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Abstract: Cellulose-based carbon (CBC) has been widely concerned with its porous structure, high specific 

surface area, and is liable to adsorb gas molecules and macromolecular pollutants. However, the application 

of CBC in gas sensing has been little studied. In this paper, ZnO/CBC heterojunction was formed by means of 

simple co-precipitation and high temperature carbonization. As a new ammonia sensor, the prepared 

ZnO/CBC sensor can detect ammonia compared with that of the previous pure ZnO ammonia sensor can not 

at room temperature. It has great gas sensing response, stability and selectivity to ammonia concentration at 

200 ppm. This study provides a new idea for the design and synthesis of biomass carbon-metal oxide 

composites. 

Keywords: Gas sensor; ammonia; zinc oxide; microcrystalline cellulose 

 

1. Introduction 

Ammonia is a colorless, toxic, corrosive substance with a strong odor and a choking effect. 

Excess ammonia can pose a huge threat to human health and to cause environment pollution. 

Different from other toxic gases, ammonia has a low boiling point of -33.5 ℃, a low melting point of 

-77.75 ℃, a low density of 0.771 g·L-1, a refractive index of 1.33, and a dipole moment of 1.42 d. These 

characteristics make ammonia an excellent gas sensor, and its sensors can be used in a variety of 

applications such as environmental monitoring, agriculture or medical diagnostics, and industrial 

waste dealing [1,2]. 

Zinc oxide is a metal oxide semiconductor material with wide band gap (3.37 eV), high bonding 

strength and large exciton binding energy (60 meV) at room temperature. Based on these properties, 

it is often used in gas sensors, chemical sensors, biosensors, cosmetics, energy storage, optical and 

electronic devices and other products [3–7]. The existing zinc oxide gas sensors show great gas 

sensing performance for carbon dioxide, ammonia and ethanol. The resistive gas sensor based on 

ZnO nanosheets was prepared by Srinivasulu et al. which has a large surface area and can quickly 

and highly detect carbon dioxide in the air [8]. The ZnO nanoflowers were prepared by Yu et al. 

which have great gas sensing properties for low concentrations of ammonia [9]. However, the original 

zinc oxide still has some shortcomings such as poor gas sensitivity, slow response and recovery time 

and poor selectivity. Therefore, many researchers have used by doping other elements or mixing zinc 

oxide with other metal oxides to prepare composite materials in order to improving gas sensing 

performance [10–14].  
It is an effective way to improve the gas sensing performance of the sensor by introducing carbon 

material into the gas sensing material based on zinc oxide. Using activated carbon fiber as a template, 

Chao et al. synthesized ZnO/C nanoporous fibers by hydrothermal method. The materials showed 

great gas sensing performance to low concentrations of ethanol and acetone at optimum operating 

temperature [15]. The heterojunction ZnO/hollow porous carbon microtubule (CMT) prepared by 

Sun et al. from simple carbonized buttonwood fluff fibers showed a great gas sensing response to 
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trace ammonia molecules [16]. Hu et al. prepared composite materials by generating zinc oxide 

particles on nitrogen-doped carbon sheets, and the heterogeneous structure improved the gas sensing 

ability of composite materials to ppb grade NO2 [17]. Cellulose, as a natural polymer material 

abundant on the earth, has a large number of hydroxyl functional group, excellent biodegradability 

and stable physical and chemical properties [18]. And compared with other carbon sources, cellulose 

is more available in nature, which can reduce the cost of producing carbon materials significantly. In 

recent years, there have been many reports on the application of cellulose-based carbon (CBC) as 

carbon materials in the field of supercapacitors and photocatalytic degradation by taking advantage 

of its excellent properties such as porous structure, huge specific surface area, and ability to adsorb 

gas molecules and macromolecular pollutants [19–23]. However, there are few researches on 

carbonizing cellulose into biomass carbon materials into ZnO-based gas sensors. 

In this work, zinc oxide was prepared by a simple chemical precipitation method, and then it 

was carbonized with microcrystalline cellulose at high temperature, and ZnO/CBC were prepared 

for ammonia detection. Compared with the original ZnO-based ammonia sensor, due to the 

construction of the heterogeneous structure between ZnO and CBC, the composite has a great gas 

sensing response to a certain concentration of ammonia at room temperature, and has a better 

ammonia selectivity. The use of cellulose as the precursor of biomass carbon materials and combined 

with metal oxides to form composite materials provides a new reference in the field of gas detection. 

