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Abstract: The rising severity and frequency of wildfires in recent years in the United States have
raised numerous concerns regarding the improvement in wildfire emergency response
management and decision-making systems, which require operational high temporal and spatial
resolution monitoring capabilities. Satellites are one of the tools that can be used for wildfire
monitoring. However, none of the currently available satellite systems provide both high temporal
and spatial resolution. For example, GOES-17 geostationary satellite fire products have high
temporal (1-5 min) but low spatial resolution (2 km), and VIIRS polar orbiter satellite fire products
have low temporal (~12 h) but high spatial resolution (375 m). This work aims to leverage currently
available satellite data sources, such as GOES and VIIRS, along with Deep Learning (DL) advances
to achieve an operational high-resolution, both spatially and temporarily, wildfire monitoring tool.
Specifically, this study considers the problem of increasing the spatial resolution of high temporal
but low spatial resolution GOES-17 data products using low temporal but high spatial resolution
VIIRS data products. The main idea is using an Autoencoder DL model to learn how to map GOES-
17 geostationary low spatial resolution satellite images to VIIRS polar orbiter high spatial resolution
satellite images. In this context, several loss functions and DL architectures are implemented and
tested to predict both the fire area and the corresponding brightness temperature. These models are
trained and tested on wildfire sites from 2019 to 2021 in the western U.S. The results indicate that
DL models can improve the spatial resolution of GOES-17 images, leading to images that mimic the
spatial resolution of VIIRS images. Combined with GOES-17 higher temporal resolution, the DL
model can provide high-resolution near-real-time wildfire monitoring capability as well as semi-
continuous wildfire progression maps.

Keywords: wildfire; remote sensing; Geostationary Operational Environmental Satellite (GOES);
Visible Infrared Imaging Radiometer Suite (VIIRS); artificial intelligence; machine learning; deep
learning; super-resolution; autoencoder; operational monitoring

1. Introduction

Wildfires have increased in number, frequency, and severity in the United States in recent years,
with the western states and particularly California, being severely impacted [1-3]. Climate change,
anthropogenic activities, and other factors have worsened the frequency and severity of wildfires.
Catastrophic wildfire events have short- and long-term impacts on the economy, human health,
ecosystems, watersheds, and built environment, highlighting the need for effective wildfire
monitoring [4]. Real-time monitoring is crucial for providing timely and accurate information on the
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location, size, and intensity of wildfires. This can be an effective means for efficient emergency
response management efforts and for making decisions related to firefighting, public safety, and
evacuation orders.

Remote sensing technologies, including terrestrial-based, aerial-based, and satellite-based
systems are used to provide information on wildfires, such as their location, rate of spread, and fire
radiative power, which can help analyze wildfire behavior and manage its impact [5,6]. Terrestrial-
based systems are highly accurate and have a fast response time, but their coverage is limited, and
they are vulnerable to blockage [7]. Aerial-based systems provide detailed fire progression mapping,
but their deployment during emergencies can be challenging [8,9]. Satellite-based systems, such as
the Earth Observation (EO) system, allow for detection of wildfires over a vast area, including remote
or inaccessible areas. However, the spatial and/or temporal resolution of these systems is limited, not
providing the level of details needed for emergency response applications [10]. Low Earth Orbit
(LEO) satellites offer high spatial resolution, but they typically capture snapshots of the same area at
low temporal resolution (e.g., hours or days) [11]. Landsat-8/9 [12] and Sentinel-2A/2B [13] provide
multi-spectral global coverage with a resolution of 10 m to 30 m [14], but their revisit intervals of 8
days for Landsat-8/-9 and 5 days for Sentinel-2A/2B are inadequate for monitoring active fires [15].
Other instruments on board LEO satellites, such as the Visible Infrared Imaging Radiometer Suite
(VIIRS) [16] on the Suomi National Polar-orbiting Partnership (SNPP) satellite and the Moderate
Resolution Imaging Spectroradiometer (MODIS) [17] on the Terra and Aqua satellites, are commonly
used to detect active fire points with twice-daily revisits [18]. VIIRS offers a spatial resolution of 375
m, while MODIS provides a spatial resolution of 1 km [19,20]. On the other hand, Geosynchronous
Equatorial Orbits (GEO) satellites provide high temporal resolution but lower spatial resolution (2
km) due to their higher elevation from the Earth [21]. An example of a GEO satellite is the
Geostationary Operational Environmental Satellites R Series (GOES-R), consisting of three
geostationary satellites, GOES-16, -17, and -18, which continuously monitor the entire western
hemisphere, including North America, South America, the Pacific Ocean, the Atlantic Ocean, and
Western Africa. However, due to its low spatial resolution, the GOES-R active fire product has been
found to be unreliable, with a false alarm rate of around 60% to 80% for medium and low confidence
fire pixels [22]. While it may struggle with some fire detections, GOES-R's performance is
commendable for many high-impact fires, as demonstrated by studies such as Lindley et al. (2020)
[23] for the Kincade Fire.

Artificial Intelligence (AI) has the potential to improve the temporal and spatial accuracy for
monitoring wildfires. Al, particularly Deep Learning (DL) models, have been effective in solving
complex tasks such as image classification [24], object detection [25,26], and semantic segmentation
[27]. Building on these successes, recent research has explored the application of DL models on
satellite imagery for land-use classification [28] and urban planning [29,30]. Leveraging success in
high-level Al tasks such as image segmentation and super-resolution, it might be possible to develop
a high-resolution wildfire monitoring system that can improve our ability to detect and respond to
wildfire incidents using available data systems.

A few recent studies have employed DL-based approaches for early wildfire detection from
streams of remote sensing data. These studies have focused mainly on active fire detection or fire
area mapping while skipping monitoring quantities that can quantify fire intensity. Toan et al. (2019)
proposed a deep convolutional neural network (CNN) architecture for wildfire detection using GOES
satellite hyperspectral images [31]. Their model employs 3D convolutional layers to capture spatial
patterns across multiple spectral bands of GOES and patch normalization layer to locate fires at the
pixel level. The study demonstrates the potential of using DL models for early wildfire detection and
monitoring. In a related study, Toan et al. (2020) proposed another DL-based approach for the early
detection of bushfires using multi-modal remote sensing data [32]. Their approach consisted of a DL
model incorporating both CNNs and long short-term memory (LSTM) recurrent neural networks.
The model was designed to process multi-modal remote sensing data at different scales, ranging from
individual pixels (using CNN) to entire images (using LSTM). The authors reported a high-level
detection accuracy, outperforming several state-of-the-art methods. Zhao et al. (2022) focused on
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using time-series data from GOES-R for early detection of wildfires [33]. The study proposed a DL
model incorporating a gated recurrent unit (GRU) network to process the time-series data from
GOES-R. The model was designed to learn the spatiotemporal patterns of wildfire events and to
predict their likelihood at different locations. Using a sliding window technique to capture the
temporal dynamics of wildfire events, the authors demonstrated that the model could detect wildfire
events several hours before they are reported by official sources. McCarthy et al. (2021) proposed an
extension of U-Net CNNs to geostationary remote sensing imagery with the goal of improving the
spatial resolution of wildfire detections and high-resolution active-fire monitoring [34]. Their study
leverages the complementary properties of GEO and LEO sensors as well as static features related to
topography and vegetation to inform the analysis of remote sensing imagery with physical
knowledge about the fire behavior. However, the study acknowledged a limitation of the proposed
algorithm in terms of false positives and emphasized the need for further research to address this
issue. Overall, the published literature demonstrates the potential of DL methods for early detection
and monitoring of wildfires using remote sensing data from different sources. Recently, Ghali et al.
(2023) provided a comprehensive analysis of recent (between 2018 and 2022) DL models used for
wildland fire detection, mapping, and damage and spread prediction using satellite data [35].
However, these studies are limited to fire detection without fire boundary and intensity monitoring.
To the best of our knowledge, there is no published study that attempts to improve the spatial
resolution of GOES for operational wildfire monitoring.

This work aims to address the mentioned gap in remote monitoring of wildfires by presenting
a framework that utilizes DL techniques to enhance the spatial resolution of GOES-17 satellite images
using VIIRS data as ground truth. In this context, we have performed an ablation study using
different loss functions, evaluation metrics, and variations of a DL architecture known as
autoencoder. To enable DL models to use contemporaneous data that share similar spectral and
projection characteristics, a scalable dataset creation pipeline is developed, which can accommodate
the addition of new sites. An automated real-time streaming and visualization dashboard system can
utilize the proposed framework to transform relevant GOES data into high spatial resolution images
in near-real-time.

The rest of the paper is organized as follows. Section 2 presents an overview of the satellite data
streams used in the study and describes the preprocessing steps taken to ensure consistency. Section
3 discusses the proposed approach, including the autoencoder architectures, loss functions, and
evaluation metrics. Finally, Section 4 presents the experimental results and comparisons followed by
conclusions in Section 5.

2. Materials and Methods
2.1. Data Source

2.1.1. Geostationary Operational Environmental Satellite (GOES)

Launched by the National Oceanic and Atmospheric Administration (NOAA), GOES-17 is
operational as GOES-West since February 12, 2019. This Geostationary satellite is 35,700 km above
earth providing constant watch over the pacific ocean and the western United States [36]. The
Advanced Baseline Imager (ABI) is the primary instrument of GOES for imaging Earth’s weather,
oceans, and environment. ABI views the Earth with 16 spectral bands, including two visible channels
(channels 1-2 with approximate center wavelengths of 0.47 and 0.64 um), four near-infrared channels
(channels 3-6 with approximate center wavelengths of 0.865, 1.378, 1.61, and 2.25 um), and ten mid-
and long-wave infrared (IR) channels (channels 7-16 with approximate center wavelengths 3.900,
6.185, 6.950, 7.340, 8.500, 9.610, 10.350, 11.200, 12.300, and 13.300 pm) [36]. These channels are used
by various models and tools to monitor different elements on the Earth’s surface, such as trees and
water, or in the atmosphere, such as clouds, moisture, and smoke [36]. Dedicated products are
available for cloud formation, atmospheric motion, convection, land surface temperature, ocean
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dynamics, vegetation health, and flow of water, fire, smoke, volcanic ash plumes, aerosols, air quality,
etc. [37].

In this study, channel 7 (IR shortwave) of Level 1B (L1B) Radiances product (ABI-L1B-Rad) is
used as input to the DL model. The product, with its scan mode six, captures one observation of the
Continental U.S. (CONUS) with a spatial resolution of 2 km at every 5 min [38]. The L1B data product
contains measurements of the radiance values (measured in milliwatts per square meter per steradian
per reciprocal centimeter) from the Earth's surface and atmosphere. These radiances are used to
identify cloudy and hot regions within the satellite’s field of view [39]. These measured radiance
values are converted to Brightness temperature (BT) in this study to facilitate data analysis. A detailed
explanation of this conversion process will be provided in a following section of the paper.

