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Abstract: To protect power lines, distance relays are used which can rely on a modified distance resistance. But
usually the operating range of these relays changes as the network conditions change (network topology, load
value, output value, etc.) and leads to false trips, By using methods that can process information and recognize
patterns, for example, the use of micro and intelligent processor algorithms can use the new relays with high
precision and thus provide adequate protection. In this study, a distance relay was modeled using a neural
network, and it was observed that the neural relay had higher accuracy than the conventional relay. In addition
to detecting the fault and its location, type and phase of the fault, three-stage simultaneous protection can be
performed. As a result, the number of linear relays can be reduced by using relays based on neural technologies.
An MLP (multilayer perceptron) neural network is used to model a sequence of distances.

Keywords: energy; distributed generation (DG); artificial neural networks; Network; Transmission
network; Protection algorithms; Distance protection

1. Introduction

The use of fuel sources including coal, oil and natural gas to generate electricity has given rise
to many environmental problems, one of which appears to be global warming [1,2]. Consequently,
global reliance has increased on finding clean, renewable (environmentally friendly) energy sources
such as wind energy, solar energy, tidal energy, biofuels, fuel cells, hydrogen engines, and other
technologies with a lower pollution rate, and these units are called distributed generation units. It is
relevant to bring power sources as close as possible to electricity consumers using the principles of
distributed generation [3,4]. However, the introduction of distributed generation units poses a
number of technical problems associated with maintaining the required level of network voltage,
power quality, and ensuring the correct functioning of automation systems and relay protection. The
nature of the distribution system has changed in the era of distributed generation. Modern
distribution systems are designed on the basis of receiving electrical power from network
transformers and distributing it to consumers at the average distribution voltage and through the
switching centers to consumers at the low voltage level. Thus, the flow of effective power P and
reactive capacity Q is always from the highest level of tension to the lowest level. Distributed
generation transforms the distribution system from a passive system, as is the case in traditional
electric power systems, to an active distribution system. Since the power injected into the distribution
network can affect its flow pattern, it must be ensured that it will not reduce the power supply
specifications for other network users. With distributed generation in the distribution system, the
flow and tension of the network are determined not only by the loads but also by the generators and
the loads together. It is possible that the direction of the two-way power flow will be reversed in some
branches of the network depending on the size and location of the distributed generation and the size
of the loads. Thus, there is a need to expand research on the development of algorithms for protection
systems in general and distance protection in particular [5]. there are numerous proposed styles and
bias to estimate the position of the faults on the lines. They can be grouped into styles grounded on

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202311.0715.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 November 2023 doi:10.20944/preprints202311.0715.v1

the input impedance [6] styles grounded on surge travelling goods [7-10]. Previous research has
focused on improving the efficiency of distance protection by developing a set of mathematical laws
to adjust the performance of these protection automation systems [11-17]. Based on Thevenin's laws,
a set of algorithms was developed to obtain a more accurate value of damage resistance [18-20]. Or
depending on changes in the phase angle of power lines [21,22]. However, these studies did not focus
on or examine the integration of distance protection mechanisms in a distribution network containing
high-penetration distributed generation devices. Therefore, this study proposed a series of practical
steps and applications to improve the sensitivity of distance protection in the presence of distributed
generation, using neural network methods, multi-level deep learning and artificial intelligence to
more accurately determine the location of the fault and thus accurately calculate the resistance of
distance protection, and this in turn led to an improvement in the performance of the protection
system.

2. Voltage Levels for the Distribution System

Most of the RDG units are related to the distribution system, which can be classified (Figure 1)
according to global systems in terms of the level of voltage into:
e High voltage distribution network HV: Typical voltage levels are 50-110 kV (in the Syrian
network 66 kV)
* Medium voltage MV distribution network: Typical voltage levels are 10- 50 kV (in the Syrian
network 20 kV)
* Low voltage LV distribution network: levels less than 1000V (in the Syrian network 220/380V).
In fact, the names and limits of voltage levels change from one country to another. In Syria, labels
such as secondary distribution voltage (220/380 V), main distribution voltage (20 kV), medium
voltage (66 kV) and high voltage (230-400 kV) prevail.

