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Abstract: The paper proves the existence of a family of axisymmetric equilibrium figures as solutions
of a stationary problem with unknown boundaries for the Navier-Stokes equations corresponding to
the slow rotation of a viscous compressible two-layer liquid mass about some axis. It is assumed that
the liquids are barotropic, capillary and have different viscosities, the internal fluid being bounded
by a closed surface. This interface does not intersect with the external boundary of the cloud. The
proof is based on implicit function theorem and carried out in the Holder spaces.
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1. Introduction

Existence of an equilibrium surface for an isolated compressible liquid mass rotating about a
fixed axis was first proved in [9]. Our aim is to prove the existence of equilibrium figures for a rotating
compressible two-layer fluid.

The problem of the rotation of an isolated incompressible liquid mass about a fixed axis as a
rigid body was considered by many famous mathematicians, among them were Newton, Maclaurin,
Jacobi, Kovalevskaya, Lyapunov, Poincare and others [1-3], who mainly studied the movement
without capillarity. The capillary fluids were first investigated by Globa-Mikhailenko [4], Boussinesq
and Charrueau in the begining of 20th century. The latter gave a detailed analysis of the problem,
calculated the shape of equilibrium figures, including the toroidal case, and considered some aspects
of the stability [5,6]. These results were included in a big review on this subject presented in the book
of Appell [7]. Stability problem for various ellipsoidal equilibrium figures is analyzed in monograph
[8].

Now we state, in a complete setting, the problem on unsteady motion of two compressible
barotropic fluids of finite volume separated by a closed unknown interface.

At the initial instant t = 0, let a fluid with dynamic viscosities ", y1{” be in a bounded domain
Qa“ C R3, and in the domain Q) , surrounding it, there be a fluid with dynamic viscosities p~, iy ;

pt >0, 2uF +3uF >0

The domain )y = 070+ U Q) is bounded by the free surface I'; and includes the closed interface
Iy =0Q%;T g are given. This two-component cloud rotates about the vertical axis x3 with an angular
velocity w.

For t > 0, it is necessary to find the surfaces I, , T}, as well as velocity vector field v(x,t) =
(v1,v2,v3) and the density p(x, t) > 0 of the fluids satisfying diffraction problem for the Navier - Stokes
system

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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p(Dw+(v-V)o) = V-T=0, Dip+V-(pv)=0 inQ; UQS, t>0,
v]i—0 = vo(x), pli=o =po(x) in QF UQY,
T(v,p)n|.- =c H n onIy, (1)
t
[0]|py= lim  o(x,t)— lim  o(x,t) =0, [T(v,p)n]|p.=c"H n onIy,
t x—xelf, x—xo€l}, t
xeQf xeQy

Vi=v-n onftzl";“ul"t_,

where
T=(—plp)+uV-0)I+pS(o)

= %

is stress tensor, (S(v)).. = =t + —v’_ is double strain rate tensor, [ is identity matrix; u*, u are ste
ij ox ox, y oM P
] i

functions of dynamic viscosities, equal to u™, ui in Q; and u~, y; in Q; respectively; p(p) is fluid
pressure given by a known smooth density function; vg and py > 0 are initial distributions of velocity
and density of the liquids, # is the outward normal vector to the union T';; H* (x, t) are twice the mean
curvatures of the surfaces l"tjE (moreover, HT < 0 at points of convexity l"t+ towards Q),); 0, ct >0
are surface tension coefficients on I',” and Ff, respectively; V, is the rate of evolution of I'; in the
direction n. We assume that the Cartesian coordinate system {x} is introduced in the space R3. The
central dot denotes the Cartesian scalar product.

We mean summation over repeated indices from 1 to 3 if they are denoted by Latin letters, and
from 1 to 2 if they are Greek. We mark vectors and vector spaces in bold. The notation V - T denotes
the vector with the components (V - T) i= aa—?ij, j=1,23.

The kinematic boundary condition v - n = V,, excludes mass transfer across fluid boundaries. It
follows from our assumption that the fluid particles do not leave the boundaries I’ during the time.

Local (in time) solvability was proved for problem (1) in the whole space R?® with a closed interface
between the fluids. The result was obtain both in the Sobolev —Slobodetskii classes of functions [10]
and in the Holder ones [11]. One can get similar results for a two-component domain bounded by a
free boundary if one takes into account the estimates for a model problem in a half-space [12,13].