2.1.2. Visible Infrared Imaging Radiometer Suite (VIIRS)

The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is installed on two polar
orbiter satellites, namely Suomi National Polar-orbiting Partnership (S-NPP) operational from 7
March, 2012 [40] and NOAA'’s Joint Polar Satellite System (JPSS), now called NOAA-20, operational
from 7 March, 2018 [41]. These two satellites are 50 min apart, 833 km above the earth, and revolve
around the Earth in a polar orbit [41]. For each site, these satellites make two passes daily - one during
the day and one at night [42]. VIIRS features daily imaging capabilities across multiple
electromagnetic spectrum bands to collect high-resolution atmospheric imagery including visible and
infrared images to detect fire, smoke, and particles in the atmosphere [43]. The VIIRS instrument
provides 22 spectral bands, including five imagery 375 m resolution bands (I bands), 16 moderate 750
m resolution bands (M bands), and one Day-Night Band (DNB band) [44]. The I-bands include a
visible channel (I1) as well as a near, a shortwave, a mediumwave, and a longwave IR (I12-15) with
center wavelengths of 0.640, 0.865, 1.610, 3.740, and 11.450 pum, respectively. The M bands include
five visible channels (M1-M5) together with two near IR (M6-M?7), four shortwave IR (M8-M11), two
mediumwave IR (M12-M13), and three longwave IR (M14-M16) channels with center wavelengths of
0.415, 0.445, 0.490, 0.555, 0.673, 0.746, 0.865, 1.240, 1.378, 1.610, 2.250, 3.700, 4.050, 8.550, 10.763, and
12.013 um, respectively [44]. VIIRS also hosts a unique panchromatic Day/Night band (DNB), which
is ultra-sensitive in low-light conditions and is operated on central wavelength of 0.7 um [45] .

In this study, the VIIRS (S-NPP) I-band Active Fire Near-Real-Time product with 375 m
resolution (i.e,, VNP14IMGTDL_NRT) [46] is used as ground truth to improve the spatial resolution
of GOES imagery due to its relatively high 375 m spatial resolution compared to GOES 2 km spatial
resolution. Furthermore, VIIRS shows good agreement with its predecessors in hotspot detection [47],
and it provides an improvement in the detection of relatively small fires as well as the mapping of
large fire perimeters [48]. The VIIRS data are available from January 20, 2012 to present [49].

2.2. Data Pre-Processing

DL models require two sets of images: input images (i.e., GOES images herein) and ground truth
or reference images (i.e., VIIRS images herein). The prediction of the DL model and ground truth are
compared pixel-by-pixel, and the difference between the prediction and ground truth (i.e., loss
function value) is used by the model to learn its parameters via backpropagation [50]. Hence, the
input and ground truth images should have the same size, projection, time instance, and location.
However, the initial format of GOES and VIIRS data are different. VIIRS fire data, as obtained from
the NASA’s Fire Information for Resource Management System (FIRMS) is represented in vector
form in CSV format [38,51] whereas GOES data is represented in raster form in NetCDF format
[52,53]. In the vector form, data features are represented as points or lines, while in the raster form,
data features are presented as pixels arranged in a grid. Vector data needs to be converted into a
pixel-based format for proper display and comparison with raster data [54]. Furthermore, GOES
images contain snapshots of both fire and its surrounding background information, whereas VIIRS
data contain only the location and radiance value of globally detected fire hotspots. Therefore, data
pre-processing is required to make the initial formats and projections between GOES and VIIRS data
consistent.

doi:10.20944/preprints202311.0859.v1
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The pre-processing pipeline aims to create a consistent dataset of images from multiple wildfire
sites, with standardized dimensions, projections, and formats. Each processed GOES image in the
dataset corresponds to a processed VIIRS image representing the same region and time instance of a
wildfire event. To facilitate this process, a comprehensive list of wildfire events in the western U.S.
between 2019 and 2021 is compiled from multiple sources [55,56] (see Appendix A). This wildfire
property list (WPL) plays a key role in several pre-processing steps, such as defining the region of
interest (ROI) for each wildfire site. To obtain the four corners of the ROI, a constant value is added
to/subtracted from the central coordinates specified in the WPL. For each wildfire event defined by
its ROI and its duration as included in the WPL, the pre-processing pipeline conducts the following
four steps.

e  Step 1: Extracting wildfire event data from VIIRS and identifying timestamps. The pipeline first
extracts the records from the VIIRS CSV file to identify detected fire hotspots that fall within the
ROI and duration of wildfire event. The pipeline also identifies unique timestamps from the
extracted records.

e Step 2: Downloading GOES images for each identified timestamp. In order to ensure a
contemporaneous dataset, the pre-processing pipeline downloads GOES images with captured
times that are near to each VIIRS timestamp identified in Step 1. GOES have a temporal
resolution of 5 minutes, meaning that there will always be a GOES image within 2.5 minutes of
the VIIRS captured time, except in cases where the GOES file is corrupted [57]. In case of
corrupted GOES data, Steps 3 and 4 will be halted and the pipeline will proceed to the next
timestamp.

e  Step 3: Creating processed GOES images. The GOES images obtained in Step 2 have different
projection from the corresponding VIIRS. In this step, the GOES images are cropped to match
the site's ROI and reprojected into a standard coordinate reference system (CRS).

e  Step 4: Creating processed VIIRS images. The VIIRS records obtained in Step 1 are grouped by
timestamp and rasterized, interpolated, and saved into GeoTIFF images using the same
projection as the one used to reproject GOES images in Step 3.

The above steps are explained in more detail in the following subsections. Once these steps are
completed, the GOES and VIIRS images will have the same image size and projection. An example
of the processed GOES and VIIRS images is shown in Figure 1a, and 1b, respectively. In Figure 1c,
where the VIIRS image is overlaid on the GOES image, the VIIRS fire region almost completely covers
the GOES fire region, which verifies the data pre-processing pipeline. It is crucial to clarify that the
dark color in Figure 1c does not signify low temperatures but rather serves to outline the contours of
fires detected in the VIIRS image, distinguishing them from the underlying GOES image. It should
be noted that in Figure 1a, the GOES image includes both fire pixels and background information,
while in Figure 1b, the output VIIRS image only contains fire pixels without any background
information.

n“ 300 @
i

Brightness Temperature

Brigitness Temperat,

(@ (b) (c)

Figure 1. An illustration of data pre-processing outcomes for Kincade fire site at 2019-10-27 9:49 UTC
(a) processed GOES image, (b) processed VIIRS image, (c) overlapped GOES and VIIRS images, where
brightness temperature unit is K.
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2.2.1. GOES Pre-Processing

The NOAA Comprehensive Large Array-data Stewardship System (CLASS) repository [3] is the
official site for accessing GOES products. ABI fire products are also available publicly in Amazon
Web Services (AWS) S3 Buckets [4]. The Python s3fs [5] library, which is a filesystem in user space
(FUSE) that allows mounting an AWS S3 bucket as a local filesystem, is utilized in this study to access
the AWS bucket “NOAA-GOES17”. As previously mentioned, the downloaded GOES images cover
the western U.S. and Pacific Ocean and need to be cropped to the specific wildfire site's ROL
Additionally, the unique projection system of GOES, known as the "GOES Imager Projection” [58]
must be transformed to a standard CRS to make it comparable with VIIRS. In this study, the WGS84
system (latitude/longitude) is used as the standard CRS. The projection transformation is achieved
using the Satpy python library [59], which is specifically designed for reading, manipulating, and
writing data from earth-observing remote sensing instruments. Specifically, the Satpy scene function
[60] is utilized to create a GOES scene from the downloaded GOES file, which allows the
transformation of the GOES CRS to the WGS84 system [61]. The Satpy area definition [62] is then
applied to crop the GOES scene to match the ROI. Furthermore, Satpy enables the conversion of
Radiance values, measured in milliwatts per square meter per steradian per reciprocal centimeter, to
Brightness Temperature (BT) values, expressed in Kelvin (K), using Planck’s law [63]. This
transformation is conducted to have the same physical variable as VIIRS data to facilitate training.
Additionally, to ensure the accuracy of these converted values, a comparison is conducted with the
Level 2 GOES cloud and moisture CMI (Cloud and Moisture Imagery) product. This validation
process confirms the reliability and appropriateness of the Radiance to BT conversion for our
analysis. It's important to note that Level 1 data is utilized throughout due to its real-time availability,
as Level 2 data is not real-time and may not be suitable for time-sensitive applications.

2.2.2. VIIRS Pre-Processing

Annual summaries of VIIRS-detected fire hotspots in CSV format are accessible by country
through the Fire Information for Resource Management System (FIRMS) [52], which is a part of
NASA'’s Land Atmosphere Near-Real-time Capability for Earth Observing System (LANCE) [53]. In
this study, annual summaries from 2019 to 2021 are utilized since corresponding GOES-17 files are
only available from 2019, the year at which GOES-17 became operational. The CSV files contain the
I-4 channel brightness temperature (3.55-3.93 um) of the fire pixel measured in K, referred to as b-
temperature I-4, along with other measurements and information such as the acquisition date,
acquisition time, and latitude and longitude fields. Notably, the annual summary files are exclusively
available for S-NNP.

The VIIRS-detected fire hotspot vector data are available in CSV format, with the longitude and
latitude coordinates of each fire hotspot defining its location at the center of a 375 m by 375 m pixel.
To ensure its compatibility with GOES data for the DL model, the vector data is converted into a
pixel-based format through rasterization [64]. This process involves mapping the vector data to
pixels, resulting in an image that can be displayed [65]. This process has three main steps: (1) defining
the ROJ, (2) defining the grid system over the ROI, and (3) mapping the fire data to the pixels. This
process is illustrated schematically in Figure 2.

The first step involves defining the ROI for the wildfire site. To accomplish this, a constant value
C = 0.6 degrees is added to/subtracted from the center coordinates of the fire site as defined in the
WPL to obtain the four corners of the ROL Figure 2a shows the defined ROI around the center of fire
hotspot represented by the red dots. The second step involves overlaying a grid system over the ROI
as illustrated in Figure 2b. Each cell in the grid system corresponds to a single pixel in the output
image, and a specific cell size of 375 m by 375 m is selected to match the resolution of the VIIRS
hotspot detection. The process involves transforming the entire ROI from longitude/latitude space to
northing/easting or distance space, using PyProj's Python library transformation function [66]. The
final step is to map the fire locations from the CSV file to the corresponding pixels. If the central
coordinates of fire hotspot fall within the cell associated with a pixel, that pixel is activated and
assigned a value based on the measured I-4 BT/I-5 BT value from VIIRS CSV file, based on Eq. 1.

doi:10.20944/preprints202311.0859.v1
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367 BT, = 208
BTpixer = {BTis  BTj4 < BTjs 1

BT,, otherwise
where BTy, is channel I-4 BT and BT;s is channel I-5 BT for each hotspot defined in VIIRS CSV file.
Eq. 1is employed to overcome VIIRS data artifacts as outlined in [1]. Specifically, the first condition
is for instances where the VIIRS pixel is located at the core area of intense wildfire activity causing
the pixel saturation. This, in turn, leads to complete folding of the count leading to I-4 BT values of
208 K. The second condition in Eq. 1 is designed to deal with “mixed pixels”, where saturated and
unsaturated native pixels are mixed during the aggregation process leading to artificially low I-4 BT
values. Figure 2c illustrates this process by showing the activation of pixels without displaying their
actual values for simplicity.

