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Article 

(Nano)granules Involving Aggregation at a Passage to 

the Nanoscale as Viewed in Terms of Diffusive 

Heisenberg Relation 

Adam Gadomski * 

Institute of Mathematics and Physics (Group of Modeling of Physicochemical Processes), Faculty of Chemical Technology 
and Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7 Street, 85-796 Bydgoszcz, Poland;  
* Correspondence: agad@pbs.edu.pl 

Abstract: This feature study attempts on setting a granules involving mesoscopic matter-aggregation context  as 
a problem of passing locally by the matter-aggregating system from classical stochastic (mesoscopic limit) to a 
quantum description (nanoscale quantum-size effect limit). A d-dimensional entropy-production aggregation of 
the granules-involving matter is considered in terms of a (sub)diffusive realization. It turns out that when taking 
a full d-dimensional pathway of the aggregation toward the nanoscale, one is capable of disclosing a Heisenberg 
type (diffusional) relation, setting up an upper uncertainty bound for the (sub)diffusive very slow granules-
including environment that matches the quantum limit of h/2 (– average mass of a granule; h – the Planck’s 
constant) for the diffusion coefficient of the aggregation, likely first proposed by Fürth in 1933, and qualitatively 
foreseen by Schrödinger some years before, both in the context of a diffusing particle cluster. The classical-
quantum passage uncovered here, also termed insightfully the quantum-size effect (as borrowed from the 
quantum dots’ parlance), works properly for the three-dimensional (d=3) case, making use of a substantial 
physical fact that the (nano)granules interact readily via their surfaces with the also granular surroundings in 
which they are immersed. This natural observation is embodied in the basic averaging construction of the 
diffusion coefficient of the aggregation of interest. Certain, possibly biomedical, applications of the model can 
also be viewed by prospective inspection of  tiny inhomogeneities in nanofibrillar and/or lamellar matter for 
which certain numerical realizations are plausible to prepare based on thorough nanoscale experiments.  

Keywords: matter aggregation; mesoscale; nanoscale; granule evolution; stochastic quantization; quantum-size 
effect; Heisenberg type relation for the granule evolution; Fokker-Planck and diffusion type equation; 
nanostructure formation 
 

1. Introduction 

It is widely recognized that physical systems can express their matter aggregation involving 
properties if they are formed distinctly either in low-temperature (quantum prone; towards crystal 
formation) or in high-temperature (classically meant, with amorphization effects included) limits. It 
is expected that an intriguing physical scenario appears at the borderline, namely at a passage 
between quantum and classical expositions, which is often seen when exploring a multitude of 
(functional) structures possessing an involvement of the so-called granules or molecular (dis)orderly 
tiny aggregates of versatile types. For example, polymer granules is a long, repeating chains of atoms, 
formed through the linkage of many molecules called monomers. The monomers can be identical, or 
they can have one or more substituted chemical groups. Of course, these differences between 
monomers can affect granules’ properties such as solubility, flexibility, or mechanical stability [1,2].  

It is commonly accepted that controlling the size and shape of nanoparticles is a challenging 
issue. Even though there is no external load applied on a nanoparticle or on an ensemble of very small 
crystals, such as the quantum dots, their internal parts experience an appreciable surface stress that 
compensates for the corresponding capillary forces. Such a physical scenario also often shows up in 
colloidal self-assembly systems, especially those devoted to yielding special-purpose (soluble) 
nanocrystals employed in biomedical, cosmetical, and biomaterials science addressing applications. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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Functional nanocrystalline materials, made up of tiny and orderly granules, which one may name 
grains or crystallites, can also be mentioned in this circumstance [3,4].  

There is no doubt, that a challenging task emerges on a quite general level, namely, how to 
extract from a given, often viscoelastic nucleation-growth framework [2], reliable control of the size 
and shape of nanoparticles/nanocrystals, especially if the size of the objects is blurred solely in the 
nanoscale, i.e. in a typical range of about 1-100 nm. As one may expect, at low temperatures and in 
the lower part of the distance range of a few nanometers some quantum effects can be uncovered too. 
But at the same size range, even in the room temperature limit or for water at a bit lower temperature 
value (at about 277 K rendering a water drop denser than in room- and/or physiological 
temperatures), a certain creation of bonds is feasible. However, any creation of bonds when treated 
non-statistically, for example, when recalling the reactive collisions theory, ought to be described 
with the help of a quantum-mechanical framework [4,5].  