2. Materials and Methods 

2.1. Materials 

Zinc acetate dihydrate (Zn(CH3COO)2·2H2O, 98%) was get from Anneji (Shanghai) 

Pharmaceutical Chemical Co., Ltd. Ammonia liquor (NH3·H2O, 26%-28%) was purchased from 

Sinopharm Chemical Reagent Co., Ltd. Microcrystalline cellulose (50 μm) was obtained from Aladdin 

Reagent (Shanghai) Co., Ltd. Deionized water was prepared in the laboratory. 

2.2. Synthesis of ZnO/CBC 

ZnO was prepared by a simple chemical deposition method. Add 0.25 g zinc acetate dihydrate 

and 0.5 g microcrystalline cellulose to 30 mL deionized water, add ammonia water under magnetic 

stirring in an oil bath at 90 °C, make the molar ratio of Zn2+ to OH- 1:15. Continued magnetically 

stirring at 90 ℃ for 1h. After the reaction, the solution was washed and centrifuged for several times 

until the pH was neutral, and then dried in a vacuum drying oven at 60 °C to obtain a white powder. 

The white powder was placed in a tube furnace at 600 °C and calcined by N2 for 2 hours. The black 

powder obtained was recorded as ZnO/CBC-60% (the ratio of zinc acetate dihydrate to 

microcrystalline cellulose). According to the same experimental methods, ZnO/CBC-33%, ZnO/CBC-

50%, ZnO/CBC-66%, ZnO/CBC-71% and CBC with different zinc oxide contents were prepared. 

2.3. Characterization 

The morphology and size of the samples were characterized by field emission scanning electron 

microscopy (SEM, ZEISS Sigma 300) and transmission electron microscopy (TEM, FEI Tecnai F30). 

The crystal structure of the sample was characterized by X-ray diffraction (XRD, Bruker D2 PHASER) 

of copper target radiation at ambient temperatures with 2θ values of 10 to 80 degrees and scanning 
rates of 5°/mins. The chemical composition and elements of the samples were characterized by X-ray 

photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha). Raman spectra were recorded using a 

Raman spectrometer (Raman, Horiba LabRAM HR Evolution) with a laser wavelength of 532 nm. In 

situ DRIFT spectroscopy was performed using Bruker VERTEX 80v infrared spectrometer. ZnO/CBC-

60% was exposed to ammonia and pure nitrogen at room temperature. The Mott-Schottky curves of 

the samples were measured with an electrochemical workstation (CHI660E model), 0.5 M sodium 

sulfate solution is configured, Ag/AgCl is the reference electrode, platinum plate is the counter 

electrode. 
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2.4. Fabrication of gas sensing device 

In order to perform electrical and sensing performance, a certain amount of samples were taken 

on an agate mortar and a small amount of deionized water was added to grind the samples to a sticky 

state. The grinding liquid was evenly coated on the interdigital electrode of the ceramic substrate and 

dried in a drying oven at 100 ℃. Gas sensing measurements are carried out using the self-made 

device shown in Figure 1. The static liquid-gas distribution method is used to generate ammonia gas 

environments with different concentrations. The calculation formula is shown as follows [24,25]： 

                           𝐶 = 22.4×∅×𝜌×𝑝×𝑉1𝑀×𝑉2 × 1000                           (1) 

where C (ppm) stand for target gas concentration, Ø stand for required gas volume fraction, ρ (g mL
−1) stand for density of the liquid, p stand for purity of the liquid, V1 (μL) stand for volume of liquid, 

V2 (L) stand for volume of the chamber, and M (g mol−1) stand for molecular weight of the liquid.  
The change in resistance of the sensor was measured by a multimeter. The response of the sensor 

was defined as: 

                               𝑆 = 𝑅𝑔−𝑅𝑎𝑅𝑎 × 100%                                  (2)  

where Ra is the resistance of the sensor in the air, and Rg is the resistance of the sensor after it passes 

into the target gas. 

 

Figure 1. Schematic diagram of gas detection. (1) Syringe, (2) Reaction chamber, (3) Interdigital 

electrode, (4) Victor 8145C TRMS digit multimeter, (5) Display screen, (6) Mainframe computer. 