Ln-C , Lt+C Ln+C | Lt+C N2 E2 N3 E3

. ( Central
coordinate
............. o e :> ® ¢>

Ln-C , Lt-C Ln+C , Lt-C N1.E1 N4 E4

(a) (b) (©

Figure 2. VIIRS data rasterization process, (a) region of interest in longitude/latitude (Ln, Lt) space,
(b) grid over region of interest in Northing/Easting space, and (c) output image.

Following the rasterization process, nearest neighbor interpolation [2] is performed for non-fire
pixel with a neighboring fire pixel. This interpolation method is used to eliminate any artificial
patches in and around the fire region, as shown in Figure 3a, and to ensure that the output image, as
shown in Figure 3b, accurately represents the extent of the fire. Finally, the created raster is saved in
GeoTIFF format using the GDAL library for future use[3].

Brightness Temperature
Brightness Temperature

Figure 3. VIIRS data interpolation process (a) pre-interpolation VIIRS output, (b) post-interpolation
VIIRS output, where brightness temperature unit is K.
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3. Proposed Approach

3.1. Autoencoder

Autoencoders are one of the popular DL architectures for image super-resolution [4]. It takes the
low-resolution image as input, learns to recognize the underlying structure and patterns, and
generates a high-resolution image that closely resembles the ground truth [5]. Autoencoders have
two main components: (1) the encoder, which extracts important features from the input data, and
(2) the decoder, which generates an output based on the learned features. Together, they can
effectively distill relevant information from an input to generate the desired output [5].

In this study, an autoencoder is tasked with distilling the relevant portions of the input GOES-
17 imagery to generate an output with increased resolution and no background noise (i.e., such as
reflections from clouds, lakes, etc.) to mimic VIIRS imagery. Figure 4 illustrates the autoencoder
architecture along with the dimensions for each layer utilized in this study. As can be seen, the
model's encoder component is composed of five two-dimensional convolutional layers with a kernel
size of three and a padding of one, followed by a Rectified Linear Unit (ReLu) activation layer [6].
This architecture allows the model to recognize important features in the low-resolution input images
while preserving their spatial information. The use of ReLu activation layers after each convolutional
layer helps to introduce nonlinearity in the model, which is critical for the network's ability to learn
complex patterns presented in the input images. Additionally, the second and fourth convolutional
layers are followed by max pool layers, which help to down-sample the feature maps and reduce the
spatial dimensions of the data. Meanwhile, the decoder component consists of two blocks, each
containing one transposed convolutional layer [7] and two normal convolutional layers with a kernel
size of three. The use of transposed convolutional layers in the decoder allows the model to up-
sample the feature maps and generate a high-resolution output image that closely resembles the
ground truth image. The normal convolutional layers that follow the transposed convolutional layers
help to refine the features and details in the output image. Lastly, the decoder ends with a final
convolutional layer that produces the final output image. This architecture is chosen in this study
after testing several modifications such as altering the activation functions, adding or removing
convolutional layers, and increasing the number of blocks. The final architecture is chosen based on
its ability to produce high-quality output images that accurately represent the ground truth images
while minimizing the computational resources required for training.
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Figure 4. Proposed Autoencoder architecture.

3.2. Loss Functions and Architectural Tweaking

The objective of this study is to enhance GOES-17 imagery by improving its spatial resolution
and removing background information, as well as predicting improved radiance values. To achieve
this, an ablation study is conducted by considering variations in the choice of the loss functions and
autoencoder architecture, in order to determine the optimal solution. In particular, four different loss
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functions are considered, namely (1) global root mean square error, (2) global plus local root means
square error, (3) Jaccard loss, and (4) global root mean square error plus Jaccard loss, which are
explained in detail in the following sections.

3.2.1. Global Root Mean Square Error (GRMSE)

Root mean square error (RMSE) is a loss function commonly used in image reconstruction and
denoising tasks [8], where the goal is to minimize the difference between the predicted and ground
truth images. In this study, the autoencoder model is initially trained using the RMSE loss function
on the entire input image to predict the BT value for each input image pixel based on the VIIRS
ground truth data. This is referred to as the global RMSE (GRMSE) as defined in Eq. 2. The term
“global” is used here to distinguish it from other RMSE-based loss, which will be discussed in the
next section.

Z?=1(yi - )2 )
n

GRMSE =

where y; represents the BT value of the ith pixel in the VIIRS ground truth image, 3, represents the
BT value of ith pixel in the predicted image, and n represents the total number of pixels in the
VIIRS/predicted image.

3.2.2. Global plus Local RMSE (GLRMSE)

Since the background area is often significantly larger than the fire area (e.g., see Fig 1c), it
dominates the RMSE calculation, possibly leading to decreased training performance. For this reason,
a local RMSE (LRMSE) is defined in Eq. 3. The LRMSE applies only to the fire area of the ground
truth image (i.e., where pixel’s BT value is non-zero). Specifically,

e i =¥ 1 [= {1,%’ #0
n 0, otherwise

LRMSE = J (3)
where I is an identifier variable, which is one for all pixels belonging to the fire area and zero for the
background. Based on this, the RMSE is calculated only for the fire region of the VIIRS ground truth
image. The LRMSE is combined with the global RMSE resulting in a global plus local RMSE loss
function (GLRMSE) as defined in Eq. 4.

GLRMSE = W, * GRMSE + W, * LRMSE (4)

where W is a weight factor for the global RMSE and W, is a weight factor for local RMSE. These
weights are hyperparameters and are determined through hyperparameter optimization as will be
discussed later.

3.2.3. Jaccard Loss (JL)

For effective wildfire monitoring, it is crucial to not only minimize discrepancies in BT values
but also to predict the wildfire perimeters. This is accomplished by binary segmentation in which a
binary value is assigned to each pixel based on its category, partitioning the image into foreground
(i.e., fire) and background regions [9]. The Jaccard Loss (JL) function defined in Eq. 5 is a prevalent
loss function utilized in the field of image segmentation [74]. It aims to evaluate and improve the
similarity between the predicted and ground truth binary masks, which is also referred to as
segmentation masks. Specifically, JL is defined as

Ny Yb,i - 37b,i

JL= - — —
21V + 2T Ipi — 21 Vbi- Vb,

(©)

where y,; represents the presence (1) or absence (0) of fire in the VIIRS ground truth image at the
ith pixel, and J,; represents the probability of fire in the predicted image at the ith pixel.

doi:10.20944/preprints202311.0859.v1
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In order to use the JL in the autoencoder training, the VIIRS ground truth image is transformed
into a binary image by setting the BT value of all fire pixels to one, while setting the BT value of the
background pixels to zero [10]. Additionally, the final activation layer of the autoencoder model is
modified from ReLu to Sigmoid [11], essentially generating a probability value for every pixel in the
output image. This probability map assigns a value between zero and one to each pixel, indicating
the probability of that pixel belonging to the fire region or not. Once the model is properly trained,
the resulting probability map is converted to a binary map (0/1). The resulting binary map can be
used to identify the fire region and distinguish it from the surrounding environment.

3.2.4. RMSE plus Jaccard Loss Using Two-Branch Architecture

RMSE and Jaccard losses can be combined to predict the shape and location of the fire as well as
its BT values. However, as these loss functions require different activation layers, combining them in
a single network necessitates architectural changes. To address this issue, a two-branch architecture
is introduced, where the first branch uses ReLu as the last activation layer to predict the BT values,
while the second branch uses a Sigmoid activation layer to predict the fire probability map. The
resulting architecture combines GRMSE and JL loss functions as defined in Eq. 6 as follows to enhance
learning and improve predictions.

TBL = Wj * GRMSE + W, * JL (6)

where Wy is weight for the GRMSE loss, W, is the weight for JL loss, and TBL is the two-branch loss,
which is the weighted sum of the two losses. These weights are determined through hyperparameter
optimization.

The two-branch architecture, illustrated in Figure 5, branches out before the final convolutional
layer. The outputs from the two branches are compared with their respective ground truth images to
calculate individual losses, which are then combined to train the model. This approach allows the
learning process to utilize information from both branches, resulting in a more effective model. As a
result, the output from the GRMSE branch, which captures both the predicted location and BT of the
fire, is considered the primary output of the model. From this point forward, this architecture will be
referred to as the two-branch loss (TBL) model.
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Figure 5. Two-branch autoencoder architecture.
3.3. Evaluation

3.3.1. Pre-Processing: Removing Background Noise

Accurate network prediction evaluation requires taking noise into account. Although noise may
not have significant physical relevance due to its typically low BT compared to the actual fire, it can
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still impact the accuracy of the evaluation metrics. To mitigate this issue, the Otsu’s thresholding
method has been adopted in this study to effectively remove background noise and improve
evaluation accuracy. The Otsu’s thresholding automatically determines the optimal threshold level
that separates the foreground (relevant data) from the background (noise) [12]. This is accomplished
by calculating the variance between two classes of pixels (foreground and background) at different
threshold levels and selecting the threshold level that maximizes the variance between these two
classes. Figure 6 shows the process of using the Otsu's thresholding to remove background noise
from the model’s prediction (Figure 6a) and create a post-thresholding prediction (Figure 6b) that is
compared to the ground truth (Figure 6¢) to evaluate the performance of the model. The successful
removal of background by Otsu's thresholding improves the consistency between the evaluation
metrics and visual inspection.
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Figure 6. Illustration of Otsu’s thresholding on model prediction (a) model prediction, (b) post-
thresholding model prediction, (c) ground truth.

3.3.2. Evaluation Metrics

The performance of DL models is evaluated using two metrics: intersection over union (IOU)
and intersection's point signal-to-noise ratio (IPSNR), which is a modified version of PSNR. These
metrics are explained below.

IOU measures the agreement between the prediction and ground truth by quantifying the
degree of overlap of the fire area between ground truth and network prediction as follows.

X1 Ybi+ Vb,
TYpi + 21 Ibi — 21 Vb~ Ibi

10U = @)

The terms used in this equation are already defined following Eq. 5. However, Eq. 7 and Eq. 5
differ in sign. To compute the IOU metric, both the post-thresholding prediction and ground truth
images are converted into binary masks. This is achieved by setting all fire BT values to one,
effectively binarizing the image. This step is conducted to simplify the IOU calculation. By
representing the images as binary masks, the IOU can be calculated as the intersection of the two
masks divided by their union, providing an accurate measure of the overlap between the predicted
fire region and the ground truth.

On the other hand, IPSNR quantifies the similarity of BT values in the intersection of the fire
areas between the prediction image and its ground truth as shown in Eq. 8. Here, the intersection is
defined as the region where both the prediction and VIIRS ground truth have fire BT as shown in Eq.
9.

IPSNR = log,o(maxval/IRMSE) (8)

ey 0, otherwise

n(y;—3)2-1 o~
IRMSE:\/M Iz{l,yl.yl #0 o)
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where maxval is the maximum BT in the VIIRS ground truth and IRMSE is the RMSE computed solely
in the intersecting fire area using the identifier variable I, which is one for areas where the predicted
fire region intersects with the VIIRS ground truth, and zero otherwise.