                                             

Figure 1. A picture of a bubbles-containing (crude) macroscopic analog system (top view), wherein the bubbles 
emerge in a glass full of water after some seconds when the dissolution of a soluble tablet called Arelcal 300 mg 
with the addition of quercine (an anti-inflammation pigment; produced by Zdrovit, Poland). The structureless 
granules named bubbles here, containing a gaseous internal phase, grow in a capillary mode such that the bigger 
(macro)granules grow in closed packing conditions at the expense of the smaller ones. The annihilation of the 
smaller “grains” results in having, according to the Kelvin-Laplace (capillarity) law, immensely high internal 
gas-phase pressures, the values of which override the surface-tension (sustainability) conditions, ultimately 
resulting in their blow-ups along with a diffusional spread of the gaseous phase to neighboring bubble(s). The 
system is supposed to evolve essentially in a constant-volume regime. (The vessel-wall boundary effects are 
postponed in further consideration.). 

In the following, we would like to introduce a mesoscopic, entropy-production model of a d-
dimensional (soft) material formation based on the very basic rules of the evolution of grains- or 
granules-containing systems, wherein the granule’s volume stands for a stochastic variable (x), see 
[6], and refs. therein. The material system addressed is supposed to reside close to the local 
thermodynamic equilibrium, eventually leaving it for the neighboring one. The change of local 
equilibria is eventually driven by the capillary forces (Kelvin-Laplace law), albeit the process is not 
entirely deterministic because it is also driven by matter diffusion through the subsequent (soft) grain 
boundaries [7]. Qualitatively and on a (crude) macroscopic scale, the process of interest is supposed 
to be reminiscent of a bubbles-containing formation, see Figure 1.  

In one of the recent previous studies, we have confined ourselves to a relevant circumstance, 
namely, we have directed our efforts towards quantum wires and very low-dimensional nano-
objects, as well as nanofibrils formations, reaching ultimately the space dimension d=1. As a 
consequence, our system has been assumed to be of the negligible role played in it typically by the 
surface tension. In turn, to keep the needle-shaped system as a whole we have assumed that the Van 
der Waals attraction ought to be at play while creating the structure; virtually, the electrostatic 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 November 2023                   doi:10.20944/preprints202311.0631.v1

https://doi.org/10.20944/preprints202311.0631.v1


Coulomb/dipolar attraction can be of favor too. On the other hand, it qualitatively looks like we 
would efficiently confine to a line (or a chain) of a granules-containing system or the like [8,2].  

In the current study, we would like to take advantage of the full d-dimensional matter 
aggregation case published elsewhere [9,10,11,12], but this time we explore thoroughly the x-
dependent (state-dependent) diffusion function of the aggregation in the algebraic (scalable) form of  𝐷 = 𝐷𝑜 𝑥𝛼 ((1) 
with  𝛼 = 𝑑 − 1𝑑   

 
 (2) 

where  is a characteristic surface-to-volume exponent, 𝐷𝑜  represents a diffusion constant 
(typically of the order of 10−9𝑐𝑚2/𝑠), and x∼ 𝑟𝑑  mimics the (hyper)volume of the granule; for x=v 
and d=3, one would provide, for example, a sphere’s volume v=(4/3)𝑟3. Note that 𝛼 = 2/3  applies 
here, thus, the sphere’s surface clearly becomes s=4𝑟2. For the purpose of this study, it is worth 
noting that the range of the linear size (radius) r is from sub-millimeters to nanometers. (In general, 
the characteristic exponent α represents a generically colloidal nature of the mesoscopic aggregation.)  

 
In the present study, we would like to focus on the following subject matter. First, in contrast 

to the considerations developed in [8] we are going to explore in full the d-dimensional picture of the 
aggregation [6,12]. Second, we wish to go a step further with the previously touched-upon stochastic 
quantization procedure applied to diffusion-type systems [8], proposed originally in terms of a 
quantum-classical crossover in critical dynamics, allowing to convert the diffusion-type equation to 
a Schrödinger’s equation (at first, in the imaginary time domain). It is possible to get if the diffusion 
coefficient is proportional to Planck’s constant h [13]. In the limit of h going to zero, i.e. while escaping 
from the respective quantum domain, the (soft) material evolution in x-space would attain a low-
valued ‘subdiffusive’ (and, otherwise non-quantum) mode, nearly causing to trap the atoms or 
molecules absorbed by any of the adjacent granules [1,2].  