Large central generating plants
& Connection lines with other
transportation system in Syria =110 kv countries
230-400 kV
HV large water stations
voltage levels in Syria : offshore wind farms
50-110 kv « Large industrial CHP plants
HV 66 KV
MV 20KV onshore wind farms
LV 220-300 v My small hydro power plants
Distribution « large VP Systems
system 1-50 kv solar thermal systems
Commercial CHP Systems
LV distributed PV system
sSmall wind turbines / hybrid systems
<1kV *

Figure 1. Voltage levels of a typical electrical distribution system and connection points for distributed
regenerative generators.

3. An Overview of the Technical Impacts of Distributed Generation on the host Distribution
Network

The inclusion of distributed generation in the distribution system generates technical effects in
the network, which may be positive, negative or neutral depending on several factors. The main areas
that are affected are tension and loss of power, fault levels, reliability, electrical quality, protection
and stability, worker safety and network code. Figure 2 shows a graphic representation of the relative
sizes of these effects.
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Figure 2. Percentage of the technical effects of distributed generation in the distribution networks.

by analysis the percentages, notice that the greatest impact of distributed generation units lies
in electrical protection systems in general. Therefore, this study will focus on developing the
mechanism of operation of distance protections in distributed generation networks to increase
sensitivity and improve performance. There are a few elements that could have an effect on the
overall performance of any relay safety system. Economy is one of the maximum essential elements.
Errors aren’t common. Therefore, one may also marvel why there’s a want to layout a protection
system. However, unlucky occasions do happen, and if there’s no safety in place, sizeable economic
losses can occur. In the occasion of a unmarried fault, if the designed circuit operates quick and
accurately, it could lessen downtime and guard device from damage. In addition, it’s miles essential
to lessen redundancy, i.e., Use most effective the minimal quantity of relays required for the specified
safety zone. In a electricity system, it’s miles not possible to are expecting the location, kind and
timing of any failure. Given the unsure possibilities, the safety engineer ought to broaden a safety
scheme primarily based totally at the maximum in all likelihood occasions, beyond occasions, device
producer hints and make the proper realistic decision.

4. Algorithm Using Neural Network Methods to Increase the Sensitivity of the Distance
Protection System

4.1. The First Test: Correction of the Location of the Astronomical Error Using Neural Networks to the
Distance Relay

proposed in this test a method for improve relay fault location estimation by creating a
correction point that is added to the set point setting to form a final result based on these steps and
devices [23].

Fault parameters»EMTP (transmission line model)=>input (6 voltages and currents)>CMC-
356 Omicron (test universe device)=> Distance relay (7SA522)=>Fault location 1 relay

Estimation edited value based on the voltage and current signals, and then added to the result
from the relay [23]. The block diagram of the proposed solution is presented in Figure 3.
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Figure 3. Diagram of the proposed solution [23].

In the traditional case of the operation of distance protections, when electrical faults of various
types occur on the electrical power supply lines, the distance protection is activated. Based on the
distance between the fault site and the protection site, the resistance value of the distance protection
is then estimated, and then the separation is made or not according to that value. In the presented
proposal, it is done by: An algorithm that calculates a short time period before and after the protection
is activated, to calculate the exact time of signal change. After that, the features are generated from
the signal block [23], and using these nonlinear functions, the correction amount is calculated as
follows:

Ifinaly = lrelay + A 1)

An MLP neural network was chosen as a nonlinear estimator and trained to ensure that the final
result is more accurate than a relay. This approach was chosen to directly estimate the fault location.
This model is designed for a 100 km AC transmission line with a voltage of 20 kV (voltage level of
the Syrian distribution network) from Teshrin station to the industrial city of Adra (Syria).

4.1.1. Universal Relay Tester SMS-356

OMICRON'’s CMC -356 universal relay tester and a real distance relay were used to bring the
simulation and response closer to reality [24].
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Figure 4. Relay devise CMC -356 from OMICRON [25].

Answers 7SA522 The remote relay will be read back to the computer via DIGSI 4.82 (Digital
Information Group) compatible software [25].

4.1.2. MLP (Multilayer Perceptron) network

A multilayer perceptron (MLP) is a modern feedforward artificial neural network, consisting of
fully connected neurons with a nonlinear kind of activation function, organized in at least three
layers, notable for being able to distinguish data that is not linearly separable. It is a misnomer
because the original perceptron used a Heaviside step function, instead of a nonlinear kind of
activation function (used by modern networks). is shown in Figure 5.
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Figure 5. MLP structure layers of neurons network.