The motivation for utilizing IPSNR instead of PSNR stems from the difficulty of evaluating the
model's performance based on the similarity of BT values over the whole image, given that the fire
area typically occupies only a small portion of the image. If the model's prediction is incorrect, most
of the background still appears similar to the ground truth, resulting in higher PSNR values that do
not necessarily reflect accurate performance. Therefore, to obtain a more reliable evaluation metric,
it is necessary to focus on assessing only the predicted fire area that matches the ground truth when
calculating PSNR. It should be noted that the underlying principle of IPSNR is different from that of
LRMSE. IPSNR evaluates the quality of the correctly predicted fire area (i.e., predicted fire pixels,
that are also present in the ground truth) by considering the RMSE for the intersection of the
prediction and ground truth (as described in Eq. 9), while LRMSE is a loss function which focuses on
reducing the RMSE specifically for the fire area (as described in Eq. 3).

3.3.3. Dataset Categorization

To obtain a more accurate and precise evaluation of the model's performance, it's important to
account for diversity in input and ground truth samples. Factors such as fire orientation, location,
background noise, fire size, and similarity between input and ground truth can vary significantly
affecting the model's performance. Evaluating the model's performance on a given test set without
separately considering the above factors might provide an inaccurate assessment of the model since
average performance may be biased towards the majority of sample types in the test set. To overcome
this limitation, the test set is divided into four categories based on (1) the total coverage of
distinguishable foreground in GOES images, and (2) the initial IOU between the distinguishable
foreground in GOES image and VIIRS ground truth. To achieve this, the Otsu’s thresholding is
utilized herein to eliminate background information from the original GOES image (Figure 7a),
resulting in a post-thresholding GOES image (Figure 7b) with distinguishable foreground
information that is used to compute coverage and initial IOU. Thus, coverage is determined by
calculating the ratio of fire pixels to the total number of pixels in the post-thresholding image. This
metric indicates the degree of foreground presence in the GOES image. Meanwhile, the initial IOU is
calculated using the binarized post-thresholding GOES image and binarized VIIRS ground truth.
This provides a measure of the degree of foreground area similarity between the two images. It
should be noted that the foreground area identified by the Otsu’s method in the GOES image may
not always accurately indicate the fire region, unlike the prediction image. In some cases, the BT
values of the background may be comparable to, or even greater than that of the actual fire region,
making it difficult to identify the fire region accurately. Additionally, the coverage calculation
involves a single iteration of the Otsu’s thresholding, which is used to determine the true coverage
of GOES. On the other hand, calculating the IOU requires multiple iterations of the Otsu’s
thresholding to accurately assess the fire area. The final IOU result is obtained by selecting the highest
IOU value obtained from all iterations, ensuring that only the fire area is considered for evaluation.
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Figure 7. Otsu’s thresholding on GOES images (a) input GOES image, (b) post-thresholding GOES

image.
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Using the calculated coverage and IOU, the test set is categorized into four groups. These groups
are (1) low coverage with high IOU (LCHI), (2) low coverage with low IOU (LCLI), (3) high coverage
with high IOU (HCHI), and (4) high coverage with low IOU (HCLI). The threshold values for
coverage and IOU are determined through visual inspection of the results and are provided in Table
1. By categorizing the test set, we can perform a more meaningful evaluation of the model's
performance and identify its strengths and weaknesses under various scenarios.

Table 1. Threshold values for defining test set categories.

Category LCHI LCLI HCHI HCLI

Coverage <20%  Coverage<20% Coverage>20% Coverage >20%

Condition 10U > 5% TOU < 5% 10U > 5% 10U < 5%

3.3.4. Post-Processing: Normalization of Prediction Values

To ensure that the autoencoder's output aligns with the desired physical range of VIIRS
brightness temperature values, Min-Max scaling, a commonly used normalization technique, is
employed. This process linearly transforms the autoencoder's output to fit within the specific range
corresponding to VIIRS data, enhancing both the physical interpretability of the results and their
compatibility with existing remote sensing algorithms and models tailored to this range.

4. Results

4.1. Training

The western U.S. wildfire events that occurred between 2019 and 2021 (listed in Appendix A)
are utilized herein to create contemporaneous images of VIIRS and GOES using the preprocessing
steps explained in Section 2 for network training and evaluation. The preprocessed images are then
partitioned into windows of size 128 by 128 pixels, resulting in a dataset of 5,869 samples. These
samples are then split with ratio of 4 to 1 to obtain training and test sets, respectively — that is 80% for
training and 20% for testing. The training set is further divided into a 4 to 1 ratio to obtain training
and validation sets. After splitting the dataset, the training, validation, and test sets include 3,756,
939, and 1,174 samples, respectively. The validation set is used to identify potential overfitting during
the training process, while the test set is kept aside for evaluating the performance of the model on
novel samples. To improve the diversity of the training data and prevent overfitting, data
augmentation techniques are utilized. In particular, at each epoch, the training samples undergo
random horizontal and vertical flips, leading to greater variability in the training data and improved
model's generalization to novel samples.

To find optimum hyperparameters for the networks defined in Section 3.1 and Section 3.2.4,
hyperparameter tuning is done using the Weights and Biases (WAB) tool [13]. For each subset of
hyperparameters, the validation loss is used to identify potential overfitting and determine the
optimum hyperparameters. The hyperparameter subset that leads to the smallest validation loss and
overfitting is then chosen as the final hyperparameters. In the case of autoencoder models combining
two losses, such as GLRMSE and TBL, the weights for the loss functions are also considered as
hyperparameters and are determined through the same hyperparameter tuning process.

After hyperparameter tuning is conducted, all autoencoder models, as outlined in Section 3.2,
are trained for 150 epochs and batch size of 16 using Adam optimizer with learning rate of 3x105 [14].
A learning rate decay based on validation loss plateau, with weight decay of 0.1, threshold of 1x10-,
and patience of 10 epochs is used during training to help both optimization and generalization
performance [15]. For the GLRMSE model, the best results are achieved by setting the weights for the
LRMSE and global GRMSE to W, =1 and W, = 8 (see Eq. 4). For the TBL model, the best results
are obtained by setting the weights of GRMSE and Jaccard losses to Wi = 3 and W, =1 (see Eq. 6).
The DL model is implemented using Pytorch [16] (v.1.12) Python package and trained on an Nvidia
RTX 3090 Graphical Processing Unit (GPU) with 24 GB of Video RAM (VRAM). With this setup the

doi:10.20944/preprints202311.0859.v1
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models are trained in 15 to 20 minutes. Error! Reference source not found. depicts the training loss
for all four cases along with the individual losses for the GLRMSE and TBL models. As can be seen,
the loss functions are converging to a plateau with small to no overfitting.

0.160

—— GRMSE training -0.002 Jaccard training —— GLRMSE training

—— GRMSE validation — Jaccard validation —— GLRMSE validation
0.155 -

0.076

-0.004
0.074 1 0.150

2 8 -0.006 9 0145
S o072 2 S
0.140
-0.008
0.070 0.135
=0.010 0.130
0.068 . . . . ' . . . . '
20 40 60 80 100 120 140 36 40 60 80 100 120 140 20 40 60 80 100 120 140
Epoch Epoch Epoch
(a) (b) (©
— Local Training — Two-branch training 012
—— Two-branch validation
0.056 5 i
0.10 g
—— Jaccard Validation
0.054 0.08
=
2 8 8 o00s
3 S 0052 S
0.4 0.04
0.050
0.02
0.2
0.048 0.00
20 a0 60 80 100 120 140 20 40 60 80 100 120 140
Epoch Epoch
(d) (e) ()

Figure 8. Training curves (i.e., Loss vs. Epoch) of (a) GRMSE, (b) JL, (c) GLRMSE, (d) individual global
and local for GLRMSE loss, (e) TBL, (f) individual RMSE and Jaccard loss for TBL.

4.2. Testing

To evaluate the performance of the four models, the IOU and IPSNR are used for evaluation.
Table 2 presents the results obtained on the entire test set. The TBL model is found to produce the
best results in terms of IOU between the prediction and ground truth (VIIRS) while GLRMSE yielded
the best results in terms of IPSNR. This suggests that the TBL model is influenced by both loss
functions (i.e., Jaccard loss for the fire shape and GRMSE loss for BT values) resulting in a higher
IOU. On the other hand, the GLRMSE model improved the prediction of the BT values in the fire area
by adding local (i.e., fire area of ground truth) RMSE calculation resulting in a higher IPSNR
compared to GRMSE. However, as discussed earlier in Section 3.3, there is a possibility for evaluation
bias towards the majority of the sample types. Therefore, the evaluation is carried out separately for
each of the four categories, namely LCHI, LCLI, HCHI, and HCLI in the following subsections. For
each group, representative results are presented on three distinct samples to visually illustrate the
model’s performance. The samples are chosen to present fires that encompass a wide range of
temperatures and spatial scales. Average evaluation scores are also presented for each category for
completeness.

Table 2. Evaluation based on all test samples.

Evaluation Metrics GRMSE GLRMSE JL TBL

10U 0.1358 0.1275 0.1197 0.1389
IPSNR 46.6864 48.5989 N/A 46.0219
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4.2.1. LCHI: Low Coverage with High IOU

Figure 9 shows representative sample image in this category captured by GOES and the
corresponding VIIRS images for three fires along with the results obtained from the four models,
which demonstrate the correspondence and deviation between sample of LCHI. For the Dixie Fire,
due to the small size of distinguishable pixels found after applying Otsu’s thresholding, this sample
is classified as having low coverage. Furthermore, the initial IOU between the fire regions in the
GOES and VIIRS images is relatively high indicating a significant overlap in the fire area captured by
both satellites. This type of scenario is generally less challenging for the DL models to handle, as there
is clear and visible overlap between the fire areas in both images.

Dixie Fire August Complex Holiday Farm Fire
2021-08-05 08:54 UTC 2020-09-05 10:00 UTC 2020-09-09 20:06 UTC
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TBL

Brightness Temperature

Figure 9. Low Coverage with High IOU (LCHI) samples depicted by a) GOES input, (b) VIIRS ground
truth, and results from (c) GRMSE, (d) GLRMSE, (e) JL, and (f) TBL models, where brightness
temperature units are K.

The JL model performs slightly worse than the GRMSE and GLRMSE models in accurately
predicting the location of fires, with an IOU score of 0.527, compared to 0.531 and 0.528, respectively.
The lower performance is counter intuitive since it solely focuses on shape of fire and not on actual
BT values. However, the TBL, using the features of both GRMSE and JL improves the prediction
accuracy compared to other models, achieving an IOU score of 0.531. Although this improvement
comes at the cost of a lower IPSNR score, the TBL model provides a compromise between predicting
BT values and accurately capturing the shape of wildfires. However, in terms of predicting BT values,
the GLRMSE model outperforms all other models, with an IPSNR of 59.24, followed by the GRMSE
model at 58.03 and the TBL model at 57.82. The visual results confirm that the BT values predicted
by the GLRMSE model are higher than the other models and hence closer to the ground truth. This
potentially demonstrates the importance of having higher focus on fire area than the background to
achieve more accurate prediction results.

