purpose of the experiments was to validate the above mathematical static model of 

different PAMs. 

During measurements, it was considered that the net angle varies between 25 [31] to the 

maximum value of 54,7. 

  

(a) (b) 

Figure 8. Experimental stand: (a) experimental stand; (b) experimental circuit 

Thus the force output as dependent on  is shown in Figure 9. The characteristics were measured 

for three different pressures, obtaining three different values for maximum force. Thus, the maximum 

force was 64.39 [N] (at 0.1 [MPa]), 193.16 [N] (at 0.3[MPa]) and 386.32 [N] (at 0.6 [MPa]).  
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Figure 9. Force output vs net angle at different pressures 

There is another important conclusion that follows, namely that for an elongated network (small 

angle of the winding network) the force developed by the muscle is much higher than in the case of 

a network with a large angle of the winding. 

The force-pressure dependence was also determined experimentally. Thus, to a quasi-stationary 

increase of input pressure, were tested two PAMs: (10 [mm] diameter; 98[mm] length) – Figure 10a 

and (20 [mm] diameter; 750 [mm] length) – Figure 10b. 

  

(a) (b) 

Figure 10. Force-pressure characteristics for a PAM: (a) 10 [mm] diameter and 98 [mm] length;    (b) 20 [mm] diameter and 

750 [mm] length 

The experiments underlined that the slope of the force-pressure characteristic, at constant 

elongation, corresponds to the speed of  muscle force variation, in relation to the input pressure. 

Thus, a greater slope of this characteristic implies a faster increase in force with increasing pressure. 

The experiments validate the mathematical model according to which the slope of force-pressure 

dependence is increasing for the higher inner diameter of the PAMs. 

There were done other experiments that concerned the evolution of the length and diameter of 

the artificial pneumatic muscle in relation to the pressure, respectively their interdependence. These 

were done to validate the simplification assumed in the theoretical model. 

Thus, it was measured the outer diameter relative to pressure variation, for two different of 

PAMs: inner diameter 10 [mm], length of 274 [mm] and, respectively, 20 [mm] inner diameter and 

750 [mm] (Figure 11). The first experimental data were gained by fixing one end of PAMs, the other 

being free to move. 
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Figure 11. Outer diameter-pressure variations. 

Also experimentally were determined the characteristics of PAM’s length variation with 

pressure, for both muscles: of 10 (Figure 12a), and respectively 20 [mm] diameter (Figure 12b). 

  

(a) (b) 

Figure 12. Length - pressure for a PAM with: (a) 10 [mm] diameter; (b) 20 [mm] diameter. 

These experiments sustain, once more, the elastic behavior of the muscle and validate the 

mathematical model. 

The last experiment determined the variation of the outer diameter of the pneumatic muscle 

caused by the elasticity of the mechanical links of the artificial pneumatic muscle. 

The linear dependence between the stiffness and the length of pneumatic muscle can lead to the 

conclusion of the association of the muscle with an elastic element, almost ideal, neglecting the 

influence of the ends the compressibility of the air. This conclusion, however, can only be validated 

if the physical structure of the muscle also shows a linear dependence. To obtain the diameter 

variation caused by the elasticity of the mechanical links of the artificial pneumatic muscle in relation 

to the supply pressure, a set of 52 determinations was made, which mainly concerned the variation 

of the outer diameter of the muscle depending on the pressure variation, considering muscle 

maintained at a constant length of 98 [mm] (Figure 13). 

As it can be seen in Figure 13, 92.3% of measurements fall within the desired tolerance. This 

certifies the elastic behavior of PAM. 
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Figure 13. Variation of PAM diameter relative to pressure for a 98 [mm] length muscle 

4. Mechanical Model 

The static model offers an association of the PAM with an elastic element (22), model that was 

sustained by the experimental data obtained. This model does not consider the effect of ends and the 

phenomena determined by the behavior of ends. Based on these results, the dynamic model of PAM 

may be associated with a model of a spring, damper and a friction component. 

Mathematically, to static model from (22) is added the Coulombian force and the damper. Thus 

𝐹 = {
𝐹𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑐𝑣 ± 𝑄𝑘     𝑖𝑓   (𝐿 > 𝐿𝑚𝑖𝑛)

0                                   𝑖𝑓   (𝐿 < 𝐿𝑚𝑖𝑛)
 (24) 

where Fstatic is expressed by relation (22); c – damper coefficient; v – PAM speed and linear stiffness is: 

𝑘 =

𝑃𝑚𝑏2

4𝜋𝑛2 (
3𝐿2

𝑏2 − 1) 𝐸𝑓(𝑃𝑚) − 𝐹𝑚𝑖𝑛

𝐿 − 𝐿𝑚𝑖𝑛

 
(25) 

Based on this mathematical model it was designed a mechanical-pneumatic model that may be 

associated with a PAM (Figure 14). 

 

Figure 14. Kinematic structure of a PAM 

Simulations were done for the same Festo muscle MAS-10-N-100-AA-MCFK (with a length of 

247 [mm]). The simulation diagram was done in Matlab (combining toolboxes: Simscape, Simulink, 

SimMechanics) (Figure 15). 