 
However, an appreciable novelty of the current study is thought of to be a Heisenberg-type 

diffusional relation coming out from a suitable redefinition of Equation (1), qualitatively in accord 
with what has been proposed in [13,14,15]. This redefinition along with an exploration of its 
consequences (i.e., toward quantum-size effect [4,16]), resulting in the classical-quantum passage of 
the aggregation, will be presented in section 3.  

 
The paper is organized as follows. In section 2, a mesoscopic model for a d-dimensional (soft) 

material formation in nonequilibrium-thermodynamic conditions is introduced [12], while in section 
3 classical-quantum crossover of the d-dimensional (nano)granules involving formation, involving 
the offered granule-size (r) dependent Heisenberg-type diffusional relation is unveiled. Section 4 will 
contain a concluding address. 

2. Mesoscopic model for a granules-containing formation in nonequilibrium thermodynamic 

conditions 

Certain selected examples of some types of macro-granules involving matter have been 
presented in Figure 1 and Figure 2. Of course, they are of very qualitative, and above all, of exclusively 
macroscopic, also demonstrative, everyday character – an equivalent of the granule can be here either 
a bubble or some liquid egg, or finally, a piece of wood, thus in fact, a real granular system [17]. What 
they, however, demonstrate in common, is that they are supposed to be closed-packed structures, cf. 
[7]. We will refer to the close-packing conditions in dimension d but for meso- and nanoscopic matter 
aggregations in the subsequent sections/rationale. (Our tacit assumption for the rest of the paper’s 
content will be the matter-aggregation statistical scalability, cf. [6, 9,10,12].)  

 
From now on, however, let us introduce in short a model of the so-called normal grain growth 

[9,10,2] that is based on the physical assumption that the system is conservative, which means that  𝜕𝑓(𝑥, 𝑡)𝜕𝑡 + 𝜕𝐽(𝑥, 𝑡)𝜕𝑥 = 0  (3) 
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is proposed. To complete the problem presented in Equations (3)-(4) one has to prescribe the initial 
and boundary conditions, abbreviated by IBCs; the so-called delta-Dirac and absorbing IBCs can be 
found elsewhere [9,10].   

 
As anticipated in the preceding section, a decomposition of the aggregating matter flux J(x,t) 

into two main contributions [1,12] 𝐽(𝑥, 𝑡) = −𝜎𝑥𝛼−1𝑓(𝑥, 𝑡) −  𝐷𝑜 𝑥𝛼 𝜕𝑓(𝑥, 𝑡)𝜕𝑥  (4) 

ought to be assured as a signature of colloid-type systems, namely, a surface tension involving the 
non-gradient part (involving implicitly the Kelvin-Laplace pressure term [2]) and its diffusion-type 
gradient-including counterpart. Bear in mind that σ and Do are surface tension and diffusion reference 
(temperature-dependent) parameters, respectively. The (skew) distribution f(x,t) represents the 
probability density of finding the respective grain of size x at time t; cf. [6] and refs. therein. The 
characteristic exponent α reads (cf. Equation (2)) 𝛼 = 1 − 1𝑑 , (5) 

where d – Euclidean space dimension (d = 1,2,3 …). Realize that if d = 1 then α = 0, and in Equation (4) 
the diffusion-type term becomes classically defined with a constant Do. Be aware of the fact that non-
integer values of d>1  are not excluded a priori, albeit another non-integer-value involving approach 
has been offered so far [1]. By virtue of it, the factor preceding the gradient of f(x,t) becomes x-
independent, This phenomenological (d=1)-model, invented for the physical-metallurgical grains-
containing system, evolving diffusively in the so-called normal grain-growth conditions (recall the 
mention on IBCs above) is an entropy-production model [8].  

But the x-independence is not the case of d>1. This is because the line- and surface tension do 
influence the granules' state-dependent evolution driven by Equations (3) and (4) with the 
corresponding IBCs [2]; cf. Figure 1.  

