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Abstract: In China, 65 types of venomous snakes exist, with the Chinese Cobra Naja atra being
prominent and a major cause of snakebites in humans. Furthermore, N. atra is a protected animal in
some areas, as it has been listed as vulnerable by the International Union for Conservation of Nature.
Recently, due to the medical value of snake venoms, venomics has experienced growing research
interest. In particular, genomic resources are crucial for understanding the molecular mechanisms
of venom production. Here, we report a highly continuous genome assembly of N. atra, based on a
snake sample from Huangshan, Anhui, China. The size of this genome is 1.67 Gb, while its repeat
content constitutes 37.8% of the genome. A total of 26,432 functional genes were annotated. This
data provides an essential resource for studying venom production in N. atra. It may also provide
guidance for the protection of this species.

Keywords: genetics and genomics; zoology; animal genetics

Introduction

Elapidae is a family of snakes divided into three subfamilies (Bungarinae, Elapinae and
Notechinae), with 44 genera and around 186 described species distributed widely [1] The front of the
mouth of an elapid has permanently erect tusks, which are his distinguishing features. Elapids
include terrestrial and sea snakes. Terrestrial elapids, a family of venomous snakes, are distributed
across the globe in tropical and subtropical regions, with most species inhabiting the Southern
Hemisphere. Elapid sea snakes are mainly distributed in the Indian Ocean and the Southwest Pacific
Ocean [2]

The Chinese cobra, or Naja atra (NCBI: txid8656) (Figure 1), is a species of cobra from the family
Elapidae. Chinese cobras are usually between 1.2 and 1.5 m long [3] and they are among the most
prevalent cobra species in China. The Chinese cobra likes to inhibit plains, hills and low mountains
[4] Humans often encounter Chinese cobras, although these snakes usually escape to avoid
confrontation with humans. Chinese cobras can be observed hunting during daylight hours from
March to October and up to 2-3 hours after sunset at temperatures of 20-32°C [5] They have a widely
varied diet and prey on rodents, frogs, toads and other snakes.

The Chinese cobra is highly poisonous, its venom consisting mainly of postsynaptic neurotoxins
and cardiotoxins [6] Their venom offers them protection from predation to a certain extent; however,
populations of Chinese cobra have declined by 30% to 50% due to habitat loss and hunting by
humans. The venom of Chinese cobras can be used to extract anti-cobra snake venom, which is used
to treat cobra snake bites. Although the Chinese cobra is currently listed as a Vulnerable species on
the International Union for Conservation of Nature Red List [7] its numbers in the wild have declined
from Vulnerable to Endangered due to continued hunting.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. N. atra. (https://commons.wikimedia.org/wiki/File:View_of_deadly_cobra_snake_(Unsplash).jpg).

Main Content

Context

Snakebite is a serious threat to human life as it kills around 100,000 people annually. Genome-
enabled research of toxin genes may facilitate the development of effective antivenoms. Here, we
present a highly continuous reference genome assembly of N. atra. While there is a reference genome
for the Indian cobra (Naja naja) [20], this is the first for the Chinese cobra. This resource may also
provide valuable information for the conservation of this vulnerable species, which can be used for
targeted protection and breeding.

Methods

The detailed methods used in this study are available via a protocol collection hosted in
protocols.io [9] (Figure 2).
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Figure 2. A protocols.io collection of the standard protocols for sequencing snake genomes [9].

VERSION 2 v

Sample collection and sequencing

The N. atra sample used in this study was captured in Huangshan, Anhui, China, in 2021. After
collection, the specimen was quickly frozen to -80°C using drikold dry ice for storage and transport.
Methods for DNA extraction, library construction and sequencing were identical those used by Liu
et al in a previous study.

Sample collection, experiments and research design were all authorized by the Institutional
Review Board of BGI (BGI-IRB E22001). In this research, all the procedures have been operated
abiding to the guidelines from BGI-IRB strictly.

Genome survey, assembly, annotation and assessment

The single-tube long fragment read sequencing data were assembled using Supernova (v2.1.1,
RRID:SCR_016756) [10]. NextPolish (v1.0.5) [10] was then used to perform a second round of
correction and a third round of polishing of this assembly using the Whole Genome Sequencing data.
To get a haploid representation of the genome, duplicates were purged from the genome using the
purge_dups pipeline (RRID:SCR_021173) [11]. The completeness of the genome was evaluated using
sets of BUSCO (v5.2.2, RRID:SCR_015008) with genome mode and lineage data from
vertebrata_odb10 [12].