 

Figure 15. Model of PAM in Matlab 

The PAM model was included in a pneumatic driving circuit, developed also in Matlab (as a 

simulation diagram developed in Simscape, Simulink and SimMechanics), circuit design as a simple 

pneumatic driving circuit (pipes, switches, actuator, pressure sensors) – Figure 16. 

Characteristics of simulations are: 

- gravity is considered along Oy axis; 
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- elements (bar type) have a mass of 1 [g]; 

- damping system: elastic coefficient is k = 183 [Nm]; damping coefficient cv = 10 [N/(m/s)]; stroke 

limit between [-40, 40] [mm]. 

Input data are: input pressure (6 [bar]) and maximum load to the pneumatic motor (1000 [N] – 

ramp signal from 0 to 1000, with increasing time of 7 seconds). 

The aim of the simulations was the output displacement and force. 

 

Figure 16. Model of PAM driving circuit in Matlab 

Thus, as can be seen in Figure 17, the displacement varies between [-0.04, 0.02] [m] which is 

equivalent to a total stroke of 60 [mm]. In the datasheet of Festo PAM [6] it is given that the maximum 

contraction of this muscle is 25% of the nominal length. Thus, in the case of the simulated muscle, the 

nominal length is 247 [mm] of witch 25% is 61.5 [mm]. Thus, from displacement the model created in 

Matlab is a precise one. 

According to the same datasheet, the nominal force in load varies between 0 and 630[N]. 

Analyzing the simulation result the force has a linear increase, proportional to the load input signal. 

The increasing time from the force diagram is determined by the fact that the  maximum load of the 

input signal is higher than the maximum load from data sheet. 
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Figure 17. Simulation of PAM mechanical model 

Based on the model from Figure 16 was simulated the displacement of the PAM. For this 

simulation were determined the dynamic parameters: positioning times, as a direct relation to 

inflation-deflation sequences. Thus, increasing-decreasing time is determined as the time between 

10% and 90% of maximum displacement. Considering this, it was determined a time of 0.0261 [s] 

during inflation and 0.0402 [s], thus it was excluded the inertia effect. The total inflation-deflation 

times were: 0.0318 [s] for inflation and 0.05012[s] for deflation. 

In Figure 18 is presented the comparative data gain based on simulation of the mechanical model 

from Figure 16, and experimental data measured in laboratory. 

 

Figure 18. Inflation-deflation times 

Analyzing the results of the simulation and comparing them to experimental data, the 

mechanical model from Figure 16 may be validated. Furthermore, was connected this model to a 

proportional directional control valves MPYE from Festo. Thus, the new system is shown in Figure 

19. 

 

Figure 19. PAM – proportional directional valve model 

The model of pneumatic proportional valve includes the characteristics mechanics, electrical and 

pneumatical of such a component, using the values for the parameters from the datasheet. 

Simulations of displacement and speed of PAM to a pulse input voltage are shown in Figure 20. 

There were determined the inflation-deflation times (measured as increasing and respectively 

decreasing time): 0.0315 [s] – inflation and 0.0474 [s] – deflation. The difference between response of 

PAM and that of PAM-proportional valve system is given by the delay of proportional valve which 

is 0.005 [s] – advancing; 0.0075 [s] – retracting. 
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Figure 20. Simulation of PAM-proportional valve 

Furthermore is determined the dependence displacement-input pressure, being important to 

validate the mechanical model simulated in Simscape. Thus, based on this model was obtained the 

same hysteresis (Figure 21) as that based on experimental data. 

 

Figure 21. Hysteresis of displacement-pressure simulation 

The large area enclosed by the hysteresis curve is determined by a very rapid variation in 

pressure, which does not allow the PAM to return to the same trajectory as during inflation, due to 

the inertia of the elastic deformation of the muscle. 

5. Dynamic Controlled System 

To be able to simulate a system that include the PAM mechanical model it should be modeled 

all the electro-pneumatic components including a proportional directional valve and controller. The 

model PAM-proportional directional valve had a behavior similar to real one, gained in the 

experiment. As controller, it was considered that a PID will be the best solution for this type of 

actuating. PID was implemented on the feedback loop, the input was the position given by a position 

transducer, and the output is the pressure control circuit. The proportional pressure controller 

corresponds to the circuit formed by the proportional-pressure regulator MPPES–3–1/4–6–010 and 

the set-point element MPZ–1–24DC–SGN–65W, both supplied by FESTO. As inputs were considered 

three types of signals: triangular, pulse and random. The type of these signals is associated with the 

most common signal in industry (in logistics application for manipulators pneumatically actuated or 

for pick-and-place working stations). 

Responses to these input signals are presented in Figure 22 (a – triangular input, b – pulse input 

and c – random input). It can be seen that, after the implementation of PID controller, the output of 

the system respects the shape of the reference signal. There is a delay, determined by the force of the 

load and, in the case of PAM, being an elastic element, sudden transitions from one position to 

another are achieved by oscillations around the desired final positions. 
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(a) (b) (c) 

Figure 22. PAM responses to: (a) triangular input; (b) pulse input; (c) random input 

The results form the above simulations were validated by some simulation using ProPneu [32]. 