The August Complex Fire on 2020-09-05 at 10:00 UTC (Figure 9), diverges from both the Dixie
Fire and the Holiday Farms Fire with the TBL model having a low IOU score of 0.315. The GLRMSE
model achieved higher IOU scores of 0.319 and GRMSE achieved equal IOU of 0.315, respectively, in
comparison to the TBL model. This is most likely due to the fact that either the GOES fire area in this
sample has a relatively low BT value or the VIIRS fire region spans across multiple subregions, unlike
the previous sample. However, it is worth noting that the GLRMSE model achieved an IPSNR of
59.97, which is still higher than the IPSNRs of both the GRMSE (55.09) and TBL (55.60) models. Figure
9 supports this observation, showing that the GLRMSE model produced higher BT values than the
other models, similar to the previous example. The Holiday Farm Fire on 2020-09-09 at 20:06 UTC
(Figure 9) shares similarities to the Dixie Fire sample, with both GOES and VIIRS fire area spanning
to roughly a single region and with good initial overlap. The TBL model exhibits superior
performance in terms of IOU, followed by the GRMSE, GLRMSE, and JL models. The GLRMSE here
overestimated fire region but it still outperformed the other models in terms of IPSNR, followed by
the GRMSE and TBL models.

To summarize the results for this category, Table 3 presents evaluation results on 421 LCHI test
samples, revealing a similar pattern to what has been observed in the entire dataset. While there may
be some exceptions, such as the sample shown in August Complex, the pattern observed in the Dixie
and Holiday Farms Fires appears to be generally consistent with the bulk statistics of this category.
To summarize the results for this category, Table 3 presents evaluation results on 421 LCHI test
samples, revealing a similar pattern to what has been observed in the entire dataset. While there may
be some exceptions, such as the August Complex Fire in Figure 9, the pattern observed in this figure
appears to be generally consistent with the bulk statistics of this category.

Table 3. Evaluation based on LCHI test samples.

Evaluation Metrics GRMSE GLRMSE JL TBL

10U 0.2372 0.2225 0.2294 0.2408

IPSNR 56.4517 58.6385 N/A 56.2793

doi:10.20944/preprints202311.0859.v1
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Overall, it can be concluded that, for most of the samples in this category, the models’
performance follows a similar pattern. That is, the TBL model performs the best among all the models
in terms of IOU, indicating better agreement between the predicted and actual fire areas. This can be
attributed to the fact that this model is trained based on both fire shape and BT, providing a
compromise between fire perimeter and BT prediction performance. Meanwhile, the GLRMSE model
has the highest IPSNR, indicating better performance in predicting BT values. This suggests that the
GLRMSE model can predict BT values closer to the those in VIIRS images, most likely due to the
focus of the local term of its loss function on the fire area.

4.2.2. LCLI: Low Coverage with Low IOU

Figure 10 depicts a comparison of representative images from this category taken by GOES and
the corresponding VIIRS images for three different fires. The results obtained from the four models
illustrate the agreement and variation in the sample of LCLI. Specifically, for the Slater Fire on 2020-
09-08 at 22:06 UTC, all models produced an IOU score of zero due to the small size of the VIIRS fire
region and the lack of significant overlap between the GOES and VIIRS images. This is expected as
there is no underlying pattern in these types of samples that the DL model can learn from.

For the Santiam Fire on 2020-09-08 at 10:42 UTC, the VIIRS fire area is relatively small similar to
the sample from the Slater Fire. The GOES image for the Santiam Fire contains visible fire area for
two regions, one overlapping with VIIRS fire region and another region with higher BT value
producing an error of commission, which is most likely noise. Even with these errors, all four models
performed reasonably well in predicting the fire location. The network is unable to remove the noise,
which warrants the need for improving the ground truth to address regions of noise or false positives.
Among the models, the JL model demonstrates a significant improvement over the GRMSE model,
with an IOU score of 0.08 compared to 0.04. The TBL model achieves the same IOU score of 0.04 as
the GRMSE model. The GLRMSE model shows the best BT value prediction in terms of IPSNR among
the considered models.

The Jack Fire on 2021-07-25 at 20:24 UTC (Figure 10), demonstrates a distinguishable fire region
in the GOES image with relatively higher coverage than the previous samples of this category. This
fire also is dissimilar in shape and orientation to the VIIRS fire region. Additionally, the VIIRS fire
area is scattered into multiple subregions. As a result, accurately predicting the fire location is
challenging for all four models. The GRMSE model produced an IOU score of 0.067, is still better than
the TBL, GLRMSE and JL model's score of 0.42, 0.03 and 0.02 respectively. These results suggest that
TBL and GLRMSE model may not be effective in cases where GOES visually distinguishable fire area
is scattered and dispersed, resulting in these models to enhance these regions instead of removing
them as noise. Nonetheless, similar to the previous samples, the GLRMSE model has the best BT
value prediction.

To summarize the performance of all the models in this category, Table 4 presents evaluation
results on 136 LCLI test samples, revealing a pattern similar to what has been observed in the entire
dataset. Specifically, the TBL model exhibits better IOU and the GLRMSE model demonstrates
superior IPSNR performance compared to the other models. However, for some samples where there
is no overlap between GOES and VIIRS fire areas or where VIIRS fire areas are scattered in
subregions, the TBL model is not the best performing model. In some cases, the GRMSE model
demonstrates better IOU results than the other models.

Table 4. Evaluation based on LCLI test samples.

Evaluation Metrics GRMSE GLRMSE JL TBL

IOU 0.0320 0.0304 0.0208 0.0334

IPSNR 32.4128 33.5530 N/A 31.5966

doi:10.20944/preprints202311.0859.v1
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Figure 10. Low Coverage with Low IOU fires depicted by (a) GOES input, (b) VIIRS ground truth,
and results from (c) GRMSE, (d) GLRMSE, (e) JL, and (f) TBL models, where brightness temperature
units are K.

4.2.3. HCHI: High Coverage with High IOU

Representative sample image in this category captured by GOES and the corresponding VIIRS
images for three fires along with the results obtained from the four models demonstrate the
correspondence and deviation between sample of HCHI (Figure 11). For the Antelope Fire, the GOES
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image is considered to have high coverage due to the large background area with high BT values,
which are not removed by Otsu’s thresholding. However, the actual fire region in the GOES image
still has good overlap with that in the VIIRS image. The predictions of all models have removed most
of the background and predicted the fire area with reasonable accuracy. Specifically, the TBL model
achieved the highest IOU score of 0.407 where GRMSE, GLRMSE and JL model scored IOU of 0.340,
0.319 and 0.340 respectively. Although the visual results for the GRMSE and TBL models appear
similar, the evaluation results suggest that the TBL model can reduce background noise more
effectively, resulting in a higher IOU score. However, as it is evident from visual inspection as well
as IPSNR evaluation (60.19), the GLRMSE model proved to be predicting the BT values better than
GRMSE (57.01 IPSNR) and TBL (56.48 IPSNR).

For the Telegraph Fire on 2021-06-15 at 9:54 UTC (Figure 11), the TBL model scored 0.244, which
is lower than the scores of 0.271 and 0.281 achieved by the GRMSE and JL models, respectively,
suggesting that the good performance of GRMSE and JL models does not guarantee TBL to perform
as well. However, with the lowest IOU of 0.240, similarly to previous samples, the GLRMSE model
performs best in terms of IPSNR.
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Figure 11. High Coverage with High IOU fires depicted by (a) GOES input, (b) VIIRS ground truth,
and results from (c) GRMSE, (d) GLRMSE, (e) JL, and (f) TBL models, where brightness temperature
units are K.

For the Walker Fire on 2019-09-07 at 10:27 UTC (Figure 11), the GRMSE, JL. and GLRMSE model
achieved the IOU score of 0.327, 0.318 and 0.317, while the TBL model has an IOU score of 0.247.
Hence, we can conclude that TBL model may not have the highest performance for all samples.
Nonetheless, the GLRMSE model still demonstrates the highest IPSNR score, highlighting the
strength of this model in predicting BT values.

Table 5 presents evaluation results on 155 HCHI testing samples. The results demonstrate a
consistent pattern of GLRMSE's superior performance in terms of IPSNR compared to the other
models and the TBL model in terms of IOU, similar to the previous categories. However, some
samples can be found where the other three model’s IOU is significantly lower than the TBL model,
contradicting the average evaluation (Table 5) for this category. This suggests the need for a more
precise categorization.

Table 5. Evaluation based on HCHI test samples.

Evaluation Metrics GRMSE GLRMSE JL TBL
10U 0.1820 0.1729 0.1400 0.1839
IPSNR 56.5220 57.1891 N/A 56.0820

4.2.4. HCLI: High Coverage with Low IOU

Figure 12 presents representative sample images from this category that are acquired by GOES,
as well as the corresponding VIIRS images for three sample fires. Additionally, the results obtained
from the four models reveal the agreement and disparity within the HCLI sample. For the Tamarack
Fire on 07-26 at 20:06 UTC, the high coverage and absence of overlap between the GOES and VIIRS
fire regions resulted in all models predicting a zero IOU score, leading to incorrect predictions
compared to the ground truth. This outcome is expected due to the small size of the fire region in the
VIIRS images. However, it is worth noting that all models successfully removed most of the
background information, except for the areas where the GOES image contained high BT values.

From the example of the Elbow Creek Fire on 2021-07-19 at 9:12 UTC (Figure 12), the initial
overlap between the GOES and VIIRS fire regions is visually hard to detect, the GRMSE, GLRMSE,
and TBL models accurately predicted the overall location of the fire in comparison to the ground
truth with IOU of 0.126, 0.106, and 0.187 respectively. In this case, the JL model has the lowest
predicted IOU score of zero. Despite this, the GLRMSE model demonstrated the highest IPSNR score,
leading to the best-matching predicted BT values.

The River Complex Fire on 2021-08-17 at 19:54 UTC (Figure 12) example, demonstrates the even
though initial overlap between the GOES and VIIRS fire regions is visually hard to detect, the
GRMSE, GLRMSE and TBL models, with IOU of 0.03, accurately predicted the location of the fire as
well as removed most of the background information except for the areas where the GOES image
contained high BT values.
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Figure 12. High Coverage with Low IOU fires depicted by (a) GOES input, (b) VIIRS ground truth,
and results from (c) GRMSE, (d) GLRMSE, (e) JL, and (f) TBL models, where brightness temperature
units are K.

Table 6 presents evaluation results on 436 HCLI test samples. The results demonstrate a
consistent pattern of GLRMSE's superior performance in terms of IPSNR compared to the other
models and the TBL model best in terms of IOU, closely following the pattern observed in the other
categories.
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Table 6. Evaluation based on HCLI test samples.

Evaluation Metrics GRMSE GLRMSE JL TBL
I0U 0.0539 0.0499 0.0375 0.0575
IPSNR 37.8572 40.8997 N/A 37.0405

4.3. Blind Testing

To further evaluate the performance of the proposed approach, the best performing model (i.e.,
the TBL model based on earlier results as seen in Section 4.1) is used for blind testing on two wildfire
events, namely the 2020 Bear fire and the 2021 Caldor fire. The term "blind testing" refers to the fact
that the DL model has never been exposed to any data from these sites during training. To conduct
the blind testing, GOES images are downloaded at the operational temporal frequency (i.e., 5 min)
for the entire duration of the testing. The preprocessing pipeline, as outlined in Section 2.2.1, is
applied to these images, which are then fed to the trained DL model as input. The output of the DL
model, which are enhanced VIIRS-like images, are postprocessed (combined to show entire ROI) for
visualization. The predicted images are validated against high resolution (i.e., 250 m spatial and 5
min temporal resolution) fire perimeters estimated from NEXRAD reflectivity measurements [17].