As we have mentioned, we suppose the liquids to be barotropic which implies that the pressure p
is a known increasing function of the density: p’(p) > 0. Let, in addition, p = p(|x’|), x’ = (x1, x2,0).

We assume that equilibrium figures 7+, F are nearly globular domains with the radiuses Rf)t
(Rar < R), and the motion of fluids is close to the state of rest, i.e., the velocity v is small, and the
density p differs little from a step function p* > 0. This picture is schematically presented in Figure 1.
We denote the balls {x € R®: |x| < R} by Bge-

We are going to prove the existence of G and G, the boundaries of the figures 7+ and F,
respectively. We follow the plan of paper [9].
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R3

x' = (x1,%2)

Figure 1. Equilibrium Figures for a Two-Layer Compressible Fluid.

At rest, the bubble consisted of nested spherical two layers B RS and B Ry \ B RE with uniform

distributions of densities p* has the piecewise constant pressure:

20 .
plo7) = %= inBg;\ By,
" @)
( +) — 20+ + 2(T; in B
The masses of the layers are
P+|BR0+| =m", P_(|BRO*|*|BRO+|) =m . ®)

Steady motion of a two-layer gaseous body F = F+ U F~ uniformly rotating about the axis
x3 with a constant angular velocity w is governed by the homogeneous stationary Navier—Stokes
equations

p(V-V)V-V-T=0, V-(pV)=0 in UF* (4)

(here the density p and velocity V depend only on x) and the boundary conditions

T(V,P)n|, =0 H n onG",
[ng+ =0, [11‘(\2,77)11”9+ =0c"H'n ongG", (5)
V-n=0 onG=GTUG,

where H~, H ™" are twice the mean curvatures of G—, G, respectively. The last relation follows from
the boundary condition v - n = V},. The pressure P depends on p.
It is easily seen that velocity vector field

V(x) = wesz X x = w(—2x2,x1,0) (6)

satisfies (4) together with pressure function gradient

2
w
VP(p) = puty’ = p0- VI, )
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where e; is the ith basis vector, [x'|> = x3 + x3.
First, we consider the simple case when equality (7) coincides with the following one

vP(o) = P/(p)9 (4 1),

2
whence P’(p) = p(x) and P*(p) = pT(x) + p* in F* with constants p*, because pressure functions
can differ each other in different domains by a constant. These constants can be found from relations

(2): ,
_ 200 p”

TR, 2
L 20" 207 pt?

S ,
R "Ry 2

7

®)
P

Let S; be the unit sphere in R® with the center in zero, & = ﬁ € S1. We suppose G+ to be given
by functions R*(&) on S;. In addition, let R* (¢) be rotationally symmetric, i.e., they depend only on
|¢'] = /&3 + &% and {3, and be even in {3.

By substituting V given by (6) and P = P into boundary conditions (5), we obtain the equations
for the surface G~ of the domain F and for the interface G between the fluids:

o H (x)+P(p)=0, x€G,

H (3) +[Plo)lgi= 0, ¥ E G ®

Rotationally symmetry implies that R*(¢) do not depend on arctan(%). It is clear that n =

(%, %, n3), since the first two components of n are proportional to ones of the radial vector of the

circles to be horizontal sections of G£. Therefore V - n = 0 on G*.
Obviously, the density is given by the formulas

W2
p(x) = 7|x’\2 +c¢T in FT,

(10)
W o
p(x) = 7|x |“+c¢” in F~
with arbitrary positive constants c* and ¢, equations (9) taking the form
w2
cH () +P (- |xP+c) =0, xeG,
? 1)

w? w?
cTHT (x) + P*(Tlxﬂz +ct) - 7?*(7|x’|2 +¢7)=0, xegh

One can determine the constants c* by prescribing the masses of fluids to be the same as that of
the nested spherical liquid layers (3):

/Fip(x) CbCE/fi (%2|x’|2+ci> dx = m™*. (12)

We consider the angular momentum to be one more parameter of the problem. It is given:
B= p(x)V g dx:w/ (w—z\x’|2+ci)|x’|2dx (13)
= JFruF- 3 UFE\ 2 ’

where #; = e; X x is the ith solid rotation vector, i = 1,2,3. Then the angular velocity w is a function of

B.

doi:10.20944/preprints202311.0712.v1
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We denote by C*, s > 0, s ¢ N, the Holder space of functions f on the sphere S; with the norm

flessy = max (¥ sup [DIf(@)|+ Y sup [z —&-"EDDif(e) - Dif(@)),

k={L NN 525 zegy ljl=1s] &.4 €k

where D/f is |j|th derivative of f calculated in local coordinates on the subdomain {; C Sy, U, ¢ =
S1. Under C*(S1), we mean the subspace of C5(S;) consisting of rotationally symmetric functions that
are even with respect to C3.