This software is created using datasheet parameters of the muscles from Festo, and experimental data 

gained by the company.  

Thus, for a 20 [mm] diameter muscle, the maximum stroke of 200 [mm], input pressure of 6 [bar], 

the input data are shown in Figure 23. 

The software provides output data for both the inflation and deflation movements. Thus it was 

obtained an upward position time of 0.19 [s] and, respectively, a discharge time of 0.25 [s]. The 

average speeds, for the two movements, are: 1.05 [m/s], respectively 0.81 [m/s], the maximum speeds 

being 2.43 [m/s] (reached after 0.173 [s]) and, respectively, for the push-off phase (downward 

movement of the muscle) 1.96 [m/s] (reached after 2.222 [s]). 

 

Figure 23. Functional diagram and simulation parameters for the pneumatic muscle (20 [mm] diameter) in 

ProPneu 

The simulation diagrams are presented in Figure 24. 

  

(a) (b) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 November 2023                   doi:10.20944/preprints202311.0860.v1

https://doi.org/10.20944/preprints202311.0860.v1


 14 

 

Figure 24. Simulation diagrams of PAM (20 [mm] diameter) – ProPneu: (a) position and speed; (b) input 

pressure, discharge pressure and muscle acceleration 

Analyzing position (Figure 24a), during ascending movement, the steady-state time is 0.185 [s], 

for which the maximum stroke of 200 [mm] is reached. The rise time (the time interval in which the 

signal travels the distance between 10% and 90% of the stabilized value) is 0.074 [s], the muscle has a 

delay of 0.148 [s] (the time when the signal reaches 50% of the stabilized value). On the downslope, 

the relaxation time is 0.21 [s]. The speed is less constant in the two zones of growth, respectively 

relaxation, where the maximum and minimum jumps appear. 

Also there were drawn the acceleration and input pressure diagrams. Figure 24b shows that the 

supply pressure is delayed both in the up and down areas, deviations that generate the speed and 

acceleration jumps, respectively the position delay. Thus, the input pressure on the ascending area 

stabilizes at the final value of 6 [bar] (the value that coincides with the entered value, resulting in zero 

internal and external losses) after 0.342 [s]. The growth time is 0.201 [s] and the delay is 0.142 [s]. On 

the down area, the zero value is reached after 0.283 [s] after power is cut off. The maximum throttle 

jump is 26.08 [m/s2], reached after 0.106 [s] of the pressure supply, and the minimum is reached after 

2.075 [s] of the start of the power supply and has a value of -9.68 [m/s2]. The minimum constant 

acceleration zone is generated by the slow speed drop to the minimum value, suddenly climbing to 

zero. 

In the case of a muscle with 10 [mm] diameter muscle, maximum stroke of 200 [mm], input 

pressure of 6 [bar] there were obtained: positioning time at upward movement of 0.23 [s] and, 

respectively, a discharge time of 0.24 [s]. The average speeds are close in size for the two phases: 0.88 

[m/s] and 0.83 [m/s] respectively, with maximum speeds of 2.16[m/s] (reached after 0.215 [s]) and for 

the discharge phase (muscle downward movement) 1.96 [m/s] (reached after 2.244 [s]) respectively. 

From the point of view of the position in the ascending area, the steady state time is 0.23 [s], for which 

the maximum travel of 200 [mm] is reached. The growth time is 0.103 [s], the muscle having a delay 

of 0.185 [s]. On the descending area, the relaxation time is 0.24 [s]. The speed is less constant on the 

two growth areas, respectively relaxation, where the jumps of maximum and minimum occur. 

For the same muscle, the input pressure is delayed on both the up and down areas, deviations 

that actually generate the speed and acceleration jumps, respectively the position delay. Thus, the 

input pressure on the ascending area stabilizes at the final value of 6 [bar] (value that coincides with 

the entered value, resulting in zero internal and external losses) after 0.219 [s]. The growth time is 

0.135 [s] and the delay is 0.085 [s]. On the down area, the zero value is reached after 0.177 [s] after 

power is stopped. The maximum throttle jump is 18.36 [m/s2], reached after 0.134 [s] of the pressure 

supply, and the minimum is reached after 2.059 [s] of the start of the power supply and has a value 

of -9.86 [m/s2]. The minimum constant acceleration zone is generated by the slow speed drop to the 

minimum value, suddenly climbing to zero. 

6. Conclusion 

The mechanical model designed by the authors was simulated in Simscape and the results were 

very closed to those from experimental data, certifying the validity of this model. The values gained 

using ProPneu are very closed to those obtained for the mechanical model developed by the authors.  

All the above simulations compare to experiments validate the mechanical model (Figure 15) 

design by the authors. Thus, in future pneumatic driving systems, that will used PAM, there may be 

done pre-design by simulating the system. 
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PAM  pneumatic artificial muscle 

PID  proportional integral derivative controller  

MPYE proportional directional valve 

MPPES proportional-pressure regulator 
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