Figure 13 shows four instances during the 2020 Bear Fire from September 8 to 9, 2020, with the
blue boundaries representing the radar-estimated fire perimeter and color shading representing the
output of the DL model. As of 2020-09-08 19:35 UTC, the model’s results have good agreement with
radar data, but are not completely matching. However, by 2020-09-08 22:25 UTC, the DL model’s
predictions are comparatively within the radar perimeters. As the fire area expands, by 2020-09-09
02:30 UTC, it is still confined by radar perimeters with reasonable accuracy. Even as the fire begins
to fade and only remains at the boundaries, by 2020-09-09 03:55 UTC, it is still comparatively inside
the radar perimeters. It should be noted that the DL output only shows the active fire regions, fitting
a fire perimeter to the DL output is out of the scope of this study and will be addressed in future

research.
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Figure 13. Validation Model prediction with Radar data for Bear Fire, where brightness temperature’s
units are K. Left column shows GOES imagery and right column network prediction. Blue boundary
depicts radar-estimated fire perimeter.

Similarly, Figure 14 depicts four instances during the 2021 Caldor Fire from August 16 to 17,
2021. Reasonable agreement between the fire pixel and predicted boundaries can be observed in the
results, however, not as accurate as in the case of Bear fire. At 2021-08-17 17:05 UTC, the DL prediction
is aligned with general location of the radar perimeters, with no visible fire in the bottom half and
overprediction in the top half. This can be related to the fact that the network predictions are limited
to active fire regions, which are the only part of the fires captured by the satellite. Nonetheless, the
overlap between the advancing fire head in the radar perimeters and the predicted active fire regions
in this case is less than the Bear Fire case. This can be further improved for operational applications
such as online learning, which is out of the scope of this study. Additionally, from 2021-08-17 20:30
UTC to 2021-08-17 23:55 UTC, the DL prediction is consistently confined by the radar parameters,
with some fire area outside, but the overall shape is similar to the radar parameter. These findings
suggest that the DL model’s predictions closely align with the radar data, indicating that it has the
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potential to be a valuable tool for monitoring wildfires in near-real-time. It is worth mentioning that

both GRMSE and GLRMSE models yielded similar visual results in these cases.
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Figure 14. Validation Model prediction with Radar data for Caldor Fire, where brightness
temperature’s units are K. Left column shows GOES imagery and right column network prediction.
Blue boundary depicts radar-estimated fire perimeter.
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4.4 Opportunities and Limitations

With any network-based learning model, bias is introduced based on the quantity and quality
of training data. When assessing various models using the entire dataset, two key observations were
made. Firstly, the Two-Branch Loss (TBL) model demonstrated the best overall performance in
accurately predicting the location of fire pixels, as confirmed by IOU (Intersection over Union)
validation. Secondly, the Global plus Local Root Mean Square Error (GLRMSE) model exhibited
notable improvement in predicting Brightness Temperature (BT) values for fire pixels among all
models, validated by IPSNR (Intersection’s Point Signal-to-Noise Ratio), which considers only true
positive predictions. This can be attributed to the custom regression loss function designed to have
higher focus on the fire area than the background. Furthermore, the TBL model achieved the second
highest performance in BT values prediction among the cases, highlighting the TBL architecture can
provide a compromise between fire shape and BT predictions. However, it's crucial to consider that
these results might be influenced by the abundance of certain sample types in the dataset. As a result,
evaluations were conducted based on different categories of fire coverage and intensity. Upon
analyzing multiple samples from each category, it became evident that while the TBL model
performed well, it didn't consistently produce the best results. The ranking of model performance
varied depending on the specific samples evaluated, underscoring the importance of adopting more
effective evaluation metrics and sample categorization. Overall, the GLRMSE model consistently
demonstrated superior performance in predicting BT values for fire pixels across all cases.

Blind testing of TBL model predictions aligned well with radar-based fire perimeters. However,
anecdotally there appears to be a spatial disconnect between temperatures and where the active
flaming front should be occurring. These effects could be a result of the limited training set used to
inform the model, sampling incongruities from GOES-17 data due to effects from the plume as a
function of plume height and direction, or representation of heat signatures from post-front
combustion. These are a few factors that need to be accounted for in future applications of this
approach. From a fire management and safety perspective, continuous 5-minute updated
progressions of fire hold significant benefit to personnel, resource, and risk planning. In general,
large fire incidents rely on fire simulations as FSPRO [add ref] and daily National Infrared Operations
to build a daily operations picture. Additional filtering and tuning of the model outputs to account
for overprediction of fire perimeter placement is expected to improve fire intelligence needed for
management of large active fires. Expanding the training data beyond this proof-of-concept
approach should improve model predictions, though more work will be needed to quantify predicted
temperatures that potentially can be integrated into machine learning approaches to improve
coupled atmosphere-fire modeling to better understand the role of fire energetics effects on plume
dynamics and resulting post-fire effects.

5. Conclusions

The primary objective of this study was to design and develop a deep learning (DL) framework
pursuing two primary objectives. The first focus was directed towards enhancing the spatial
resolution of GOES (Geostationary Operational Environmental Satellite) images, seeking to elevate
the quality and clarity of the captured satellite data. The second critical objective was to predict
Brightness Temperature (BT) values within the GOES images, aligning them with the ground truth
data obtained from VIIRS (Visible Infrared Imaging Radiometer Suite). To these ends, the
autoencoder model, an approach widely recognized for its ability to learn and represent intricate
patterns within image data, was utilized with different loss functions and architectures. The model
was trained utilizing GOES data as input, with the aim of capturing the underlying spatial
information, and VIIRS data as the ground truth, providing a reference for the model's learning
process. This training process allowed the DL model to extract valuable features and characteristics
from the input GOES images, learning how to enhance their spatial resolution effectively.

The initial phase of this study encompassed data pre-processing and dataset creation steps,
where GOES and VIIRS data were downloaded, and efforts were made to ensure consistency between
the initial data in terms of location, time, and projection, as well as efforts to convert VIIRS vector
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data into raster format. Subsequently, a DL model was designed and trained, with the two main goals
of enhancing the spatial resolution of GOES images and predicting BT values of active fire regions,
closely aligned with VIIRS ground truth images. To comprehensively assess the model's
performance, an ablation study was conducted, involving four distinct models with different loss
functions and autoencoder architecture variations. This analysis provided valuable insights into the
impact of different components on the model's effectiveness. The study further addressed the
challenges of evaluating model performance and proposed an evaluation metric that aligned with
the physical interpretation of the results, providing a more meaningful assessment. Additionally, it
was also suggested that assessing different scenarios based on coverage and initial IOU would be
more meaningful than reporting results on the whole dataset without detailed analysis.

The findings of this study have established a strong and promising foundation for advancing
the creation of high-resolution GOES images. Moving forward, there are several potential avenues
for enhancing the accuracy and applicability of DL models in this domain. Firstly, one aspect to focus
on is improving the prediction of actual Brightness Temperature (BT) values. While the current
models have shown high performance, further refining the algorithms can lead to even more precise
and reliable BT predictions. This will be instrumental in providing more accurate information about
the thermal characteristics of different fire regions. Secondly, expanding the training dataset by
incorporating other data sources, such as NOAA-20 satellite VIIRS data as well as NEXRAD-
estimated fire perimeters, can further improve the model's performance. Integrating data from
multiple sources can provide a broader and more diverse set of inputs, enabling the model to capture
a more comprehensive range of features and patterns. This, in turn, will improve the model's ability
to adapt to different conditions and geographical regions. Thirdly, incorporating a time component
into the DL models can open opportunities for forecasting wildfire pattern changes. By considering
temporal dynamics, the models can capture how fires evolve and spread over time. Additionally,
enriching the DL models with land use, vegetation properties, and terrain data can further enhance
wildfire pattern predictions. These additional data layers will enable the models to better understand
the complex interactions between fire and environmental factors. Incorporating land use information
can help identify vulnerable regions, while vegetation properties and terrain data can provide
insights into how fires might spread in different landscapes. Overall, by pursuing these potential
avenues for improvement, DL models can become even more powerful tools for generating high-
resolution GOES images and advancing our understanding of wildfires and their impact on the
environment. These advancements hold the potential to improve the means of how we monitor and
respond to wildfires, ultimately contributing to better fire management practices and environmental
protection.
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Central