Theorem 1. Let « > 0, « ¢ N, and let the data of problem (4), (5) be such that condition (26) holds. Then for
an arbitrary B satisfying the estimate
Bl <e (14)

with small enough e, there exists a unique solution (R*,w,c*) € C?2+*(S1) x C**%(S1) x R x R x R to
system (11)—(13). It obeys the inequality

;{|Ri—R(j)E|c2+a(sl)+|Ci—Pi|}+|w| < c|Bl. (15)

2. Proof of Theorem 1

Proof. In order to linearize system (11), we apply the formula for the first variation of a functional
SoR[r] = %R [s7] |s:0' According to [14,15], the first variation of twice the mean curvature of G* with
respect to the double curvature of the sphere S RE is

2

o (@) + o) = 3 (Bsyr* +2r%),
0

0

where Ag, is the Laplace - Beltrami operator on S; and rt = R* — Roi; Gt ={x= RSEC +rE(E)N, € €
S1}, N is the outward normal to S;. This yields

(B 2T) =k 4 f, CEsy

et (16)
P(Aslﬁ +2rt) =kT+ft, (€8,

0
where k= = 21;7—0: —P(c) =P (p)—P (c) kt = % —PH )+ P (c7) = Prpt) —
PH(ct)+P (¢c7)—P (p) inview of (2);

2 2 w?
fr=o (G () + =) = (H () + =) =P~ (5P +c7)
( R &) PG
+P (c),
2 2 2 (17)
£r = (B )+ ) = (@) + ) ) PTG WP )
— wz 112 — — —
+P (7|x P+ ) +PH(ch) =P ().
We integrate equations (16) over S by parts, then we get
20+
@ S, rrdé = /51 (k* 4 f)de. (18)
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The integrals |, 5 r* d¢ can be expressed in terms of the differences of the volumes | F| — |B Ry | and

|FH| - |BR3|, \BR01| = 4—”R5—L3. For example,

1 3 .3 2 . . _2 1 _3
|}'|—|BR6|_3/SI(R R5)dE = R; /Slr dg’;’+R0/51r d;‘+3/51r de,

and hence 1
Jo e = (1771 = Bygl) +Qlr,
] (19)
r-dé = —=(|F|—|Br-|) + Qlr7],
A r2 (71~ 1B 1)+l
_ 2 3
where Q[rt] = —é Js, rEedeE — 31%2 Js, r7de.

We rewrite (12) as follows
R*() 2 2
m= [ de [ et ds o IF = 5 [ RP@IE Pz +ctIF,
S] 0 2 10 Sl
-~ R™(Z) w2 12 4 - 7 w2 _5 45 112 _ _
m _/Sldg A |—E/51(R CRY|ERdE | F

where |¢'|? = &2 + ¢3. On the other hand, m™ = p+|BRar |, m™ = p’(|BRa| - |BR6r |). That's why

2
0= 35 [ RE@IEPdz +0* (1771 = By |) + 171 (F = o),
w? 1 5 45 20)
0=To LR RINEPAE+p7 (17| =B |+ 1By ) + 171 —p).

We express | F*| — |BROi | from (20) and substitute in (19). Then equalities (18) imply that

+ _ 2
;iz{p+R1+z (55 LRP@IEPde+IF7( —p")) +Qlrt}= [ (" +£yde
0 0 ! 1

and
207 1 1 _ - - -
62<R0_2(|}‘+|+|}' | = By | % B 1) + Q1) :/Sl(k +f)de.

Finally, we have
2 1 g -5 5\ (2 - _
ROZ{pROZ{l()/Sl(R — RP)[E A+ |F|(c™ —p7)
P_ w2 5 12
+ 6 (3 R @R e+ 171 =) @)
+Q[’_]} Z/Sl(k‘+f‘)dg.