3. Results 

3.1. Characterization of ZnO/CBC 

The XRD patterns of ZnO/CBC and CBC with different ZnO precursor contents are shown in 

Figure 2. ZnO/CBC showed sharp diffraction peaks at 2θ = 31.8°, 34.4°, 36.3°, 47.5°, 56.6°, 62.9°, 66.4°, 

67.9°, 69.1°, 72.6° and 77.0°, which were in accordance with (100), (002), (101), (102), (110), (103), (200), 

(112), (201), (004) and (202) crystal planes, respectively, The strongest peak occurred on the (101) 

crystal plane. All diffraction peaks correspond to the standard hexagonal wurtzite structure (JCPDS-

99-0111) [26,27]. No diffraction peaks from other phases or impurities were observed. These results 

indicated that pure ZnO structures were formed through precipitation. Since the amorphous carbon 

was prepared and its crystallinity is low, wide peaks with low signal strength appeared near 22 ° and 

42 ° [28–30]. The diffraction peaked strength is weaker than ZnO, while there could not be shown in 

the XRD pattern of ZnO/CBC. 
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Figure 2. XRD patterns of ZnO/CBC with different ZnO contents and CBC. 

Figure 3 shows the SEM images of ZnO/CBC and pure carbon with different ZnO precursor 

contents. It can be seen from Figure 3b–e that ZnO has been successfully loaded on CBC. ZnO 

exhibited a flower-like structure when the precursor content was small. With the ZnO precursor 

content increasing, ZnO gradually changed into a rod-like structure, at mean while the aspect ratio 

also becoming larger. This was due to the increase in ammonia solution, which promoted oxidation. 

Zinc preferentially grew on the C axis [31]. Figure 3a shows that the surface of CBC was relatively 

smooth after high temperature carbonization. However, after loading ZnO, the surface of CBC 

becomes rough. EDS was used to conduct elemental analysis of ZnO/CBC-60%. It can be seen from 

Figure S1 that C, O and Zn have been evenly distributed on ZnO/CBC-60%, and the atomic ratios of 

C, O and Zn were 77.50%, 11.84% and 10.66%, respectively. Since aluminum foil was used as the 

substrate, the Al signal appeared. 

In order to further understood the structure of ZnO/CBC-60%, TEM characterization was 

performed. As shown in Figure 4a,b, it can be clearly found that there were different lattice fringes at 

the boundary of CBC and ZnO. The lattice fringes near 0.136 and 0.282 nm correspond to the (201) 

and (100) crystal faces of ZnO, respectively [11,32]. The lattice fringes near 0.202 and 0.350 nm 

correspond to the (101) and (002) crystal faces of graphite, respectively [33]. The lattice fringes of ZnO 

and CBC were interwoven, which also confirmed the construction of heterojunctions between ZnO 

and CBC. 

 

Figure 3. SEM image of (a)CBC, (b)ZnO/CBC-33%, (c)ZnO/CBC-50%, (d)ZnO/CBC-60%, (e)ZnO/CBC-

66%, (f) ZnO/CBC-71%. 
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Figure 4. TEM images of ZnO/CBC-60%. 

As shown in the Raman spectrum in Figure 5a, it can be observed that peak D and peak G of 

typical carbon materials were located at 1340 cm-1 and 1584 cm-1, respectively, where peak D 

represents sp3 hybrid carbon of disordered or defective carbon, while peak G corresponds to sp2 

hybrid carbon of graphite structure [34]. The relative strength ratio (ID/IG) of peak D and peak G 

indicates the degree of graphitization of the material. The ID/IG values of pure carbon and ZnO/CBC-

60% were 0.90 and 0.79, respectively, which were much higher than the ID/IG values of typical 

graphite, indicating that the prepared carbon materials were not highly crystalline and disordered 

materials exist. This was consistent with the observation of XRD. Moreover, the addition of ZnO 

improved the degree of disorder and defects in the structure of carbon materials [35]. The peaks at 80 

cm-1 and 427 cm-1 in ZnO/CBC-60% correspond to 𝐸2𝑙𝑜𝑤 and 𝐸2ℎ𝑖𝑔ℎ, respectively.  𝐸2𝑙𝑜𝑤 was affected 

by Zn2+ gap defect, and 𝐸2ℎ𝑖𝑔ℎ was affected by O2- vacancy [36]. The simultaneous appearance of 

characteristic peaks of ZnO and carbon materials confirmed the successful preparation of ZnO/CBC. 

At the same time, it can be observed from Figure 6b that the D-peaks and G-peaks of ZnO/CBC-60% 

had a certain wave number displacement relative to pure carbon materials. It can be concluded that 

the heterojunction constructed by ZnO and cellulose-based carbon induces charge transfer between 

them [17]. 

 

Figure 5. (a) Raman spectra of ZnO/CBC-60% and CBC, (b) Partial enlarged Raman spectra of 

ZnO/CBC-60% and CBC. 