In order to detect the presence of known repeat elements in the genome of the many-banded P.
mucosa, the following approach was employed. To identify the known repetitive elements in the
genome of the many-banded krait, we used Tandem repeats Finder [13], LTR_Finder
(RRID:SCR_015247) [14] and RepeatModeler (v2.0.1, RRID:SCR_015027) [15]. RepeatMasker (v3.3.0,
RRID:SCR_012954) [16] and RepeatProteinMask v3.3.0 [17] were used to search the genome
sequences for known repeat elements. The BRAKER?2 pipeline (RRID:SCR_018964) [18] was used for
gene prediction. Then, the gene sets were aligned against several known databases, including
SwissProt [19], TrEMBL [19], Kyoto encyclopedia of genes and genomes (KEGG) [8], gene ontology
(GO), and the Non-Redundant Protein Sequence Database [8] database.

Results

We present a draft genome sequence of N. atra. The size of this genome is 1.67 Gb (Table 1),
similar to the previously published 1.79 Gb genome of N. naja [8]. The scaffold N50 length is 234.17
Kb, and the CG content reached 37.8%. The maximal scaffold length is 2,929,773 bp, demonstrating
that the reference is highly continuous according to the characteristics of the genome sequence. In
addition, the integrity of the genome was assessed at 84.1% using BUSCO (Figure 3).
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Table 1. Summary of the features of our N. atra genome.

contig Scaffold
Maximal length (bp) 271,789 2,929,773
N90 (bp) 4,371 7,368
N50 (bp) 33,081 234,173
Number >=100bp 194,909 106,418
Number >= 2kb 113,570 54,157
GC content (%) 40.3 37.8
Genome size (bp) 1,671,178,062
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Figure 3. BUSCO assessment result of our N. atra genome.

In the N. atra genome, the content of repetitive elements is up to 40.26%, and the total length of
the genome is 672 Mb (Table 2, Table 3). After we counted all repeat elements, we found that long
interspersed nuclear elements (LINEs) accounted for 30.63%, long terminal repeats (LTRs) accounted
for 14.03% and DNA accounted for 4.27% (Figure 4).
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Figure 4. Distribution of transposable elements (TEs) in our N. atra genome. The TEs include DNA
transposons (DNA) and RNA transposons (i.e., DNAs, LINEs, LTRs, and short interspersed nuclear
elements (SINEs)). (a) Known sequences divergence rate (b). De novo sequences divergence rate.


https://doi.org/10.20944/preprints202311.0597.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 November 2023

doi:10.20944/preprints202311.0597.v1

Table 2. Statistics for repetitive sequences identified in our N. atra genome.

Type Length (bp) % in genome
DNA 37,917,702 2.269170
LINE 449,338,074 26.890460
SINE 2,779,035 0.166310
LTR 224,765,038 13.450975
Other 0 0
Satellite 632,498 0.037852
Simple_repeat 5,080,994 0.304070
Unknown 7,924,824 0.474258
Total 672,795,525 40.263183
Table 3. Summary of the TEs in our N. atra genome.
Repbase TEs TE proteins De novo Combined TEs
Type Length (bp) % in Length (bp) % in Length (bp) % in Length (bp) % in
genome genome genome genome
DNA 44,907,141 2.57 3,638,477 0.20 41,761,899 2.39 81,259,555 4.66
LINE 170,663,721 9.79 140,023,530 8.03 581,624,764 33.36 619,156,475 35.51
SINE 25,759,131 1.47 0 0 8,061,060 0.46 32,226,226 1.84
LTR 22,468,876 1.28 30,088,483 1.72 149,994,747 8.60 159,624,403 9.15
Other 23,680 0.001 0 0 0 0 23,680 0.001
Unknown 0 0 0 0 5,653,213 0.32 5,653,213 0.32
Total 251,569,212 14.43 173,669,200 9.96 722,435,038 41.44 752,340,302 43.15

Finally, 29,063 functional genes were annotated. Through KEGG annotation, we found that the
genes related to signal transduction are essential in N. atra (Figure 5). Furthermore, through a
pathway enrichment analysis, we found that the number of Human Diseases pathways is the highest.
Environmental Information Processing and Organismal systems also account for a relatively large
proportion. According to the annotation and enrichment in the GO database, 6,292 genes are enriched
in cellular process and 6,734 in binding.
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Figure 5. Gene annotation information of N. atra. (a) KEGG enrichment of N. atra. (b) GO enrichment

of N. atra.
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Data Availability: The data supporting the findings of this study have been deposited into the CNGB Sequence
Archive (or CNSA) of China National GeneBank DataBase (or CNGBdb) with the accession number
CNP0004141. Raw reads are available in the SRA via bioproject PRINA955401. Additional data is in the GigaDB
repository [21].

Editor’s note: This paper is part of a series of Data Release papers presenting the genomes of different snake
species [22].
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