Site Longitude Central Latitude Fire Start date Fire End date
Kincade -122.780 38.792 2019-10-23 2019-11-06
Walker -120.669 40.053 2019-09-04 2019-09-25
Tucker -121.243 41.726 2019-07-28 2019-08-15
Taboose -118.345 37.034 2019-09-04 2019-11-21
Maria -118.997 34.302 2019-10-31 2019-11-05
Redbank -122.64 40.12 2019-09-05 2019-09-13
Saddle ridge -118.481 34.329 2019-10-10 2019-10-31
Lone -121.576 39.434 2019-09-05 2019-09-13
Chuckegg creek fire -117.42 58.38 2019-05-15 2019-05-22
Eagle bluff fire -119.5 49.42 2019-08-05 2019-08-10
Richter creek fire -119.66 49.04 2019-05-13 2019-05-20
LNU lighting complex -122.237 38.593 2020-08-18 2020-09-30
SCU lighting complex -121.438 37.352 2020-08-14 2020-10-01
CZU lighting complex -122.280 37.097 2020-08-16 2020-09-22
August complex -122.97 39.868 2020-08-17 2020-09-23
North complex fire -120.12 39.69 2020-08-14 2020-12-03
Glass fire -122.496 38.565 2020-09-27 2020-10-30
Beachie wildfire -122.138 44.745 2020-09-02 2020-09-14
Beachie wildfire 2 -122.239 45.102 2020-09-02 2020-09-14
Holiday farm wildfire -122.49 44.15 2020-09-07 2020-09-14
Cold spring fire -119.572 48.850 2020-09-06 2020-09-14
Creek fire -119.3 37.2 2020-09-05 2020-09-10
Blue ridge fire -117.68 33.88 2020-10-26 2020-10-30
Silverado fire -117.66 33.74 2020-10-26 2020-10-27
Chuckegg creek fire -117.42 58.38 2019-05-15 2019-05-22
Bond fire -117.67 33.74 2020-12-02 2020-12-07
Washinton fire -119.556 48.825 2020-08-18 2020-08-30
Oregon fire -121.645 44.738 2020-08-17 2020-08-30
Talbott creek -117.01 49.85 2020-08-17 2020-08-30
Christie mountain -119.54 49.364 2020-08-18 2020-09-30
Bush fire -111.564 33.629 2020-06-13 2020-07-06
Magnum fire -112.34 36.61 2020-06-08 2020-07-06
Bighorn fire -111.03 32.53 2020-06-06 2020-07-23
Santiam fire -122.19 44.82 2020-08-31 2020-09-30
Holiday farm fire -122.45 44.15 2020-09-07 2020-09-30
Slater fire -123.38 41.77 2020-09-07 2020-09-30
Eagle bluff fire -119.5 49.42 2019-08-05 2019-08-10
Alberta fire 1 -118.069 55.137 2020-06-18 2020-06-30
Doctor creek fire -116.09788 50.0911 2020-08-18 2020-08-24
Magee fire -123.22 49.88 2020-04-15 2020-04-16
Pinnacle fire -110.201 32.865 2021-06-10 2021-07-16
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Backbone fire -111.677 34.344 2021-06-16 2021-07-19
Rafael fire -112.162 34.942 2021-06-18 2021-07-15
Telegraph fire -111.092 33.209 2021-06-04 2021-07-03
Dixie -121 40 2021-06-15 2021-08-15
Monument -123.33 40.752 2021-07-30 2021-10-25
River complex -123.018 41.143 2021-07-30 2021-10-25
Antelope -121.919 41.521 2021-08-01 2021-10-15
Mcfarland -123.034 40.35 2021-07-29 2021-09-16
Beckwourth complex -118.811 36.567 2021-07-03 2021-09-22
Windy -118.631 36.047 2021-09-09 2021-11-15
Mccash -123.404 41.564 2021-07-31 2021-10-27
Knpcomplex -118.811 36.567 2021-09-10 2021-12-16
Tamarack -119.857 38.628 2021-07-04 2021-10-08
French -118.55 35.687 2021-08-18 2021-10-19
Lava -122.329 41.459 2021-06-25 2021-09-03
Alisal -120.131 34.517 2021-10-11 2021-11-16
Salt -122.336 40.849 2021-06-30 2021-07-19
Tennant -122.039 41.665 2021-06-28 2021-07-12
Bootleg -121.421 42.616 2021-07-06 2021-08-14
Cougar peak -120.613 42.277 2021-09-07 2021-10-21
Devil'sKnob Complex -123.268 41.915 2021-08-03 2021-10-19
Roughpatch complex -122.676 43.511 2021-07-29 2021-11-29
Middlefork complex -122.409 43.869 2021-07-29 2021-12-13
Bull complex -122.009 44.879 2021-08-02 2021-11-19
Jack -122.686 43.322 2021-07-05 2021-11-29
Elbowcreek -117.619 45.867 2021-07-15 2021-09-24
Blackbutte -118.326 44.093 2021-08-03 2021-09-27
Fox complex -120.599 42.21 2021-08-13 2021-09-01
Joseph canyon -117.081 45.989 2021-06-04 2021-07-15
Wrentham market -121.006 45.49 2021-06-29 2021-07-03
5-503 -121.476 45.087 2021-06-18 2021-08-18
Grandview -121.4 44.466 2021-07-11 2021-07-25
Lickcreek fire -117.416 46.262 2021-07-07 2021-08-14
Richter mountain fire -119.7 49.06 2019-07-26 2019-07-30
References
1. "Wildfires and Acres | National Interagency Fire Center." https://www.nifc.gov/fire-

information/statistics/wildfires (accessed Mar. 22, 2023).

2. Taylor, A.H.; Harris, L.B.; Skinner, C.N. Severity Patterns of the 2021 Dixie Fire Exemplify the Need to
Increase Low-Severity Fire Treatments in California’s Forests. Environ. Res. Lett. 2022, 17, doi:10.1088/1748-
9326.

3.  Liao, Y.; Kousky, C. The Fiscal Impacts of Wildfires on California Municipalities. J. Assoc. Environ. Resour.
Econ. 2022, 9, 455-493, d0i:10.1086/717492.

4. Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and Earlier Spring Increase
Western U.S. Forest Wildfire Activity. Science (80-. ). 2006, 313, 940-943, doi:10.1126/science.1128834.

5. Szpakowski, D.M.; Jensen, J.L.R. A Review of the Applications of Remote Sensing in Fire Ecology. Remote
Sens. 2019, Vol. 11, Page 2638 2019, 11, 2638, doi:10.3390/RS11222638.


https://doi.org/10.20944/preprints202311.0859.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2023 doi:10.20944/preprints202311.0859.v1

29

6. Barmpoutis, P.; Papaioannou, P.; Dimitropoulos, K.; Grammalidis, N. A Review on Early Forest Fire
Detection Systems Using Optical Remote Sensing. Sensors (Switzerland) 2020, 20, 1-26,
d0i:10.3390/520226442.

7. Pradhan, B.; Dini, M.; Suliman, H. Forest Fire Susceptibility and Risk Mapping Using Remote Sensing and
Geographical Information Systems (GIS) Identification of Rocks and Their Quartz Content in Gua Musang
Gold Field Using Advanced Space-Borne Thermal Emission and Reflection Radiometer (AS.,
doi:10.1108/09653560710758297.

8.  Barmpoutis, P.; Papaioannou, P.; Dimitropoulos, K.; Grammalidis, N. A Review on Early Forest Fire
Detection Systems Using Optical Remote Sensing. Sensors 2020, Vol. 20, Page 6442 2020, 20, 6442,
do0i:10.3390/520226442.

9. Radke, L.F.; Clark, T.L.; Coen, J.L.; Walther, C.A.; Lockwood, R.N.; Riggan, P.J.; Brass, ].A.; Higgins, R.G.
The Wildfire Experiment (WIFE): Observations with Airborne Remote Sensors. Can. J. Remote Sens. 26(5)
406-417 2000, 26, 406-417.

10. Valero, M.M.; et. al. On the Use of Compact Thermal Cameras for Quantitative Wildfire Monitoring. Adv.
For. fire Res. 2018 2018, 1077-1086, doi:10.14195/978-989-26-16-506_119.

11. Loew, A, Bell, W.; Brocca, L.; Bulgin, C.E.; Burdanowitz, ].; Calbet, X.; Donner, R. V.; Ghent, D.; Gruber,
A.; Kaminski, T.; et al. Validation Practices for Satellite-Based Earth Observation Data across Communities.
Rev. Geophys. 2017, 55, 779-817, d0i:10.1002/2017RG000562.

12. Kumar, S.S.; Roy, D.P. Global Operational Land Imager Landsat-8 Reflectance-Based Active Fire Detection
Algorithm. 2017, 11, 154-178, doi:10.1080/17538947.2017.1391341.

13. Li, J; Roy, D.P.; Atzberger, C.; Zhou, G. A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data
Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sens. 2017, Vol. 9, Page 902 2017, 9, 902,
doi:10.3390/RS9090902.

14. Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.].; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler,
P.E.; Benson, N.C. Remote Sensing Techniques to Assess Active Fire Characteristics and Post-Fire Effects.
Int. J. Wildl. Fire. 15(3) 319--345. 2006, 15, 319-345, d0i:10.1071/WF05097.

15. Hu, X,; Ban, Y.; Nascetti, A. Sentinel-2 MSI Data for Active Fire Detection in Major Fire-Prone Biomes: A
Multi-Criteria Approach. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102347, doi:10.1016/].JAG.2021.102347.

16. Le, X;]Jo,].; Youngbo, S.; Stantic, D. Detection and classification of vehicle types from moving backgrounds.
Robot Intelligence Technology and Applications 5: Results from the 5th International Conference on Robot
Intelligence Technology and Applications 5. 2019, pp. 491-502.

17.  Giglio, L.; Schroeder, W.; Justice, C.O. The Collection 6 MODIS Active Fire Detection Algorithm and Fire
Products. Remote Sens. Environ. 2016, 178, 31-41, doi:10.1016/J.RSE.2016.02.054.

18. Xu, W.; Wooster, M.].; He, J.; Zhang, T. First Study of Sentinel-3 SLSTR Active Fire Detection and FRP
Retrieval: Night-Time Algorithm Enhancements and Global Intercomparison to MODIS and VIIRS AF
Products. Remote Sens. Environ. 2020, 248, 111947, doi:10.1016/].RSE.2020.111947.

19. Oliva, P.; Schroeder, W. Assessment of VIIRS 375 m Active Fire Detection Product for Direct Burned Area
Mapping. Remote Sens. Environ. 2015, 160, 144-155, doi:10.1016/].RSE.2015.01.010.

20. Schroeder, W; Prins, E.; Giglio, L.; Csiszar, I.; Schmidt, C.; Morisette, J.; Morton, D. Validation of GOES
and MODIS Active Fire Detection Products Using ASTER and ETM+ Data. Remote Sens. Environ. 2008, 112,
2711-2726, doi:10.1016/].RSE.2008.01.005.

21. Koltunov, A.; Ustin, S.L.; Prins, E.M. On Timeliness and Accuracy of Wildfire Detection by the GOES WEF-
ABBA Algorithm over California during the 2006 Fire Season., doi:10.1016/j.rse.2012.09.001.

22. Li, F,; Zhang, X.; Kondragunta, S.; Schmidt, C.C.; Holmes, C.D. A Preliminary Evaluation of GOES-16
Active Fire Product Using Landsat-8 and VIIRS Active Fire Data, and Ground-Based Prescribed Fire
Records. Remote Sens. Environ. 2020, 237, 111600, doi:10.1016/].RSE.2019.111600.

23. Lindley, T.T.; Zwink, A.B.; Gravelle, C.M.; Schmidt, C.C.; Palmer, C.K.; Rowe, S.T.; Heffernan, R.; Driscoll,
N.; Kent, G.M,; Lindley, T.T.; et al. Ground-Based Corroboration of GOES-17 Fire Detection Capabilities
During Ignition of the Kincade Fire. J. Oper. Meteorol. 2020, 8, 105-110, doi:10.15191/NWAJOM.2020.0808.

24. Rashid, M.; Sulaiman, N.; Mustafa, M.; Khatun, S.; Bari, B.S. The Classification of EEG Signal Using
Different Machine Learning Techniques for BCI Application. Commun. Comput. Inf. Sci. 2019, 1015, 207-221,
doi:10.1007/978-981-13-7780-8_17.

25. Ren, S.; Zhou, Y.; He, L. Multi-Object Tracking with Pre-Classified Detection. Adv. Intell. Syst. Comput. 2019,
751, 503-513, d0i:10.1007/978-3-319-78452-6_40.

26.

27. Nezhad, M.Z; Sadati, N.; Yang, K; Zhu, D.; Zafar Nezhad, M. A Deep Active Survival Analysis Approach
for Precision Treatment Recommendations: Application of Prostate Cancer. 2018.

28. Xu, Y; Wu, L; Xie, Z.; Chen, Z. Building Extraction in Very High Resolution Remote Sensing Imagery
Using Deep Learning and Guided Filters. Remote Sens. 2018, Vol. 10, Page 144 2018, 10, 144,
doi:10.3390/RS10010144.


https://doi.org/10.20944/preprints202311.0859.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2023 doi:10.20944/preprints202311.0859.v1

30

29. Albert, A.; Kaur, J.; Gonzalez, M.C. Using Convolutional Networks and Satellite Imagery to Identify
Patterns in Urban Environments at a Large Scale. Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discov. Data
Min. 2017, Part F1296, 1357-1366, doi:10.1145/3097983.3098070.

30. Oh, T.; Chung, M.].; Myung, H. Accurate Localization in Urban Environments Using Fault Detection of
GPS and Multi-Sensor Fusion. Adv. Intell. Syst. Comput. 2017, 447, 43-53, d0i:10.1007/978-3-319-31293-4_4.