In order to verify the elemental composition and surface chemical information of ZnO/CBC-60%, 

the materials were characterized by XPS. Figure 6a shows that ZnO/CBC-60% were mainly composed 

of Zn, C and O elements. Figure 6b was the high-resolution spectrum of Zn2p. In the figure, the peaks 

of Zn2p1/2 and Zn2p3/2 were 1044.0 eV and 1021.1 eV respectively, and the binding energy distance 

before the two peaks was 22.9 eV, which proved the existence of divalent zinc ions[37]. Figure 6c 

shows the high resolution spectrum of O 1s. O 1s can be deconvolved into three peaks centered on 

529.5 eV, 531.2 eV and 532.2 eV. The peak at 529.5 eV is attributed to the O2- ion in the Zn-O bond in 

the ZnO wurtzite structure, and the peak at 531.2 eV is attributed to the Zn-O-C bond and the 
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adsorbed hydroxyl group or water. The peak at 532.2 eV is attributed to the carbonate (C-O /C=O) 

species [38]. As shown in Figure 6d, three peaks appeared at 283.6 eV, 285.7 eV and 288.3 eV 

respectively, which belonged to the Zn-C bond, Zn-O-C bond and C=O bond respectively, indicating 

that the performance of ZnO/CBC-60% was different from that of pure ZnO [39]. 

 

Figure 6. XPS patterns of ZnO/C-60% and CBC. (a) Full spectrum of sample, (b) Zn 2p XPS spectra of 

ZnO/CBC-60%, (c) C 1s XPS spectra of ZnO/CBC-60%, (d) O 1s XPS spectra of ZnO/CBC-60%. 

Mott Schottky curve was used to determine the semiconductor type of the material to better 

explain the sensing mechanism of the material. Figure S2 shows the Mott Schottky curves of CBC and 

ZnO/CBC-60% at different frequencies measured at room temperature. It can be seen from the figure 

that the slopes of all curves are negative, indicating that CBC was a p-type semiconductor, and the 

prepared ZnO/CBC-60% also exhibited p-type semiconductor properties. 

3.2. Results of Sensing Tests 

Firstly, the gas sensing response of ZnO/CBC with different contents of CBC and ZnO precursors 

to 200 ppm ammonia at room temperature of 60% relative humidity was tested. When the sensor was 

in an air environment, the resistance of the sensor was at a stable value (Ra). When exposed to 

ammonia, the resistance of the sensor increased and reached a maximum value (Rg). When the sensor 

is exposed to air again, the resistance of the sensor will gradually return to the initial value (Ra). The 

resistance of CBC and ZnO/CBC increased gradually in ammonia environment and decreased 

gradually in air, which showed p-type semiconductor behavior. After testing the sensor, Figure 7a 

shows that when the ZnO precursor content was 60%, the sensor's gas sensing response to 200 ppm 

ammonia was the highest, reaching 27%. Therefore, zinc acetate/cellulose (wt%) =150 wt% was 

selected as the optimal ratio for preparing the required sensing material. At the same time, the 

ZnO/CBC-60% sensor was placed in the environment of methanol, isopropyl alcohol, ethanol and 

formaldehyde at 200 ppm at room temperature to test the gas sensing performance of the sensor to 

these gases, in order to verify the selectivity of the sensor to ammonia. It can be seen from Figure 7b 

that the gas sensing response of the sensor to ammonia is dozens of times that of other gases, 

indicating that the prepared ZnO/CBC-60% sensor had good selectivity to ammonia. This may be 
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attributed to the fact that the heterostructure constructed between ZnO and CBC provided more 

active sites for the selective adsorption of ammonia molecules. 

 

Figure 7. (a) Response of different amounts of zinc oxide and CBC to ammonia at 200 ppm 

concentration, (b) Selectivity of ZnO/CBC-60% for ammonia. 

In order to further test the gas sensing performance of ZnO/CBC-60% for ammonia. Sensor was 

put in ammonia environment with five concentrations of 25 ppm, 50 ppm, 100 ppm, 150 ppm and 

200 ppm at room temperature for gas sensing test. The gas sensing response of the sensor to ammonia 

with a concentration of 25-200 ppm at room temperature is shown in figure 8a. As the ammonia 

concentration increased, the gas sensing response of the sensor increased, which was in line with the 

expected goals of the experiment. Stability is one of the key parameters of gas sensing. We tested the 

stability of ZnO/CBC-60% sensor by placing the sensor in 200 ppm ammonia environment for five 

rounds of gas sensing tests. As shown in figure 8b, after five sensing cycled, the gas sensing 

performance of ZnO/CBC-60% sensor had not weakened, indicating that the sensor had good 

repeatability. 

 

Figure 8. (a) Response of ZnO/CBC-60% to ammonia with concentration of 25-200 ppm, (b) 

Repeatability evaluation of ZnO/CBC-60% for 200 ppm ammonia at RT. 