4.1.3. Simulation and numerical results

ATP/EMTP software was used to simulate a real 100 km long, 20 kV power transmission line
(Syria). Error scenarios when creating samples are given. Location of damage: one of N =23 positions
on the line (at a distance of 5, 10,..., 95 km
e  shortcircuit0, 1, 2, 3, 4, 5 Ohm;

e types of emergency situations: single-phase, two-phase, three-phase short circuit, two-phase
short circuit to ground;

e lineload: 30%, 50% and 100% of the rated line load.
This gave a total of

NXKXPXQ=23%X6xX4x3=1656cases

Additionally, to test the effect of fault time (relative phase) on the results, cases were created for
short circuit resistance R - fault = 1 ohm at positions (10, 40, 80, 110 km) and M =10 fault time in 2 ms
steps (to cover the entire 20 ms period) of 50 Hz signals). This means:

e  Short circuit point location one of
N =4 addresses (10- 40- 80-110 km),
° Short circuit resistance R - fault : 1 Ohm,
e  Fault time: one of the values M = 10 (+00 ms, +02 ms, ..., +18 ms).
This resulted in an additional

NXPXxQXM=4%x4x%x3x10 =480 cases
Total 1656+ 480 = 2136.

4.1.4. Fault Location Using Remote Relay

Using the simulated data from the ATP / EMTP, the data was first regenerated using a CMC -
356 tester to feed the selected 7 SA 522- V 4.7 distance relay. Test suites allow the recorded data to be
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“replayed” and transferred to a similar data relay, which greatly simplifies the analysis of identified
failures. [26]. The statistics of these comparisons are presented in Table 1,

Table 1. Simulation results of distance protection without MLP.

Type malfunctions Average position error (km)  Average relative position error (%)
1-ph short circuit 0.19 0.151
2-ph short circuit 0.157 1.31
2-ph fault in ground 1.96 1.65
3-ph short circuit 0.55 0.48
Average 1.08 0.91

Table 2. Number of grouped by fault.

Type malfunctions Samples in the training set Samples in the test set
1-ph-F 372 164
2-ph-F 352 182
2-ph-Fto G 386 178
3-ph-F 340 192
Average 1450 716

Table 3. Maximum errors DR 7SA-522 and after correction using Multilayer perceptron.

Method Maximum error (km) actual . maximum error (%)
7SA522 9.2 8.32
7SA522 With Multilayer 278 249
perceptron

5. Determination of Fault Resistance (Distance Protection Resistance) Based on Neural Network
Technology for Single-Phase Earth Fault for 20 kV Power Line—Southern Grid, Syria

To simulate the ANN-based method, a 20 kV power transmission line with a length of 100
km.The transmission line is modeled using the pi model. Model of the proposed transmission line
using Matlab / Simulink. The ground resistance of the simulated system was 100 ohms, and the
system frequency 50 Hz. Other values to the transmission line are given in Table 4 [28].

Table 4. Technical characteristics of the simulated power system.

PI-(Positive

.034 +i0.41241
impedance) [/ km] 0.034 +j0
ZSI-(zero sequence .
Impedance)[Q/ km] 0.3003 +j0.1334
OPI-(Original positive 3 0136 + 43,085
Impedance) [Q]

SZI-(Source zero impedance) [Q] 0135+j43.085
Power [MBA] 100
Voltage [Kv] 20

The most important step in using artificial neural networks is testing the trained network.
Network testing is necessary to ensure that the network produces outputs that match new inputs and
has good generalization ability to generate outputs [29]. There are a number of methods used to test
a trained ANN. In the first testing method, when training an ANN, a best-fit linear regression graph
is plotted between the obtained results and the planned results. The slope of this plotted graph is
determined by the coefficient R. The R ratio shows how closely the actual results can match the target
results. This coefficient varies from 0 to 1. To achieve the best training results, ANN ( Artificial Neural
Network ) should be equal to 1. The network is tested using a test dataset in which the input and
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target output are not present in the training set and the percentage error between outputs is calculated
network data and target output data. If the average error rate is an acceptable value, it means that the
ANN test has passed and the network can now be used [30,31]. The estimation error when
determining the location of damage is found using equation 2.