31. Toan, N.T.; Thanh Cong, P.; Viet Hung, N.Q.; Jo, ]. A Deep Learning Approach for Early Wildfire Detection
from Hyperspectral Satellite Images. 2019 7th Int. Conf. Robot Intell. Technol. Appl. RiTA 2019 2019, 3845,
doi:10.1109/RITAPP.2019.8932740.

32. Phan, T.C; Nguyen, T.T.; Hoang, T.D.; Nguyen, Q.V.H.; Jo, ]. Multi-Scale Bushfire Detection from Multi-
Modal Streams of Remote Sensing Data. IEEE Access 2020, doi:10.1109/ACCESS.2020.3046649.

33. Zhao, Y.; Ban, Y. GOES-R Time Series for Early Detection of Wildfires with Deep GRU-Network. Remote
Sens. 2022, Vol. 14, Page 4347 2022, 14, 4347, doi:10.3390/RS14174347.

34. McCarthy, N.F.; Tohidi, A.; Aziz, Y.; Dennie, M.; Valero, M.M.; Hu, N. A Deep Learning Approach to
Downscale Geostationary Satellite Imagery for Decision Support in High Impact Wildfires. Forests, Vol. 12,
Page 294 2021, 12, 294, d0i:10.3390/F12030294.

35. Hudak, A.T.; Ghali, R.; Akhloufi, M.A. Deep Learning Approaches for Wildland Fires Using Satellite
Remote Sensing Data: Detection, Mapping, and Prediction. Fire 2023, Vol. 6, Page 192 2023, 6, 192,
doi:10.3390/FIRE6050192.

36. “ABI | GOES-R Series.” https://www.goes-r.gov/spacesegment/abi.html (accessed Oct. 04, 2022).

37. “Products | GOES-R Series.” https://www.goes-r.gov/products/overview.html (accessed Jan. 03, 2023).38.

GOES-R SERIES PRODUCT DEFINITION AND USERS” GUIDE.

38.

39. “Data Products: Radiances | GOES-R Series.” https://www.goes-r.gov/products/baseline-radiances.html
(accessed Jan. 03, 2023).

40. Goldberg, M.D.; Kilcoyne, H.; Cikanek, H.; Mehta, A. Joint Polar Satellite System: The United States next
Generation Civilian Polar-Orbiting Environmental Satellite System. ]. Geophys. Res. Atmos. 2013, 118, 13,463-
13,475, doi:10.1002/2013JD020389.

41. “Joint Polar Satellite System Exploring the Atmosphere.”
https://www.nasa.gov/sites/default/files/atoms/files/4._jpss_exploring_the_atmosphere_ppt.pdf (accessed
Oct. 23, 2022).

42. “How often is the MODIS/VIIRS satellite detection updated? - Deprecated Intterra Customer Support.”
https://intterra.helpdocs.com/faq/how-often-is-the-modisviirs-satellite-detection-updated (accessed Oct.
10, 2022).

43. “Visible Infrared Imaging Radiometer Suite (VIIRS) | NESDIS.” https://www.nesdis.noaa.gov/current-
satellite-missions/currently-flying/joint-polar-satellite-system/jpss-mission-and-2 (accessed Oct. 18, 2022).

44. “VNP14IMGTDL_NRT | Earthdata.”  https://www.earthdata.nasa.gov/learn/find-data/near-real-
time/firms/vnpl4imgtdInrt (accessed Jan. 04, 2023).

45. “Satellite (MODIS) Thermal Hotspots and Fire Activity - Overview.”
https://www.arcgis.com/home/item htmI?id=b8f4033069f141729ffb298b7418b653 (accessed Nov. 25, 2022).

46. “Moderate Resolution Imaging Spectroradiometer (MODIS) - LAADS DAAC.”

https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/modis/ (accessed Oct. 23, 2022).

47. “VIIRS I-Band 375 m Active Fire Data | Earthdata.” https://www.earthdata.nasa.gov/learn/find-data/near-
real-time/firms/viirs-i-band-375-m-active-fire-data (accessed Oct. 04, 2022).

48. Wythoff, B.]. Backpropagation Neural Networks: A Tutorial. Chemom. Intell. Lab. Syst. 1993, 18, 115-155,
doi:10.1016/0169-7439(93)80052-].

49. “GOES-16/17/18 on Amazon Download Page.” https://home.chpc.utah.edu/~u0553130/Brian_Blaylock/cgi-
bin/goes16_download.cgi?source=awsé&satellite=noaa-goes17&domain=Cé&product=ABI-L2-
CMIP&date=2020-09-09&hour=4 (accessed Jan. 04, 2023).

50. “NASA | LANCE | FIRMS.” https://firms.modaps.eosdis.nasa.gov/country/ (accessed Oct. 07, 2022).

51. “LAND, ATMOSPHERE NEAR REAL-TIME CAPABILITY FOR EOS (LANCE) | Earthdata.”
https://www .earthdata.nasa.gov/learn/find-data/near-real-time/lance (accessed Oct. 09, 2022).

52. “Raster vs. vector: What are the differences? | Adobe.” https://www.adobe.com/creativecloud/file-
types/image/comparison/raster-vs-vector.html (accessed Mar. 09, 2023).

53. “CAL FIRE.” https://www fire.ca.gov/ (accessed Mar. 01, 2023).

54. “2020 Western  United States  Wildfires -  Homeland  Security  Digital Library.”
https://www.hsdl.org/c/t1/2020-wildfires/ (accessed Mar. 01, 2023).

55. “GOES-17 ABI Performance | GOES-R  Series.”  https://www.goes-r.gov/users/GOES-17-ABI-
Performance.html (accessed Mar. 01, 2023).

56. “STAR - Aerosol, Fire, and Trace Gases Training - GOES Imager Projection.”

https://www .star.nesdis.noaa.gov/atmospheric-composition-
training/satellite_data_goes_imager_projection.php (accessed Mar. 04, 2023).


https://doi.org/10.20944/preprints202311.0859.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2023 doi:10.20944/preprints202311.0859.v1

31

57. “Resampling — Satpy 0.37.2.dev0+g905943c2.d20220815 documentation.”
https://satpy.readthedocs.io/en/stable/resample.html?highlight=areadefination (accessed Oct. 23, 2022).

58. “satpy.scene module — Satpy 0.37.2.dev0+g905943c2.d20220815 documentation.”

https://satpy.readthedocs.io/en/stable/api/satpy.scene.html (accessed Oct. 23, 2022).

59. “WGS 84 - WGS84 - World Geodetic System 1984, used in GPS - EPSG:4326.” https://epsg.io/4326 (accessed
Feb. 09, 2023).

60. “Satpy’s Documentation — Satpy 0.37.2.dev0+g905943¢2.d20220815 documentation.”
https://satpy.readthedocs.io/en/stable/ (accessed Oct. 23, 2022).

61. “Planck Function.” https://ncc.nesdis.noaa.gov/data/planck.html (accessed Jul. 26, 2023).

62. “Rasterization: a  Practical Implementation.” https://www.scratchapixel.com/lessons/3d-basic-
rendering/rasterization-practical-implementation/rasterization-stage.html (accessed Mar. 07, 2023).
63. “What is Rasterization? - Definition from Techopedia.”

https://www.techopedia.com/definition/13169/rasterization (accessed Jan. 05, 2023).
64. “pyproj 3.4.0 documentation.” https://pyproj4.github.io/pyproj/stable/ (accessed Oct. 23, 2022).65.
Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375 m Active Fire Detection Data Product:
Algorithm Description and Initial Assessment. Remote Sens. Environ. 2014, 143, 85-96,
doi:10.1016/].RSE.2013.12.008.

65.

66. “scipy.interpolate.NearestNDInterpolator — SciPy v1.10.0 Manual.”
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.NearestNDInterpolator.html
(accessed Feb. 09, 2023).

67. “GDAL — GDAL documentation.” https://gdal.org/ (accessed Oct. 23, 2022).

68. Park, S.; Gach, HM.,; Kim, S.; Lee, S.J.; Motai, Y. Autoencoder-Inspired Convolutional Network-Based
Super-Resolution Method in MRI. IEEE ]. Transl. Eng. Heal. Med. 2021, 9, doi:10.1109/JTEHM.2021.3076152.

69. Wang, W.; Huang, Y.; Wang, Y.; Wang, L. Generalized Autoencoder: A Neural Network Framework for
Dimensionality Reduction. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work. 2014, 496-503,
doi:10.1109/CVPRW.2014.79.

70. Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a Convolutional Neural Network. Proc. 2017
Int. Conf. Eng. Technol. ICET 2017 2018, 2018-Janua, 1-6, doi:10.1109/ICENGTECHNOL.2017.8308186.

71.  Shi, W.; Caballero, J.; Theis, L.; Huszar, F.; Aitken, A.; Ledig, C.; Wang, Z. Is the Deconvolution Layer the
Same as a Convolutional Layer? 2016, doi:10.48550/arxiv.1609.07009.

72. Chiang, H.T.; Hsieh, Y.Y.; Fu, SW.; Hung, K.H.; Tsao, Y.; Chien, S.Y. Noise Reduction in ECG Signals Using
Fully Convolutional Denoising Autoencoders. IEEE Access 2019, 7, 60806-60813,
doi:10.1109/ACCESS.2019.2912036.

73.  Barrowclough, O.].D.; Muntingh, G.; Nainamalai, V.; Stangeby, L. Binary Segmentation of Medical Images
Using Implicit Spline Representations and Deep Learning. Comput. Aided Geom. Des. 2021, 85,
doi:10.1016/j.cagd.2021.101972.

74. Duque-Arias, D.; Velasco-Forero, S.; Deschaud, J.-E.; Goulette, F.; Serna, A.; Decenciere, E.; Marcotegui, B.;
Goulette, F.; Serna, A.; Decenci Ere, E. On Power Jaccard Losses for Semantic Segmentation. 2021.

75. Narayan, S. The Generalized Sigmoid Activation Function: Competitive Supervised Learning. Inf. Sci. (Ny).
1997, 99, 69-82, d0i:10.1016/S0020-0255(96)00200-9.

76. Jun, Z.; Jinglu, H. Image Segmentation Based on 2D Otsu Method with Histogram Analysis. Proc. - Int.
Conf. Comput. Sci. Softw. Eng. CSSE 2008 2008, 6, 105-108, doi:10.1109/CSSE.2008.206.

77. “Weights & Biases — Developer tools for ML.” https://wandb.ai/site (accessed Mar. 15, 2023).

78. Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. 3rd Int. Conf. Learn. Represent. ICLR
2015 - Conf. Track Proc. 2014, doi:10.48550/arxiv.1412.6980.

79. You, K,; Long, M.; Wang, ].; Jordan, M.I. How Does Learning Rate Decay Help Modern Neural Networks?
2019.

80. “PyTorch.” https://pytorch.org/ (accessed Feb. 25, 2023).

81. Lareau, N.P.; Donohoe, A.; Roberts, M.; Ebrahimian, H. Tracking Wildfires with Weather Radars. J.
Geophys. Res. Atmos. 2022, €2021JD036158, d0i:10.1029/2021JD036158.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202311.0859.v1