Relative humidity is an important factor affecting the performance of gas sensor [40]. as shown 

in Figure 9a, with the increase of relative humidity, the gas sensitivity of ZnO/CBC-60% sensor to 

ammonia was correspondingly weakened, which may be due to the fact that H2O molecules in the 

test environment preempted the active sites, so that NH3 molecules could not fully react with the 

materials, resulting in the decrease of gas sensing response[18]. 

The ZnO/CBC-60% sensor was put in an ammonia concentration environment of 200 ppm for 

one week. As can be seen from Figure 9b, the gas sensing response of the sensor to ammonia had not 

changed greatly, which indicated that the sensor had good stability. 
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Figure 9. (a) The response curves of ZnO/CBC-60% towards 200 ppm ammonia at different RHs, (b) 

Stability test of ZnO/CBC-60% for 200 ppm ammonia within one week at RT. 

4. Discussion 

In order to prove that the gas sensing response of ZnO/CBC-60% was the result of the reaction 

with NH3 molecules, the material was analyzed by in-situ DRIFT spectroscopy. As shown in Figure 

10a, after introducing the mixed gas of NH3 and N2, it can be observed that adsorption peaks of 

coordinated NH3 species corresponding to Lewis sites appeared near 929, 964, 1619 and 3334 cm-1 

[41–43], and these peaks gradually became stronger with the increase of adsorption time. Figure 10b 

shows that the peak value was obviously weakened after N2 purging. These phenomena show that 

the adsorption and desorption of ammonia occurred on the surface of ZnO/CBC-60%, which 

explained the gas sensing response of ZnO/CBC-60% to ammonia. 

 

Figure 10. (a) In-situ DRIFT spectroscopy of ZnO/CBC-60% by passing NH3+N2 mixture gases at RT 

for 40 mins, (b) Purged by N2 at RT. 

Figure 11 shows the interface energy band diagram of ZnO/CBC sensor in air and ammonia. It 

can be seen from Mott Schottky curve that CBC was a p-type semiconductor, while ZnO was a typical 

n-type semiconductor, The combination of the two created a p-n heterojunction. Due to the difference 

in concentration of electrons and holes in the two materials, the free electrons ZnO conduction band 

will diffuse to CBC, and the holes in CBC will diffuse to ZnO until the Fermi level reached a new 

equilibrium [44,45]. This process made the energy band bend, forming a narrow depletion layer, 

forming an electron accumulation layer on the CBC side and a hole accumulation layer on the ZnO 

side. When ZnO/CBC sensor was exposed to ammonia, NH3 molecules will capture hole protons 

from CBC, and the hole accumulation layer will provide more adsorption sites for ammonia 

adsorption. In addition, NH3 molecules will release some electrons to ZnO/CBC, which will 

neutralize the holes and further widen the depletion layer on the CBC side, resulting in an obvious 

increase [46], in the resistance of the sensor, which was consistent with the phenomenon in gas 

sensing test. 
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Figure 11. The energy band structure diagram of n-type ZnO/p-type CBC hetero-contact. 

5. Conclusions 

In this experiment, ZnO was loaded on CBC, and the gas sensing response of ZnO/CBC loaded 

with different ZnO contents to ammonia at room temperature was studied by various the content of 

ZnO precursors. The composites were characterized by SEM, TEM, XRD, Raman and XPS. The results 

showed that ZnO had been successfully loaded on CBC. Subsequently, the gas sensing performance 

showed that the ZnO/CBC with 60% ZnO precursor content had better gas sensing response to 200 

ppm ammonia at room temperature, reaching 27%. In addition, through five consecutive rounds of 

gas sensing response tests in 200 ppm ammonia environment, it was found that ZnO/CBC-60% 

exhibited good stability. At the same time, by comparing the gas sensing performance of several VOC 

gases, it was found that the material for ammonia had well selectivity. In-situ DRIFT spectroscopy 

proved that the sensing material did react with ammonia, and the ZnO/CBC-60% could provide more 

active sites for ammonia molecules because of the construction of heterojunction between ZnO and 

CBC. Therefore, ZnO/CBC composites had improved sensing performance. This study provides a 

new idea for the design and synthesis of biomass carbon-metal oxide composites. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 

paper posted on Preprints.org, Figure S1: (a-e) SEM images of the ZnO/CBC-60% and corresponding mapping 

images of C, O and Zn, (f) the EDS analysis of the prepared ZnO/CBC-60%; Figure S2: Figure S2. Mott-Schottky 

curves of (a) CBC, (b) ZnO/CBC-60%. 
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