(actual location — desired location)

) = 1
error (%) (line length) * 100 @

5.1. Troubleshooting in the ANN

LM (Levenberg-Marquardt) learning function and the four-level ANN structure are defined as
the ANN structure with the smallest estimation errors [32-34]. A logarithmic sigmoid activation
function was used in the first three layers of the defined network, and a linear activation function
was used in the output layer[35]. The number of neurons belonging to these layers was defined as 6,
5, 5 and 1, respectively. The general structure of the implemented network, created using Matlab /
nntool, is shown in Figure 6

-A C 1)
@ [A] true true [:]
sequence output NN
[NN] [NN]
SOC
[C] [C] [C] [:]
current current current
[D] [D] [D]
voltage voltage voltage
Time fault [E] Time fault -5 E] Time fault
de- inputSignals
normalize
nnOutput A
Neural Network
Midden 1 Mudden 2 Mdden § Outpat

Algorithms

Data Division: Random (dividerand)
Training: Levenberg-Marquardt (trainlm)
Performance: Mean Squared Error (mse)
Derivative: Default (defaultderiv)

Progress
Epoch: 0 Il 21 iterations | 1000
Time: | 0:00:01 |

Peformance:  427e+03 [ENOO00I0S NN | 0.00
Gradient: 145e+04 [ ENORPA RN | 1.00e-07

Mu: 0.00100 | 0.000100 | 1.00e+10

Validation Checks 0 6

Figure 6. General structure of the Nntool network[18].
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According to the test results shown in Table 14, the largest prediction error is 0.236, the smallest
prediction error is 0.0121, and the average absolute prediction error for the test cases is 0.12405. These
results show that the accuracy of the algorithm is high. Therefore, this technology can be relied upon
in practical applications for protection systems, especially in electrical networks with a high
penetration rate[38—42].

Table 5. Incorrect location results.

Lﬁ:::li?)lnfa(‘lli:) Fault resistance Q Suspecttlzi fl:::t tion of Absolute error (%)
10 2 10.2366 0.236
25 50 24.8931 0.106
35 5 35.0595 0.059
55 120 54.7784 0.221
80 3 80.1218 0.121
95 13 94.8768 0.123

6. Conclusions

As aresult of changing electrical network parameters, especially electrical distribution networks
that have high penetration rates from distributed generation units, such as changing network
topology, load values, fault currents, and the level of electrical tension on distribution bars, it is
necessary to develop new working algorithms for distance protections to integrate those protections
and increase their sensitivity and accuracy.

Transmission lines are part of power systems, but system operators experience a large number
of faults. In response, a number of attempts have been made to mitigate the effects of faults on power
lines. The purpose of this thesis was to investigate the feasibility of using artificial neural networks
as a fault detection mechanism on power lines. There are three methods for protecting power lines,
namely fault detection, fault classification and fault location. The focus of this thesis was on the
application of artificial neural networks (ANN) for fault detection. The goal of this study was to detect
electrical faults and classify them in real time in a simulated environment. For this purpose, the
Matlab/Simulink tool was used, which used artificial neural modeling tools.

Network Toolbox and SimPower Systems Toolbox. It has been shown in the literature and
document content that ANN is a good method for detecting faults in power lines and can accurately
identify faults. The present study also validated its application and that good performance results
can be obtained with an ANN suitably trained using validated training data. Many of the goals were
confirmed, re-examined and described in detail in the dissertation. One problem that has not been
fully explored is fault location using ANN, primarily due to the time constraints of this project.
cessation of damage location determination through ANN is reserved as a future study with its
diversity. The research methodology used was to conduct a comprehensive literature review
followed by an analysis of ANN and its application in fault detection of power lines. The literature
review focused on understanding what fault detection is and its many applications. Analysis and
Modeling showed that training an ANN requires extensive data preparation. This is by far the most
time-consuming component of ANN design and application. It is noted that ANN has many
applications and functions, but careful care is required while preparing and formulating the data.
The INS fault detector measures faults efficiently and quickly, so the transmission line equipment is
more likely to be protected. In addition, the ANN fault detection method has been tested and proven
to be accurate for all types of faults.
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