In order to prove the solvability of system (16), (13), (21), (22), we use implicit function theorem.
We represent this system as a nonlinear vector equation:

®(p) =0, (23)
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where ®(¢p) = (@f,cbz, CDgF), Q= (rf,w,A%), AT =cF —pF,

+
o
D7 () = o (A, 1™ +2rF) —k* — 7,

0
R 47t 2
_ 112 0 W™ 2.2 | )4
@alg)=w [ EPag [ (Gl e )stds

Ra—&-r* (UZ
+w/ 124 (— ’252+cf)s4ds— :
s, 1g'*dg Rt \2 [ p

20" 1 w? 5
ot (o) = 7/ R+ 24E 4 | FHA+) — O+
1 (@) Rgz{pmoﬂ(lo [ RE@IEPag+|FHAT) - Qi

+ [t ae,

1

20~ 1 Ry +r7 2
o (9) = 2L [d O e Pst ds + | F|A
s =2l e L e

+ ;L(‘l"; JRSGIE S}

Qb I+ o)
1
We linearize (23) at zero and show that the derivative of @’ at this point is not equal to zero. Thus,

@' (0)p + 9(p) =0, (24)
where ®'(0) = (CI%/, D), <I>3jf/) (0) is the Fréchet derivative of @, that is,

/ ot - —
P (0)p = P(ASJJr +2r7) +p AT —pTAT,
0

_ 4 — _ 5=
®(0)p = (A5 +2r7) +p A7,

RO

! + 112 Rar 4 - 112 Ro 4
PhO)p —wpt [ TP [ stdsrwpm [ [&PdE [ stds
51 0 Sl RO
871 5, _(p-5 5
:E“’{(7+R()+ +p (R —R{ )},

' 20+ |Br+|AT o
Ry™ p*R{

— an (P*(p*) —P (p7) —p At +pa ),

3p*
_ 200 1 _ P _
;' (0)p = 5 ———— 4 (|Bg-| — |Bps VA~ + 5| B AT L —4mp~A
5 (0)g ROZPROZ{( R} | R0|) 0T R0| } (4
3 -3 3
’P_(p_)R+ Ry° =R N
30" R, 30~ R,
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and ¢(p) = @(p) — @' (0)p = (7", 2, ¥5°) with
¥ (@) =PH(cH) =P (") =P (¢ )+P (o) —ptAT +p A — FT,
P (@) =P (c)=P (0 )—p A —f,
RE ,?
palg) = [ (FPAz [ (TP AT)stds
Tt 2
o f "5"2d€/}<§0+ (- 12/2s% + ct)st s
! Ra a)2 ! _
+w/51 19 Izdé/Rg (7|€ 1?s% + A )s4ds

Ry +r~ 2
12 0 W~ 22 -\ 4
d/ w ds— B,
o [P [0 (TP +e)stds—p
2

20" 1 w 5 /
¥ (o) :Rgz{mgz(lo [, R@IEP g +(F* |~ By )A*) - Qlr*
+ (kT —p"AT+p7 A" + 1) dg,
207 1 w? _5 512012 P~ [w? 5 2
¥3 (@) —Raz{p_Raz{m/&m -RONRaE L (5 [ R @I

+(F | = [BgDA*) + (7 = By |+ 1B DA~} - 0D
+ /sl (k" —p A~ +f)de.

Let ¥ = C** x C?"* x Rx R x Rand Y = C* x C* x R x R x R. Using fixed point theorem,
we will show that equation (23) is solvable in X'.
In [16] (see the corollary to Theorem 2.1), it was proved that for any f € C*(S) the equation

Asr+2r=f (25)
has a unique solution r € C>*%(S;) and

[rlc2sa(s,) < calfleagsy)-

Moreover, due to the assumptions of the theorem, the determinant of the matrix in the left hand sides
of two equations <I>§E’(O)(p = —5 (¢) is not equal to zero:

+ 20~ (R — R 20 p R}®
(e~ ) (U =) ) 2R 26)
3Ry 30~ Ry 30"R,

(Here we have taken into account relations (8).) Hence, this matrix is invertible. Thus, the whole
operator ®'(0) : X — Y is also invertible and

lpllx < co| @' (0)glly,

where [lg]x = [r|caa(s,) + |1 |c2ra(s,) + lw| +[AT] + A7 and

/ _/ / _/
12" (0)plly = [Py (0)@lcas,) + P (0)@lca(s,) + P2 (0)gp| + P37 (0)gp| + @57 (0)gl.
Therefore, equation (24) can be written in the form:

@+ Ap(p) =0, A=a'(0)"L (27)
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Let us now estimate the non-linear operator . The term f~ given by (17) can be written as

1 2 , 2
fr= o [[a-s) Sl =P @) DRI @

where H ™ [sr] is twice the mean curvature of the surface G;; G = {x = R3¢ +srF(¢)N,
eS},N= %; ¢~ is some point of the interval [c~, “’;R*z(é) |&|? + c~]. One can write a similar
formula for f*. The terms f* have the second order of smallness with respect to @. After simple
calculations for two values of the arguments @ = (r*,w, A*) and ¢/ = (r¥',w’, A') € X such that

lgllx. ll@'lle <%,y <min{1,Rj/2,(Ry —R7)/2},

it can be shown that the estimates

1 (p)lly < cllpll3 + 1Bl < canllell% + I8l
l9(@) — 9 (@)lly < can’llo—¢'|lx

hold. This implies that A (¢) maps the ball {¢ € X : ||¢||x < 7} into itself and it is a contraction
operator if
e (eant™ +(8]) <7, cocgn® < 1.

These inequalities are satisfied for # such that
2¢5|B| < i < min{(2coc3) 7Y%, (cacy) 710}, (29)

So if .
B < 2 min{(2c5¢3) /%, (cac4) ~1/*}, (30)

then, by fixed point theorem, equation (27) has a unique solution in the ball {|l¢||x+ < 1} with 5
satisfying (29). Thus, equation (23) is also uniquely solvable for 5 obeying inequality (30), which gives
the estimate of ¢ in condition (14).

We now prove estimate (15). Since

lpllx < Alll¢(@)lly < calcsn®llellx +[B),
then for cpc3y® < %
lpllx < 2c2]Bl,

which coincides with inequality (15). O

Thus, we have shown that, for certain data of the problem, there are equilibrium figures for
a two-layer compressible fluid, pressure function being P+ = @ + p* and the density p being

determined by formulas (10).

3. General case

Now, we study the general case of pressure function. We assume only that P’(p) is positive and
may have a jump across G*.
Velocity vector field remains the same as above:

V(x) = w(—x2,x1,0).
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It satisfies (4) together with pressure function gradient VP (p) = p%ZV |x’|?. We introduce Q(p) such

that o) )
_P)Vp _g(w
Vo) = — = V(S IKP). (31)
The function Q(p) = [ ppl P,S(s) ds, p1 > 0. Since Q'(p) = @ > 0, there is an inverse function Q1.
And (31) implies
W2
o= 0 (L WP +CF)inF* (32)

with arbitrary constants C*.
Substituting p into equations (9), we have

2
o H () + P (Q’l(%bc’lz n C*)) =0, xeg,

(33)
2 2
ot HY (x) + P (Q*l ()2 + c+)) —Pp- (Q*l (L1212 + C’)) =0, xeg"
2 2
We prescribe the masses of fluids and apply (32):
2
+ _ _ —1(W 2 +
m —/]__ip(x)dx_/fiQ (2|x\+C )dx. (34)
Then one has the equations for determining the constants C*.
Similar, a given angular momentum f defines the angular velocity w:
2
— ) _ —“1(W 2 +Y /12
= pVemdr=w [ 07 (TWP+CE) (35)

Let us state the main theorem.

Theorem 2. Let a > 0, & ¢ N, and let P*(p) € C*(R.) be positive increasing functions such that equalities
(2) are satisfied for it. Here R = {x € R|x > 0}. We assume also that the data of problem (4), (5) are subjected
to condition (47). Then for an arbitrary B satisfying the estimate

Bl < (36)

with e small enough, there exists a unique solution (R*,w,C*) € C?%(S1) x C?>T*(S1) x R x R x R to
system (33)—(35), and the inequality

;{lRi — Ryl cvasy) +1Q71(CF) = o[} + |w| < c[Bl (37)

holds.