According to [7] it can be presented (cf., Equation (4)) in dimension d, in terms of the entropy 
production, if the matter flux is written as [11] 𝐽(𝑥, 𝑡) = −𝑏(𝑥)𝑓(𝑥, 𝑡) 𝜕𝜑(𝑥)𝜕𝑥 − 𝐷𝑜 𝑥𝛼 𝜕𝑓(𝑥, 𝑡)𝜕𝑥 , (6) 

in which case the only difference, when comparing Equations (4) and (6), is that there is a free energy 

gradient 
𝜕𝜑(𝑥)𝜕𝑥 , which implies that the coefficient (mobility) 𝑏(𝑥) = 1𝑇𝑓(𝑥,𝑡) 𝐿(𝑥) , with L(x) – an 

Onsager’s coefficient, see [1] for comparison. The most important physical fact [11] appears to be here 
that b(x) is inversely proportional to the local temperature T, thus, for the high-temperature limit the 

non-diffusive term, given by the free energy gradient (
𝜕𝜑(𝑥)𝜕𝑥 ), irrespective of the role played by 

dimension d, vanishes. Thus, the evolution of granules is essentially based on the matter flux  𝐽(𝑥, 𝑡) = −𝐷𝑜 𝜕𝑓(𝑥, 𝑡)𝜕𝑥 , (7) 

with 𝐷𝑜 = 𝑐𝑜𝑛𝑠𝑡, which implies the independence (of the kinetics) of the state variable x. Obviously, 
the evolution of the d=1-material system remains conservative, in accord with Equation (3) for α=0, 
which is equivalent to d=1, cf. Equation (2) or (5). This can virtually be the case of the formations of 
quantum wires during a molecular beam (hetero)epitaxy process, or similarly, when by the same 
nanotechnology an emergence of nanorods proves to be efficient, or some nanofibrils, and their 
bundles emerge as one-dimensional quantum materials [8,19], expressing the quantum-size effect but 
exclusively for d>1, especially if d=3 appears to be the case of relevance [16,18].  
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Figure 2. Macroscopic illustrative examples of sticky viz  viscoelastic  vs. non-sticky (truly granular [17]) 
grains/granules containing closed packed configurations from top (eggs on a plate) to bottom (pieces of wood in 
a gravitation-assisted pile) view, respectively. 

3. Nanoscale classical vs. quantum limit of the d=3-dimensional granules involving  formation: 

construction of the diffusion function 

As we have already pointed out, we are interested in the matter aggregation case for higher 
dimensions (d>1) but with in-parallel stepping down toward nanoscale linear dimensions of r-s, the 
radii of the granules/domains. Therefore, it is easy to see that the examples presented in Figure 1 and 
Figure 2 are of a crude and qualitative connotation, only. They can, however, strengthen our intuition 
at least in terms of close-packing (bio)material conditions. More subtle examples of, e.g. microfibrils 
in natural systems (cornea; embryos), basically detectable by light microscopy, one can take from 
[20,21].   

To take an appreciable advantage of the preannounced close-packing conditions based on our 
matter aggregation model, one has to resort to the evaluation of the statistical moments of the 
distribution f(x,t) [2] (as denoted by < 𝑥𝑛(𝑡) >: = ∫ 𝑥𝑛𝑓(𝑥, 𝑡)𝑑𝑥  [6]) obeying the set of equations (3)-
(5) with the IBCs, and x-dependent diffusion function D(x), Equation (1). Evaluation of the statistical 
moments < 𝑥𝑛(𝑡) > for n=1, which is equivalent to get the total system volume V [22] conserved, 
V=const., leads also through < 𝑥𝑛=0(𝑡) >< 𝑟(𝑡) >𝑑= 𝑉,  to a type of subdiffusive late-time (t) 
structural behavior  
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< 𝑟(𝑡)𝑡 >2∼ 𝑡2/(𝑑+1)                                               (8) 
 
wherein the ensemble average < 𝑥𝑛=0(𝑡) > ~𝑡−𝑑/(𝑑+1) (asymptotically) stands the average number of 
granules in the conservative system (1) with (3)-(5). It is acceptable that  < 𝑟(𝑡)𝑡 >2, cf. Equation  (8), being different from the fluctuation < 𝑟2(𝑡) > growing a bit faster (in 
accord with a temporal change of the specific volume of the aggregate) than the quantity in (8), 
mimicking the (averaged) area of the granule which develops in time subdiffusively for d>1. For an 
analogy, one can consult [22] (see refs. therein too), in which a peculiar percolation-assisted 
construction of the mean-squared displacement in the space of x-sizes, and in analogue to Equation 
(8), has been offered based on the (bare) structure-property argumentation. Notice that the super-
dimension d+1 embodied in (8) is a quantitative signature of the close-packing measure [7], indicative 
of a minimal d-dimensional neighborhood of any selected grain/granule of interest.  

However, for the quantum -size effect [16,18] a more clear, thus sophisticated, procedure is  
desired. It can be proposed, based on the same averaging as above < ⋯ >, see ref. [2] for details, by 

introducing the generalized diffusion coefficient of the (bio)material formation < 𝑑𝑑𝑡 (1𝛼) 𝑥𝛼(𝑡) > 

with the characteristic colloid-type exponent  𝛼 > 0. By making use of the geometrical similarity 
relation x∼ 𝑟𝑑  (for the granule’s hypervolume)  one is able, when plugging in it Equation (2) or (5), 
and performing  the differentiation over time t, that  

  < 𝑑𝑑𝑡 (1𝛼) 𝑥𝛼(𝑡) > ~ < 𝑟(𝑡) 𝑑𝑑𝑡 𝑟(𝑡) >                                                       (9)

  
which holds true for d=3 or 𝛼 = 2/3. (Realize that relation (9) does not contain any information about 
the shape of the granules; the shape factor is assumed to be quantitatively of order of one, being at 
the same time a dimensionless parameter, e.g.  4/3.) Defining the diffusion coefficient 𝐷(𝑑=3)(𝑟) one 
is capable of providing the following Heisenberg-type diffusive relation  𝐷(𝑑=3)(𝑟) ≔< 𝑟(𝑡) 𝑑𝑑𝑡 𝑟(𝑡) >                        (10) 

thus, in the r-space, meaning, in the space of the (round) granules’ sizes. To our knowledge, it is a 
novelty and virtually, a useful and practical tool for the quantum-size effect aggregations in question.  

It is conjectured by the present feature study that if the radius (or, a linear granule’s size) r is 
placed in the nanometer-scale range of (upper) order of 10−7𝑚  then by assuming 𝐷(𝑑=3)~10−7[𝑚]10−10 [𝑚/𝑠]  and accepting 𝑡 ≫ 𝑡𝑜 well above an initial time (fairly close to 

stationarity), one can get 𝐷(𝑑=3)~10−17 [𝑚 ∗ 𝑚𝑠 ] = 10−13 [𝑐𝑚 ∗ 𝑐𝑚𝑠 ]. It is still within the proper range of 

diffusion coefficient’s values, for example, for semiconductors, when Ga atoms perform diffusional 
motion along GaAs (001) plane [23].  

What  we have achieved so far for striving to disclose the quantum-size effect,  pertinent mostly 
to tiny nanoscale formations [16], is that Equation (10) can be tested readily against its quantum 
Heisenberg-type expression. It can formally be performed thanks to a quantization procedure in 
which a profound analogy between quantum fluctuations and Brownian motion is addressed, 
proposed by Fürth [13] in the early nineteen thirties, and elaborated by Nelson in the nineteen sixties 
of the past century [14], and later, by Ruggiero and Zanetti [15].  In this procedure a derivation of 
Schrödinger’s equation can essentially be obtained from the Newton-Langevin type dynamics, with 
an aid of associated  Ornstein-Uhlenbeck noise, playing a role of the external medium acting on the 
system’s dynamics [14]. From Fürth-Nelson quantization procedure [13,14], also well elaborated in 
[15], it turns out that the diffusion coefficient included in Equation (10) gives rise to the similarity 
relation, namely  𝐷(𝑑=3)(𝑟[𝑛𝑚]) ∼ ℎ        (11) 

if one makes use of an effective analogy between the random walk in x-space of granules’ sizes 
(quantum-size effect) and that of conventional (for Brownian particles) space coordinates (d>1) 
[22,24]; r belongs to the nanometer scale, r[nm] in Equation (11).  Of course, the Planck’s constant, h, 
viewed in terms of action (formally, Joule times second), is known as a very small quantity. It is also 
well-accepted that converting the evolving system to the classical limit means that ℎ → 0 would 
apply, which is pretty well consistent with the meaning of Equation (11), with very small diffusion-
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coefficient values [23]. The ratio of h/m from Equation (12) below, is expressed in diffusion-coefficient 
units, i.e. in 𝑐𝑚2/𝑠, see discussion below Equation(2) or that presented after Equation (10).  