Proof. After linearisation, system (33) takes the form of (16) with

- 21;’0_ ~P(QNC) =P (p7)-P(Q7H(C)),

+_20'+ + —1/+ - —1¢—

kr = —PHQHC)) +PT(Q7H(C) 38)
0

=P (") = PHQHCH) +P(QHCT) ~P (o)
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due to (2) and
fo=o (B @+ R20> —(H () + RZO)) P (e (SR C))
+P(Q71(C)),
2 (39)

fr=ct(bo(H(x) + e ) - P (Q‘l(%2|x’|2 +C"))

Ry R(J{
771“’72/27 +(o0-1(+)) _ - (O-1(C—
+P (Q N (FIKIP+CT)) +PH(Q(CT)) =P (Q(CT)).
Following Sect. 2, we obtain (18) by integrating equations (16) by parts but now with new k* (38)
and fjE (39). We substitute (19) in equality (18):

2 (a7 1= B ) + Q) = [ (5 £y

R

0 0 ! (40)
207 1 1 ~
(S (F 1+ 17 = By | £ By )+ QI 1) = [ (6 +f) e
Ry2 VR, :
where Q[r*] = 7? Js, 7 rE2de — 3Ri2 Js, 1 r3de.

We can write (34) as follows
(s
w = [ a / (@ (g +ct) - 071 )Rds+ N (CHIF,
© 1122 - “1r=) 2 1 ey | e
m- /1 €R+¢> ( (7|§|s +C) = Q(C))sPds + QT H(CT)|F .
In view of (3), we have

R¥(9) 2
0= /51 dg/o (Q—l(%|€/|2sz+c+) _ Q_l(C+))szds
+(‘f+|—|BR+|) HIFT(Q N (CH) ~pY),

(41)
0 _/s d@/ |§ 2s24+C7) — Qil(C*)>szds
1
0 (1] B, | + B ) +1F71(Q71(C) = p).

By expressing the differences |F*| — |BRO+| and |F~| — |BR6| + |BR6r| from equalities (41) and
substituting them in (40), we arrive at

20+{ </ / |C 22+ CF) — Qil(Cﬂ)szds

RyZ LotRIZ \ sy

HFTI(QC) —p*)) +Arl=f o era @

doi:10.20944/preprints202311.0712.v1
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and
200 | -1 S SN DRI
Ro‘z{p—Raz{/sldg kg (& (G +CT) - ol en) e
+IFT(QHCET) —p7)
P N T S 1ty )2
+p+(/51d(§/0 (@1 (1P +CF) —Ql(ch))s2as
HF(Q () —p*))}+é[r1} = [+ @)
Next, we represent system (16), (35), (42), (43) in the form of vector equation (23) with ®(p) =
(D, @2, ), @ = (rt, w,AT), AT = Q71(CH) — p*,

+
(%
i (p) = F(Aslrﬂt +2rt) -kt - %,

Ry +rT )
Sl =« [1FPd; [ @ (SIEPE+C)stas
S1 0
Ry +r~ )
vw [18Pde [ (PR )stds - p (44)
51 Ry +1+
Py 1 Rf+rT )
siiw = ([ | (@ Ler - o )ia
RyZ Lorrg2\S
HIF) =@ [
51
_ Ry +r~ )
q>3_("’):20_2{_1_z{/d5 / (Q_l(%lé"lzs2+C‘)—Q‘l(c—))s2ds+|f—|)r
Ry PRy 51 Ri+4rt
B Ri+rt )
+p+</dé‘ [ (P +ct) - olch))sPds
S1 0
P ) b= ar 1+ [+ de

S1

Then we apply again implicit function theorem to (23). To this end, we calculate the Fréchet derivative
of ® at zero and linearize (23) at this point. As a result, one has

@' (0)p +p(p) =0 (45)
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with @' (0) = (@7, @), ®3')(0),
+ ! !
' (0)p = —— (Mg, rt +2r") + P ("I =P (0 )27,
O
_ o _ _ Ny —
®1/(0)¢:P(A517 +2r )+ P (o)A,
0
/ + 12 R0+ 4 — 112 Ry 4
4(0)p = wp” [ [FPdg [ sds tawpm [ 18Pz [ stas
0
871 + 45 -5 45
= w{p RS +o7 (Ry" —R{7) |,
+/ 20 |BR0+|/\+ + (5T yAt ~ (YA~
O3 (0 = —5— g — 4P (p1)AT +47P (p7)A (46)
Ry~ ™Ry
_ 20" + ot YAt (0 WA~
—4n{(3p+R3—7’ (p ))A +P (o)A }
_ 200 1 _ . P Ly
@, (0)p =" ——{(|Bp| — [Bps DA™ + £ |Bps [AT L —42P~ (o)A
5 (O ROZPROZ{( R, R§ ) ot TR }
R$® 20~ (Ry® - R ,
42T R e (PR RO) A,
1 1 p
30" R, 30" R,