To exploit the size vs. space position analogy [22] in full, let us provide the appropriate  well-
known expression for  

 
             𝐷(𝑑=3)(𝑟[𝑛𝑚]) =h/2                                   (12) 
 

which is derived in [13,14] for a diffusing particle/granule of an average mass . (Realize that 
complete methods of solution for stochastic-classical and quantum Fokker-Planck equations have 
been offered by [24,25].) The diffusing particle in our physical circumstance is the growing granule 
that is expanding in the atomic mass, and upon the stationarity limit of the uptake with saturation 
effect when a granule is ultimately being created by addition of atoms or molecules [1,22]. Another 
interesting physical nanosystem would be when nanobubbles in organic/inorganic monolayers are 
formed in the regime of negligible surface-tension [26], thus, presumably along with the action of 
diffusive dynamics in d>1 [25], Equation (7); cf. Figure (1) for a certain macroscopic outlook. But 
looking at the impact of Equation (12) on the stationary- or late-time (saturation) limit of the 
essentially subdiffusive process (with a very slowly decreasing value of the diffusion coefficient) one 
would come to a firm quantitative conclusion that for a small-cluster (granule) mass of order of 10-24 

kg (tens to hundreds of Ga atoms), one arrives at 𝐷(𝑑=3) of the above indicated values in the range of 
the semiconductor-characteristic (GaAs) diffusion coefficients [23], cf. some values listed after 
Equation (10).  

4. Concluding address 

The following conclusions can be juxtaposed as follows:  
(i) -The mesoscopic (principal) model offered here is essentially structureless: The only 

“structure” that is involved is given by the surface-to-volume (colloid-type) exponent, 
Equation (2) or (5), but the statistical features of the Fokker-Planck and Smoluchowski type 
of the subsequent aggregational, dimension-dependent dynamics (Equations (3)-(5)) give rise 
to its useful very peculiar properties;  

(ii) -From these dynamics, in particular for d=3 for which Equation (1) does express its  diffusion-
structural behavior, it follows that the classical stochastic (diffusional) dynamics are able to 
meet their near quantum Heisenberg-type counterpart, contributing thoroughly to the 
corresponding quantum-size effect [16], thus to obeying Equations (9)-(12);  

(iii) -It turns out that  even though  the mesoscopic matter aggregations do not provide any 
versatile structural impact, they are robust enough within the surface or interface realm of 
action to give rise to an efficient numerical and computer-simulational investigation toward 
atomic detail of what is inside the granules in terms of their corresponding subtle mechano-
chemical stability, their internal strength and compactness (prospectively, pointing to their 
functionalities and complexities, as partly uncoverable by means of numerical and 
simulational methods), and the like [20,21]. 

It is always to warn someone’s awareness here that, in general, an  elementary entropy change 
(at a given temperature T) of the aggregation, designated by 𝛿𝑆 = − 1𝑇 ∫ 𝜇(𝑥, 𝑡)𝛿𝑓(𝑥, 𝑡)𝑑𝑥 as addressed 

by [7], depends on the chemical potential of the system µ(x, t), which in turn, must depend upon the 
elementary free system’s energy release, and a chemical affinity [11]. (Note that for T-s high enough 
one would effectively attain 𝛿𝑆 = 0, thus, the thermodynamic equilibrium.) We are of the opinion 
that we have to unveil 𝛿𝑆 as a useful cause of the energy win by the physical entities such as  atoms 
or  molecules as being absorbed (also, adsorbed and/or chemically bonded) by their adjacent virtually 
(target-like) counterparts. In this way, for example, an effective nonequilibrium d>1-structure 
(quantum dots) can emerge, and repetitive  realization of µ(x, t) would rest upon the above sketched 
energy-gaining and the entities’ exchange elementary process. The chemical affinity, in turn, should 
be realized possibly by means of a respective bonding, for example an H-bonding, as mentioned in 
[2,4].  
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