and () = @(@) — @' (0)p = (7 (), 2(9), ¥ (@) ), where
¥ (@) =PH(Q7HCT)) =P () =P (QHC)+P (o) — P (pT)A*
+P 7 (p7)A — fT,
y; (@) =P *<Q*1<C*>>—P*(pf)—P*’(p*)A*—fi

e = [ R0z [ {7 (LI + 0l +40) —pt Jshas
ta [ 18 |2d¢/ G+ Q" A5t s
+w/ |<’§|2d§/ |€|252+Q(p +A” )) 0~ }s4ds
o a7 e + Qo +A))stds —

g+

3 (@) = ;‘Z{pm#(/dg / (Q*l(%ZM/‘ZSZ—l—CJr)_Qfl((j+))52ds

0
(7| - [Bgg A ) - 3]}

[ =P (A P (0TIA + £
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¥; (@) = 22{ 2{/d€ / IC 2 4+C7) — Q—l(c—))Sst
0 51 Rf+4rt
B Rj+rT )
P+(S/ dz O/ (Q‘l(%|§’|zsz+C+) —Q‘l(C+))szds

1T = B DAY ) + (7 = By |+ B DA | - Q[r‘]}

+ s = P~ (07 )A +f7)dé
We recall the notation: X = C?** x C?** x Rx R x Rand ) = C* x C* x R x R x R. By means
of fixed point theorem, we prove the solvability of system (23) with (44) in X"
The existence of a unique solution r € C>*%(S;) to two first equations in (25) and the estimate
for it are discussed in Sec. 2. The operator @ (0) is invertible. In addition, we have assumed that the
determinant of two equations q>3i/ (0)p = — 95 () with relations (46) is not equal to zero:

ZU*P*,(p*)R(J{B'

+ , 20~ (Ry° - R
( 20 _pt (P+))( T Ko 0 ) 3P+Ra4

30T Ry 30~ R;"

_ p—’(p—)) _ #0. (47)

Therefore, the vector value operator ®'(0) : X — ) is invertible too and the solution obeys the
inequality

lellx < cal|@'(0)elly,
where [lg]lx = [r|caa(s,) + | |,y + |l + AT+ A7,

|2 ©O)lly = 197 O)plce(s,) + |7 O)plcx(s,) + 2 (0)gl + €5 (0)g] + 25" (0)g]
Hence, one can write equation (45) in the form (27).

We estimate the operator ¢ in the same way as in Sec. 2. Using formulas similar to (28) for the
new functions f*, we conclude again that

lp(@)lly < cllpll¥ + 18| < csnllell% + IBI,
9 (p) — w(@)lly < can®llo —¢'llx

for two values of the arguments ¢ = (r*,w,A*) and ¢/ = (r*',w’,A*") € X such that
lellx lo'lle <n,  n <min{l,Ry/2,(Ry —R{)/2}.

By repeating the arguments of Sec. 2, we deduce that A (¢) is a contraction operator if inequality (30)

holds. Hence, fixed point theorem guarantees the existence of a unique solution to equation (27) in

the ball {||g||x < 7} with 7 satisfying (29). Therefore (23) with ®(¢) given by (44) is also uniquely

solvable for § such that condition (30) holds. This inequality implies an estimate for € in (36).
Estimate (37) follows from

lelle < 1Al @)y < eacan®llgllx + 18]),
if C2C31’]a < % O

Conclusions

Thus, we have shown the existence of axially symmetric equilibrium figures for a two-component
compressible fluid when pressure function is given by a smooth growing function of fluid density and
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the data satisfy some condition. Under a small enough angular momentum these equilibrium figures
are close to embedded balls. The next stage of investigation of the problem will consist in proving the
existence of a global solution to the nonstationary problem for small initial data and its tendency to the
stationary solution (V, p), as well as in studying the stability of equilibrium figures obtained. A new
paper will deal with this investigation.

In addition, we note that our analysis has been carried out for the case of neglecting the gravity of
liquids. This situation is realized in space, and our two-layer gas cloud can be considered, for example,
as a gaseous planet or another cosmic rotating body.
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